Duckstation/src/util/cd_image_ecm.cpp

557 lines
15 KiB
C++
Raw Normal View History

2021-03-06 14:28:09 +00:00
#include "cd_image.h"
#include "cd_subchannel_replacement.h"
#include "common/assert.h"
#include "common/error.h"
#include "common/file_system.h"
#include "common/log.h"
2021-03-06 14:28:09 +00:00
#include <array>
#include <cerrno>
#include <map>
Log_SetChannel(CDImageEcm);
// unecm.c by Neill Corlett (c) 2002, GPL licensed
/* LUTs used for computing ECC/EDC */
static constexpr std::array<u8, 256> ComputeECCFLUT()
{
std::array<u8, 256> ecc_lut{};
for (u32 i = 0; i < 256; i++)
{
u32 j = (i << 1) ^ (i & 0x80 ? 0x11D : 0);
2021-06-26 05:05:21 +00:00
ecc_lut[i] = static_cast<u8>(j);
2021-03-06 14:28:09 +00:00
}
return ecc_lut;
}
static constexpr std::array<u8, 256> ComputeECCBLUT()
{
std::array<u8, 256> ecc_lut{};
for (u32 i = 0; i < 256; i++)
{
u32 j = (i << 1) ^ (i & 0x80 ? 0x11D : 0);
2021-06-26 05:05:21 +00:00
ecc_lut[i ^ j] = static_cast<u8>(i);
2021-03-06 14:28:09 +00:00
}
return ecc_lut;
}
static constexpr std::array<u32, 256> ComputeEDCLUT()
{
std::array<u32, 256> edc_lut{};
for (u32 i = 0; i < 256; i++)
{
u32 edc = i;
for (u32 k = 0; k < 8; k++)
edc = (edc >> 1) ^ (edc & 1 ? 0xD8018001 : 0);
edc_lut[i] = edc;
}
return edc_lut;
}
static constexpr std::array<u8, 256> ecc_f_lut = ComputeECCFLUT();
static constexpr std::array<u8, 256> ecc_b_lut = ComputeECCBLUT();
static constexpr std::array<u32, 256> edc_lut = ComputeEDCLUT();
/***************************************************************************/
/*
** Compute EDC for a block
*/
static u32 edc_partial_computeblock(u32 edc, const u8* src, u16 size)
{
while (size--)
edc = (edc >> 8) ^ edc_lut[(edc ^ (*src++)) & 0xFF];
return edc;
}
static void edc_computeblock(const u8* src, u16 size, u8* dest)
{
u32 edc = edc_partial_computeblock(0, src, size);
dest[0] = (edc >> 0) & 0xFF;
dest[1] = (edc >> 8) & 0xFF;
dest[2] = (edc >> 16) & 0xFF;
dest[3] = (edc >> 24) & 0xFF;
}
/***************************************************************************/
/*
** Compute ECC for a block (can do either P or Q)
*/
static void ecc_computeblock(u8* src, u32 major_count, u32 minor_count, u32 major_mult, u32 minor_inc, u8* dest)
{
u32 size = major_count * minor_count;
u32 major, minor;
for (major = 0; major < major_count; major++)
{
u32 index = (major >> 1) * major_mult + (major & 1);
u8 ecc_a = 0;
u8 ecc_b = 0;
for (minor = 0; minor < minor_count; minor++)
{
u8 temp = src[index];
index += minor_inc;
if (index >= size)
index -= size;
ecc_a ^= temp;
ecc_b ^= temp;
ecc_a = ecc_f_lut[ecc_a];
}
ecc_a = ecc_b_lut[ecc_f_lut[ecc_a] ^ ecc_b];
dest[major] = ecc_a;
dest[major + major_count] = ecc_a ^ ecc_b;
}
}
/*
** Generate ECC P and Q codes for a block
*/
static void ecc_generate(u8* sector, int zeroaddress)
{
u8 address[4], i;
/* Save the address and zero it out */
if (zeroaddress)
for (i = 0; i < 4; i++)
{
address[i] = sector[12 + i];
sector[12 + i] = 0;
}
/* Compute ECC P code */
ecc_computeblock(sector + 0xC, 86, 24, 2, 86, sector + 0x81C);
/* Compute ECC Q code */
ecc_computeblock(sector + 0xC, 52, 43, 86, 88, sector + 0x8C8);
/* Restore the address */
if (zeroaddress)
for (i = 0; i < 4; i++)
sector[12 + i] = address[i];
}
/***************************************************************************/
/*
** Generate ECC/EDC information for a sector (must be 2352 = 0x930 bytes)
** Returns 0 on success
*/
