Duckstation/data/resources/shaders/reshade/Shaders/crt-royale/lib/tex2Dantialias.fxh

1393 lines
80 KiB
HLSL
Raw Normal View History

#ifndef _TEX2DANTIALIAS_H
#define _TEX2DANTIALIAS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides antialiased and subpixel-aware tex2D lookups.
// Requires: All functions share these requirements:
// 1.) All requirements of gamma-management.h must be satisfied!
// 2.) pixel_to_tex_uv must be a 2x2 matrix that transforms pixe-
// space offsets to texture uv offsets. You can get this with:
// const float2 duv_dx = ddx(tex_uv);
// const float2 duv_dy = ddy(tex_uv);
// const float2x2 pixel_to_tex_uv = float2x2(
// duv_dx.x, duv_dy.x,
// duv_dx.y, duv_dy.y);
// This is left to the user in case the current Cg profile
// doesn't support ddx()/ddy(). Ideally, the user could find
// calculate a distorted tangent-space mapping analytically.
// If not, a simple flat mapping can be obtained with:
// const float2 xy_to_uv_scale = IN.output_size *
// IN.video_size/IN.texture_size;
// const float2x2 pixel_to_tex_uv = float2x2(
// xy_to_uv_scale.x, 0.0,
// 0.0, xy_to_uv_scale.y);
// Optional: To set basic AA settings, #define ANTIALIAS_OVERRIDE_BASICS and:
// 1.) Set an antialiasing level:
// static const float antialias_level = {0 (none),
// 1 (sample subpixels), 4, 5, 6, 7, 8, 12, 16, 20, 24}
// 2.) Set a filter type:
// static const float aa_filter = {
// 0 (Box, Separable), 1 (Box, Cylindrical),
// 2 (Tent, Separable), 3 (Tent, Cylindrical)
// 4 (Gaussian, Separable), 5 (Gaussian, Cylindrical)
// 6 (Cubic, Separable), 7 (Cubic, Cylindrical)
// 8 (Lanczos Sinc, Separable),
// 9 (Lanczos Jinc, Cylindrical)}
// If the input is unknown, a separable box filter is used.
// Note: Lanczos Jinc is terrible for sparse sampling, and
// using aa_axis_importance (see below) defeats the purpose.
// 3.) Mirror the sample pattern on odd frames?
// static const bool aa_temporal = {true, false]
// This helps rotational invariance but can look "fluttery."
// The user may #define ANTIALIAS_OVERRIDE_PARAMETERS to override
// (all of) the following default parameters with static or uniform
// constants (or an accessor function for subpixel offsets):
// 1.) Cubic parameters:
// static const float aa_cubic_c = 0.5;
// See http://www.imagemagick.org/Usage/filter/#mitchell
// 2.) Gaussian parameters:
// static const float aa_gauss_sigma =
// 0.5/aa_pixel_diameter;
// 3.) Set subpixel offsets. This requires an accessor function
// for compatibility with scalar runtime shader params. Return
// a float2 pixel offset in [-0.5, 0.5] for the red subpixel:
// float2 get_aa_subpixel_r_offset()
// The user may also #define ANTIALIAS_OVERRIDE_STATIC_CONSTANTS to
// override (all of) the following default static values. However,
// the file's structure requires them to be declared static const:
// 1.) static const float aa_lanczos_lobes = 3.0;
// 2.) static const float aa_gauss_support = 1.0/aa_pixel_diameter;
// Note the default tent/Gaussian support radii may appear
// arbitrary, but extensive testing found them nearly optimal
// for tough cases like strong distortion at low AA levels.
// (The Gaussian default is only best for practical gauss_sigma
// values; much larger gauss_sigmas ironically prefer slightly
// smaller support given sparse sampling, and vice versa.)
// 3.) static const float aa_tent_support = 1.0 / aa_pixel_diameter;
// 4.) static const float2 aa_xy_axis_importance:
// The sparse N-queens sampling grid interacts poorly with
// negative-lobed 2D filters. However, if aliasing is much
// stronger in one direction (e.g. horizontally with a phosphor
// mask), it can be useful to downplay sample offsets along the
// other axis. The support radius in each direction scales with
// aa_xy_axis_importance down to a minimum of 0.5 (box support),
// after which point only the offsets used for calculating
// weights continue to scale downward. This works as follows:
// If aa_xy_axis_importance = float2(1.0, 1.0/support_radius),
// the vertical support radius will drop to 1.0, and we'll just
// filter vertical offsets with the first filter lobe, while
// horizontal offsets go through the full multi-lobe filter.
// If aa_xy_axis_importance = float2(1.0, 0.0), the vertical
// support radius will drop to box support, and the vertical
// offsets will be ignored entirely (essentially giving us a
// box filter vertically). The former is potentially smoother
// (but less predictable) and the default behavior of Lanczos
// jinc, whereas the latter is sharper and the default behavior
// of cubics and Lanczos sinc.
// 5.) static const float aa_pixel_diameter: You can expand the
// pixel diameter to e.g. sqrt(2.0), which may be a better
// support range for cylindrical filters (they don't
// currently discard out-of-circle samples though).
// Finally, there are two miscellaneous options:
// 1.) If you want to antialias a manually tiled texture, you can
// #define ANTIALIAS_DISABLE_ANISOTROPIC to use tex2Dlod() to
// fix incompatibilities with anisotropic filtering. This is
// slower, and the Cg profile must support tex2Dlod().
// 2.) If aa_cubic_c is a runtime uniform, you can #define
// _RUNTIME_ANTIALIAS_WEIGHTS to evaluate cubic weights once per
// fragment instead of at the usage site (which is used by
// default, because it enables static evaluation).
// Description:
// Each antialiased lookup follows these steps:
// 1.) Define a sample pattern of pixel offsets in the range of [-0.5, 0.5]
// pixels, spanning the diameter of a rectangular box filter.
