mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			2113 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			2113 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * xxHash - Extremely Fast Hash algorithm | ||
|  |  * Development source file for `xxh3` | ||
|  |  * Copyright (C) 2019-present, Yann Collet | ||
|  |  * | ||
|  |  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
 | ||
|  |  * | ||
|  |  * Redistribution and use in source and binary forms, with or without | ||
|  |  * modification, are permitted provided that the following conditions are | ||
|  |  * met: | ||
|  |  * | ||
|  |  *    * Redistributions of source code must retain the above copyright | ||
|  |  *      notice, this list of conditions and the following disclaimer. | ||
|  |  *    * Redistributions in binary form must reproduce the above | ||
|  |  *      copyright notice, this list of conditions and the following disclaimer | ||
|  |  *      in the documentation and/or other materials provided with the | ||
|  |  *      distribution. | ||
|  |  * | ||
|  |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
|  |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
|  |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
|  |  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
|  |  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
|  |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
|  |  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
|  |  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
|  |  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
|  |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
|  |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|  |  * | ||
|  |  * You can contact the author at: | ||
|  |  *   - xxHash homepage: https://www.xxhash.com
 | ||
|  |  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
 | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Note: This file is separated for development purposes. | ||
|  |  * It will be integrated into `xxhash.h` when development stage is completed. | ||
|  |  * | ||
|  |  * Credit: most of the work on vectorial and asm variants comes from @easyaspi314 | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifndef XXH3_H_1397135465
 | ||
|  | #define XXH3_H_1397135465
 | ||
|  | 
 | ||
|  | /* ===   Dependencies   === */ | ||
|  | #ifndef XXHASH_H_5627135585666179
 | ||
|  | /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */ | ||
|  | #  undef XXH_INLINE_ALL   /* avoid redefinition */
 | ||
|  | #  define XXH_INLINE_ALL
 | ||
|  | #endif
 | ||
|  | #include "xxhash.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ===   Compiler specifics   === */ | ||
|  | 
 | ||
|  | #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
 | ||
|  | #  define XXH_RESTRICT   restrict
 | ||
|  | #else
 | ||
|  | /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ | ||
|  | #  define XXH_RESTRICT   /* disable */
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
 | ||
|  |   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ | ||
|  |   || defined(__clang__) | ||
|  | #    define XXH_likely(x) __builtin_expect(x, 1)
 | ||
|  | #    define XXH_unlikely(x) __builtin_expect(x, 0)
 | ||
|  | #else
 | ||
|  | #    define XXH_likely(x) (x)
 | ||
|  | #    define XXH_unlikely(x) (x)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined(__GNUC__)
 | ||
|  | #  if defined(__AVX2__)
 | ||
|  | #    include <immintrin.h>
 | ||
|  | #  elif defined(__SSE2__)
 | ||
|  | #    include <emmintrin.h>
 | ||
|  | #  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
 | ||
|  | #    define inline __inline__  /* clang bug */
 | ||
|  | #    include <arm_neon.h>
 | ||
|  | #    undef inline
 | ||
|  | #  endif
 | ||
|  | #elif defined(_MSC_VER)
 | ||
|  | #  include <intrin.h>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while | ||
|  |  * remaining a true 64-bit/128-bit hash function. | ||
|  |  * | ||
|  |  * This is done by prioritizing a subset of 64-bit operations that can be | ||
|  |  * emulated without too many steps on the average 32-bit machine. | ||
|  |  * | ||
|  |  * For example, these two lines seem similar, and run equally fast on 64-bit: | ||
|  |  * | ||
|  |  *   xxh_u64 x; | ||
|  |  *   x ^= (x >> 47); // good
 | ||
|  |  *   x ^= (x >> 13); // bad
 | ||
|  |  * | ||
|  |  * However, to a 32-bit machine, there is a major difference. | ||
|  |  * | ||
|  |  * x ^= (x >> 47) looks like this: | ||
|  |  * | ||
|  |  *   x.lo ^= (x.hi >> (47 - 32)); | ||
|  |  * | ||
|  |  * while x ^= (x >> 13) looks like this: | ||
|  |  * | ||
|  |  *   // note: funnel shifts are not usually cheap.
 | ||
|  |  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); | ||
|  |  *   x.hi ^= (x.hi >> 13); | ||
|  |  * | ||
|  |  * The first one is significantly faster than the second, simply because the | ||
|  |  * shift is larger than 32. This means: | ||
|  |  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower | ||
|  |  *    32 bits in the shift. | ||
|  |  *  - The shift result will always fit in the lower 32 bits, and therefore, | ||
|  |  *    we can ignore the upper 32 bits in the xor. | ||
|  |  * | ||
|  |  * Thanks to this optimization, XXH3 only requires these features to be efficient: | ||
|  |  * | ||
|  |  *  - Usable unaligned access | ||
|  |  *  - A 32-bit or 64-bit ALU | ||
|  |  *      - If 32-bit, a decent ADC instruction | ||
|  |  *  - A 32 or 64-bit multiply with a 64-bit result | ||
|  |  *  - For the 128-bit variant, a decent byteswap helps short inputs. | ||
|  |  * | ||
|  |  * The first two are already required by XXH32, and almost all 32-bit and 64-bit | ||
|  |  * platforms which can run XXH32 can run XXH3 efficiently. | ||
|  |  * | ||
|  |  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one | ||
|  |  * notable exception. | ||
|  |  * | ||
|  |  * First of all, Thumb-1 lacks support for the UMULL instruction which | ||
|  |  * performs the important long multiply. This means numerous __aeabi_lmul | ||
|  |  * calls. | ||
|  |  * | ||
|  |  * Second of all, the 8 functional registers are just not enough. | ||
|  |  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need | ||
|  |  * Lo registers, and this shuffling results in thousands more MOVs than A32. | ||
|  |  * | ||
|  |  * A32 and T32 don't have this limitation. They can access all 14 registers, | ||
|  |  * do a 32->64 multiply with UMULL, and the flexible operand allowing free | ||
|  |  * shifts is helpful, too. | ||
|  |  * | ||
|  |  * Therefore, we do a quick sanity check. | ||
|  |  * | ||
|  |  * If compiling Thumb-1 for a target which supports ARM instructions, we will | ||
|  |  * emit a warning, as it is not a "sane" platform to compile for. | ||
|  |  * | ||
|  |  * Usually, if this happens, it is because of an accident and you probably need | ||
|  |  * to specify -march, as you likely meant to compile for a newer architecture. | ||
|  |  */ | ||
|  | #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
 | ||
|  | #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ==========================================
 | ||
|  |  * Vectorization detection | ||
|  |  * ========================================== */ | ||
|  | #define XXH_SCALAR 0 /* Portable scalar version */
 | ||
|  | #define XXH_SSE2   1 /* SSE2 for Pentium 4 and all x86_64 */
 | ||
|  | #define XXH_AVX2   2 /* AVX2 for Haswell and Bulldozer */
 | ||
|  | #define XXH_NEON   3 /* NEON for most ARMv7-A and all AArch64 */
 | ||
|  | #define XXH_VSX    4 /* VSX and ZVector for POWER8/z13 */
 | ||
|  | 
 | ||
|  | #ifndef XXH_VECTOR    /* can be defined on command line */
 | ||
|  | #  if defined(__AVX2__)
 | ||
|  | #    define XXH_VECTOR XXH_AVX2
 | ||
|  | #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
 | ||
|  | #    define XXH_VECTOR XXH_SSE2
 | ||
|  | #  elif defined(__GNUC__) /* msvc support maybe later */ \
 | ||
|  |   && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ | ||
|  |   && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ | ||
|  |     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) | ||
|  | #    define XXH_VECTOR XXH_NEON
 | ||
|  | #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
 | ||
|  |      || (defined(__s390x__) && defined(__VEC__)) \ | ||
|  |      && defined(__GNUC__) /* TODO: IBM XL */ | ||
|  | #    define XXH_VECTOR XXH_VSX
 | ||
|  | #  else
 | ||
|  | #    define XXH_VECTOR XXH_SCALAR
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Controls the alignment of the accumulator. | ||
|  |  * This is for compatibility with aligned vector loads, which are usually faster. | ||
|  |  */ | ||
|  | #ifndef XXH_ACC_ALIGN
 | ||
|  | #  if XXH_VECTOR == XXH_SCALAR  /* scalar */
 | ||
|  | #     define XXH_ACC_ALIGN 8
 | ||
|  | #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
 | ||
|  | #     define XXH_ACC_ALIGN 16
 | ||
|  | #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
 | ||
|  | #     define XXH_ACC_ALIGN 32
 | ||
|  | #  elif XXH_VECTOR == XXH_NEON  /* neon */
 | ||
|  | #     define XXH_ACC_ALIGN 16
 | ||
|  | #  elif XXH_VECTOR == XXH_VSX   /* vsx */
 | ||
|  | #     define XXH_ACC_ALIGN 16
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * UGLY HACK: | ||
|  |  * GCC usually generates the best code with -O3 for xxHash. | ||
|  |  * | ||
|  |  * However, when targeting AVX2, it is overzealous in its unrolling resulting | ||
|  |  * in code roughly 3/4 the speed of Clang. | ||
|  |  * | ||
|  |  * There are other issues, such as GCC splitting _mm256_loadu_si256 into | ||
|  |  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which | ||
|  |  * only applies to Sandy and Ivy Bridge... which don't even support AVX2. | ||
|  |  * | ||
|  |  * That is why when compiling the AVX2 version, it is recommended to use either | ||
|  |  *   -O2 -mavx2 -march=haswell | ||
|  |  * or | ||
|  |  *   -O2 -mavx2 -mno-avx256-split-unaligned-load | ||
|  |  * for decent performance, or to use Clang instead. | ||
|  |  * | ||
|  |  * Fortunately, we can control the first one with a pragma that forces GCC into | ||
|  |  * -O2, but the other one we can't control without "failed to inline always | ||
|  |  * inline function due to target mismatch" warnings. | ||
|  |  */ | ||
|  | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
 | ||
|  |   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ | ||
|  |   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ | ||
|  | #  pragma GCC push_options
 | ||
|  | #  pragma GCC optimize("-O2")
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #if XXH_VECTOR == XXH_NEON
 | ||
|  | /*
 | ||
|  |  * NEON's setup for vmlal_u32 is a little more complicated than it is on | ||
|  |  * SSE2, AVX2, and VSX. | ||
|  |  * | ||
|  |  * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. | ||
|  |  * | ||
|  |  * To do the same operation, the 128-bit 'Q' register needs to be split into | ||
|  |  * two 64-bit 'D' registers, performing this operation:: | ||
|  |  * | ||
|  |  *   [                a                 |                 b                ] | ||
|  |  *            |              '---------. .--------'                | | ||
|  |  *            |                         x                          | | ||
|  |  *            |              .---------' '--------.                | | ||
|  |  *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ] | ||
