mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			1371 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1371 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* ******************************************************************
 | ||
|  |  * Huffman encoder, part of New Generation Entropy library | ||
|  |  * Copyright (c) Yann Collet, Facebook, Inc. | ||
|  |  * | ||
|  |  *  You can contact the author at : | ||
|  |  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 | ||
|  |  *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
 | ||
|  |  * | ||
|  |  * This source code is licensed under both the BSD-style license (found in the | ||
|  |  * LICENSE file in the root directory of this source tree) and the GPLv2 (found | ||
|  |  * in the COPYING file in the root directory of this source tree). | ||
|  |  * You may select, at your option, one of the above-listed licenses. | ||
|  | ****************************************************************** */ | ||
|  | 
 | ||
|  | /* **************************************************************
 | ||
|  | *  Compiler specifics | ||
|  | ****************************************************************/ | ||
|  | #ifdef _MSC_VER    /* Visual Studio */
 | ||
|  | #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* **************************************************************
 | ||
|  | *  Includes | ||
|  | ****************************************************************/ | ||
|  | #include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
 | ||
|  | #include "../common/compiler.h"
 | ||
|  | #include "../common/bitstream.h"
 | ||
|  | #include "hist.h"
 | ||
|  | #define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
 | ||
|  | #include "../common/fse.h"        /* header compression */
 | ||
|  | #define HUF_STATIC_LINKING_ONLY
 | ||
|  | #include "../common/huf.h"
 | ||
|  | #include "../common/error_private.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* **************************************************************
 | ||
|  | *  Error Management | ||
|  | ****************************************************************/ | ||
|  | #define HUF_isError ERR_isError
 | ||
|  | #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* **************************************************************
 | ||
|  | *  Utils | ||
|  | ****************************************************************/ | ||
|  | unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) | ||
|  | { | ||
|  |     return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *******************************************************
 | ||
|  | *  HUF : Huffman block compression | ||
|  | *********************************************************/ | ||
|  | #define HUF_WORKSPACE_MAX_ALIGNMENT 8
 | ||
|  | 
 | ||
|  | static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align) | ||
|  | { | ||
|  |     size_t const mask = align - 1; | ||
|  |     size_t const rem = (size_t)workspace & mask; | ||
|  |     size_t const add = (align - rem) & mask; | ||
|  |     BYTE* const aligned = (BYTE*)workspace + add; | ||
|  |     assert((align & (align - 1)) == 0); /* pow 2 */ | ||
|  |     assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT); | ||
|  |     if (*workspaceSizePtr >= add) { | ||
|  |         assert(add < align); | ||
|  |         assert(((size_t)aligned & mask) == 0); | ||
|  |         *workspaceSizePtr -= add; | ||
|  |         return aligned; | ||
|  |     } else { | ||
|  |         *workspaceSizePtr = 0; | ||
|  |         return NULL; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* HUF_compressWeights() :
 | ||
|  |  * Same as FSE_compress(), but dedicated to huff0's weights compression. | ||
|  |  * The use case needs much less stack memory. | ||
|  |  * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. | ||
|  |  */ | ||
|  | #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |     FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)]; | ||
|  |     U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)]; | ||
|  |     unsigned count[HUF_TABLELOG_MAX+1]; | ||
|  |     S16 norm[HUF_TABLELOG_MAX+1]; | ||
|  | } HUF_CompressWeightsWksp; | ||
|  | 
 | ||
|  | static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize) | ||
|  | { | ||
|  |     BYTE* const ostart = (BYTE*) dst; | ||
|  |     BYTE* op = ostart; | ||
|  |     BYTE* const oend = ostart + dstSize; | ||
|  | 
 | ||
|  |     unsigned maxSymbolValue = HUF_TABLELOG_MAX; | ||
|  |     U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; | ||
|  |     HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32)); | ||
|  | 
 | ||
|  |     if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC); | ||
|  | 
 | ||
|  |     /* init conditions */ | ||
|  |     if (wtSize <= 1) return 0;  /* Not compressible */ | ||
|  | 
 | ||
|  |     /* Scan input and build symbol stats */ | ||
|  |     {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */ | ||
|  |         if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */ | ||
|  |         if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */ | ||
|  |     } | ||
|  | 
 | ||
|  |     tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); | ||
|  |     CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) ); | ||
|  | 
 | ||
|  |     /* Write table description header */ | ||
|  |     {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) ); | ||
|  |         op += hSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Compress */ | ||
|  |     CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) ); | ||
|  |     {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) ); | ||
|  |         if (cSize == 0) return 0;   /* not enough space for compressed data */ | ||
|  |         op += cSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     return (size_t)(op-ostart); | ||
|  | } | ||
|  | 
 | ||
|  | static size_t HUF_getNbBits(HUF_CElt elt) | ||
|  | { | ||
|  |     return elt & 0xFF; | ||
|  | } | ||
|  | 
 | ||
|  | static size_t HUF_getNbBitsFast(HUF_CElt elt) | ||
|  | { | ||
|  |     return elt; | ||
|  | } | ||
|  | 
 | ||
|  | static size_t HUF_getValue(HUF_CElt elt) | ||
|  | { | ||
|  |     return elt & ~0xFF; | ||
|  | } | ||
|  | 
 | ||
|  | static size_t HUF_getValueFast(HUF_CElt elt) | ||
|  | { | ||
|  |     return elt; | ||
|  | } | ||
|  | 
 | ||
|  | static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits) | ||
|  | { | ||
|  |     assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX); | ||
|  |     *elt = nbBits; | ||
|  | } | ||
|  | 
 | ||
|  | static void HUF_setValue(HUF_CElt* elt, size_t value) | ||
|  | { | ||
|  |     size_t const nbBits = HUF_getNbBits(*elt); | ||
|  |     if (nbBits > 0) { | ||
|  |         assert((value >> nbBits) == 0); | ||
|  |         *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |     HUF_CompressWeightsWksp wksp; | ||
|  |     BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */ | ||