// 2.) Scale these offsets by the support diameter of the user's chosen filter.
// 3.) Using these pixel offsets from the pixel center, compute the offsets to
// predefined subpixel locations.
// 4.) Compute filter weights based on subpixel offsets.
// Much of that can often be done at compile-time. At runtime:
// 1.) Project pixel-space offsets into uv-space with a matrix multiplication
// to get the uv offsets for each sample. Rectangular pixels have a
// diameter of 1.0. Circular pixels are not currently supported, but they
// might be better with a diameter of sqrt(2.0) to ensure there are no gaps
// between them.
// 2.) Load, weight, and sum samples.
// We use a sparse bilinear sampling grid, so there are two major implications:
// 1.) We can directly project the pixel-space support box into uv-space even
// if we're upsizing. This wouldn't be the case for nearest neighbor,
// where we'd have to expand the uv-space diameter to at least the support
// size to ensure sufficient filter support. In our case, this allows us
// to treat upsizing the same as downsizing and use static weighting. :)
// 2.) For decent results, negative-lobed filters must be computed based on
// separable weights, not radial distances, because the sparse sampling
// makes no guarantees about radial distributions. Even then, it's much
// better to set aa_xy_axis_importance to e.g. float2(1.0, 0.0) to use e.g.
// Lanczos2 horizontally and a box filter vertically. This is mainly due
// to the sparse N-queens sampling and a statistically enormous positive or
// negative covariance between horizontal and vertical weights.
//
// Design Decision Comments:
// "aa_temporal" mirrors the sample pattern on odd frames along the axis that
// keeps subpixel weights constant. This helps with rotational invariance, but
// it can cause distracting fluctuations, and horizontal and vertical edges
// will look the same. Using a different pattern on a shifted grid would
// exploit temporal AA better, but it would require a dynamic branch or a lot
// of conditional moves, so it's prohibitively slow for the minor benefit.
#include "helper-functions-and-macros.fxh"
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
// #if !ANTIALIAS_OVERRIDE_BASICS
// // The following settings must be static constants:
// static const float antialias_level = 12.0;
// static const float aa_filter = 0.0;
// static const bool aa_temporal = false;
// #endif
#ifndef ANTIALIAS_OVERRIDE_STATIC_CONSTANTS
// Users may override these parameters, but the file structure requires
// them to be static constants; see the descriptions above.
static const float aa_pixel_diameter = 1.0;
static const float aa_lanczos_lobes = 3.0;
static const float aa_gauss_support = 1.0 / aa_pixel_diameter;
static const float aa_tent_support = 1.0 / aa_pixel_diameter;
// If we're using a negative-lobed filter, default to using it horizontally
// only, and use only the first lobe vertically or a box filter, over a
// correspondingly smaller range. This compensates for the sparse sampling
// grid's typically large positive/negative x/y covariance.
static const float2 aa_xy_axis_importance = macro_cond(
aa_filter < 5.5,
float2(1.0, 1.0), // Box, tent, Gaussian
macro_cond(
aa_filter < 8.5,
float2(1.0, 0.0), // Cubic and Lanczos sinc
macro_cond(
aa_filter < 9.5,
float2(1.0, 1.0/aa_lanczos_lobes), // Lanczos jinc
float2(1.0, 1.0) // Default to box
)
)
);
#endif
// #if !ANTIALIAS_OVERRIDE_PARAMETERS
// // Users may override these values with their own uniform or static consts.
// // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// // 4.) C = 0.0 is a soft spline filter.
// static const float aa_cubic_c = 0.5;
// static const float aa_gauss_sigma = 0.5 / aa_pixel_diameter;
// // Users may override the subpixel offset accessor function with their own.
// // A function is used for compatibility with scalar runtime shader params.
// float2 get_aa_subpixel_r_offset()
// {
// return float2(0.0, 0.0);
// }
// #endif
////////////////////////////////// INCLUDES //////////////////////////////////
#include "gamma-management.fxh"
////////////////////////////////// CONSTANTS /////////////////////////////////
static const float aa_box_support = 0.5;
static const float aa_cubic_support = 2.0;
//////////////////////////// GLOBAL NON-CONSTANTS ////////////////////////////
// We'll want to define these only once per fragment at most.
// Compute cubic coefficients on demand at runtime, and save them to global
// uniforms. The B parameter is computed from C, because "Keys cubics"
// with B = 1 - 2C are considered the highest quality.
static const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
static const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
static const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
static const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
static const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
static const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
static const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
static const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
/////////////////////////////////// HELPERS //////////////////////////////////
// In the RetroArch version, we can optionally implement aa_cubic_c as a uniform.
// I've disabled that for now because the asssociated mutable singleton mess was a
// pain to port. So for now, this function does absolutely nothing. Maybe I'll reintroduce
// the uniform implementation later, but for now the statics will do.
void assign_aa_cubic_constants()
{
return;
}
float4 get_subpixel_support_diam_and_final_axis_importance()
{
// Statically select the base support radius:
static const float base_support_radius =
aa_filter < 1.5 ? aa_box_support :
aa_filter < 3.5 ? aa_tent_support :
aa_filter < 5.5 ? aa_gauss_support :
aa_filter < 7.5 ? aa_cubic_support :
aa_filter < 9.5 ? aa_lanczos_lobes :
aa_box_support; // Default to box
// Expand the filter support for subpixel filtering.
const float2 subpixel_support_radius_raw =
float2(base_support_radius, base_support_radius) + abs(get_aa_subpixel_r_offset());
if(aa_filter < 1.5)
{
// Ignore aa_xy_axis_importance for box filtering.
const float2 subpixel_support_diam =
2.0 * subpixel_support_radius_raw;
const float2 final_axis_importance = float2(1.0, 1.0);
return float4(subpixel_support_diam, final_axis_importance);
}
else
{
// Scale the support window by aa_xy_axis_importance, but don't narrow
// it further than box support. This allows decent vertical AA without
// messing up horizontal weights or using something silly like Lanczos4
// horizontally with a huge vertical average over an 8-pixel radius.