|  |  * | ||
|  |  * Due to significant changes in aarch64, the fastest method for aarch64 is | ||
|  |  * completely different than the fastest method for ARMv7-A. | ||
|  |  * | ||
|  |  * ARMv7-A treats D registers as unions overlaying Q registers, so modifying | ||
|  |  * D11 will modify the high half of Q5. This is similar to how modifying AH | ||
|  |  * will only affect bits 8-15 of AX on x86. | ||
|  |  * | ||
|  |  * VZIP takes two registers, and puts even lanes in one register and odd lanes | ||
|  |  * in the other. | ||
|  |  * | ||
|  |  * On ARMv7-A, this strangely modifies both parameters in place instead of | ||
|  |  * taking the usual 3-operand form. | ||
|  |  * | ||
|  |  * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the | ||
|  |  * lower and upper halves of the Q register to end up with the high and low | ||
|  |  * halves where we want - all in one instruction. | ||
|  |  * | ||
|  |  *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } | ||
|  |  * | ||
|  |  * Unfortunately we need inline assembly for this: Instructions modifying two | ||
|  |  * registers at once is not possible in GCC or Clang's IR, and they have to | ||
|  |  * create a copy. | ||
|  |  * | ||
|  |  * aarch64 requires a different approach. | ||
|  |  * | ||
|  |  * In order to make it easier to write a decent compiler for aarch64, many | ||
|  |  * quirks were removed, such as conditional execution. | ||
|  |  * | ||
|  |  * NEON was also affected by this. | ||
|  |  * | ||
|  |  * aarch64 cannot access the high bits of a Q-form register, and writes to a | ||
|  |  * D-form register zero the high bits, similar to how writes to W-form scalar | ||
|  |  * registers (or DWORD registers on x86_64) work. | ||
|  |  * | ||
|  |  * The formerly free vget_high intrinsics now require a vext (with a few | ||
|  |  * exceptions) | ||
|  |  * | ||
|  |  * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent | ||
|  |  * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one | ||
|  |  * operand. | ||
|  |  * | ||
|  |  * The equivalent of the VZIP.32 on the lower and upper halves would be this | ||
|  |  * mess: | ||
|  |  * | ||
|  |  *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
 | ||
|  |  *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
 | ||
|  |  *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
 | ||
|  |  * | ||
|  |  * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): | ||
|  |  * | ||
|  |  *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
 | ||
|  |  *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
 | ||
|  |  * | ||
|  |  * This is available on ARMv7-A, but is less efficient than a single VZIP.32. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Function-like macro: | ||
|  |  * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) | ||
|  |  * { | ||
|  |  *     outLo = (uint32x2_t)(in & 0xFFFFFFFF); | ||
|  |  *     outHi = (uint32x2_t)(in >> 32); | ||
|  |  *     in = UNDEFINED; | ||
|  |  * } | ||
|  |  */ | ||
|  | # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
 | ||
|  |    && defined(__GNUC__) \ | ||
|  |    && !defined(__aarch64__) && !defined(__arm64__) | ||
|  | #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
 | ||
|  |     do {                                                                                    \ | ||
|  |       /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ | ||
|  |       /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \ | ||
|  |       /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ | ||
|  |       __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \ | ||
|  |       (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \ | ||
|  |       (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \ | ||
|  |    } while (0) | ||
|  | # else
 | ||
|  | #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
 | ||
|  |     do {                                                                                  \ | ||
|  |       (outLo) = vmovn_u64    (in);                                                        \ | ||
|  |       (outHi) = vshrn_n_u64  ((in), 32);                                                  \ | ||
|  |     } while (0) | ||
|  | # endif
 | ||
|  | #endif  /* XXH_VECTOR == XXH_NEON */
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * VSX and Z Vector helpers. | ||
|  |  * | ||
|  |  * This is very messy, and any pull requests to clean this up are welcome. | ||
|  |  * | ||
|  |  * There are a lot of problems with supporting VSX and s390x, due to | ||
|  |  * inconsistent intrinsics, spotty coverage, and multiple endiannesses. | ||
|  |  */ | ||
|  | #if XXH_VECTOR == XXH_VSX
 | ||
|  | #  if defined(__s390x__)
 | ||
|  | #    include <s390intrin.h>
 | ||
|  | #  else
 | ||
|  | #    include <altivec.h>
 | ||
|  | #  endif
 | ||
|  | 
 | ||
|  | #  undef vector /* Undo the pollution */
 | ||
|  | 
 | ||
|  | typedef __vector unsigned long long xxh_u64x2; | ||
|  | typedef __vector unsigned char xxh_u8x16; | ||
|  | typedef __vector unsigned xxh_u32x4; | ||
|  | 
 | ||
|  | # ifndef XXH_VSX_BE
 | ||
|  | #  if defined(__BIG_ENDIAN__) \
 | ||
|  |   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) | ||
|  | #    define XXH_VSX_BE 1
 | ||
|  | #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
 | ||
|  | #    warning "-maltivec=be is not recommended. Please use native endianness."
 | ||
|  | #    define XXH_VSX_BE 1
 | ||
|  | #  else
 | ||
|  | #    define XXH_VSX_BE 0
 | ||
|  | #  endif
 | ||
|  | # endif /* !defined(XXH_VSX_BE) */
 | ||
|  | 
 | ||
|  | # if XXH_VSX_BE
 | ||
|  | /* A wrapper for POWER9's vec_revb. */ | ||
|  | #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
 | ||
|  | #    define XXH_vec_revb vec_revb
 | ||
|  | #  else
 | ||
|  | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) | ||
|  | { | ||
|  |     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, | ||
|  |                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; | ||
|  |     return vec_perm(val, val, vByteSwap); | ||
|  | } | ||
|  | #  endif
 | ||
|  | # endif /* XXH_VSX_BE */
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Performs an unaligned load and byte swaps it on big endian. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) | ||
|  | { | ||
|  |     xxh_u64x2 ret; | ||
|  |     memcpy(&ret, ptr, sizeof(xxh_u64x2)); | ||
|  | # if XXH_VSX_BE
 | ||
|  |     ret = XXH_vec_revb(ret); | ||
|  | # endif
 | ||
|  |     return ret; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC | ||
|  |  * | ||
|  |  * These intrinsics weren't added until GCC 8, despite existing for a while, | ||
|  |  * and they are endian dependent. Also, their meaning swap depending on version. | ||
|  |  * */ | ||
|  | # if defined(__s390x__)
 | ||
|  |  /* s390x is always big endian, no issue on this platform */ | ||
|  | #  define XXH_vec_mulo vec_mulo
 | ||
|  | #  define XXH_vec_mule vec_mule
 | ||
|  | # elif defined(__clang__) && __has_builtin(__builtin_altivec_vmuleuw)
 | ||
|  | /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ | ||
|  | #  define XXH_vec_mulo __builtin_altivec_vmulouw
 | ||
|  | #  define XXH_vec_mule __builtin_altivec_vmuleuw
 | ||
|  | # else
 | ||
|  | /* gcc needs inline assembly */ | ||
|  | /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ | ||
|  | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) | ||
|  | { | ||
|  |     xxh_u64x2 result; | ||
|  |     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); | ||
|  |     return result; | ||
|  | } | ||
|  | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) | ||
|  | { | ||
|  |     xxh_u64x2 result; | ||
|  |     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); | ||
|  |     return result; | ||
|  | } | ||
|  | # endif /* XXH_vec_mulo, XXH_vec_mule */
 | ||
|  | #endif /* XXH_VECTOR == XXH_VSX */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* prefetch
 | ||
|  |  * can be disabled, by declaring XXH_NO_PREFETCH build macro */ | ||
|  | #if defined(XXH_NO_PREFETCH)
 | ||
|  | #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
 | ||
|  | #else
 | ||
|  | #  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))  /* _mm_prefetch() is not defined outside of x86/x64 */
 | ||
|  | #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
 | ||
|  | #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
 | ||
|  | #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
 | ||
|  | #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
 | ||
|  | #  else
 | ||
|  | #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
 | ||
|  | #  endif
 | ||
|  | #endif  /* XXH_NO_PREFETCH */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ==========================================
 | ||
|  |  * XXH3 default settings | ||
|  |  * ========================================== */ | ||
|  | 
 | ||
|  | #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
 | ||
|  | 
 | ||
|  | #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
 | ||
|  | #  error "default keyset is not large enough"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Pseudorandom secret taken directly from FARSH */ | ||
|  | XXH_ALIGN(64) static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = { | ||
|  |     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, | ||
|  |     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, | ||
|  |     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, | ||
|  |     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, | ||
|  |     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, | ||
|  |     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, | ||
|  |     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, | ||
|  |     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, | ||
|  | 
 | ||
|  |     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, | ||
|  |     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, | ||
|  |     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, | ||
|  |     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Does a 32-bit to 64-bit long multiply. | ||
|  |  * | ||
|  |  * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't | ||
|  |  * need to (but it shouldn't need to anyways, it is about 7 instructions to do | ||
|  |  * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we | ||
|  |  * use that instead of the normal method. | ||
|  |  * | ||
|  |  * If you are compiling for platforms like Thumb-1 and don't have a better option, | ||
|  |  * you may also want to write your own long multiply routine here. | ||
|  |  * | ||
|  |  * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) | ||
|  |  * { | ||
|  |  *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); | ||
|  |  * } | ||
|  |  */ | ||
|  | #if defined(_MSC_VER) && defined(_M_IX86)
 | ||
|  | #    include <intrin.h>
 | ||
|  | #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
 | ||
|  | #else
 | ||
|  | /*
 | ||
|  |  * Downcast + upcast is usually better than masking on older compilers like | ||
|  |  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. | ||
|  |  * | ||
|  |  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands | ||
|  |  * and perform a full 64x64 multiply -- entirely redundant on 32-bit. | ||
|  |  */ | ||
|  | #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Calculates a 64->128-bit long multiply. | ||