static void eccedc_generate(u8* sector, int type)
{
switch (type)
{
case 1: /* Mode 1 */
/* Compute EDC */
edc_computeblock(sector + 0x00, 0x810, sector + 0x810);
/* Write out zero bytes */
for (u32 i = 0; i < 8; i++)
sector[0x814 + i] = 0;
/* Generate ECC P/Q codes */
ecc_generate(sector, 0);
break;
case 2: /* Mode 2 form 1 */
/* Compute EDC */
edc_computeblock(sector + 0x10, 0x808, sector + 0x818);
/* Generate ECC P/Q codes */
ecc_generate(sector, 1);
break;
case 3: /* Mode 2 form 2 */
/* Compute EDC */
edc_computeblock(sector + 0x10, 0x91C, sector + 0x92C);
break;
}
}
class CDImageEcm : public CDImage
{
public:
CDImageEcm();
~CDImageEcm() override;
bool Open(const char* filename, Common::Error* error);
2021-03-06 14:28:09 +00:00
bool ReadSubChannelQ(SubChannelQ* subq, const Index& index, LBA lba_in_index) override;
2021-03-06 14:28:09 +00:00
bool HasNonStandardSubchannel() const override;
protected:
bool ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index) override;
private:
bool ReadChunks(u32 disc_offset, u32 size);
std::FILE* m_fp = nullptr;
enum class SectorType : u32
{
Raw = 0x00,
Mode1 = 0x01,
Mode2Form1 = 0x02,
Mode2Form2 = 0x03,
Count,
};
static constexpr std::array<u32, static_cast<u32>(SectorType::Count)> s_sector_sizes = {
0x930, // raw
0x803, // mode1
0x804, // mode2form1
0x918, // mode2form2
};
static constexpr std::array<u32, static_cast<u32>(SectorType::Count)> s_chunk_sizes = {
0, // raw
2352, // mode1
2336, // mode2form1
2336, // mode2form2
};
struct SectorEntry
{
u32 file_offset;
u32 chunk_size;
SectorType type;
};
using DataMap = std::map<u32, SectorEntry>;
DataMap m_data_map;
std::vector<u8> m_chunk_buffer;
u32 m_chunk_start = 0;
CDSubChannelReplacement m_sbi;
};
CDImageEcm::CDImageEcm() = default;
CDImageEcm::~CDImageEcm()
{
if (m_fp)
std::fclose(m_fp);
}
bool CDImageEcm::Open(const char* filename, Common::Error* error)
2021-03-06 14:28:09 +00:00
{
m_filename = filename;
m_fp = FileSystem::OpenCFile(filename, "rb");
if (!m_fp)
{
Log_ErrorPrintf("Failed to open binfile '%s': errno %d", filename, errno);
if (error)
error->SetErrno(errno);
2021-03-06 14:28:09 +00:00
return false;
}
s64 file_size;
if (FileSystem::FSeek64(m_fp, 0, SEEK_END) != 0 || (file_size = FileSystem::FTell64(m_fp)) <= 0 ||
FileSystem::FSeek64(m_fp, 0, SEEK_SET) != 0)
{
Log_ErrorPrintf("Get file size failed: errno %d", errno);
if (error)
error->SetErrno(errno);
return false;
}
2021-03-06 14:28:09 +00:00
char header[4];
if (std::fread(header, sizeof(header), 1, m_fp) != 1 || header[0] != 'E' || header[1] != 'C' || header[2] != 'M' ||
header[3] != 0)
{
Log_ErrorPrintf("Failed to read/invalid header");
if (error)
error->SetMessage("Failed to read/invalid header");
2021-03-06 14:28:09 +00:00
return false;
}
// build sector map
u32 file_offset = static_cast<u32>(std::ftell(m_fp));
u32 disc_offset = 0;
for (;;)
{
int bits = std::fgetc(m_fp);
if (bits == EOF)
{
Log_ErrorPrintf("Unexpected EOF after %zu chunks", m_data_map.size());
if (error)
error->SetFormattedMessage("Unexpected EOF after %zu chunks", m_data_map.size());
2021-03-06 14:28:09 +00:00
return false;
}
file_offset++;
const SectorType type = static_cast<SectorType>(static_cast<u32>(bits) & 0x03u);
u32 count = (static_cast<u32>(bits) >> 2) & 0x1F;
u32 shift = 5;
while (bits & 0x80)
{
bits = std::fgetc(m_fp);
if (bits == EOF)
{