const float2 subpixel_support_radius = max(float2(aa_box_support, aa_box_support),
subpixel_support_radius_raw * aa_xy_axis_importance);
// Adjust aa_xy_axis_importance to compensate for what's already done:
const float2 final_axis_importance = aa_xy_axis_importance *
subpixel_support_radius_raw/subpixel_support_radius;
const float2 subpixel_support_diam = 2.0 * subpixel_support_radius;
return float4(subpixel_support_diam, final_axis_importance);
}
}
/////////////////////////// FILTER WEIGHT FUNCTIONS //////////////////////////
float eval_box_filter(const float dist)
{
return float(abs(dist) <= aa_box_support);
}
float eval_separable_box_filter(const float2 offset)
{
return float(all(bool2((abs(offset.x) <= aa_box_support), (abs(offset.y) <= aa_box_support))));
}
float eval_tent_filter(const float dist)
{
return saturate((aa_tent_support - dist) / aa_tent_support);
}
float eval_gaussian_filter(const float dist)
{
return exp(-(dist*dist) / (2.0*aa_gauss_sigma*aa_gauss_sigma));
}
float eval_cubic_filter(const float dist)
{
// Compute coefficients like assign_aa_cubic_constants(), but statically.
#if _RUNTIME_ANTIALIAS_WEIGHTS
// When runtime weights are used, these values are instead written to
// global uniforms at the beginning of each tex2Daa* call.
const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
#endif
const float abs_dist = abs(dist);
// Compute the cubic based on the Horner's method formula in:
// http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
return (abs_dist < 1.0 ?
(cubic_branch1_x3_coeff*abs_dist +
cubic_branch1_x2_coeff)*abs_dist*abs_dist +
cubic_branch1_x0_coeff :
abs_dist < 2.0 ?
((cubic_branch2_x3_coeff*abs_dist +
cubic_branch2_x2_coeff)*abs_dist +
cubic_branch2_x1_coeff)*abs_dist + cubic_branch2_x0_coeff :
0.0)/6.0;
}
float eval_separable_cubic_filter(const float2 offset)
{
// This is faster than using a specific float2 version:
return eval_cubic_filter(offset.x) *
eval_cubic_filter(offset.y);
}
float2 eval_sinc_filter(const float2 offset)
{
// It's faster to let the caller handle the zero case, or at least it
// was when I used macros and the shader preset took a full minute to load.
const float2 pi_offset = pi * offset;
return sin(pi_offset)/pi_offset;
}
float eval_separable_lanczos_sinc_filter(const float2 offset_unsafe)
{
// Note: For sparse sampling, you really need to pick an axis to use
// Lanczos along (e.g. set aa_xy_axis_importance = float2(1.0, 0.0)).
const float2 offset = FIX_ZERO(offset_unsafe);
const float2 xy_weights = eval_sinc_filter(offset) *
eval_sinc_filter(offset/aa_lanczos_lobes);
return xy_weights.x * xy_weights.y;
}
float eval_jinc_filter_unorm(const float x)
{
// This is a Jinc approximation for x in [0, 45). We'll use x in range
// [0, 4*pi) or so. There are faster/closer approximations based on
// piecewise cubics from [0, 45) and asymptotic approximations beyond that,
// but this has a maximum absolute error < 1/512, and it's simpler/faster
// for shaders...not that it's all that useful for sparse sampling anyway.
const float point3845_x = 0.38448566093564*x;
const float exp_term = exp(-(point3845_x*point3845_x));
const float point8154_plus_x = 0.815362332840791 + x;
const float cos_term = cos(point8154_plus_x);
return (
0.0264727330997042*min(x, 6.83134964622778) +
0.680823557250528*exp_term +
-0.0597255978950933*min(7.41043194481873, x)*cos_term /
(point8154_plus_x + 0.0646074538634482*(x*x) +
cos(x)*max(exp_term, cos(x) + cos_term)) -
0.180837503591406);
}
float eval_jinc_filter(const float dist)
{
return eval_jinc_filter_unorm(pi * dist);
}
float eval_lanczos_jinc_filter(const float dist)
{
return eval_jinc_filter(dist) * eval_jinc_filter(dist/aa_lanczos_lobes);
}
float3 eval_unorm_rgb_weights(const float2 offset,
const float2 final_axis_importance)
{
// Requires: 1.) final_axis_impportance must be computed according to
// get_subpixel_support_diam_and_final_axis_importance().
// 2.) aa_filter must be a global constant.
// 3.) offset must be an xy pixel offset in the range:
// ([-subpixel_support_diameter.x/2,
// subpixel_support_diameter.x/2],
// [-subpixel_support_diameter.y/2,
// subpixel_support_diameter.y/2])
// Returns: Sample weights at R/G/B destination subpixels for the
// given xy pixel offset.