|  |  * | ||
|  |  * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. | ||
|  |  */ | ||
|  | static XXH128_hash_t | ||
|  | XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) | ||
|  | { | ||
|  |     /*
 | ||
|  |      * GCC/Clang __uint128_t method. | ||
|  |      * | ||
|  |      * On most 64-bit targets, GCC and Clang define a __uint128_t type. | ||
|  |      * This is usually the best way as it usually uses a native long 64-bit | ||
|  |      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. | ||
|  |      * | ||
|  |      * Usually. | ||
|  |      * | ||
|  |      * Despite being a 32-bit platform, Clang (and emscripten) define this type | ||
|  |      * despite not having the arithmetic for it. This results in a laggy | ||
|  |      * compiler builtin call which calculates a full 128-bit multiply. | ||
|  |      * In that case it is best to use the portable one. | ||
|  |      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
 | ||
|  |      */ | ||
|  | #if defined(__GNUC__) && !defined(__wasm__) \
 | ||
|  |     && defined(__SIZEOF_INT128__) \ | ||
|  |     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) | ||
|  | 
 | ||
|  |     __uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs; | ||
|  |     XXH128_hash_t const r128 = { (xxh_u64)(product), (xxh_u64)(product >> 64) }; | ||
|  |     return r128; | ||
|  | 
 | ||
|  |     /*
 | ||
|  |      * MSVC for x64's _umul128 method. | ||
|  |      * | ||
|  |      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); | ||
|  |      * | ||
|  |      * This compiles to single operand MUL on x64. | ||
|  |      */ | ||
|  | #elif defined(_M_X64) || defined(_M_IA64)
 | ||
|  | 
 | ||
|  | #ifndef _MSC_VER
 | ||
|  | #   pragma intrinsic(_umul128)
 | ||
|  | #endif
 | ||
|  |     xxh_u64 product_high; | ||
|  |     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); | ||
|  |     XXH128_hash_t const r128 = { product_low, product_high }; | ||
|  |     return r128; | ||
|  | 
 | ||
|  | #else
 | ||
|  |     /*
 | ||
|  |      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. | ||
|  |      * | ||
|  |      * This is a fast and simple grade school multiply, which is shown below | ||
|  |      * with base 10 arithmetic instead of base 0x100000000. | ||
|  |      * | ||
|  |      *           9 3 // D2 lhs = 93
 | ||
|  |      *         x 7 5 // D2 rhs = 75
 | ||
|  |      *     ---------- | ||
|  |      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
 | ||
|  |      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
 | ||
|  |      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
 | ||
|  |      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
 | ||
|  |      *     --------- | ||
|  |      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
 | ||
|  |      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
 | ||
|  |      *     --------- | ||
|  |      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
 | ||
|  |      * | ||
|  |      * The reasons for adding the products like this are: | ||
|  |      *  1. It avoids manual carry tracking. Just like how | ||
|  |      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. | ||
|  |      *     This avoids a lot of complexity. | ||
|  |      * | ||
|  |      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL | ||
|  |      *     instruction available in ARM's Digital Signal Processing extension | ||
|  |      *     in 32-bit ARMv6 and later, which is shown below: | ||
|  |      * | ||
|  |      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) | ||
|  |      *         { | ||
|  |      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; | ||
|  |      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF); | ||
|  |      *             *RdHi = (xxh_u32)(product >> 32); | ||
|  |      *         } | ||
|  |      * | ||
|  |      *     This instruction was designed for efficient long multiplication, and | ||
|  |      *     allows this to be calculated in only 4 instructions at speeds | ||
|  |      *     comparable to some 64-bit ALUs. | ||
|  |      * | ||
|  |      *  3. It isn't terrible on other platforms. Usually this will be a couple | ||
|  |      *     of 32-bit ADD/ADCs. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* First calculate all of the cross products. */ | ||
|  |     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); | ||
|  |     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF); | ||
|  |     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); | ||
|  |     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32); | ||
|  | 
 | ||
|  |     /* Now add the products together. These will never overflow. */ | ||
|  |     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; | ||
|  |     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi; | ||
|  |     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); | ||
|  | 
 | ||
|  |     XXH128_hash_t r128 = { lower, upper }; | ||
|  |     return r128; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Does a 64-bit to 128-bit multiply, then XOR folds it. | ||
|  |  * | ||
|  |  * The reason for the separate function is to prevent passing too many structs | ||
|  |  * around by value. This will hopefully inline the multiply, but we don't force it. | ||
|  |  */ | ||
|  | static xxh_u64 | ||
|  | XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) | ||
|  | { | ||
|  |     XXH128_hash_t product = XXH_mult64to128(lhs, rhs); | ||
|  |     return product.low64 ^ product.high64; | ||
|  | } | ||
|  | 
 | ||
|  | /* Seems to produce slightly better code on GCC for some reason. */ | ||
|  | XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) | ||
|  | { | ||
|  |     XXH_ASSERT(0 <= shift && shift < 64); | ||
|  |     return v64 ^ (v64 >> shift); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * We don't need to (or want to) mix as much as XXH64. | ||
|  |  * | ||
|  |  * Short hashes are more evenly distributed, so it isn't necessary. | ||
|  |  */ | ||
|  | static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) | ||
|  | { | ||
|  |     h64 = XXH_xorshift64(h64, 37); | ||
|  |     h64 *= 0x165667919E3779F9ULL; | ||
|  |     h64 = XXH_xorshift64(h64, 32); | ||
|  |     return h64; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ==========================================
 | ||
|  |  * Short keys | ||
|  |  * ========================================== | ||
|  |  * One of the shortcomings of XXH32 and XXH64 was that their performance was | ||
|  |  * sub-optimal on short lengths. It used an iterative algorithm which strongly | ||
|  |  * favored lengths that were a multiple of 4 or 8. | ||
|  |  * | ||
|  |  * Instead of iterating over individual inputs, we use a set of single shot | ||
|  |  * functions which piece together a range of lengths and operate in constant time. | ||
|  |  * | ||
|  |  * Additionally, the number of multiplies has been significantly reduced. This | ||
|  |  * reduces latency, especially when emulating 64-bit multiplies on 32-bit. | ||
|  |  * | ||
|  |  * Depending on the platform, this may or may not be faster than XXH32, but it | ||
|  |  * is almost guaranteed to be faster than XXH64. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * At very short lengths, there isn't enough input to fully hide secrets, or use | ||
|  |  * the entire secret. | ||
|  |  * | ||
|  |  * There is also only a limited amount of mixing we can do before significantly | ||
|  |  * impacting performance. | ||
|  |  * | ||
|  |  * Therefore, we use different sections of the secret and always mix two secret | ||
|  |  * samples with an XOR. This should have no effect on performance on the | ||
|  |  * seedless or withSeed variants because everything _should_ be constant folded | ||
|  |  * by modern compilers. | ||
|  |  * | ||
|  |  * The XOR mixing hides individual parts of the secret and increases entropy. | ||
|  |  * | ||
|  |  * This adds an extra layer of strength for custom secrets. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE XXH64_hash_t | ||
|  | XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(input != NULL); | ||
|  |     XXH_ASSERT(1 <= len && len <= 3); | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     /*
 | ||
|  |      * len = 1: combined = { input[0], 0x01, input[0], input[0] } | ||
|  |      * len = 2: combined = { input[1], 0x02, input[0], input[1] } | ||
|  |      * len = 3: combined = { input[2], 0x03, input[0], input[1] } | ||
|  |      */ | ||
|  |     {   xxh_u8 const c1 = input[0]; | ||
|  |         xxh_u8 const c2 = input[len >> 1]; | ||
|  |         xxh_u8 const c3 = input[len - 1]; | ||
|  |         xxh_u32 const combined = ((xxh_u32)c1<<16) | (((xxh_u32)c2) << 24) | (((xxh_u32)c3) << 0) | (((xxh_u32)len) << 8); | ||
|  |         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; | ||
|  |         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; | ||
|  |         xxh_u64 const mixed = keyed * PRIME64_1; | ||
|  |         return XXH3_avalanche(mixed); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH64_hash_t | ||
|  | XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(input != NULL); | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     XXH_ASSERT(4 <= len && len < 8); | ||
|  |     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; | ||
|  |     {   xxh_u32 const input1 = XXH_readLE32(input); | ||
|  |         xxh_u32 const input2 = XXH_readLE32(input + len - 4); | ||
|  |         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; | ||
|  |         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); | ||
|  |         xxh_u64 x = input64 ^ bitflip; | ||
|  |         /* this mix is inspired by Pelle Evensen's rrmxmx */ | ||
|  |         x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24); | ||
|  |         x *= 0x9FB21C651E98DF25ULL; | ||
|  |         x ^= (x >> 35) + len ; | ||
|  |         x *= 0x9FB21C651E98DF25ULL; | ||
|  |         return XXH_xorshift64(x, 28); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH64_hash_t | ||
|  | XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(input != NULL); | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     XXH_ASSERT(8 <= len && len <= 16); | ||
|  |     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; | ||
|  |         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; | ||
|  |         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1; | ||
|  |         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; | ||
|  |         xxh_u64 const acc = len | ||
|  |                           + XXH_swap64(input_lo) + input_hi | ||
|  |                           + XXH3_mul128_fold64(input_lo, input_hi); | ||
|  |         return XXH3_avalanche(acc); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH64_hash_t | ||
|  | XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(len <= 16); | ||
|  |     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed); | ||
|  |         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); | ||
|  |         if (len) return XXH3_len_1to3_64b(input, len, secret, seed); | ||
|  |         return XXH3_avalanche((PRIME64_1 + seed) ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to | ||
|  |  * multiplication by zero, affecting hashes of lengths 17 to 240. | ||
|  |  * | ||
|  |  * However, they are very unlikely. | ||
|  |  * | ||