|  |     BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; | ||
|  | } HUF_WriteCTableWksp; | ||
|  | 
 | ||
|  | size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, | ||
|  |                             const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, | ||
|  |                             void* workspace, size_t workspaceSize) | ||
|  | { | ||
|  |     HUF_CElt const* const ct = CTable + 1; | ||
|  |     BYTE* op = (BYTE*)dst; | ||
|  |     U32 n; | ||
|  |     HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32)); | ||
|  | 
 | ||
|  |     /* check conditions */ | ||
|  |     if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC); | ||
|  |     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); | ||
|  | 
 | ||
|  |     /* convert to weight */ | ||
|  |     wksp->bitsToWeight[0] = 0; | ||
|  |     for (n=1; n<huffLog+1; n++) | ||
|  |         wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n); | ||
|  |     for (n=0; n<maxSymbolValue; n++) | ||
|  |         wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])]; | ||
|  | 
 | ||
|  |     /* attempt weights compression by FSE */ | ||
|  |     if (maxDstSize < 1) return ERROR(dstSize_tooSmall); | ||
|  |     {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) ); | ||
|  |         if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */ | ||
|  |             op[0] = (BYTE)hSize; | ||
|  |             return hSize+1; | ||
|  |     }   } | ||
|  | 
 | ||
|  |     /* write raw values as 4-bits (max : 15) */ | ||
|  |     if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */ | ||
|  |     if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */ | ||
|  |     op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); | ||
|  |     wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */ | ||
|  |     for (n=0; n<maxSymbolValue; n+=2) | ||
|  |         op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]); | ||
|  |     return ((maxSymbolValue+1)/2) + 1; | ||
|  | } | ||
|  | 
 | ||
|  | /*! HUF_writeCTable() :
 | ||
|  |     `CTable` : Huffman tree to save, using huf representation. | ||
|  |     @return : size of saved CTable */ | ||
|  | size_t HUF_writeCTable (void* dst, size_t maxDstSize, | ||
|  |                         const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog) | ||
|  | { | ||
|  |     HUF_WriteCTableWksp wksp; | ||
|  |     return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights) | ||
|  | { | ||
|  |     BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */ | ||
|  |     U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */ | ||
|  |     U32 tableLog = 0; | ||
|  |     U32 nbSymbols = 0; | ||
|  |     HUF_CElt* const ct = CTable + 1; | ||
|  | 
 | ||
|  |     /* get symbol weights */ | ||
|  |     CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize)); | ||
|  |     *hasZeroWeights = (rankVal[0] > 0); | ||
|  | 
 | ||
|  |     /* check result */ | ||
|  |     if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); | ||
|  |     if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); | ||
|  | 
 | ||
|  |     CTable[0] = tableLog; | ||
|  | 
 | ||
|  |     /* Prepare base value per rank */ | ||
|  |     {   U32 n, nextRankStart = 0; | ||
|  |         for (n=1; n<=tableLog; n++) { | ||
|  |             U32 curr = nextRankStart; | ||
|  |             nextRankStart += (rankVal[n] << (n-1)); | ||
|  |             rankVal[n] = curr; | ||
|  |     }   } | ||
|  | 
 | ||
|  |     /* fill nbBits */ | ||
|  |     {   U32 n; for (n=0; n<nbSymbols; n++) { | ||
|  |             const U32 w = huffWeight[n]; | ||
|  |             HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0)); | ||
|  |     }   } | ||
|  | 
 | ||
|  |     /* fill val */ | ||
|  |     {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */ | ||
|  |         U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; | ||
|  |         { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; } | ||
|  |         /* determine stating value per rank */ | ||
|  |         valPerRank[tableLog+1] = 0;   /* for w==0 */ | ||
|  |         {   U16 min = 0; | ||
|  |             U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */ | ||
|  |                 valPerRank[n] = min;     /* get starting value within each rank */ | ||
|  |                 min += nbPerRank[n]; | ||
|  |                 min >>= 1; | ||
|  |         }   } | ||
|  |         /* assign value within rank, symbol order */ | ||
|  |         { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); } | ||
|  |     } | ||
|  | 
 | ||
|  |     *maxSymbolValuePtr = nbSymbols - 1; | ||
|  |     return readSize; | ||
|  | } | ||
|  | 
 | ||
|  | U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue) | ||
|  | { | ||
|  |     const HUF_CElt* ct = CTable + 1; | ||
|  |     assert(symbolValue <= HUF_SYMBOLVALUE_MAX); | ||
|  |     return (U32)HUF_getNbBits(ct[symbolValue]); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | typedef struct nodeElt_s { | ||
|  |     U32 count; | ||
|  |     U16 parent; | ||
|  |     BYTE byte; | ||
|  |     BYTE nbBits; | ||
|  | } nodeElt; | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * HUF_setMaxHeight(): | ||
|  |  * Enforces maxNbBits on the Huffman tree described in huffNode. | ||
|  |  * | ||
|  |  * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts | ||
|  |  * the tree to so that it is a valid canonical Huffman tree. | ||
|  |  * | ||
|  |  * @pre               The sum of the ranks of each symbol == 2^largestBits, | ||
|  |  *                    where largestBits == huffNode[lastNonNull].nbBits. | ||
|  |  * @post              The sum of the ranks of each symbol == 2^largestBits, | ||
|  |  *                    where largestBits is the return value <= maxNbBits. | ||
|  |  * | ||
|  |  * @param huffNode    The Huffman tree modified in place to enforce maxNbBits. | ||
|  |  * @param lastNonNull The symbol with the lowest count in the Huffman tree. | ||
|  |  * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree | ||
|  |  *                    may not respect. After this function the Huffman tree will | ||
|  |  *                    respect maxNbBits. | ||
|  |  * @return            The maximum number of bits of the Huffman tree after adjustment, | ||
|  |  *                    necessarily no more than maxNbBits. | ||
|  |  */ | ||
|  | static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits) | ||
|  | { | ||
|  |     const U32 largestBits = huffNode[lastNonNull].nbBits; | ||
|  |     /* early exit : no elt > maxNbBits, so the tree is already valid. */ | ||
|  |     if (largestBits <= maxNbBits) return largestBits; | ||
|  | 
 | ||
|  |     /* there are several too large elements (at least >= 2) */ | ||
|  |     {   int totalCost = 0; | ||
|  |         const U32 baseCost = 1 << (largestBits - maxNbBits); | ||
|  |         int n = (int)lastNonNull; | ||
|  | 
 | ||
|  |         /* Adjust any ranks > maxNbBits to maxNbBits.