const float2 offset_g = offset * final_axis_importance;
const float2 aa_r_offset = get_aa_subpixel_r_offset();
const float2 offset_r = offset_g - aa_r_offset * final_axis_importance;
const float2 offset_b = offset_g + aa_r_offset * final_axis_importance;
// Statically select a filter:
if(aa_filter < 0.5)
{
return float3(eval_separable_box_filter(offset_r),
eval_separable_box_filter(offset_g),
eval_separable_box_filter(offset_b));
}
else if(aa_filter < 1.5)
{
return float3(eval_box_filter(length(offset_r)),
eval_box_filter(length(offset_g)),
eval_box_filter(length(offset_b)));
}
else if(aa_filter < 2.5)
{
return float3(
eval_tent_filter(offset_r.x) * eval_tent_filter(offset_r.y),
eval_tent_filter(offset_g.x) * eval_tent_filter(offset_g.y),
eval_tent_filter(offset_b.x) * eval_tent_filter(offset_b.y));
}
else if(aa_filter < 3.5)
{
return float3(eval_tent_filter(length(offset_r)),
eval_tent_filter(length(offset_g)),
eval_tent_filter(length(offset_b)));
}
else if(aa_filter < 4.5)
{
return float3(
eval_gaussian_filter(offset_r.x) * eval_gaussian_filter(offset_r.y),
eval_gaussian_filter(offset_g.x) * eval_gaussian_filter(offset_g.y),
eval_gaussian_filter(offset_b.x) * eval_gaussian_filter(offset_b.y));
}
else if(aa_filter < 5.5)
{
return float3(eval_gaussian_filter(length(offset_r)),
eval_gaussian_filter(length(offset_g)),
eval_gaussian_filter(length(offset_b)));
}
else if(aa_filter < 6.5)
{
return float3(
eval_cubic_filter(offset_r.x) * eval_cubic_filter(offset_r.y),
eval_cubic_filter(offset_g.x) * eval_cubic_filter(offset_g.y),
eval_cubic_filter(offset_b.x) * eval_cubic_filter(offset_b.y));
}
else if(aa_filter < 7.5)
{
return float3(eval_cubic_filter(length(offset_r)),
eval_cubic_filter(length(offset_g)),
eval_cubic_filter(length(offset_b)));
}
else if(aa_filter < 8.5)
{
return float3(eval_separable_lanczos_sinc_filter(offset_r),
eval_separable_lanczos_sinc_filter(offset_g),
eval_separable_lanczos_sinc_filter(offset_b));
}
else if(aa_filter < 9.5)
{
return float3(eval_lanczos_jinc_filter(length(offset_r)),
eval_lanczos_jinc_filter(length(offset_g)),
eval_lanczos_jinc_filter(length(offset_b)));
}
else
{
// Default to a box, because Lanczos Jinc is so bad. ;)
return float3(eval_separable_box_filter(offset_r),
eval_separable_box_filter(offset_g),
eval_separable_box_filter(offset_b));
}
}
////////////////////////////// HELPER FUNCTIONS //////////////////////////////
float4 tex2Daa_tiled_linearize(const sampler2D samp, const float2 s, const float input_gamma)
{
// If we're manually tiling a texture, anisotropic filtering can get
// confused. This is one workaround:
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
// TODO: Use tex2Dlod_linearize with a calculated mip level.
return tex2Dlod_linearize(samp, float4(s, 0.0, 0.0), input_gamma);
#else
return tex2D_linearize(samp, s, input_gamma);
#endif
}
float2 get_frame_sign(const float frame)
{
if(aa_temporal)
{
// Mirror the sampling pattern for odd frames in a direction that
// lets us keep the same subpixel sample weights:
const float frame_odd = float(fmod(frame, 2.0) > 0.5);
const float2 aa_r_offset = get_aa_subpixel_r_offset();
const float2 mirror = -float2(abs(aa_r_offset.x) < (FIX_ZERO(0.0)), abs(aa_r_offset.y) < (FIX_ZERO(0.0)));
return mirror;
}
else
{
return float2(1.0, 1.0);
}
}
///////////////////////// ANTIALIASED TEXTURE LOOKUPS ////////////////////////
float3 tex2Daa_subpixel_weights_only(const sampler2D tex,
const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float input_gamma)
{
// This function is unlike the others: Just perform a single independent
// lookup for each subpixel. It may be very aliased.
const float2 aa_r_offset = get_aa_subpixel_r_offset();
const float2 aa_r_offset_uv_offset = mul(pixel_to_tex_uv, aa_r_offset);
const float color_g = tex2D_linearize(tex, tex_uv, input_gamma).g;
const float color_r = tex2D_linearize(tex, tex_uv + aa_r_offset_uv_offset, input_gamma).r;
const float color_b = tex2D_linearize(tex, tex_uv - aa_r_offset_uv_offset, input_gamma).b;
return float3(color_r, color_g, color_b);
}
// The tex2Daa* functions compile very slowly due to all the macros and
// compile-time math, so only include the ones we'll actually use!