Log_ErrorPrintf("Unexpected EOF after %zu chunks", m_data_map.size());
if (error)
error->SetFormattedMessage("Unexpected EOF after %zu chunks", m_data_map.size());
2021-03-06 14:28:09 +00:00
return false;
}
count |= (static_cast<u32>(bits) & 0x7F) << shift;
shift += 7;
file_offset++;
}
if (count == 0xFFFFFFFFu)
break;
// for this sector
count++;
if (count >= 0x80000000u)
{
Log_ErrorPrintf("Corrupted header after %zu chunks", m_data_map.size());
if (error)
error->SetFormattedMessage("Corrupted header after %zu chunks", m_data_map.size());
2021-03-06 14:28:09 +00:00
return false;
}
if (type == SectorType::Raw)
{
while (count > 0)
{
const u32 size = std::min<u32>(count, 2352);
m_data_map.emplace(disc_offset, SectorEntry{file_offset, size, type});
disc_offset += size;
file_offset += size;
count -= size;
if (static_cast<s64>(file_offset) > file_size)
{
Log_ErrorPrintf("Out of file bounds after %zu chunks", m_data_map.size());
if (error)
error->SetFormattedMessage("Out of file bounds after %zu chunks", m_data_map.size());
}
2021-03-06 14:28:09 +00:00
}
}
else
{
const u32 size = s_sector_sizes[static_cast<u32>(type)];
const u32 chunk_size = s_chunk_sizes[static_cast<u32>(type)];
for (u32 i = 0; i < count; i++)
{
m_data_map.emplace(disc_offset, SectorEntry{file_offset, chunk_size, type});
disc_offset += chunk_size;
file_offset += size;
if (static_cast<s64>(file_offset) > file_size)
{
Log_ErrorPrintf("Out of file bounds after %zu chunks", m_data_map.size());
if (error)
error->SetFormattedMessage("Out of file bounds after %zu chunks", m_data_map.size());
}
2021-03-06 14:28:09 +00:00
}
}
if (std::fseek(m_fp, file_offset, SEEK_SET) != 0)
{
Log_ErrorPrintf("Failed to seek to offset %u after %zu chunks", file_offset, m_data_map.size());
if (error)
error->SetFormattedMessage("Failed to seek to offset %u after %zu chunks", file_offset, m_data_map.size());
2021-03-06 14:28:09 +00:00
return false;
}
}
if (m_data_map.empty())
{
Log_ErrorPrintf("No data in image '%s'", filename);
if (error)
error->SetFormattedMessage("No data in image '%s'", filename);
2021-03-06 14:28:09 +00:00
return false;
}
m_lba_count = disc_offset / RAW_SECTOR_SIZE;
if ((disc_offset % RAW_SECTOR_SIZE) != 0)
Log_WarningPrintf("ECM image is misaligned with offset %u", disc_offset);
if (m_lba_count == 0)
return false;
SubChannelQ::Control control = {};
TrackMode mode = TrackMode::Mode2Raw;
control.data = mode != TrackMode::Audio;
// Two seconds default pregap.
const u32 pregap_frames = 2 * FRAMES_PER_SECOND;
Index pregap_index = {};
pregap_index.file_sector_size = RAW_SECTOR_SIZE;
pregap_index.start_lba_on_disc = 0;
pregap_index.start_lba_in_track = static_cast<LBA>(-static_cast<s32>(pregap_frames));
pregap_index.length = pregap_frames;
pregap_index.track_number = 1;
pregap_index.index_number = 0;
pregap_index.mode = mode;
pregap_index.control.bits = control.bits;
pregap_index.is_pregap = true;
m_indices.push_back(pregap_index);
// Data index.
Index data_index = {};
data_index.file_index = 0;
data_index.file_offset = 0;
data_index.file_sector_size = RAW_SECTOR_SIZE;
data_index.start_lba_on_disc = pregap_index.length;
data_index.track_number = 1;
data_index.index_number = 1;
data_index.start_lba_in_track = 0;
data_index.length = m_lba_count;
data_index.mode = mode;
data_index.control.bits = control.bits;
m_indices.push_back(data_index);
// Assume a single track.