|  |  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all | ||
|  |  * unseeded non-cryptographic hashes, it does not attempt to defend itself | ||
|  |  * against specially crafted inputs, only random inputs. | ||
|  |  * | ||
|  |  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes | ||
|  |  * cancelling out the secret is taken an arbitrary number of times (addressed | ||
|  |  * in XXH3_accumulate_512), this collision is very unlikely with random inputs | ||
|  |  * and/or proper seeding: | ||
|  |  * | ||
|  |  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a | ||
|  |  * function that is only called up to 16 times per hash with up to 240 bytes of | ||
|  |  * input. | ||
|  |  * | ||
|  |  * This is not too bad for a non-cryptographic hash function, especially with | ||
|  |  * only 64 bit outputs. | ||
|  |  * | ||
|  |  * The 128-bit variant (which trades some speed for strength) is NOT affected | ||
|  |  * by this, although it is always a good idea to use a proper seed if you care | ||
|  |  * about strength. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, | ||
|  |                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) | ||
|  | { | ||
|  | #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | ||
|  |   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \ | ||
|  |   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */ | ||
|  |     /*
 | ||
|  |      * UGLY HACK: | ||
|  |      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in | ||
|  |      * slower code. | ||
|  |      * | ||
|  |      * By forcing seed64 into a register, we disrupt the cost model and | ||
|  |      * cause it to scalarize. See `XXH32_round()` | ||
|  |      * | ||
|  |      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, | ||
|  |      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on | ||
|  |      * GCC 9.2, despite both emitting scalar code. | ||
|  |      * | ||
|  |      * GCC generates much better scalar code than Clang for the rest of XXH3, | ||
|  |      * which is why finding a more optimal codepath is an interest. | ||
|  |      */ | ||
|  |     __asm__ ("" : "+r" (seed64)); | ||
|  | #endif
 | ||
|  |     {   xxh_u64 const input_lo = XXH_readLE64(input); | ||
|  |         xxh_u64 const input_hi = XXH_readLE64(input+8); | ||
|  |         return XXH3_mul128_fold64( | ||
|  |             input_lo ^ (XXH_readLE64(secret)   + seed64), | ||
|  |             input_hi ^ (XXH_readLE64(secret+8) - seed64) | ||
|  |         ); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* For mid range keys, XXH3 uses a Mum-hash variant. */ | ||
|  | XXH_FORCE_INLINE XXH64_hash_t | ||
|  | XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize, | ||
|  |                      XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; | ||
|  |     XXH_ASSERT(16 < len && len <= 128); | ||
|  | 
 | ||
|  |     {   xxh_u64 acc = len * PRIME64_1; | ||
|  |         if (len > 32) { | ||
|  |             if (len > 64) { | ||
|  |                 if (len > 96) { | ||
|  |                     acc += XXH3_mix16B(input+48, secret+96, seed); | ||
|  |                     acc += XXH3_mix16B(input+len-64, secret+112, seed); | ||
|  |                 } | ||
|  |                 acc += XXH3_mix16B(input+32, secret+64, seed); | ||
|  |                 acc += XXH3_mix16B(input+len-48, secret+80, seed); | ||
|  |             } | ||
|  |             acc += XXH3_mix16B(input+16, secret+32, seed); | ||
|  |             acc += XXH3_mix16B(input+len-32, secret+48, seed); | ||
|  |         } | ||
|  |         acc += XXH3_mix16B(input+0, secret+0, seed); | ||
|  |         acc += XXH3_mix16B(input+len-16, secret+16, seed); | ||
|  | 
 | ||
|  |         return XXH3_avalanche(acc); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | #define XXH3_MIDSIZE_MAX 240
 | ||
|  | 
 | ||
|  | XXH_NO_INLINE XXH64_hash_t | ||
|  | XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize, | ||
|  |                       XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; | ||
|  |     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); | ||
|  | 
 | ||
|  |     #define XXH3_MIDSIZE_STARTOFFSET 3
 | ||
|  |     #define XXH3_MIDSIZE_LASTOFFSET  17
 | ||
|  | 
 | ||
|  |     {   xxh_u64 acc = len * PRIME64_1; | ||
|  |         int const nbRounds = (int)len / 16; | ||
|  |         int i; | ||
|  |         for (i=0; i<8; i++) { | ||
|  |             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); | ||
|  |         } | ||
|  |         acc = XXH3_avalanche(acc); | ||
|  |         XXH_ASSERT(nbRounds >= 8); | ||
|  | #if defined(__clang__)                                /* Clang */ \
 | ||
|  |     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ | ||
|  |     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */ | ||
|  |         /*
 | ||
|  |          * UGLY HACK: | ||
|  |          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. | ||
|  |          * In everywhere else, it uses scalar code. | ||
|  |          * | ||
|  |          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it | ||
|  |          * would still be slower than UMAAL (see XXH_mult64to128). | ||
|  |          * | ||
|  |          * Unfortunately, Clang doesn't handle the long multiplies properly and | ||
|  |          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then | ||
|  |          * scalarized into an ugly mess of VMOV.32 instructions. | ||
|  |          * | ||
|  |          * This mess is difficult to avoid without turning autovectorization | ||
|  |          * off completely, but they are usually relatively minor and/or not | ||
|  |          * worth it to fix. | ||
|  |          * | ||
|  |          * This loop is the easiest to fix, as unlike XXH32, this pragma | ||
|  |          * _actually works_ because it is a loop vectorization instead of an | ||
|  |          * SLP vectorization. | ||
|  |          */ | ||
|  |         #pragma clang loop vectorize(disable)
 | ||
|  | #endif
 | ||
|  |         for (i=8 ; i < nbRounds; i++) { | ||
|  |             acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); | ||
|  |         } | ||
|  |         /* last bytes */ | ||
|  |         acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); | ||
|  |         return XXH3_avalanche(acc); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ===    Long Keys    === */ | ||
|  | 
 | ||
|  | #define STRIPE_LEN 64
 | ||
|  | #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
 | ||
|  | #define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
 | ||
|  | 
 | ||
|  | typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. | ||
|  |  * | ||
|  |  * It is a hardened version of UMAC, based off of FARSH's implementation. | ||
|  |  * | ||
|  |  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD | ||
|  |  * implementations, and it is ridiculously fast. | ||
|  |  * | ||
|  |  * We harden it by mixing the original input to the accumulators as well as the product. | ||
|  |  * | ||
|  |  * This means that in the (relatively likely) case of a multiply by zero, the | ||
|  |  * original input is preserved. | ||
|  |  * | ||
|  |  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve | ||
|  |  * cross-pollination, as otherwise the upper and lower halves would be | ||
|  |  * essentially independent. | ||
|  |  * | ||
|  |  * This doesn't matter on 64-bit hashes since they all get merged together in | ||
|  |  * the end, so we skip the extra step. | ||
|  |  * | ||
|  |  * Both XXH3_64bits and XXH3_128bits use this subroutine. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE void | ||
|  | XXH3_accumulate_512(      void* XXH_RESTRICT acc, | ||
|  |                     const void* XXH_RESTRICT input, | ||
|  |                     const void* XXH_RESTRICT secret, | ||
|  |                     XXH3_accWidth_e accWidth) | ||
|  | { | ||
|  | #if (XXH_VECTOR == XXH_AVX2)
 | ||
|  | 
 | ||
|  |     XXH_ASSERT((((size_t)acc) & 31) == 0); | ||
|  |     {   XXH_ALIGN(32) __m256i* const xacc    =       (__m256i *) acc; | ||
|  |         /* Unaligned. This is mainly for pointer arithmetic, and because
 | ||
|  |          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */ | ||
|  |         const         __m256i* const xinput  = (const __m256i *) input; | ||
|  |         /* Unaligned. This is mainly for pointer arithmetic, and because
 | ||
|  |          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ | ||
|  |         const         __m256i* const xsecret = (const __m256i *) secret; | ||
|  | 
 | ||
|  |         size_t i; | ||
|  |         for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) { | ||
|  |             /* data_vec    = xinput[i]; */ | ||
|  |             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i); | ||
|  |             /* key_vec     = xsecret[i]; */ | ||
|  |             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i); | ||
|  |             /* data_key    = data_vec ^ key_vec; */ | ||
|  |             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec); | ||
|  |             /* data_key_lo = data_key >> 32; */ | ||
|  |             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); | ||
|  |             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ | ||
|  |             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo); | ||
|  |             if (accWidth == XXH3_acc_128bits) { | ||
|  |                 /* xacc[i] += swap(data_vec); */ | ||
|  |                 __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); | ||
|  |                 __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap); | ||
|  |                 /* xacc[i] += product; */ | ||
|  |                 xacc[i] = _mm256_add_epi64(product, sum); | ||
|  |             } else {  /* XXH3_acc_64bits */ | ||
|  |                 /* xacc[i] += data_vec; */ | ||
|  |                 __m256i const sum = _mm256_add_epi64(xacc[i], data_vec); | ||
|  |                 /* xacc[i] += product; */ | ||
|  |                 xacc[i] = _mm256_add_epi64(product, sum); | ||
|  |             } | ||
|  |     }   } | ||
|  | 
 | ||
|  | #elif (XXH_VECTOR == XXH_SSE2)
 | ||
|  | 
 | ||
|  |     /* SSE2 is just a half-scale version of the AVX2 version. */ | ||
|  |     XXH_ASSERT((((size_t)acc) & 15) == 0); | ||
|  |     {   XXH_ALIGN(16) __m128i* const xacc    =       (__m128i *) acc; | ||
|  |         /* Unaligned. This is mainly for pointer arithmetic, and because
 | ||
|  |          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ | ||
|  |         const         __m128i* const xinput  = (const __m128i *) input; | ||
|  |         /* Unaligned. This is mainly for pointer arithmetic, and because
 | ||
|  |          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ | ||
|  |         const         __m128i* const xsecret = (const __m128i *) secret; | ||
|  | 
 | ||
|  |         size_t i; | ||
|  |         for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) { | ||
|  |             /* data_vec    = xinput[i]; */ | ||
|  |             __m128i const data_vec    = _mm_loadu_si128   (xinput+i); | ||
|  |             /* key_vec     = xsecret[i]; */ | ||
|  |             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i); | ||
|  |             /* data_key    = data_vec ^ key_vec; */ | ||
|  |             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec); | ||
|  |             /* data_key_lo = data_key >> 32; */ | ||