float3 tex2Daa4x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use an RGMS4 pattern (4-queens):
// . . Q . : off =(-1.5, -1.5)/4 + (2.0, 0.0)/4
// Q . . . : off =(-1.5, -1.5)/4 + (0.0, 1.0)/4
// . . . Q : off =(-1.5, -1.5)/4 + (3.0, 2.0)/4
// . Q . . : off =(-1.5, -1.5)/4 + (1.0, 3.0)/4
// Static screenspace sample offsets (compute some implicitly):
static const float grid_size = 4.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(0.0, 1.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = w1.bgr;
const float3 w3 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/w_sum;
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv = pixel_to_tex_uv * aa_pixel_diameter;
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (w0 * sample0 + w1 * sample1 +
w2 * sample2 + w3 * sample3);
}
float3 tex2Daa5x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 5-queens pattern:
// . Q . . . : off =(-2.0, -2.0)/5 + (1.0, 0.0)/5
// . . . . Q : off =(-2.0, -2.0)/5 + (4.0, 1.0)/5
// . . Q . . : off =(-2.0, -2.0)/5 + (2.0, 2.0)/5
// Q . . . . : off =(-2.0, -2.0)/5 + (0.0, 3.0)/5
// . . . Q . : off =(-2.0, -2.0)/5 + (3.0, 4.0)/5
// Static screenspace sample offsets (compute some implicitly):
static const float grid_size = 5.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(2.0, 2.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = w1.bgr;
const float3 w4 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 w_sum_inv = 1.0/(w0 + w1 + w2 + w3 + w4);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (w0 * sample0 + w1 * sample1 +
w2 * sample2 + w3 * sample3 + w4 * sample4);
// return (w0 + w1 + w2 + w3 + w4);
}
float3 tex2Daa6x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 6-queens pattern with a stronger horizontal
// than vertical slant:
// . . . . Q . : off =(-2.5, -2.5)/6 + (4.0, 0.0)/6
// . . Q . . . : off =(-2.5, -2.5)/6 + (2.0, 1.0)/6
// Q . . . . . : off =(-2.5, -2.5)/6 + (0.0, 2.0)/6
// . . . . . Q : off =(-2.5, -2.5)/6 + (5.0, 3.0)/6
// . . . Q . . : off =(-2.5, -2.5)/6 + (3.0, 4.0)/6
// . Q . . . . : off =(-2.5, -2.5)/6 + (1.0, 5.0)/6
// Static screenspace sample offsets (compute some implicitly):
static const float grid_size = 6.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(4.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(2.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = w2.bgr;
const float3 w4 = w1.bgr;
const float3 w5 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 +
w3 * sample3 + w4 * sample4 + w5 * sample5);
}
float3 tex2Daa7x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 7-queens pattern with a queen in the center:
// . Q . . . . . : off =(-3.0, -3.0)/7 + (1.0, 0.0)/7
// . . . . Q . . : off =(-3.0, -3.0)/7 + (4.0, 1.0)/7
// Q . . . . . . : off =(-3.0, -3.0)/7 + (0.0, 2.0)/7
// . . . Q . . . : off =(-3.0, -3.0)/7 + (3.0, 3.0)/7
// . . . . . . Q : off =(-3.0, -3.0)/7 + (6.0, 4.0)/7
// . . Q . . . . : off =(-3.0, -3.0)/7 + (2.0, 5.0)/7
// . . . . . Q . : off =(-3.0, -3.0)/7 + (5.0, 6.0)/7
static const float grid_size = 7.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(3.0, 3.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = w2.bgr;
const float3 w5 = w1.bgr;
const float3 w6 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2;
const float3 w_sum = half_sum + half_sum.bgr + w3;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6);
}
float3 tex2Daa8x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 8-queens pattern.
// . . Q . . . . . : off =(-3.5, -3.5)/8 + (2.0, 0.0)/8
// . . . . Q . . . : off =(-3.5, -3.5)/8 + (4.0, 1.0)/8
// . Q . . . . . . : off =(-3.5, -3.5)/8 + (1.0, 2.0)/8
// . . . . . . . Q : off =(-3.5, -3.5)/8 + (7.0, 3.0)/8
// Q . . . . . . . : off =(-3.5, -3.5)/8 + (0.0, 4.0)/8
// . . . . . . Q . : off =(-3.5, -3.5)/8 + (6.0, 5.0)/8
// . . . Q . . . . : off =(-3.5, -3.5)/8 + (3.0, 6.0)/8
// . . . . . Q . . : off =(-3.5, -3.5)/8 + (5.0, 7.0)/8
static const float grid_size = 8.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(1.0, 2.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(7.0, 3.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = w3.bgr;
const float3 w5 = w2.bgr;
const float3 w6 = w1.bgr;
const float3 w7 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2 + w3;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, and mirror on odd frames if directed:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7);
}
float3 tex2Daa12x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 12-superqueens pattern where no 3 points are
// exactly collinear.
// . . . Q . . . . . . . . : off =(-5.5, -5.5)/12 + (3.0, 0.0)/12
// . . . . . . . . . Q . . : off =(-5.5, -5.5)/12 + (9.0, 1.0)/12
// . . . . . . Q . . . . . : off =(-5.5, -5.5)/12 + (6.0, 2.0)/12
// . Q . . . . . . . . . . : off =(-5.5, -5.5)/12 + (1.0, 3.0)/12
// . . . . . . . . . . . Q : off =(-5.5, -5.5)/12 + (11.0, 4.0)/12
// . . . . Q . . . . . . . : off =(-5.5, -5.5)/12 + (4.0, 5.0)/12
// . . . . . . . Q . . . . : off =(-5.5, -5.5)/12 + (7.0, 6.0)/12
// Q . . . . . . . . . . . : off =(-5.5, -5.5)/12 + (0.0, 7.0)/12
// . . . . . . . . . . Q . : off =(-5.5, -5.5)/12 + (10.0, 8.0)/12
// . . . . . Q . . . . . . : off =(-5.5, -5.5)/12 + (5.0, 9.0)/12
// . . Q . . . . . . . . . : off =(-5.5, -5.5)/12 + (2.0, 10.0)/12
// . . . . . . . . Q . . . : off =(-5.5, -5.5)/12 + (8.0, 11.0)/12
static const float grid_size = 12.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(3.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(6.0, 2.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
const float2 xy_offset4 = xy_start_offset + float2(11.0, 4.0) * xy_step;
const float2 xy_offset5 = xy_start_offset + float2(4.0, 5.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
const float3 w6 = w5.bgr;
const float3 w7 = w4.bgr;
const float3 w8 = w3.bgr;
const float3 w9 = w2.bgr;
const float3 w10 = w1.bgr;
const float3 w11 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/w_sum;
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb;
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb;
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb;
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11);
}
float3 tex2Daa16x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 16-superqueens pattern where no 3 points are
// exactly collinear.