 | ||
|  |          * Compute totalCost, which is how far the sum of the ranks is | ||
|  |          * we are over 2^largestBits after adjust the offending ranks. | ||
|  |          */ | ||
|  |         while (huffNode[n].nbBits > maxNbBits) { | ||
|  |             totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); | ||
|  |             huffNode[n].nbBits = (BYTE)maxNbBits; | ||
|  |             n--; | ||
|  |         } | ||
|  |         /* n stops at huffNode[n].nbBits <= maxNbBits */ | ||
|  |         assert(huffNode[n].nbBits <= maxNbBits); | ||
|  |         /* n end at index of smallest symbol using < maxNbBits */ | ||
|  |         while (huffNode[n].nbBits == maxNbBits) --n; | ||
|  | 
 | ||
|  |         /* renorm totalCost from 2^largestBits to 2^maxNbBits
 | ||
|  |          * note : totalCost is necessarily a multiple of baseCost */ | ||
|  |         assert((totalCost & (baseCost - 1)) == 0); | ||
|  |         totalCost >>= (largestBits - maxNbBits); | ||
|  |         assert(totalCost > 0); | ||
|  | 
 | ||
|  |         /* repay normalized cost */ | ||
|  |         {   U32 const noSymbol = 0xF0F0F0F0; | ||
|  |             U32 rankLast[HUF_TABLELOG_MAX+2]; | ||
|  | 
 | ||
|  |             /* Get pos of last (smallest = lowest cum. count) symbol per rank */ | ||
|  |             ZSTD_memset(rankLast, 0xF0, sizeof(rankLast)); | ||
|  |             {   U32 currentNbBits = maxNbBits; | ||
|  |                 int pos; | ||
|  |                 for (pos=n ; pos >= 0; pos--) { | ||
|  |                     if (huffNode[pos].nbBits >= currentNbBits) continue; | ||
|  |                     currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */ | ||
|  |                     rankLast[maxNbBits-currentNbBits] = (U32)pos; | ||
|  |             }   } | ||
|  | 
 | ||
|  |             while (totalCost > 0) { | ||
|  |                 /* Try to reduce the next power of 2 above totalCost because we
 | ||
|  |                  * gain back half the rank. | ||
|  |                  */ | ||
|  |                 U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1; | ||
|  |                 for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { | ||
|  |                     U32 const highPos = rankLast[nBitsToDecrease]; | ||
|  |                     U32 const lowPos = rankLast[nBitsToDecrease-1]; | ||
|  |                     if (highPos == noSymbol) continue; | ||
|  |                     /* Decrease highPos if no symbols of lowPos or if it is
 | ||
|  |                      * not cheaper to remove 2 lowPos than highPos. | ||
|  |                      */ | ||
|  |                     if (lowPos == noSymbol) break; | ||
|  |                     {   U32 const highTotal = huffNode[highPos].count; | ||
|  |                         U32 const lowTotal = 2 * huffNode[lowPos].count; | ||
|  |                         if (highTotal <= lowTotal) break; | ||
|  |                 }   } | ||
|  |                 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ | ||
|  |                 assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1); | ||
|  |                 /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ | ||
|  |                 while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) | ||
|  |                     nBitsToDecrease++; | ||
|  |                 assert(rankLast[nBitsToDecrease] != noSymbol); | ||
|  |                 /* Increase the number of bits to gain back half the rank cost. */ | ||
|  |                 totalCost -= 1 << (nBitsToDecrease-1); | ||
|  |                 huffNode[rankLast[nBitsToDecrease]].nbBits++; | ||
|  | 
 | ||
|  |                 /* Fix up the new rank.
 | ||
|  |                  * If the new rank was empty, this symbol is now its smallest. | ||
|  |                  * Otherwise, this symbol will be the largest in the new rank so no adjustment. | ||
|  |                  */ | ||
|  |                 if (rankLast[nBitsToDecrease-1] == noSymbol) | ||
|  |                     rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; | ||
|  |                 /* Fix up the old rank.
 | ||
|  |                  * If the symbol was at position 0, meaning it was the highest weight symbol in the tree, | ||
|  |                  * it must be the only symbol in its rank, so the old rank now has no symbols. | ||
|  |                  * Otherwise, since the Huffman nodes are sorted by count, the previous position is now | ||
|  |                  * the smallest node in the rank. If the previous position belongs to a different rank, | ||
|  |                  * then the rank is now empty. | ||
|  |                  */ | ||
|  |                 if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */ | ||
|  |                     rankLast[nBitsToDecrease] = noSymbol; | ||
|  |                 else { | ||
|  |                     rankLast[nBitsToDecrease]--; | ||
|  |                     if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease) | ||
|  |                         rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */ | ||
|  |                 } | ||
|  |             }   /* while (totalCost > 0) */ | ||
|  | 
 | ||
|  |             /* If we've removed too much weight, then we have to add it back.
 | ||
|  |              * To avoid overshooting again, we only adjust the smallest rank. | ||
|  |              * We take the largest nodes from the lowest rank 0 and move them | ||
|  |              * to rank 1. There's guaranteed to be enough rank 0 symbols because | ||
|  |              * TODO. | ||
|  |              */ | ||
|  |             while (totalCost < 0) {  /* Sometimes, cost correction overshoot */ | ||
|  |                 /* special case : no rank 1 symbol (using maxNbBits-1);
 | ||
|  |                  * let's create one from largest rank 0 (using maxNbBits). | ||
|  |                  */ | ||
|  |                 if (rankLast[1] == noSymbol) { | ||
|  |                     while (huffNode[n].nbBits == maxNbBits) n--; | ||
|  |                     huffNode[n+1].nbBits--; | ||
|  |                     assert(n >= 0); | ||
|  |                     rankLast[1] = (U32)(n+1); | ||
|  |                     totalCost++; | ||
|  |                     continue; | ||
|  |                 } | ||
|  |                 huffNode[ rankLast[1] + 1 ].nbBits--; | ||
|  |                 rankLast[1]++; | ||
|  |                 totalCost ++; | ||
|  |             } | ||
|  |         }   /* repay normalized cost */ | ||
|  |     }   /* there are several too large elements (at least >= 2) */ | ||
|  | 
 | ||
|  |     return maxNbBits; | ||
|  | } | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |     U16 base; | ||
|  |     U16 curr; | ||
|  | } rankPos; | ||
|  | 
 | ||
|  | typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32]; | ||
|  | 
 | ||
|  | /* Number of buckets available for HUF_sort() */ | ||
|  | #define RANK_POSITION_TABLE_SIZE 192
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |   huffNodeTable huffNodeTbl; | ||
|  |   rankPos rankPosition[RANK_POSITION_TABLE_SIZE]; | ||
|  | } HUF_buildCTable_wksp_tables; | ||
|  | 
 | ||
|  | /* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
 | ||
|  |  * Strategy is to use as many buckets as possible for representing distinct | ||