|  |             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); | ||
|  |             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ | ||
|  |             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo); | ||
|  |             if (accWidth == XXH3_acc_128bits) { | ||
|  |                 /* xacc[i] += swap(data_vec); */ | ||
|  |                 __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); | ||
|  |                 __m128i const sum       = _mm_add_epi64(xacc[i], data_swap); | ||
|  |                 /* xacc[i] += product; */ | ||
|  |                 xacc[i] = _mm_add_epi64(product, sum); | ||
|  |             } else {  /* XXH3_acc_64bits */ | ||
|  |                 /* xacc[i] += data_vec; */ | ||
|  |                 __m128i const sum = _mm_add_epi64(xacc[i], data_vec); | ||
|  |                 /* xacc[i] += product; */ | ||
|  |                 xacc[i] = _mm_add_epi64(product, sum); | ||
|  |             } | ||
|  |     }   } | ||
|  | 
 | ||
|  | #elif (XXH_VECTOR == XXH_NEON)
 | ||
|  | 
 | ||
|  |     XXH_ASSERT((((size_t)acc) & 15) == 0); | ||
|  |     { | ||
|  |         XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc; | ||
|  |         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ | ||
|  |         uint8_t const* const xinput = (const uint8_t *) input; | ||
|  |         uint8_t const* const xsecret  = (const uint8_t *) secret; | ||
|  | 
 | ||
|  |         size_t i; | ||
|  |         for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) { | ||
|  |             /* data_vec = xinput[i]; */ | ||
|  |             uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16)); | ||
|  |             /* key_vec  = xsecret[i];  */ | ||
|  |             uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16)); | ||
|  |             /* data_key = data_vec ^ key_vec; */ | ||
|  |             uint64x2_t data_key    = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); | ||
|  |             uint32x2_t data_key_lo, data_key_hi; | ||
|  |             if (accWidth == XXH3_acc_64bits) { | ||
|  |                 /* xacc[i] += data_vec; */ | ||
|  |                 xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec)); | ||
|  |             } else {  /* XXH3_acc_128bits */ | ||
|  |                 /* xacc[i] += swap(data_vec); */ | ||
|  |                 uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec); | ||
|  |                 uint64x2_t const swapped = vextq_u64(data64, data64, 1); | ||
|  |                 xacc[i] = vaddq_u64 (xacc[i], swapped); | ||
|  |             } | ||
|  |             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
 | ||
|  |              * data_key_hi = (uint32x2_t) (data_key >> 32); | ||
|  |              * data_key = UNDEFINED; */ | ||
|  |             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); | ||
|  |             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ | ||
|  |             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); | ||
|  | 
 | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | #elif (XXH_VECTOR == XXH_VSX)
 | ||
|  |           xxh_u64x2* const xacc     =       (xxh_u64x2*) acc;    /* presumed aligned */ | ||
|  |     xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */ | ||
|  |     xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */ | ||
|  |     xxh_u64x2 const v32 = { 32, 32 }; | ||
|  |     size_t i; | ||
|  |     for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) { | ||
|  |         /* data_vec = xinput[i]; */ | ||
|  |         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); | ||
|  |         /* key_vec = xsecret[i]; */ | ||
|  |         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i); | ||
|  |         xxh_u64x2 const data_key = data_vec ^ key_vec; | ||
|  |         /* shuffled = (data_key << 32) | (data_key >> 32); */ | ||
|  |         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); | ||
|  |         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ | ||
|  |         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); | ||
|  |         xacc[i] += product; | ||
|  | 
 | ||
|  |         if (accWidth == XXH3_acc_64bits) { | ||
|  |             xacc[i] += data_vec; | ||
|  |         } else {  /* XXH3_acc_128bits */ | ||
|  |             /* swap high and low halves */ | ||
|  | #ifdef __s390x__
 | ||
|  |             xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2); | ||
|  | #else
 | ||
|  |             xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2); | ||
|  | #endif
 | ||
|  |             xacc[i] += data_swapped; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | #else   /* scalar variant of Accumulator - universal */
 | ||
|  | 
 | ||
|  |     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ | ||
|  |     const xxh_u8* const xinput = (const xxh_u8*) input;  /* no alignment restriction */ | ||
|  |     const xxh_u8* const xsecret  = (const xxh_u8*) secret;   /* no alignment restriction */ | ||
|  |     size_t i; | ||
|  |     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); | ||
|  |     for (i=0; i < ACC_NB; i++) { | ||
|  |         xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); | ||
|  |         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); | ||
|  | 
 | ||
|  |         if (accWidth == XXH3_acc_64bits) { | ||
|  |             xacc[i] += data_val; | ||
|  |         } else { | ||
|  |             xacc[i ^ 1] += data_val; /* swap adjacent lanes */ | ||
|  |         } | ||
|  |         xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); | ||
|  |     } | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. | ||
|  |  * | ||
|  |  * Multiplication isn't perfect, as explained by Google in HighwayHash: | ||
|  |  * | ||
|  |  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
 | ||
|  |  *  // varying degrees. In descending order of goodness, bytes
 | ||
|  |  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
 | ||
|  |  *  // As expected, the upper and lower bytes are much worse.
 | ||
|  |  * | ||
|  |  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
 | ||
|  |  * | ||
|  |  * Since our algorithm uses a pseudorandom secret to add some variance into the | ||
|  |  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. | ||
|  |  * | ||
|  |  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid | ||
|  |  * extraction. | ||
|  |  * | ||
|  |  * Both XXH3_64bits and XXH3_128bits use this subroutine. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE void | ||
|  | XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) | ||
|  | { | ||
|  | #if (XXH_VECTOR == XXH_AVX2)
 | ||
|  | 
 | ||
|  |     XXH_ASSERT((((size_t)acc) & 31) == 0); | ||
|  |     {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc; | ||
|  |         /* Unaligned. This is mainly for pointer arithmetic, and because
 | ||
|  |          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ | ||
|  |         const         __m256i* const xsecret = (const __m256i *) secret; | ||
|  |         const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1); | ||
|  | 
 | ||
|  |         size_t i; | ||
|  |         for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) { | ||
|  |             /* xacc[i] ^= (xacc[i] >> 47) */ | ||
|  |             __m256i const acc_vec     = xacc[i]; | ||
|  |             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47); | ||
|  |             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted); | ||
|  |             /* xacc[i] ^= xsecret; */ | ||
|  |             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i); | ||
|  |             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec); | ||
|  | 
 | ||
|  |             /* xacc[i] *= PRIME32_1; */ | ||
|  |             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); | ||
|  |             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32); | ||
|  |             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32); | ||
|  |             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | #elif (XXH_VECTOR == XXH_SSE2)
 | ||
|  | 
 | ||
|  |     XXH_ASSERT((((size_t)acc) & 15) == 0); | ||
|  |     {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc; | ||
|  |         /* Unaligned. This is mainly for pointer arithmetic, and because
 | ||
|  |          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ | ||
|  |         const         __m128i* const xsecret = (const __m128i *) secret; | ||
|  |         const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1); | ||
|  | 
 | ||
|  |         size_t i; | ||
|  |         for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) { | ||
|  |             /* xacc[i] ^= (xacc[i] >> 47) */ | ||
|  |             __m128i const acc_vec     = xacc[i]; | ||
|  |             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47); | ||
|  |             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted); | ||
|  |             /* xacc[i] ^= xsecret[i]; */ | ||
|  |             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i); | ||
|  |             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec); | ||
|  | 
 | ||
|  |             /* xacc[i] *= PRIME32_1; */ | ||
|  |             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); | ||
|  |             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32); | ||
|  |             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32); | ||
|  |             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  | #elif (XXH_VECTOR == XXH_NEON)
 | ||
|  | 
 | ||
|  |     XXH_ASSERT((((size_t)acc) & 15) == 0); | ||
|  | 
 | ||
|  |     {   uint64x2_t* xacc       = (uint64x2_t*) acc; | ||
|  |         uint8_t const* xsecret = (uint8_t const*) secret; | ||
|  |         uint32x2_t prime       = vdup_n_u32 (PRIME32_1); | ||
|  | 
 | ||
|  |         size_t i; | ||
|  |         for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) { | ||
|  |             /* xacc[i] ^= (xacc[i] >> 47); */ | ||
|  |             uint64x2_t acc_vec  = xacc[i]; | ||
|  |             uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47); | ||
|  |             uint64x2_t data_vec = veorq_u64   (acc_vec, shifted); | ||
|  | 
 | ||
|  |             /* xacc[i] ^= xsecret[i]; */ | ||
|  |             uint8x16_t key_vec  = vld1q_u8(xsecret + (i * 16)); | ||
|  |             uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); | ||
|  | 
 | ||
|  |             /* xacc[i] *= PRIME32_1 */ | ||
|  |             uint32x2_t data_key_lo, data_key_hi; | ||
|  |             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
 | ||
|  |              * data_key_hi = (uint32x2_t) (xacc[i] >> 32); | ||
|  |              * xacc[i] = UNDEFINED; */ | ||
|  |             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); | ||
|  |             {   /*
 | ||
|  |                  * prod_hi = (data_key >> 32) * PRIME32_1; | ||
|  |                  * | ||
|  |                  * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will | ||
|  |                  * incorrectly "optimize" this: | ||
|  |                  *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b)); | ||
|  |                  *   shifted = vshll_n_u32(tmp, 32); | ||
|  |                  * to this: | ||
|  |                  *   tmp     = "vmulq_u64"(a, b); // no such thing!