// . . Q . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (2.0, 0.0)/16
// . . . . . . . . . Q . . . . . . : off =(-7.5, -7.5)/16 + (9.0, 1.0)/16
// . . . . . . . . . . . . Q . . . : off =(-7.5, -7.5)/16 + (12.0, 2.0)/16
// . . . . Q . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (4.0, 3.0)/16
// . . . . . . . . Q . . . . . . . : off =(-7.5, -7.5)/16 + (8.0, 4.0)/16
// . . . . . . . . . . . . . . Q . : off =(-7.5, -7.5)/16 + (14.0, 5.0)/16
// Q . . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (0.0, 6.0)/16
// . . . . . . . . . . Q . . . . . : off =(-7.5, -7.5)/16 + (10.0, 7.0)/16
// . . . . . Q . . . . . . . . . . : off =(-7.5, -7.5)/16 + (5.0, 8.0)/16
// . . . . . . . . . . . . . . . Q : off =(-7.5, -7.5)/16 + (15.0, 9.0)/16
// . Q . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (1.0, 10.0)/16
// . . . . . . . Q . . . . . . . . : off =(-7.5, -7.5)/16 + (7.0, 11.0)/16
// . . . . . . . . . . . Q . . . . : off =(-7.5, -7.5)/16 + (11.0, 12.0)/16
// . . . Q . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (3.0, 13.0)/16
// . . . . . . Q . . . . . . . . . : off =(-7.5, -7.5)/16 + (6.0, 14.0)/16
// . . . . . . . . . . . . . Q . . : off =(-7.5, -7.5)/16 + (13.0, 15.0)/16
static const float grid_size = 16.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(12.0, 2.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(4.0, 3.0) * xy_step;
const float2 xy_offset4 = xy_start_offset + float2(8.0, 4.0) * xy_step;
const float2 xy_offset5 = xy_start_offset + float2(14.0, 5.0) * xy_step;
const float2 xy_offset6 = xy_start_offset + float2(0.0, 6.0) * xy_step;
const float2 xy_offset7 = xy_start_offset + float2(10.0, 7.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
const float3 w8 = w7.bgr;
const float3 w9 = w6.bgr;
const float3 w10 = w5.bgr;
const float3 w11 = w4.bgr;
const float3 w12 = w3.bgr;
const float3 w13 = w2.bgr;
const float3 w14 = w1.bgr;
const float3 w15 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6, input_gamma).rgb;
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7, input_gamma).rgb;
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7, input_gamma).rgb;
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6, input_gamma).rgb;
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb;
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb;
const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb;
const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
}
float3 tex2Daa20x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 20-superqueens pattern where no 3 points are
// exactly collinear and superqueens have a squared attack radius of 13.
// . . . . . . . Q . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (7.0, 0.0)/20
// . . . . . . . . . . . . . . . . Q . . . : off =(-9.5, -9.5)/20 + (16.0, 1.0)/20
// . . . . . . . . . . . Q . . . . . . . . : off =(-9.5, -9.5)/20 + (11.0, 2.0)/20
// . Q . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (1.0, 3.0)/20
// . . . . . Q . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (5.0, 4.0)/20
// . . . . . . . . . . . . . . . Q . . . . : off =(-9.5, -9.5)/20 + (15.0, 5.0)/20
// . . . . . . . . . . Q . . . . . . . . . : off =(-9.5, -9.5)/20 + (10.0, 6.0)/20
// . . . . . . . . . . . . . . . . . . . Q : off =(-9.5, -9.5)/20 + (19.0, 7.0)/20
// . . Q . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (2.0, 8.0)/20
// . . . . . . Q . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (6.0, 9.0)/20
// . . . . . . . . . . . . . Q . . . . . . : off =(-9.5, -9.5)/20 + (13.0, 10.0)/20
// . . . . . . . . . . . . . . . . . Q . . : off =(-9.5, -9.5)/20 + (17.0, 11.0)/20
// Q . . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (0.0, 12.0)/20
// . . . . . . . . . Q . . . . . . . . . . : off =(-9.5, -9.5)/20 + (9.0, 13.0)/20
// . . . . Q . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (4.0, 14.0)/20
// . . . . . . . . . . . . . . Q . . . . . : off =(-9.5, -9.5)/20 + (14.0, 15.0)/20
// . . . . . . . . . . . . . . . . . . Q . : off =(-9.5, -9.5)/20 + (18.0, 16.0)/20
// . . . . . . . . Q . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (8.0, 17.0)/20
// . . . Q . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (3.0, 18.0)/20
// . . . . . . . . . . . . Q . . . . . . . : off =(-9.5, -9.5)/20 + (12.0, 19.0)/20
static const float grid_size = 20.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(7.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(11.0, 2.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
const float2 xy_offset6 = xy_start_offset + float2(10.0, 6.0) * xy_step;
const float2 xy_offset7 = xy_start_offset + float2(19.0, 7.0) * xy_step;
const float2 xy_offset8 = xy_start_offset + float2(2.0, 8.0) * xy_step;
const float2 xy_offset9 = xy_start_offset + float2(6.0, 9.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
const float3 w10 = w9.bgr;
const float3 w11 = w8.bgr;
const float3 w12 = w7.bgr;
const float3 w13 = w6.bgr;
const float3 w14 = w5.bgr;
const float3 w15 = w4.bgr;
const float3 w16 = w3.bgr;
const float3 w17 = w2.bgr;
const float3 w18 = w1.bgr;
const float3 w19 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6, input_gamma).rgb;
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7, input_gamma).rgb;
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8, input_gamma).rgb;
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9, input_gamma).rgb;
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9, input_gamma).rgb;
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8, input_gamma).rgb;
const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7, input_gamma).rgb;
const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6, input_gamma).rgb;
const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb;
const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb;
const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb;
const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19);
}
float3 tex2Daa24x(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Use a diagonally symmetric 24-superqueens pattern where no 3 points are
// exactly collinear and superqueens have a squared attack radius of 13.