|  |  * counts while using the remainder to represent all "large" counts. | ||
|  |  * | ||
|  |  * To satisfy this requirement for 192 buckets, we can do the following: | ||
|  |  * Let buckets 0-166 represent distinct counts of [0, 166] | ||
|  |  * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing. | ||
|  |  */ | ||
|  | #define RANK_POSITION_MAX_COUNT_LOG 32
 | ||
|  | #define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
 | ||
|  | #define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
 | ||
|  | 
 | ||
|  | /* Return the appropriate bucket index for a given count. See definition of
 | ||
|  |  * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy. | ||
|  |  */ | ||
|  | static U32 HUF_getIndex(U32 const count) { | ||
|  |     return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF) | ||
|  |         ? count | ||
|  |         : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN; | ||
|  | } | ||
|  | 
 | ||
|  | /* Helper swap function for HUF_quickSortPartition() */ | ||
|  | static void HUF_swapNodes(nodeElt* a, nodeElt* b) { | ||
|  | 	nodeElt tmp = *a; | ||
|  | 	*a = *b; | ||
|  | 	*b = tmp; | ||
|  | } | ||
|  | 
 | ||
|  | /* Returns 0 if the huffNode array is not sorted by descending count */ | ||
|  | MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) { | ||
|  |     U32 i; | ||
|  |     for (i = 1; i < maxSymbolValue1; ++i) { | ||
|  |         if (huffNode[i].count > huffNode[i-1].count) { | ||
|  |             return 0; | ||
|  |         } | ||
|  |     } | ||
|  |     return 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* Insertion sort by descending order */ | ||
|  | HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) { | ||
|  |     int i; | ||
|  |     int const size = high-low+1; | ||
|  |     huffNode += low; | ||
|  |     for (i = 1; i < size; ++i) { | ||
|  |         nodeElt const key = huffNode[i]; | ||
|  |         int j = i - 1; | ||
|  |         while (j >= 0 && huffNode[j].count < key.count) { | ||
|  |             huffNode[j + 1] = huffNode[j]; | ||
|  |             j--; | ||
|  |         } | ||
|  |         huffNode[j + 1] = key; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* Pivot helper function for quicksort. */ | ||
|  | static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) { | ||
|  |     /* Simply select rightmost element as pivot. "Better" selectors like
 | ||
|  |      * median-of-three don't experimentally appear to have any benefit. | ||
|  |      */ | ||
|  |     U32 const pivot = arr[high].count; | ||
|  |     int i = low - 1; | ||
|  |     int j = low; | ||
|  |     for ( ; j < high; j++) { | ||
|  |         if (arr[j].count > pivot) { | ||
|  |             i++; | ||
|  |             HUF_swapNodes(&arr[i], &arr[j]); | ||
|  |         } | ||
|  |     } | ||
|  |     HUF_swapNodes(&arr[i + 1], &arr[high]); | ||
|  |     return i + 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* Classic quicksort by descending with partially iterative calls
 | ||
|  |  * to reduce worst case callstack size. | ||
|  |  */ | ||
|  | static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) { | ||
|  |     int const kInsertionSortThreshold = 8; | ||
|  |     if (high - low < kInsertionSortThreshold) { | ||
|  |         HUF_insertionSort(arr, low, high); | ||
|  |         return; | ||
|  |     } | ||
|  |     while (low < high) { | ||
|  |         int const idx = HUF_quickSortPartition(arr, low, high); | ||
|  |         if (idx - low < high - idx) { | ||
|  |             HUF_simpleQuickSort(arr, low, idx - 1); | ||
|  |             low = idx + 1; | ||
|  |         } else { | ||
|  |             HUF_simpleQuickSort(arr, idx + 1, high); | ||
|  |             high = idx - 1; | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * HUF_sort(): | ||
|  |  * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order. | ||
|  |  * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket. | ||
|  |  * | ||
|  |  * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled. | ||
|  |  *                            Must have (maxSymbolValue + 1) entries. | ||
|  |  * @param[in]  count          Histogram of the symbols. | ||
|  |  * @param[in]  maxSymbolValue Maximum symbol value. | ||
|  |  * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries. | ||
|  |  */ | ||
|  | static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) { | ||
|  |     U32 n; | ||
|  |     U32 const maxSymbolValue1 = maxSymbolValue+1; | ||
|  | 
 | ||
|  |     /* Compute base and set curr to base.
 | ||
|  |      * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1. | ||
|  |      * See HUF_getIndex to see bucketing strategy. | ||
|  |      * We attribute each symbol to lowerRank's base value, because we want to know where | ||
|  |      * each rank begins in the output, so for rank R we want to count ranks R+1 and above. | ||
|  |      */ | ||
|  |     ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE); | ||
|  |     for (n = 0; n < maxSymbolValue1; ++n) { | ||
|  |         U32 lowerRank = HUF_getIndex(count[n]); | ||
|  |         assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1); | ||
|  |         rankPosition[lowerRank].base++; | ||
|  |     } | ||
|  | 
 | ||
|  |     assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0); | ||
|  |     /* Set up the rankPosition table */ | ||
|  |     for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) { | ||
|  |         rankPosition[n-1].base += rankPosition[n].base; | ||
|  |         rankPosition[n-1].curr = rankPosition[n-1].base; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */ | ||
|  |     for (n = 0; n < maxSymbolValue1; ++n) { | ||
|  |         U32 const c = count[n]; | ||
|  |         U32 const r = HUF_getIndex(c) + 1; | ||
|  |         U32 const pos = rankPosition[r].curr++; | ||
|  |         assert(pos < maxSymbolValue1); | ||
|  |         huffNode[pos].count = c; | ||
|  |         huffNode[pos].byte  = (BYTE)n; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Sort each bucket. */ | ||
|  |     for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) { | ||
|  |         U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base; | ||
|  |         U32 const bucketStartIdx = rankPosition[n].base; | ||
|  |         if (bucketSize > 1) { | ||
|  |             assert(bucketStartIdx < maxSymbolValue1); | ||
|  |             HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     assert(HUF_isSorted(huffNode, maxSymbolValue1)); | ||
|  | } | ||
|  | 
 | ||
|  | /** HUF_buildCTable_wksp() :
 | ||
|  |  *  Same as HUF_buildCTable(), but using externally allocated scratch buffer. | ||
|  |  *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables). | ||
|  |  */ | ||
|  | #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
 | ||
|  | 
 | ||
|  | /* HUF_buildTree():
 | ||
|  |  * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree. | ||
|  |  * | ||
|  |  * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array. | ||
|  |  * @param maxSymbolValue  The maximum symbol value. | ||
|  |  * @return                The smallest node in the Huffman tree (by count). | ||
|  |  */ | ||
|  | static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue) | ||
|  | { | ||
|  |     nodeElt* const huffNode0 = huffNode - 1; | ||