 | ||
|  |                  *   shifted = vshlq_n_u64(tmp, 32); | ||
|  |                  * | ||
|  |                  * However, unlike SSE, Clang lacks a 64-bit multiply routine | ||
|  |                  * for NEON, and it scalarizes two 64-bit multiplies instead. | ||
|  |                  * | ||
|  |                  * vmull_u32 has the same timing as vmul_u32, and it avoids | ||
|  |                  * this bug completely. | ||
|  |                  * See https://bugs.llvm.org/show_bug.cgi?id=39967
 | ||
|  |                  */ | ||
|  |                 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); | ||
|  |                 /* xacc[i] = prod_hi << 32; */ | ||
|  |                 xacc[i] = vshlq_n_u64(prod_hi, 32); | ||
|  |                 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */ | ||
|  |                 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); | ||
|  |             } | ||
|  |     }   } | ||
|  | 
 | ||
|  | #elif (XXH_VECTOR == XXH_VSX)
 | ||
|  | 
 | ||
|  |     XXH_ASSERT((((size_t)acc) & 15) == 0); | ||
|  | 
 | ||
|  |     {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc; | ||
|  |         const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; | ||
|  |         /* constants */ | ||
|  |         xxh_u64x2 const v32  = { 32, 32 }; | ||
|  |         xxh_u64x2 const v47 = { 47, 47 }; | ||
|  |         xxh_u32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 }; | ||
|  |         size_t i; | ||
|  |         for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) { | ||
|  |             /* xacc[i] ^= (xacc[i] >> 47); */ | ||
|  |             xxh_u64x2 const acc_vec  = xacc[i]; | ||
|  |             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); | ||
|  | 
 | ||
|  |             /* xacc[i] ^= xsecret[i]; */ | ||
|  |             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i); | ||
|  |             xxh_u64x2 const data_key = data_vec ^ key_vec; | ||
|  | 
 | ||
|  |             /* xacc[i] *= PRIME32_1 */ | ||
|  |             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */ | ||
|  |             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime); | ||
|  |             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */ | ||
|  |             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime); | ||
|  |             xacc[i] = prod_odd + (prod_even << v32); | ||
|  |     }   } | ||
|  | 
 | ||
|  | #else   /* scalar variant of Scrambler - universal */
 | ||
|  | 
 | ||
|  |     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */ | ||
|  |     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */ | ||
|  |     size_t i; | ||
|  |     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); | ||
|  |     for (i=0; i < ACC_NB; i++) { | ||
|  |         xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); | ||
|  |         xxh_u64 acc64 = xacc[i]; | ||
|  |         acc64 = XXH_xorshift64(acc64, 47); | ||
|  |         acc64 ^= key64; | ||
|  |         acc64 *= PRIME32_1; | ||
|  |         xacc[i] = acc64; | ||
|  |     } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | #define XXH_PREFETCH_DIST 384
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * XXH3_accumulate() | ||
|  |  * Loops over XXH3_accumulate_512(). | ||
|  |  * Assumption: nbStripes will not overflow the secret size | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE void | ||
|  | XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc, | ||
|  |                 const xxh_u8* XXH_RESTRICT input, | ||
|  |                 const xxh_u8* XXH_RESTRICT secret, | ||
|  |                       size_t nbStripes, | ||
|  |                       XXH3_accWidth_e accWidth) | ||
|  | { | ||
|  |     size_t n; | ||
|  |     for (n = 0; n < nbStripes; n++ ) { | ||
|  |         const xxh_u8* const in = input + n*STRIPE_LEN; | ||
|  |         XXH_PREFETCH(in + XXH_PREFETCH_DIST); | ||
|  |         XXH3_accumulate_512(acc, | ||
|  |                             in, | ||
|  |                             secret + n*XXH_SECRET_CONSUME_RATE, | ||
|  |                             accWidth); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE void | ||
|  | XXH3_hashLong_internal_loop( xxh_u64* XXH_RESTRICT acc, | ||
|  |                       const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize, | ||
|  |                             XXH3_accWidth_e accWidth) | ||
|  | { | ||
|  |     size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; | ||
|  |     size_t const block_len = STRIPE_LEN * nb_rounds; | ||
|  |     size_t const nb_blocks = len / block_len; | ||
|  | 
 | ||
|  |     size_t n; | ||
|  | 
 | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); | ||
|  | 
 | ||
|  |     for (n = 0; n < nb_blocks; n++) { | ||
|  |         XXH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth); | ||
|  |         XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* last partial block */ | ||
|  |     XXH_ASSERT(len > STRIPE_LEN); | ||
|  |     {   size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN; | ||
|  |         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); | ||
|  |         XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth); | ||
|  | 
 | ||
|  |         /* last stripe */ | ||
|  |         if (len & (STRIPE_LEN - 1)) { | ||
|  |             const xxh_u8* const p = input + len - STRIPE_LEN; | ||
|  |             /* Do not align on 8, so that the secret is different from the scrambler */ | ||
|  | #define XXH_SECRET_LASTACC_START 7
 | ||
|  |             XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth); | ||
|  |     }   } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE xxh_u64 | ||
|  | XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) | ||
|  | { | ||
|  |     return XXH3_mul128_fold64( | ||
|  |                acc[0] ^ XXH_readLE64(secret), | ||
|  |                acc[1] ^ XXH_readLE64(secret+8) ); | ||
|  | } | ||
|  | 
 | ||
|  | static XXH64_hash_t | ||
|  | XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) | ||
|  | { | ||
|  |     xxh_u64 result64 = start; | ||
|  | 
 | ||
|  |     result64 += XXH3_mix2Accs(acc+0, secret +  0); | ||
|  |     result64 += XXH3_mix2Accs(acc+2, secret + 16); | ||
|  |     result64 += XXH3_mix2Accs(acc+4, secret + 32); | ||
|  |     result64 += XXH3_mix2Accs(acc+6, secret + 48); | ||
|  | 
 | ||
|  |     return XXH3_avalanche(result64); | ||
|  | } | ||
|  | 
 | ||
|  | #define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
 | ||
|  |                         PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 }; | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH64_hash_t | ||
|  | XXH3_hashLong_internal(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize) | ||
|  | { | ||
|  |     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC; | ||
|  | 
 | ||
|  |     XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits); | ||
|  | 
 | ||
|  |     /* converge into final hash */ | ||
|  |     XXH_STATIC_ASSERT(sizeof(acc) == 64); | ||
|  |     /* do not align on 8, so that the secret is different from the accumulator */ | ||
|  | #define XXH_SECRET_MERGEACCS_START 11
 | ||
|  |     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); | ||
|  |     return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * It's important for performance that XXH3_hashLong is not inlined. Not sure | ||
|  |  * why (uop cache maybe?), but the difference is large and easily measurable. | ||
|  |  */ | ||
|  | XXH_NO_INLINE XXH64_hash_t | ||
|  | XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len) | ||
|  | { | ||
|  |     return XXH3_hashLong_internal(input, len, kSecret, sizeof(kSecret)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * It's important for performance that XXH3_hashLong is not inlined. Not sure | ||
|  |  * why (uop cache maybe?), but the difference is large and easily measurable. | ||
|  |  */ | ||
|  | XXH_NO_INLINE XXH64_hash_t | ||
|  | XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                              const xxh_u8* XXH_RESTRICT secret, size_t secretSize) | ||
|  | { | ||
|  |     return XXH3_hashLong_internal(input, len, secret, secretSize); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) | ||
|  | { | ||
|  |     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); | ||
|  |     memcpy(dst, &v64, sizeof(v64)); | ||
|  | } | ||
|  | 
 | ||
|  | /* XXH3_initCustomSecret() :
 | ||
|  |  * destination `customSecret` is presumed allocated and same size as `kSecret`. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* customSecret, xxh_u64 seed64) | ||
|  | { | ||
|  |     int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; | ||
|  |     int i; | ||
|  | 
 | ||
|  |     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); | ||
|  | 
 | ||
|  |     for (i=0; i < nbRounds; i++) { | ||
|  |         XXH_writeLE64(customSecret + 16*i,     XXH_readLE64(kSecret + 16*i)     + seed64); | ||
|  |         XXH_writeLE64(customSecret + 16*i + 8, XXH_readLE64(kSecret + 16*i + 8) - seed64); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * XXH3_hashLong_64b_withSeed(): | ||
|  |  * Generate a custom key based on alteration of default kSecret with the seed, | ||
|  |  * and then use this key for long mode hashing. | ||
|  |  * | ||
|  |  * This operation is decently fast but nonetheless costs a little bit of time. | ||
|  |  * Try to avoid it whenever possible (typically when seed==0). | ||
|  |  * | ||
|  |  * It's important for performance that XXH3_hashLong is not inlined. Not sure | ||
|  |  * why (uop cache maybe?), but the difference is large and easily measurable. | ||
|  |  */ | ||
|  | XXH_NO_INLINE XXH64_hash_t | ||
|  | XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; | ||
|  |     if (seed==0) return XXH3_hashLong_64b_defaultSecret(input, len); | ||
|  |     XXH3_initCustomSecret(secret, seed); | ||
|  |     return XXH3_hashLong_internal(input, len, secret, sizeof(secret)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===   Public entry point   === */ | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) | ||
|  | { | ||
|  |     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0); | ||
|  |     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); | ||
|  |     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); | ||
|  |     return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH64_hash_t | ||
|  | XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) | ||
|  | { | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); | ||
|  |     /*
 | ||
|  |      * If an action is to be taken if `secret` conditions are not respected, | ||
|  |      * it should be done here. | ||
|  |      * For now, it's a contract pre-condition. | ||
|  |      * Adding a check and a branch here would cost performance at every hash. | ||
|  |      */ | ||
|  |     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0); | ||
|  |     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); | ||
|  |     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); | ||
|  |     return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH64_hash_t | ||
|  | XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) | ||
|  | { | ||
|  |     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed); | ||
|  |     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); | ||
|  |     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); | ||
|  |     return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed); | ||
|  | } | ||
|  | 
 | ||
|  | /* ===   XXH3 streaming   === */ | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) | ||
|  | { | ||
|  |     return (XXH3_state_t*)XXH_malloc(sizeof(XXH3_state_t)); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) | ||
|  | { | ||
|  |     XXH_free(statePtr); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API void | ||
|  | XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) | ||
|  | { | ||
|  |     memcpy(dst_state, src_state, sizeof(*dst_state)); | ||
|  | } | ||
|  | 
 | ||
|  | static void | ||
|  | XXH3_64bits_reset_internal(XXH3_state_t* statePtr, | ||
|  |                            XXH64_hash_t seed, | ||
|  |                            const xxh_u8* secret, size_t secretSize) | ||
|  | { | ||
|  |     XXH_ASSERT(statePtr != NULL); | ||
|  |     memset(statePtr, 0, sizeof(*statePtr)); | ||
|  |     statePtr->acc[0] = PRIME32_3; | ||
|  |     statePtr->acc[1] = PRIME64_1; | ||
|  |     statePtr->acc[2] = PRIME64_2; | ||
|  |     statePtr->acc[3] = PRIME64_3; | ||
|  |     statePtr->acc[4] = PRIME64_4; | ||
|  |     statePtr->acc[5] = PRIME32_2; | ||
|  |     statePtr->acc[6] = PRIME64_5; | ||
|  |     statePtr->acc[7] = PRIME32_1; | ||
|  |     statePtr->seed = seed; | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     statePtr->secret = secret; | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); | ||
|  |     statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN); | ||
|  |     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_64bits_reset(XXH3_state_t* statePtr) | ||
|  | { | ||
|  |     if (statePtr == NULL) return XXH_ERROR; | ||
|  |     XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) | ||