m_tracks.push_back(
Track{static_cast<u32>(1), data_index.start_lba_on_disc, static_cast<u32>(0), m_lba_count, mode, control});
AddLeadOutIndex();
m_sbi.LoadSBIFromImagePath(filename);
2021-03-06 14:28:09 +00:00
m_chunk_buffer.reserve(RAW_SECTOR_SIZE * 2);
return Seek(1, Position{0, 0, 0});
}
bool CDImageEcm::ReadChunks(u32 disc_offset, u32 size)
{
DataMap::iterator next =
m_data_map.lower_bound((disc_offset > RAW_SECTOR_SIZE) ? (disc_offset - RAW_SECTOR_SIZE) : 0);
DataMap::iterator current = m_data_map.begin();
while (next != m_data_map.end() && next->first <= disc_offset)
current = next++;
// extra bytes if we need to buffer some at the start
m_chunk_start = current->first;
m_chunk_buffer.clear();
if (m_chunk_start < disc_offset)
size += (disc_offset - current->first);
u32 total_bytes_read = 0;
while (total_bytes_read < size)
{
if (current == m_data_map.end() || std::fseek(m_fp, current->second.file_offset, SEEK_SET) != 0)
return false;
const u32 chunk_size = current->second.chunk_size;
const u32 chunk_start = static_cast<u32>(m_chunk_buffer.size());
m_chunk_buffer.resize(chunk_start + chunk_size);
if (current->second.type == SectorType::Raw)
{
if (std::fread(&m_chunk_buffer[chunk_start], chunk_size, 1, m_fp) != 1)
return false;
total_bytes_read += chunk_size;
}
else
{
// u8* sector = &m_chunk_buffer[chunk_start];
u8 sector[RAW_SECTOR_SIZE];
// TODO: needed?
std::memset(sector, 0, RAW_SECTOR_SIZE);
std::memset(sector + 1, 0xFF, 10);
u32 skip;
switch (current->second.type)
{
case SectorType::Mode1:
{
sector[0x0F] = 0x01;
if (std::fread(sector + 0x00C, 0x003, 1, m_fp) != 1 || std::fread(sector + 0x010, 0x800, 1, m_fp) != 1)
return false;
eccedc_generate(sector, 1);
skip = 0;
}
break;
case SectorType::Mode2Form1:
{
sector[0x0F] = 0x02;
if (std::fread(sector + 0x014, 0x804, 1, m_fp) != 1)
return false;
sector[0x10] = sector[0x14];
sector[0x11] = sector[0x15];
sector[0x12] = sector[0x16];
sector[0x13] = sector[0x17];
eccedc_generate(sector, 2);
skip = 0x10;
}
break;
case SectorType::Mode2Form2:
{
sector[0x0F] = 0x02;
if (std::fread(sector + 0x014, 0x918, 1, m_fp) != 1)
return false;
sector[0x10] = sector[0x14];
sector[0x11] = sector[0x15];
sector[0x12] = sector[0x16];
sector[0x13] = sector[0x17];
eccedc_generate(sector, 3);
skip = 0x10;
}
break;
default:
UnreachableCode();
return false;
}
std::memcpy(&m_chunk_buffer[chunk_start], sector + skip, chunk_size);
total_bytes_read += chunk_size;
}
++current;
}
return true;
}
bool CDImageEcm::ReadSubChannelQ(SubChannelQ* subq, const Index& index, LBA lba_in_index)
2021-03-06 14:28:09 +00:00
{
if (m_sbi.GetReplacementSubChannelQ(index.start_lba_on_disc + lba_in_index, subq))
2021-03-06 14:28:09 +00:00
return true;
return CDImage::ReadSubChannelQ(subq, index, lba_in_index);
2021-03-06 14:28:09 +00:00
}
bool CDImageEcm::HasNonStandardSubchannel() const
{
return (m_sbi.GetReplacementSectorCount() > 0);
}
bool CDImageEcm::ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index)
{
const u32 file_start = static_cast<u32>(index.file_offset) + (lba_in_index * index.file_sector_size);
const u32 file_end = file_start + RAW_SECTOR_SIZE;
if (file_start < m_chunk_start || file_end > (m_chunk_start + m_chunk_buffer.size()))
{
if (!ReadChunks(file_start, RAW_SECTOR_SIZE))
return false;
}
DebugAssert(file_start >= m_chunk_start && file_end <= (m_chunk_start + m_chunk_buffer.size()));
const size_t chunk_offset = static_cast<size_t>(file_start - m_chunk_start);
std::memcpy(buffer, &m_chunk_buffer[chunk_offset], RAW_SECTOR_SIZE);
return true;
}
std::unique_ptr<CDImage> CDImage::OpenEcmImage(const char* filename, Common::Error* error)
2021-03-06 14:28:09 +00:00
{
std::unique_ptr<CDImageEcm> image = std::make_unique<CDImageEcm>();
if (!image->Open(filename, error))
2021-03-06 14:28:09 +00:00
return {};
return image;
}