|  |     int nonNullRank; | ||
|  |     int lowS, lowN; | ||
|  |     int nodeNb = STARTNODE; | ||
|  |     int n, nodeRoot; | ||
|  |     /* init for parents */ | ||
|  |     nonNullRank = (int)maxSymbolValue; | ||
|  |     while(huffNode[nonNullRank].count == 0) nonNullRank--; | ||
|  |     lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; | ||
|  |     huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; | ||
|  |     huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb; | ||
|  |     nodeNb++; lowS-=2; | ||
|  |     for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); | ||
|  |     huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */ | ||
|  | 
 | ||
|  |     /* create parents */ | ||
|  |     while (nodeNb <= nodeRoot) { | ||
|  |         int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; | ||
|  |         int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; | ||
|  |         huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; | ||
|  |         huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb; | ||
|  |         nodeNb++; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* distribute weights (unlimited tree height) */ | ||
|  |     huffNode[nodeRoot].nbBits = 0; | ||
|  |     for (n=nodeRoot-1; n>=STARTNODE; n--) | ||
|  |         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; | ||
|  |     for (n=0; n<=nonNullRank; n++) | ||
|  |         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; | ||
|  | 
 | ||
|  |     return nonNullRank; | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * HUF_buildCTableFromTree(): | ||
|  |  * Build the CTable given the Huffman tree in huffNode. | ||
|  |  * | ||
|  |  * @param[out] CTable         The output Huffman CTable. | ||
|  |  * @param      huffNode       The Huffman tree. | ||
|  |  * @param      nonNullRank    The last and smallest node in the Huffman tree. | ||
|  |  * @param      maxSymbolValue The maximum symbol value. | ||
|  |  * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree. | ||
|  |  */ | ||
|  | static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits) | ||
|  | { | ||
|  |     HUF_CElt* const ct = CTable + 1; | ||
|  |     /* fill result into ctable (val, nbBits) */ | ||
|  |     int n; | ||
|  |     U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; | ||
|  |     U16 valPerRank[HUF_TABLELOG_MAX+1] = {0}; | ||
|  |     int const alphabetSize = (int)(maxSymbolValue + 1); | ||
|  |     for (n=0; n<=nonNullRank; n++) | ||
|  |         nbPerRank[huffNode[n].nbBits]++; | ||
|  |     /* determine starting value per rank */ | ||
|  |     {   U16 min = 0; | ||
|  |         for (n=(int)maxNbBits; n>0; n--) { | ||
|  |             valPerRank[n] = min;      /* get starting value within each rank */ | ||
|  |             min += nbPerRank[n]; | ||
|  |             min >>= 1; | ||
|  |     }   } | ||
|  |     for (n=0; n<alphabetSize; n++) | ||
|  |         HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits);   /* push nbBits per symbol, symbol order */ | ||
|  |     for (n=0; n<alphabetSize; n++) | ||
|  |         HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++);   /* assign value within rank, symbol order */ | ||
|  |     CTable[0] = maxNbBits; | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize) | ||
|  | { | ||
|  |     HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32)); | ||
|  |     nodeElt* const huffNode0 = wksp_tables->huffNodeTbl; | ||
|  |     nodeElt* const huffNode = huffNode0+1; | ||
|  |     int nonNullRank; | ||
|  | 
 | ||
|  |     /* safety checks */ | ||
|  |     if (wkspSize < sizeof(HUF_buildCTable_wksp_tables)) | ||
|  |       return ERROR(workSpace_tooSmall); | ||
|  |     if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; | ||
|  |     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) | ||
|  |       return ERROR(maxSymbolValue_tooLarge); | ||
|  |     ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable)); | ||
|  | 
 | ||
|  |     /* sort, decreasing order */ | ||
|  |     HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition); | ||
|  | 
 | ||
|  |     /* build tree */ | ||
|  |     nonNullRank = HUF_buildTree(huffNode, maxSymbolValue); | ||
|  | 
 | ||
|  |     /* enforce maxTableLog */ | ||
|  |     maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits); | ||
|  |     if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */ | ||
|  | 
 | ||
|  |     HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits); | ||
|  | 
 | ||
|  |     return maxNbBits; | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) | ||
|  | { | ||
|  |     HUF_CElt const* ct = CTable + 1; | ||
|  |     size_t nbBits = 0; | ||
|  |     int s; | ||
|  |     for (s = 0; s <= (int)maxSymbolValue; ++s) { | ||
|  |         nbBits += HUF_getNbBits(ct[s]) * count[s]; | ||
|  |     } | ||
|  |     return nbBits >> 3; | ||
|  | } | ||
|  | 
 | ||
|  | int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { | ||
|  |   HUF_CElt const* ct = CTable + 1; | ||
|  |   int bad = 0; | ||
|  |   int s; | ||
|  |   for (s = 0; s <= (int)maxSymbolValue; ++s) { | ||
|  |     bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0); | ||
|  |   } | ||
|  |   return !bad; | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } | ||
|  | 
 | ||
|  | /** HUF_CStream_t:
 | ||
|  |  * Huffman uses its own BIT_CStream_t implementation. | ||
|  |  * There are three major differences from BIT_CStream_t: | ||
|  |  *   1. HUF_addBits() takes a HUF_CElt (size_t) which is | ||
|  |  *      the pair (nbBits, value) in the format: | ||
|  |  *      format: | ||
|  |  *        - Bits [0, 4)            = nbBits | ||
|  |  *        - Bits [4, 64 - nbBits)  = 0 | ||
|  |  *        - Bits [64 - nbBits, 64) = value | ||
|  |  *   2. The bitContainer is built from the upper bits and | ||
|  |  *      right shifted. E.g. to add a new value of N bits | ||
|  |  *      you right shift the bitContainer by N, then or in | ||
|  |  *      the new value into the N upper bits. | ||
|  |  *   3. The bitstream has two bit containers. You can add | ||
|  |  *      bits to the second container and merge them into | ||
|  |  *      the first container. | ||
|  |  */ | ||
|  | 
 | ||
|  | #define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |     size_t bitContainer[2]; | ||
|  |     size_t bitPos[2]; | ||
|  | 
 | ||
|  |     BYTE* startPtr; | ||
|  |     BYTE* ptr; | ||
|  |     BYTE* endPtr; | ||
|  | } HUF_CStream_t; | ||
|  | 
 | ||
|  | /**! HUF_initCStream():
 | ||
|  |  * Initializes the bitstream. | ||
|  |  * @returns 0 or an error code. | ||
|  |  */ | ||
|  | static size_t HUF_initCStream(HUF_CStream_t* bitC, | ||
|  |                                   void* startPtr, size_t dstCapacity) | ||
|  | { | ||
|  |     ZSTD_memset(bitC, 0, sizeof(*bitC)); | ||
|  |     bitC->startPtr = (BYTE*)startPtr; | ||
|  |     bitC->ptr = bitC->startPtr; | ||
|  |     bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]); | ||
|  |     if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall); | ||
|  |     return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*! HUF_addBits():
 | ||
|  |  * Adds the symbol stored in HUF_CElt elt to the bitstream. | ||
|  |  * | ||