// . . . . . . Q . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (6.0, 0.0)/24
// . . . . . . . . . . . . . . . . Q . . . . . . . : off =(-11.5, -11.5)/24 + (16.0, 1.0)/24
// . . . . . . . . . . Q . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (10.0, 2.0)/24
// . . . . . . . . . . . . . . . . . . . . . Q . . : off =(-11.5, -11.5)/24 + (21.0, 3.0)/24
// . . . . . Q . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (5.0, 4.0)/24
// . . . . . . . . . . . . . . . Q . . . . . . . . : off =(-11.5, -11.5)/24 + (15.0, 5.0)/24
// . Q . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (1.0, 6.0)/24
// . . . . . . . . . . . Q . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (11.0, 7.0)/24
// . . . . . . . . . . . . . . . . . . . Q . . . . : off =(-11.5, -11.5)/24 + (19.0, 8.0)/24
// . . . . . . . . . . . . . . . . . . . . . . . Q : off =(-11.5, -11.5)/24 + (23.0, 9.0)/24
// . . . Q . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (3.0, 10.0)/24
// . . . . . . . . . . . . . . Q . . . . . . . . . : off =(-11.5, -11.5)/24 + (14.0, 11.0)/24
// . . . . . . . . . Q . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (9.0, 12.0)/24
// . . . . . . . . . . . . . . . . . . . . Q . . . : off =(-11.5, -11.5)/24 + (20.0, 13.0)/24
// Q . . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (0.0, 14.0)/24
// . . . . Q . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (4.0, 15.0)/24
// . . . . . . . . . . . . Q . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (12.0, 16.0)/24
// . . . . . . . . . . . . . . . . . . . . . . Q . : off =(-11.5, -11.5)/24 + (22.0, 17.0)/24
// . . . . . . . . Q . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (8.0, 18.0)/24
// . . . . . . . . . . . . . . . . . . Q . . . . . : off =(-11.5, -11.5)/24 + (18.0, 19.0)/24
// . . Q . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (2.0, 20.0)/24
// . . . . . . . . . . . . . Q . . . . . . . . . . : off =(-11.5, -11.5)/24 + (13.0, 21.0)/24
// . . . . . . . Q . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (7.0, 22.0)/24
// . . . . . . . . . . . . . . . . . Q . . . . . . : off =(-11.5, -11.5)/24 + (17.0, 23.0)/24
static const float grid_size = 24.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample. Exploit diagonal symmetry:
const float2 xy_offset0 = xy_start_offset + float2(6.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(10.0, 2.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(21.0, 3.0) * xy_step;
const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
const float2 xy_offset6 = xy_start_offset + float2(1.0, 6.0) * xy_step;
const float2 xy_offset7 = xy_start_offset + float2(11.0, 7.0) * xy_step;
const float2 xy_offset8 = xy_start_offset + float2(19.0, 8.0) * xy_step;
const float2 xy_offset9 = xy_start_offset + float2(23.0, 9.0) * xy_step;
const float2 xy_offset10 = xy_start_offset + float2(3.0, 10.0) * xy_step;
const float2 xy_offset11 = xy_start_offset + float2(14.0, 11.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
const float3 w10 = eval_unorm_rgb_weights(xy_offset10, final_axis_importance);
const float3 w11 = eval_unorm_rgb_weights(xy_offset11, final_axis_importance);
const float3 w12 = w11.bgr;
const float3 w13 = w10.bgr;
const float3 w14 = w9.bgr;
const float3 w15 = w8.bgr;
const float3 w16 = w7.bgr;
const float3 w17 = w6.bgr;
const float3 w18 = w5.bgr;
const float3 w19 = w4.bgr;
const float3 w20 = w3.bgr;
const float3 w21 = w2.bgr;
const float3 w22 = w1.bgr;
const float3 w23 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2 + w3 + w4 +
w5 + w6 + w7 + w8 + w9 + w10 + w11;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, mirror on odd frames if directed, and exploit
// diagonal symmetry:
const float2 frame_sign = get_frame_sign(frame);
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
const float2 uv_offset10 = mul(true_pixel_to_tex_uv, xy_offset10 * frame_sign);
const float2 uv_offset11 = mul(true_pixel_to_tex_uv, xy_offset11 * frame_sign);
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6, input_gamma).rgb;
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7, input_gamma).rgb;
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8, input_gamma).rgb;
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9, input_gamma).rgb;
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset10, input_gamma).rgb;
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset11, input_gamma).rgb;
const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset11, input_gamma).rgb;
const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset10, input_gamma).rgb;
const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9, input_gamma).rgb;
const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8, input_gamma).rgb;
const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7, input_gamma).rgb;
const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6, input_gamma).rgb;
const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb;
const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb;
const float3 sample20 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb;
const float3 sample21 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb;
const float3 sample22 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb;
const float3 sample23 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19 +
w20 * sample20 + w21 * sample21 + w22 * sample22 + w23 * sample23);
}
float3 tex2Daa_debug_16x_regular(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Sample on a regular 4x4 grid. This is mainly for testing.
static const float grid_size = 4.0;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float2 xy_step = 1.0/grid_size * subpixel_support_diameter;
const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step;
// Get the xy offset of each sample:
const float2 xy_offset0 = xy_start_offset + float2(0.0, 0.0) * xy_step;
const float2 xy_offset1 = xy_start_offset + float2(1.0, 0.0) * xy_step;
const float2 xy_offset2 = xy_start_offset + float2(2.0, 0.0) * xy_step;
const float2 xy_offset3 = xy_start_offset + float2(3.0, 0.0) * xy_step;
const float2 xy_offset4 = xy_start_offset + float2(0.0, 1.0) * xy_step;
const float2 xy_offset5 = xy_start_offset + float2(1.0, 1.0) * xy_step;
const float2 xy_offset6 = xy_start_offset + float2(2.0, 1.0) * xy_step;
const float2 xy_offset7 = xy_start_offset + float2(3.0, 1.0) * xy_step;
// Compute subpixel weights, and exploit diagonal symmetry for speed.
// (We can't exploit vertical or horizontal symmetry due to uncertain
// subpixel offsets. We could fix that by rotating xy offsets with the
// subpixel structure, but...no.)