|  | { | ||
|  |     if (statePtr == NULL) return XXH_ERROR; | ||
|  |     XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize); | ||
|  |     if (secret == NULL) return XXH_ERROR; | ||
|  |     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) | ||
|  | { | ||
|  |     if (statePtr == NULL) return XXH_ERROR; | ||
|  |     XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE); | ||
|  |     XXH3_initCustomSecret(statePtr->customSecret, seed); | ||
|  |     statePtr->secret = statePtr->customSecret; | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE void | ||
|  | XXH3_consumeStripes( xxh_u64* acc, | ||
|  |                     XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock, | ||
|  |                     const xxh_u8* input, size_t totalStripes, | ||
|  |                     const xxh_u8* secret, size_t secretLimit, | ||
|  |                     XXH3_accWidth_e accWidth) | ||
|  | { | ||
|  |     XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); | ||
|  |     if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) { | ||
|  |         /* need a scrambling operation */ | ||
|  |         size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr; | ||
|  |         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth); | ||
|  |         XXH3_scrambleAcc(acc, secret + secretLimit); | ||
|  |         XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth); | ||
|  |         *nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes); | ||
|  |     } else { | ||
|  |         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth); | ||
|  |         *nbStripesSoFarPtr += (XXH32_hash_t)totalStripes; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Both XXH3_64bits_update and XXH3_128bits_update use this routine. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE XXH_errorcode | ||
|  | XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth) | ||
|  | { | ||
|  |     if (input==NULL) | ||
|  | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
 | ||
|  |         return XXH_OK; | ||
|  | #else
 | ||
|  |         return XXH_ERROR; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     {   const xxh_u8* const bEnd = input + len; | ||
|  | 
 | ||
|  |         state->totalLen += len; | ||
|  | 
 | ||
|  |         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */ | ||
|  |             XXH_memcpy(state->buffer + state->bufferedSize, input, len); | ||
|  |             state->bufferedSize += (XXH32_hash_t)len; | ||
|  |             return XXH_OK; | ||
|  |         } | ||
|  |         /* input is now > XXH3_INTERNALBUFFER_SIZE */ | ||
|  | 
 | ||
|  |         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
 | ||
|  |         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0);   /* clean multiple */ | ||
|  | 
 | ||
|  |         /*
 | ||
|  |          * There is some input left inside the internal buffer. | ||
|  |          * Fill it, then consume it. | ||
|  |          */ | ||
|  |         if (state->bufferedSize) { | ||
|  |             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; | ||
|  |             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); | ||
|  |             input += loadSize; | ||
|  |             XXH3_consumeStripes(state->acc, | ||
|  |                                &state->nbStripesSoFar, state->nbStripesPerBlock, | ||
|  |                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES, | ||
|  |                                 state->secret, state->secretLimit, | ||
|  |                                 accWidth); | ||
|  |             state->bufferedSize = 0; | ||
|  |         } | ||
|  | 
 | ||
|  |         /* Consume input by full buffer quantities */ | ||
|  |         if (input+XXH3_INTERNALBUFFER_SIZE <= bEnd) { | ||
|  |             const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; | ||
|  |             do { | ||
|  |                 XXH3_consumeStripes(state->acc, | ||
|  |                                    &state->nbStripesSoFar, state->nbStripesPerBlock, | ||
|  |                                     input, XXH3_INTERNALBUFFER_STRIPES, | ||
|  |                                     state->secret, state->secretLimit, | ||
|  |                                     accWidth); | ||
|  |                 input += XXH3_INTERNALBUFFER_SIZE; | ||
|  |             } while (input<=limit); | ||
|  |         } | ||
|  | 
 | ||
|  |         if (input < bEnd) { /* Some remaining input: buffer it */ | ||
|  |             XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); | ||
|  |             state->bufferedSize = (XXH32_hash_t)(bEnd-input); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) | ||
|  | { | ||
|  |     return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE void | ||
|  | XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth) | ||
|  | { | ||
|  |     /*
 | ||
|  |      * Digest on a local copy. This way, the state remains unaltered, and it can | ||
|  |      * continue ingesting more input afterwards. | ||
|  |      */ | ||
|  |     memcpy(acc, state->acc, sizeof(state->acc)); | ||
|  |     if (state->bufferedSize >= STRIPE_LEN) { | ||
|  |         size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN; | ||
|  |         XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar; | ||
|  |         XXH3_consumeStripes(acc, | ||
|  |                            &nbStripesSoFar, state->nbStripesPerBlock, | ||
|  |                             state->buffer, totalNbStripes, | ||
|  |                             state->secret, state->secretLimit, | ||
|  |                             accWidth); | ||
|  |         if (state->bufferedSize % STRIPE_LEN) {  /* one last partial stripe */ | ||
|  |             XXH3_accumulate_512(acc, | ||
|  |                                 state->buffer + state->bufferedSize - STRIPE_LEN, | ||
|  |                                 state->secret + state->secretLimit - XXH_SECRET_LASTACC_START, | ||
|  |                                 accWidth); | ||
|  |         } | ||
|  |     } else {  /* bufferedSize < STRIPE_LEN */ | ||
|  |         if (state->bufferedSize) { /* one last stripe */ | ||
|  |             xxh_u8 lastStripe[STRIPE_LEN]; | ||
|  |             size_t const catchupSize = STRIPE_LEN - state->bufferedSize; | ||
|  |             memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); | ||
|  |             memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); | ||
|  |             XXH3_accumulate_512(acc, | ||
|  |                                 lastStripe, | ||
|  |                                 state->secret + state->secretLimit - XXH_SECRET_LASTACC_START, | ||
|  |                                 accWidth); | ||
|  |     }   } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) | ||
|  | { | ||
|  |     if (state->totalLen > XXH3_MIDSIZE_MAX) { | ||
|  |         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB]; | ||
|  |         XXH3_digest_long(acc, state, XXH3_acc_64bits); | ||
|  |         return XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1); | ||
|  |     } | ||
|  |     /* len <= XXH3_MIDSIZE_MAX : short code */ | ||
|  |     if (state->seed) | ||
|  |         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); | ||
|  |     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN); | ||
|  | } | ||
|  | 
 | ||
|  | /* ==========================================
 | ||
|  |  * XXH3 128 bits (=> XXH128) | ||
|  |  * ========================================== */ | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(input != NULL); | ||
|  |     XXH_ASSERT(1 <= len && len <= 3); | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     /*
 | ||
|  |      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } | ||
|  |      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } | ||
|  |      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } | ||
|  |      */ | ||
|  |     {   xxh_u8 const c1 = input[0]; | ||
|  |         xxh_u8 const c2 = input[len >> 1]; | ||
|  |         xxh_u8 const c3 = input[len - 1]; | ||
|  |         xxh_u32 const combinedl = ((xxh_u32)c1<<16) | (((xxh_u32)c2) << 24) | (((xxh_u32)c3) << 0) | (((xxh_u32)len) << 8); | ||
|  |         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); | ||
|  |         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; | ||
|  |         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; | ||
|  |         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; | ||
|  |         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; | ||
|  |         xxh_u64 const mixedl = keyed_lo * PRIME64_1; | ||
|  |         xxh_u64 const mixedh = keyed_hi * PRIME64_5; | ||
|  |         XXH128_hash_t const h128 = { XXH3_avalanche(mixedl) /*low64*/, XXH3_avalanche(mixedh) /*high64*/ }; | ||
|  |         return h128; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(input != NULL); | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     XXH_ASSERT(4 <= len && len <= 8); | ||
|  |     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; | ||
|  |     {   xxh_u32 const input_lo = XXH_readLE32(input); | ||
|  |         xxh_u32 const input_hi = XXH_readLE32(input + len - 4); | ||
|  |         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); | ||
|  |         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; | ||
|  |         xxh_u64 const keyed = input_64 ^ bitflip; | ||
|  | 
 | ||
|  |         /* Shift len to the left to ensure it is even, this avoids even multiplies. */ | ||
|  |         XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2)); | ||
|  | 
 | ||
|  |         m128.high64 += (m128.low64 << 1); | ||
|  |         m128.low64  ^= (m128.high64 >> 3); | ||
|  | 
 | ||
|  |         m128.low64   = XXH_xorshift64(m128.low64, 35); | ||
|  |         m128.low64  *= 0x9FB21C651E98DF25ULL; | ||
|  |         m128.low64   = XXH_xorshift64(m128.low64, 28); | ||
|  |         m128.high64  = XXH3_avalanche(m128.high64); | ||
|  |         return m128; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(input != NULL); | ||
|  |     XXH_ASSERT(secret != NULL); | ||
|  |     XXH_ASSERT(9 <= len && len <= 16); | ||
|  |     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; | ||
|  |         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; | ||
|  |         xxh_u64 const input_lo = XXH_readLE64(input); | ||
|  |         xxh_u64       input_hi = XXH_readLE64(input + len - 8); | ||
|  |         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1); | ||
|  |         /*
 | ||
|  |          * Put len in the middle of m128 to ensure that the length gets mixed to | ||
|  |          * both the low and high bits in the 128x64 multiply below. | ||
|  |          */ | ||
|  |         m128.low64  += (xxh_u64)(len - 1) << 54; | ||
|  |         input_hi ^= bitfliph; | ||
|  |         /*
 | ||
|  |          * Add the high 32 bits of input_hi to the high 32 bits of m128, then | ||
|  |          * add the long product of the low 32 bits of input_hi and PRIME32_2 to | ||
|  |          * the high 64 bits of m128. | ||
|  |          * | ||
|  |          * The best approach to this operation is different on 32-bit and 64-bit. | ||
|  |          */ | ||
|  |         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ | ||
|  |             /*
 | ||
|  |              * 32-bit optimized version, which is more readable. | ||
|  |              * | ||
|  |              * On 32-bit, it removes an ADC and delays a dependency between the two | ||
|  |              * halves of m128.high64, but it generates an extra mask on 64-bit. | ||
|  |              */ | ||
|  |             m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2); | ||
|  |         } else { | ||
|  |             /*
 | ||
|  |              * 64-bit optimized (albeit more confusing) version. | ||
|  |              * | ||
|  |              * Uses some properties of addition and multiplication to remove the mask: | ||
|  |              * | ||
|  |              * Let: | ||
|  |              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) | ||
|  |              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) | ||
|  |              *    c = PRIME32_2 | ||
|  |              * | ||
|  |              *    a + (b * c) | ||
|  |              * Inverse Property: x + y - x == y | ||
|  |              *    a + (b * (1 + c - 1)) | ||
|  |              * Distributive Property: x * (y + z) == (x * y) + (x * z) | ||
|  |              *    a + (b * 1) + (b * (c - 1)) | ||
|  |              * Identity Property: x * 1 == x | ||
|  |              *    a + b + (b * (c - 1)) | ||
|  |              * | ||
|  |              * Substitute a, b, and c: | ||
|  |              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1)) | ||
|  |              * | ||
|  |              * Since input_hi.hi + input_hi.lo == input_hi, we get this: | ||
|  |              *    input_hi + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1)) | ||
|  |              */ | ||
|  |             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2 - 1); | ||
|  |         } | ||
|  |         /* m128 ^= XXH_swap64(m128 >> 64); */ | ||
|  |         m128.low64  ^= XXH_swap64(m128.high64); | ||
|  | 
 | ||
|  |         {   /* 128x64 multiply: h128 = m128 * PRIME64_2; */ | ||