|  |  * @param elt   The element we're adding. This is a (nbBits, value) pair. | ||
|  |  *              See the HUF_CStream_t docs for the format. | ||
|  |  * @param idx   Insert into the bitstream at this idx. | ||
|  |  * @param kFast This is a template parameter. If the bitstream is guaranteed | ||
|  |  *              to have at least 4 unused bits after this call it may be 1, | ||
|  |  *              otherwise it must be 0. HUF_addBits() is faster when fast is set. | ||
|  |  */ | ||
|  | FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast) | ||
|  | { | ||
|  |     assert(idx <= 1); | ||
|  |     assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX); | ||
|  |     /* This is efficient on x86-64 with BMI2 because shrx
 | ||
|  |      * only reads the low 6 bits of the register. The compiler | ||
|  |      * knows this and elides the mask. When fast is set, | ||
|  |      * every operation can use the same value loaded from elt. | ||
|  |      */ | ||
|  |     bitC->bitContainer[idx] >>= HUF_getNbBits(elt); | ||
|  |     bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt); | ||
|  |     /* We only read the low 8 bits of bitC->bitPos[idx] so it
 | ||
|  |      * doesn't matter that the high bits have noise from the value. | ||
|  |      */ | ||
|  |     bitC->bitPos[idx] += HUF_getNbBitsFast(elt); | ||
|  |     assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER); | ||
|  |     /* The last 4-bits of elt are dirty if fast is set,
 | ||
|  |      * so we must not be overwriting bits that have already been | ||
|  |      * inserted into the bit container. | ||
|  |      */ | ||
|  | #if DEBUGLEVEL >= 1
 | ||
|  |     { | ||
|  |         size_t const nbBits = HUF_getNbBits(elt); | ||
|  |         size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1; | ||
|  |         (void)dirtyBits; | ||
|  |         /* Middle bits are 0. */ | ||
|  |         assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0); | ||
|  |         /* We didn't overwrite any bits in the bit container. */ | ||
|  |         assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER); | ||
|  |         (void)dirtyBits; | ||
|  |     } | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC) | ||
|  | { | ||
|  |     bitC->bitContainer[1] = 0; | ||
|  |     bitC->bitPos[1] = 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*! HUF_mergeIndex1() :
 | ||
|  |  * Merges the bit container @ index 1 into the bit container @ index 0 | ||
|  |  * and zeros the bit container @ index 1. | ||
|  |  */ | ||
|  | FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC) | ||
|  | { | ||
|  |     assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER); | ||
|  |     bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF); | ||
|  |     bitC->bitContainer[0] |= bitC->bitContainer[1]; | ||
|  |     bitC->bitPos[0] += bitC->bitPos[1]; | ||
|  |     assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER); | ||
|  | } | ||
|  | 
 | ||
|  | /*! HUF_flushBits() :
 | ||
|  | * Flushes the bits in the bit container @ index 0. | ||
|  | * | ||
|  | * @post bitPos will be < 8. | ||
|  | * @param kFast If kFast is set then we must know a-priori that | ||
|  | *              the bit container will not overflow. | ||
|  | */ | ||
|  | FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast) | ||
|  | { | ||
|  |     /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */ | ||
|  |     size_t const nbBits = bitC->bitPos[0] & 0xFF; | ||
|  |     size_t const nbBytes = nbBits >> 3; | ||
|  |     /* The top nbBits bits of bitContainer are the ones we need. */ | ||
|  |     size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits); | ||
|  |     /* Mask bitPos to account for the bytes we consumed. */ | ||
|  |     bitC->bitPos[0] &= 7; | ||
|  |     assert(nbBits > 0); | ||
|  |     assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8); | ||
|  |     assert(bitC->ptr <= bitC->endPtr); | ||
|  |     MEM_writeLEST(bitC->ptr, bitContainer); | ||
|  |     bitC->ptr += nbBytes; | ||
|  |     assert(!kFast || bitC->ptr <= bitC->endPtr); | ||
|  |     if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr; | ||
|  |     /* bitContainer doesn't need to be modified because the leftover
 | ||
|  |      * bits are already the top bitPos bits. And we don't care about | ||
|  |      * noise in the lower values. | ||
|  |      */ | ||
|  | } | ||
|  | 
 | ||
|  | /*! HUF_endMark()
 | ||
|  |  * @returns The Huffman stream end mark: A 1-bit value = 1. | ||
|  |  */ | ||
|  | static HUF_CElt HUF_endMark(void) | ||
|  | { | ||
|  |     HUF_CElt endMark; | ||
|  |     HUF_setNbBits(&endMark, 1); | ||
|  |     HUF_setValue(&endMark, 1); | ||
|  |     return endMark; | ||
|  | } | ||
|  | 
 | ||
|  | /*! HUF_closeCStream() :
 | ||
|  |  *  @return Size of CStream, in bytes, | ||
|  |  *          or 0 if it could not fit into dstBuffer */ | ||
|  | static size_t HUF_closeCStream(HUF_CStream_t* bitC) | ||
|  | { | ||
|  |     HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0); | ||
|  |     HUF_flushBits(bitC, /* kFast */ 0); | ||
|  |     { | ||
|  |         size_t const nbBits = bitC->bitPos[0] & 0xFF; | ||
|  |         if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */ | ||
|  |         return (bitC->ptr - bitC->startPtr) + (nbBits > 0); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE_TEMPLATE void | ||
|  | HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast) | ||
|  | { | ||
|  |     HUF_addBits(bitCPtr, CTable[symbol], idx, fast); | ||
|  | } | ||
|  | 
 | ||
|  | FORCE_INLINE_TEMPLATE void | ||
|  | HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC, | ||
|  |                                    const BYTE* ip, size_t srcSize, | ||
|  |                                    const HUF_CElt* ct, | ||
|  |                                    int kUnroll, int kFastFlush, int kLastFast) | ||
|  | { | ||
|  |     /* Join to kUnroll */ | ||
|  |     int n = (int)srcSize; | ||
|  |     int rem = n % kUnroll; | ||
|  |     if (rem > 0) { | ||
|  |         for (; rem > 0; --rem) { | ||
|  |             HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0); | ||
|  |         } | ||
|  |         HUF_flushBits(bitC, kFastFlush); | ||
|  |     } | ||
|  |     assert(n % kUnroll == 0); | ||
|  | 
 | ||
|  |     /* Join to 2 * kUnroll */ | ||
|  |     if (n % (2 * kUnroll)) { | ||
|  |         int u; | ||
|  |         for (u = 1; u < kUnroll; ++u) { | ||
|  |             HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1); | ||
|  |         } | ||
|  |         HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast); | ||
|  |         HUF_flushBits(bitC, kFastFlush); | ||
|  |         n -= kUnroll; | ||
|  |     } | ||
|  |     assert(n % (2 * kUnroll) == 0); | ||
|  | 
 | ||
|  |     for (; n>0; n-= 2 * kUnroll) { | ||
|  |         /* Encode kUnroll symbols into the bitstream @ index 0. */ | ||
|  |         int u; | ||
|  |         for (u = 1; u < kUnroll; ++u) { | ||
|  |             HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1); | ||
|  |         } | ||
|  |         HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast); | ||
|  |         HUF_flushBits(bitC, kFastFlush); | ||
|  |         /* Encode kUnroll symbols into the bitstream @ index 1.