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
const float3 w8 = w7.bgr;
const float3 w9 = w6.bgr;
const float3 w10 = w5.bgr;
const float3 w11 = w4.bgr;
const float3 w12 = w3.bgr;
const float3 w13 = w2.bgr;
const float3 w14 = w1.bgr;
const float3 w15 = w0.bgr;
// Get the weight sum to normalize the total to 1.0 later:
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
const float3 w_sum = half_sum + half_sum.bgr;
const float3 w_sum_inv = 1.0/(w_sum);
// Scale the pixel-space to texture offset matrix by the pixel diameter.
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
// Get uv sample offsets, taking advantage of row alignment:
const float2 uv_step_x = mul(true_pixel_to_tex_uv, float2(xy_step.x, 0.0));
const float2 uv_step_y = mul(true_pixel_to_tex_uv, float2(0.0, xy_step.y));
const float2 uv_offset0 = -1.5 * (uv_step_x + uv_step_y);
const float2 sample0_uv = tex_uv + uv_offset0;
const float2 sample4_uv = sample0_uv + uv_step_y;
const float2 sample8_uv = sample0_uv + uv_step_y * 2.0;
const float2 sample12_uv = sample0_uv + uv_step_y * 3.0;
// Load samples, linearizing if necessary, etc.:
const float3 sample0 = tex2Daa_tiled_linearize(tex, sample0_uv, input_gamma).rgb;
const float3 sample1 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x, input_gamma).rgb;
const float3 sample2 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 2.0, input_gamma).rgb;
const float3 sample3 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 3.0, input_gamma).rgb;
const float3 sample4 = tex2Daa_tiled_linearize(tex, sample4_uv, input_gamma).rgb;
const float3 sample5 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x, input_gamma).rgb;
const float3 sample6 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 2.0, input_gamma).rgb;
const float3 sample7 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 3.0, input_gamma).rgb;
const float3 sample8 = tex2Daa_tiled_linearize(tex, sample8_uv, input_gamma).rgb;
const float3 sample9 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x, input_gamma).rgb;
const float3 sample10 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 2.0, input_gamma).rgb;
const float3 sample11 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 3.0, input_gamma).rgb;
const float3 sample12 = tex2Daa_tiled_linearize(tex, sample12_uv, input_gamma).rgb;
const float3 sample13 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x, input_gamma).rgb;
const float3 sample14 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 2.0, input_gamma).rgb;
const float3 sample15 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 3.0, input_gamma).rgb;
// Sum weighted samples (weight sum must equal 1.0 for each channel):
return w_sum_inv * (
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
}
float3 tex2Daa_debug_dynamic(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// This function is for testing only: Use an NxN grid with dynamic weights.
static const int grid_size = 8;
assign_aa_cubic_constants();
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
const float2 subpixel_support_diameter = ssd_fai.xy;
const float2 final_axis_importance = ssd_fai.zw;
const float grid_radius_in_samples = (float(grid_size) - 1.0)/2.0;
const float2 filter_space_offset_step =
subpixel_support_diameter / grid_size;
const float2 sample0_filter_space_offset =
-grid_radius_in_samples * filter_space_offset_step;
// Compute xy sample offsets and subpixel weights:
float3 weights[64]; // grid_size * grid_size
float3 weight_sum = float3(0.0, 0.0, 0.0);
for(int i = 0; i < grid_size; ++i)
{
for(int j = 0; j < grid_size; ++j)
{
// Weights based on xy distances:
const float2 offset = sample0_filter_space_offset +
float2(j, i) * filter_space_offset_step;
const float3 weight = eval_unorm_rgb_weights(offset, final_axis_importance);
weights[i*grid_size + j] = weight;
weight_sum += weight;
}
}
// Get uv offset vectors along x and y directions:
const float2x2 true_pixel_to_tex_uv =
float2x2((pixel_to_tex_uv * aa_pixel_diameter));
const float2 uv_offset_step_x = mul(true_pixel_to_tex_uv,
float2(filter_space_offset_step.x, 0.0));
const float2 uv_offset_step_y = mul(true_pixel_to_tex_uv,
float2(0.0, filter_space_offset_step.y));
// Get a starting sample location:
const float2 sample0_uv_offset = -grid_radius_in_samples *
(uv_offset_step_x + uv_offset_step_y);
const float2 sample0_uv = tex_uv + sample0_uv_offset;
// Load, weight, and sum [linearized] samples:
float3 sum = float3(0.0, 0.0, 0.0);
const float3 weight_sum_inv = 1.0/weight_sum;
for(int i = 0; i < grid_size; ++i)
{
const float2 row_i_first_sample_uv =
sample0_uv + i * uv_offset_step_y;
for(int j = 0; j < grid_size; ++j)
{
const float2 sample_uv =
row_i_first_sample_uv + j * uv_offset_step_x;
sum += weights[i*grid_size + j] *
tex2Daa_tiled_linearize(tex, sample_uv, input_gamma).rgb;
}
}
return sum * weight_sum_inv;
}
/////////////////////// ANTIALIASING CODEPATH SELECTION //////////////////////
float3 tex2Daa(const sampler2D tex, const float2 tex_uv,
const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma)
{
// Statically switch between antialiasing modes/levels:
return (antialias_level < 0.5) ? tex2D_linearize(tex, tex_uv, input_gamma).rgb :
(antialias_level < 3.5) ? tex2Daa_subpixel_weights_only(
tex, tex_uv, pixel_to_tex_uv, input_gamma) :
(antialias_level < 4.5) ? tex2Daa4x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 5.5) ? tex2Daa5x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 6.5) ? tex2Daa6x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 7.5) ? tex2Daa7x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 11.5) ? tex2Daa8x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 15.5) ? tex2Daa12x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 19.5) ? tex2Daa16x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 23.5) ? tex2Daa20x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 253.5) ? tex2Daa24x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
(antialias_level < 254.5) ? tex2Daa_debug_16x_regular(
tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) :
tex2Daa_debug_dynamic(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma);
}
#endif // _TEX2DANTIALIAS_H