|  |             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2); | ||
|  |             h128.high64 += m128.high64 * PRIME64_2; | ||
|  | 
 | ||
|  |             h128.low64   = XXH3_avalanche(h128.low64); | ||
|  |             h128.high64  = XXH3_avalanche(h128.high64); | ||
|  |             return h128; | ||
|  |     }   } | ||
|  | } | ||
|  | 
 | ||
|  | /* Assumption : `secret` size is >= 16
 | ||
|  |  * Note : it should be >= XXH3_SECRET_SIZE_MIN anyway */ | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(len <= 16); | ||
|  |     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); | ||
|  |         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); | ||
|  |         if (len) return XXH3_len_1to3_128b(input, len, secret, seed); | ||
|  |         {   XXH128_hash_t h128; | ||
|  |             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); | ||
|  |             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); | ||
|  |             h128.low64 = XXH3_avalanche((PRIME64_1 + seed) ^ bitflipl); | ||
|  |             h128.high64 = XXH3_avalanche((PRIME64_2 - seed) ^ bitfliph); | ||
|  |             return h128; | ||
|  |     }   } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * A bit slower than XXH3_mix16B, but handles multiply by zero better. | ||
|  |  */ | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, const xxh_u8* secret, XXH64_hash_t seed) | ||
|  | { | ||
|  |     acc.low64  += XXH3_mix16B (input_1, secret+0, seed); | ||
|  |     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); | ||
|  |     acc.high64 += XXH3_mix16B (input_2, secret+16, seed); | ||
|  |     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); | ||
|  |     return acc; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize, | ||
|  |                       XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; | ||
|  |     XXH_ASSERT(16 < len && len <= 128); | ||
|  | 
 | ||
|  |     {   XXH128_hash_t acc; | ||
|  |         acc.low64 = len * PRIME64_1; | ||
|  |         acc.high64 = 0; | ||
|  |         if (len > 32) { | ||
|  |             if (len > 64) { | ||
|  |                 if (len > 96) { | ||
|  |                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); | ||
|  |                 } | ||
|  |                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); | ||
|  |             } | ||
|  |             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); | ||
|  |         } | ||
|  |         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); | ||
|  |         {   xxh_u64 const low64 = acc.low64 + acc.high64; | ||
|  |             xxh_u64 const high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2); | ||
|  |             XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) }; | ||
|  |             return h128; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_NO_INLINE XXH128_hash_t | ||
|  | XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize, | ||
|  |                        XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; | ||
|  |     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); | ||
|  | 
 | ||
|  |     {   XXH128_hash_t acc; | ||
|  |         int const nbRounds = (int)len / 32; | ||
|  |         int i; | ||
|  |         acc.low64 = len * PRIME64_1; | ||
|  |         acc.high64 = 0; | ||
|  |         for (i=0; i<4; i++) { | ||
|  |             acc = XXH128_mix32B(acc, input+(32*i), input+(32*i)+16, secret+(32*i), seed); | ||
|  |         } | ||
|  |         acc.low64 = XXH3_avalanche(acc.low64); | ||
|  |         acc.high64 = XXH3_avalanche(acc.high64); | ||
|  |         XXH_ASSERT(nbRounds >= 4); | ||
|  |         for (i=4 ; i < nbRounds; i++) { | ||
|  |             acc = XXH128_mix32B(acc, input+(32*i), input+(32*i)+16, secret+XXH3_MIDSIZE_STARTOFFSET+(32*(i-4)), seed); | ||
|  |         } | ||
|  |         /* last bytes */ | ||
|  |         acc = XXH128_mix32B(acc, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 0ULL - seed); | ||
|  | 
 | ||
|  |         {   xxh_u64 const low64 = acc.low64 + acc.high64; | ||
|  |             xxh_u64 const high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2); | ||
|  |             XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) }; | ||
|  |             return h128; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | XXH_FORCE_INLINE XXH128_hash_t | ||
|  | XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, | ||
|  |                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize) | ||
|  | { | ||
|  |     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC; | ||
|  | 
 | ||
|  |     XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits); | ||
|  | 
 | ||
|  |     /* converge into final hash */ | ||
|  |     XXH_STATIC_ASSERT(sizeof(acc) == 64); | ||
|  |     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); | ||
|  |     {   xxh_u64 const low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1); | ||
|  |         xxh_u64 const high64 = XXH3_mergeAccs(acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)len * PRIME64_2)); | ||
|  |         XXH128_hash_t const h128 = { low64, high64 }; | ||
|  |         return h128; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * It's important for performance that XXH3_hashLong is not inlined. Not sure | ||
|  |  * why (uop cache maybe?), but the difference is large and easily measurable. | ||
|  |  */ | ||
|  | XXH_NO_INLINE XXH128_hash_t | ||
|  | XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len) | ||
|  | { | ||
|  |     return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * It's important for performance that XXH3_hashLong is not inlined. Not sure | ||
|  |  * why (uop cache maybe?), but the difference is large and easily measurable. | ||
|  |  */ | ||
|  | XXH_NO_INLINE XXH128_hash_t | ||
|  | XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len, | ||
|  |                               const xxh_u8* secret, size_t secretSize) | ||
|  | { | ||
|  |     return XXH3_hashLong_128b_internal(input, len, secret, secretSize); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * It's important for performance that XXH3_hashLong is not inlined. Not sure | ||
|  |  * why (uop cache maybe?), but the difference is large and easily measurable. | ||
|  |  */ | ||
|  | XXH_NO_INLINE XXH128_hash_t | ||
|  | XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed) | ||
|  | { | ||
|  |     XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; | ||
|  |     if (seed == 0) return XXH3_hashLong_128b_defaultSecret(input, len); | ||
|  |     XXH3_initCustomSecret(secret, seed); | ||
|  |     return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) | ||
|  | { | ||
|  |     if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0); | ||
|  |     if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); | ||
|  |     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); | ||
|  |     return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH128_hash_t | ||
|  | XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) | ||
|  | { | ||
|  |     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); | ||
|  |     /*
 | ||
|  |      * If an action is to be taken if `secret` conditions are not respected, | ||
|  |      * it should be done here. | ||
|  |      * For now, it's a contract pre-condition. | ||
|  |      * Adding a check and a branch here would cost performance at every hash. | ||
|  |      */ | ||
|  |      if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0); | ||
|  |      if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); | ||
|  |      if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); | ||
|  |      return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH128_hash_t | ||
|  | XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) | ||
|  | { | ||
|  |     if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed); | ||
|  |     if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); | ||
|  |     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); | ||
|  |     return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH128_hash_t | ||
|  | XXH128(const void* input, size_t len, XXH64_hash_t seed) | ||
|  | { | ||
|  |     return XXH3_128bits_withSeed(input, len, seed); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ===   XXH3 128-bit streaming   === */ | ||
|  | 
 | ||
|  | /* all the functions are actually the same as for 64-bit streaming variant,
 | ||
|  |    just the reset one is different (different initial acc values for 0,5,6,7), | ||
|  |    and near the end of the digest function */ | ||
|  | 
 | ||
|  | static void | ||
|  | XXH3_128bits_reset_internal(XXH3_state_t* statePtr, | ||
|  |                            XXH64_hash_t seed, | ||
|  |                            const xxh_u8* secret, size_t secretSize) | ||
|  | { | ||
|  |     XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_128bits_reset(XXH3_state_t* statePtr) | ||
|  | { | ||
|  |     if (statePtr == NULL) return XXH_ERROR; | ||
|  |     XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE); | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) | ||
|  | { | ||
|  |     if (statePtr == NULL) return XXH_ERROR; | ||
|  |     XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize); | ||
|  |     if (secret == NULL) return XXH_ERROR; | ||
|  |     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) | ||
|  | { | ||
|  |     if (statePtr == NULL) return XXH_ERROR; | ||
|  |     XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE); | ||
|  |     XXH3_initCustomSecret(statePtr->customSecret, seed); | ||
|  |     statePtr->secret = statePtr->customSecret; | ||
|  |     return XXH_OK; | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH_errorcode | ||
|  | XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) | ||
|  | { | ||
|  |     return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) | ||
|  | { | ||
|  |     if (state->totalLen > XXH3_MIDSIZE_MAX) { | ||
|  |         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB]; | ||
|  |         XXH3_digest_long(acc, state, XXH3_acc_128bits); | ||
|  |         XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); | ||
|  |         {   xxh_u64 const low64 = XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1); | ||
|  |             xxh_u64 const high64 = XXH3_mergeAccs(acc, state->secret + state->secretLimit + STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)state->totalLen * PRIME64_2)); | ||
|  |             XXH128_hash_t const h128 = { low64, high64 }; | ||
|  |             return h128; | ||
|  |         } | ||
|  |     } | ||
|  |     /* len <= XXH3_MIDSIZE_MAX : short code */ | ||
|  |     if (state->seed) | ||
|  |         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); | ||
|  |     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN); | ||
|  | } | ||
|  | 
 | ||
|  | /* 128-bit utility functions */ | ||
|  | 
 | ||
|  | #include <string.h>   /* memcmp, memcpy */
 | ||
|  | 
 | ||
|  | /* return : 1 is equal, 0 if different */ | ||
|  | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) | ||
|  | { | ||
|  |     /* note : XXH128_hash_t is compact, it has no padding byte */ | ||
|  |     return !(memcmp(&h1, &h2, sizeof(h1))); | ||
|  | } | ||
|  | 
 | ||
|  | /* This prototype is compatible with stdlib's qsort().
 | ||
|  |  * return : >0 if *h128_1  > *h128_2 | ||
|  |  *          <0 if *h128_1  < *h128_2 | ||
|  |  *          =0 if *h128_1 == *h128_2  */ | ||
|  | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) | ||
|  | { | ||
|  |     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; | ||
|  |     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; | ||
|  |     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); | ||
|  |     /* note : bets that, in most cases, hash values are different */ | ||
|  |     if (hcmp) return hcmp; | ||
|  |     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*======   Canonical representation   ======*/ | ||
|  | XXH_PUBLIC_API void | ||
|  | XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) | ||
|  | { | ||
|  |     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); | ||
|  |     if (XXH_CPU_LITTLE_ENDIAN) { | ||
|  |         hash.high64 = XXH_swap64(hash.high64); | ||
|  |         hash.low64  = XXH_swap64(hash.low64); | ||
|  |     } | ||
|  |     memcpy(dst, &hash.high64, sizeof(hash.high64)); | ||
|  |     memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); | ||
|  | } | ||
|  | 
 | ||
|  | XXH_PUBLIC_API XXH128_hash_t | ||
|  | XXH128_hashFromCanonical(const XXH128_canonical_t* src) | ||
|  | { | ||
|  |     XXH128_hash_t h; | ||
|  |     h.high64 = XXH_readBE64(src); | ||
|  |     h.low64  = XXH_readBE64(src->digest + 8); | ||
|  |     return h; | ||
|  | } | ||
|  | 
 | ||
|  | /* Pop our optimization override from above */ | ||
|  | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
 | ||
|  |   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ | ||
|  |   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ | ||
|  | #  pragma GCC pop_options
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #endif  /* XXH3_H_1397135465 */
 |