 | ||
|  |          * This allows us to start filling the bit container | ||
|  |          * without any data dependencies. | ||
|  |          */ | ||
|  |         HUF_zeroIndex1(bitC); | ||
|  |         for (u = 1; u < kUnroll; ++u) { | ||
|  |             HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1); | ||
|  |         } | ||
|  |         HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast); | ||
|  |         /* Merge bitstream @ index 1 into the bitstream @ index 0 */ | ||
|  |         HUF_mergeIndex1(bitC); | ||
|  |         HUF_flushBits(bitC, kFastFlush); | ||
|  |     } | ||
|  |     assert(n == 0); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * Returns a tight upper bound on the output space needed by Huffman | ||
|  |  * with 8 bytes buffer to handle over-writes. If the output is at least | ||
|  |  * this large we don't need to do bounds checks during Huffman encoding. | ||
|  |  */ | ||
|  | static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog) | ||
|  | { | ||
|  |     return ((srcSize * tableLog) >> 3) + 8; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | FORCE_INLINE_TEMPLATE size_t | ||
|  | HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, | ||
|  |                                    const void* src, size_t srcSize, | ||
|  |                                    const HUF_CElt* CTable) | ||
|  | { | ||
|  |     U32 const tableLog = (U32)CTable[0]; | ||
|  |     HUF_CElt const* ct = CTable + 1; | ||
|  |     const BYTE* ip = (const BYTE*) src; | ||
|  |     BYTE* const ostart = (BYTE*)dst; | ||
|  |     BYTE* const oend = ostart + dstSize; | ||
|  |     BYTE* op = ostart; | ||
|  |     HUF_CStream_t bitC; | ||
|  | 
 | ||
|  |     /* init */ | ||
|  |     if (dstSize < 8) return 0;   /* not enough space to compress */ | ||
|  |     { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op)); | ||
|  |       if (HUF_isError(initErr)) return 0; } | ||
|  | 
 | ||
|  |     if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11) | ||
|  |         HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0); | ||
|  |     else { | ||
|  |         if (MEM_32bits()) { | ||
|  |             switch (tableLog) { | ||
|  |             case 11: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0); | ||
|  |                 break; | ||
|  |             case 10: ZSTD_FALLTHROUGH; | ||
|  |             case 9: ZSTD_FALLTHROUGH; | ||
|  |             case 8: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1); | ||
|  |                 break; | ||
|  |             case 7: ZSTD_FALLTHROUGH; | ||
|  |             default: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1); | ||
|  |                 break; | ||
|  |             } | ||
|  |         } else { | ||
|  |             switch (tableLog) { | ||
|  |             case 11: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0); | ||
|  |                 break; | ||
|  |             case 10: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1); | ||
|  |                 break; | ||
|  |             case 9: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0); | ||
|  |                 break; | ||
|  |             case 8: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0); | ||
|  |                 break; | ||
|  |             case 7: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0); | ||
|  |                 break; | ||
|  |             case 6: ZSTD_FALLTHROUGH; | ||
|  |             default: | ||
|  |                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1); | ||
|  |                 break; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  |     assert(bitC.ptr <= bitC.endPtr); | ||
|  | 
 | ||
|  |     return HUF_closeCStream(&bitC); | ||
|  | } | ||
|  | 
 | ||
|  | #if DYNAMIC_BMI2
 | ||
|  | 
 | ||
|  | static BMI2_TARGET_ATTRIBUTE size_t | ||
|  | HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, | ||
|  |                                    const void* src, size_t srcSize, | ||
|  |                                    const HUF_CElt* CTable) | ||
|  | { | ||
|  |     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); | ||
|  | } | ||
|  | 
 | ||
|  | static size_t | ||
|  | HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize, | ||
|  |                                       const void* src, size_t srcSize, | ||
|  |                                       const HUF_CElt* CTable) | ||
|  | { | ||
|  |     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); | ||
|  | } | ||
|  | 
 | ||
|  | static size_t | ||
|  | HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, | ||
|  |                               const void* src, size_t srcSize, | ||
|  |                               const HUF_CElt* CTable, const int bmi2) | ||
|  | { | ||
|  |     if (bmi2) { | ||
|  |         return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable); | ||
|  |     } | ||
|  |     return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | static size_t | ||
|  | HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, | ||
|  |                               const void* src, size_t srcSize, | ||
|  |                               const HUF_CElt* CTable, const int bmi2) | ||
|  | { | ||
|  |     (void)bmi2; | ||
|  |     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) | ||
|  | { | ||
|  |     return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2) | ||
|  | { | ||
|  |     return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2); | ||
|  | } | ||
|  | 
 | ||
|  | static size_t | ||
|  | HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, | ||
|  |                               const void* src, size_t srcSize, | ||
|  |                               const HUF_CElt* CTable, int bmi2) | ||
|  | { | ||
|  |     size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */ | ||
|  |     const BYTE* ip = (const BYTE*) src; | ||
|  |     const BYTE* const iend = ip + srcSize; | ||
|  |     BYTE* const ostart = (BYTE*) dst; | ||
|  |     BYTE* const oend = ostart + dstSize; | ||
|  |     BYTE* op = ostart; | ||
|  | 
 | ||
|  |     if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */ | ||
|  |     if (srcSize < 12) return 0;   /* no saving possible : too small input */ | ||
|  |     op += 6;   /* jumpTable */ | ||
|  | 
 | ||
|  |     assert(op <= oend); | ||
|  |     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); | ||
|  |         if (cSize == 0 || cSize > 65535) return 0; | ||
|  |         MEM_writeLE16(ostart, (U16)cSize); | ||
|  |         op += cSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     ip += segmentSize; | ||
|  |     assert(op <= oend); | ||
|  |     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); | ||
|  |         if (cSize == 0 || cSize > 65535) return 0; | ||
|  |         MEM_writeLE16(ostart+2, (U16)cSize); | ||
|  |         op += cSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     ip += segmentSize; | ||
|  |     assert(op <= oend); | ||
|  |     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); | ||
|  |         if (cSize == 0 || cSize > 65535) return 0; | ||
|  |         MEM_writeLE16(ostart+4, (U16)cSize); | ||
|  |         op += cSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     ip += segmentSize; | ||
|  |     assert(op <= oend); | ||
|  |     assert(ip <= iend); | ||
|  |     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) ); | ||
|  |         if (cSize == 0 || cSize > 65535) return 0; | ||
|  |         op += cSize; | ||
|  |     } | ||
|  | 
 | ||
|  |     return (size_t)(op-ostart); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) | ||
|  | { | ||
|  |     return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2) | ||
|  | { | ||
|  |     return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2); | ||
|  | } | ||
|  | 
 | ||
|  | typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; | ||
|  | 
 | ||
|  | static size_t HUF_compressCTable_internal( | ||
|  |                 BYTE* const ostart, BYTE* op, BYTE* const oend, | ||
|  |                 const void* src, size_t srcSize, | ||
|  |                 HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2) | ||
|  | { | ||
|  |     size_t const cSize = (nbStreams==HUF_singleStream) ? | ||
|  |                          HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) : | ||
|  |                          HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2); | ||
|  |     if (HUF_isError(cSize)) { return cSize; } | ||
|  |     if (cSize==0) { return 0; }   /* uncompressible */ | ||
|  |     op += cSize; | ||
|  |     /* check compressibility */ | ||
|  |     assert(op >= ostart); | ||
|  |     if ((size_t)(op-ostart) >= srcSize-1) { return 0; } | ||
|  |     return (size_t)(op-ostart); | ||
|  | } | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |     unsigned count[HUF_SYMBOLVALUE_MAX + 1]; | ||
|  |     HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)]; | ||
|  |     union { | ||
|  |         HUF_buildCTable_wksp_tables buildCTable_wksp; | ||
|  |         HUF_WriteCTableWksp writeCTable_wksp; | ||
|  |         U32 hist_wksp[HIST_WKSP_SIZE_U32]; | ||
|  |     } wksps; | ||
|  | } HUF_compress_tables_t; | ||
|  | 
 | ||
|  | #define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
 | ||
|  | #define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10  /* Must be >= 2 */
 | ||
|  | 
 | ||
|  | /* HUF_compress_internal() :
 | ||
|  |  * `workSpace_align4` must be aligned on 4-bytes boundaries, | ||
|  |  * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */ | ||
|  | static size_t | ||
|  | HUF_compress_internal (void* dst, size_t dstSize, | ||
|  |                  const void* src, size_t srcSize, | ||
|  |                        unsigned maxSymbolValue, unsigned huffLog, | ||
|  |                        HUF_nbStreams_e nbStreams, | ||
|  |                        void* workSpace, size_t wkspSize, | ||
|  |                        HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat, | ||
|  |                  const int bmi2, unsigned suspectUncompressible) | ||
|  | { | ||
|  |     HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t)); | ||
|  |     BYTE* const ostart = (BYTE*)dst; | ||
|  |     BYTE* const oend = ostart + dstSize; | ||
|  |     BYTE* op = ostart; | ||
|  | 
 | ||
|  |     HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE); | ||
|  | 
 | ||
|  |     /* checks & inits */ | ||
|  |     if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall); | ||
|  |     if (!srcSize) return 0;  /* Uncompressed */ | ||
|  |     if (!dstSize) return 0;  /* cannot fit anything within dst budget */ | ||
|  |     if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */ | ||
|  |     if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); | ||
|  |     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); | ||
|  |     if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; | ||
|  |     if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; | ||
|  | 
 | ||
|  |     /* Heuristic : If old table is valid, use it for small inputs */ | ||
|  |     if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { | ||
|  |         return HUF_compressCTable_internal(ostart, op, oend, | ||
|  |                                            src, srcSize, | ||
|  |                                            nbStreams, oldHufTable, bmi2); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* If uncompressible data is suspected, do a smaller sampling first */ | ||
|  |     DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2); | ||
|  |     if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) { | ||
|  |         size_t largestTotal = 0; | ||
|  |         {   unsigned maxSymbolValueBegin = maxSymbolValue; | ||
|  |             CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) ); | ||
|  |             largestTotal += largestBegin; | ||
|  |         } | ||
|  |         {   unsigned maxSymbolValueEnd = maxSymbolValue; | ||
|  |             CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) ); | ||
|  |             largestTotal += largestEnd; | ||
|  |         } | ||
|  |         if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0;   /* heuristic : probably not compressible enough */ | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Scan input and build symbol stats */ | ||
|  |     {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) ); | ||
|  |         if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */ | ||
|  |         if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */ | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Check validity of previous table */ | ||
|  |     if ( repeat | ||
|  |       && *repeat == HUF_repeat_check | ||
|  |       && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) { | ||
|  |         *repeat = HUF_repeat_none; | ||
|  |     } | ||
|  |     /* Heuristic : use existing table for small inputs */ | ||
|  |     if (preferRepeat && repeat && *repeat != HUF_repeat_none) { | ||
|  |         return HUF_compressCTable_internal(ostart, op, oend, | ||
|  |                                            src, srcSize, | ||
|  |                                            nbStreams, oldHufTable, bmi2); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Build Huffman Tree */ | ||
|  |     huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); | ||
|  |     {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count, | ||
|  |                                             maxSymbolValue, huffLog, | ||
|  |                                             &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp)); | ||
|  |         CHECK_F(maxBits); | ||
|  |         huffLog = (U32)maxBits; | ||
|  |     } | ||
|  |     /* Zero unused symbols in CTable, so we can check it for validity */ | ||
|  |     { | ||
|  |         size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue); | ||
|  |         size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt); | ||
|  |         ZSTD_memset(table->CTable + ctableSize, 0, unusedSize); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Write table description header */ | ||
|  |     {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog, | ||
|  |                                               &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) ); | ||
|  |         /* Check if using previous huffman table is beneficial */ | ||
|  |         if (repeat && *repeat != HUF_repeat_none) { | ||
|  |             size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue); | ||
|  |             size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue); | ||
|  |             if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { | ||
|  |                 return HUF_compressCTable_internal(ostart, op, oend, | ||
|  |                                                    src, srcSize, | ||
|  |                                                    nbStreams, oldHufTable, bmi2); | ||
|  |         }   } | ||
|  | 
 | ||
|  |         /* Use the new huffman table */ | ||
|  |         if (hSize + 12ul >= srcSize) { return 0; } | ||
|  |         op += hSize; | ||
|  |         if (repeat) { *repeat = HUF_repeat_none; } | ||
|  |         if (oldHufTable) | ||
|  |             ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */ | ||
|  |     } | ||
|  |     return HUF_compressCTable_internal(ostart, op, oend, | ||
|  |                                        src, srcSize, | ||
|  |                                        nbStreams, table->CTable, bmi2); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | size_t HUF_compress1X_wksp (void* dst, size_t dstSize, | ||
|  |                       const void* src, size_t srcSize, | ||
|  |                       unsigned maxSymbolValue, unsigned huffLog, | ||
|  |                       void* workSpace, size_t wkspSize) | ||
|  | { | ||
|  |     return HUF_compress_internal(dst, dstSize, src, srcSize, | ||
|  |                                  maxSymbolValue, huffLog, HUF_singleStream, | ||
|  |                                  workSpace, wkspSize, | ||
|  |                                  NULL, NULL, 0, 0 /*bmi2*/, 0); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress1X_repeat (void* dst, size_t dstSize, | ||
|  |                       const void* src, size_t srcSize, | ||
|  |                       unsigned maxSymbolValue, unsigned huffLog, | ||
|  |                       void* workSpace, size_t wkspSize, | ||
|  |                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, | ||
|  |                       int bmi2, unsigned suspectUncompressible) | ||
|  | { | ||
|  |     return HUF_compress_internal(dst, dstSize, src, srcSize, | ||
|  |                                  maxSymbolValue, huffLog, HUF_singleStream, | ||
|  |                                  workSpace, wkspSize, hufTable, | ||
|  |                                  repeat, preferRepeat, bmi2, suspectUncompressible); | ||
|  | } | ||
|  | 
 | ||
|  | /* HUF_compress4X_repeat():
 | ||
|  |  * compress input using 4 streams. | ||
|  |  * provide workspace to generate compression tables */ | ||
|  | size_t HUF_compress4X_wksp (void* dst, size_t dstSize, | ||
|  |                       const void* src, size_t srcSize, | ||
|  |                       unsigned maxSymbolValue, unsigned huffLog, | ||
|  |                       void* workSpace, size_t wkspSize) | ||
|  | { | ||
|  |     return HUF_compress_internal(dst, dstSize, src, srcSize, | ||
|  |                                  maxSymbolValue, huffLog, HUF_fourStreams, | ||
|  |                                  workSpace, wkspSize, | ||
|  |                                  NULL, NULL, 0, 0 /*bmi2*/, 0); | ||
|  | } | ||
|  | 
 | ||
|  | /* HUF_compress4X_repeat():
 | ||
|  |  * compress input using 4 streams. | ||
|  |  * consider skipping quickly | ||
|  |  * re-use an existing huffman compression table */ | ||
|  | size_t HUF_compress4X_repeat (void* dst, size_t dstSize, | ||
|  |                       const void* src, size_t srcSize, | ||
|  |                       unsigned maxSymbolValue, unsigned huffLog, | ||
|  |                       void* workSpace, size_t wkspSize, | ||
|  |                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible) | ||
|  | { | ||
|  |     return HUF_compress_internal(dst, dstSize, src, srcSize, | ||
|  |                                  maxSymbolValue, huffLog, HUF_fourStreams, | ||
|  |                                  workSpace, wkspSize, | ||
|  |                                  hufTable, repeat, preferRepeat, bmi2, suspectUncompressible); | ||
|  | } | ||
|  | 
 | ||
|  | #ifndef ZSTD_NO_UNUSED_FUNCTIONS
 | ||
|  | /** HUF_buildCTable() :
 | ||
|  |  * @return : maxNbBits | ||
|  |  *  Note : count is used before tree is written, so they can safely overlap | ||
|  |  */ | ||
|  | size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits) | ||
|  | { | ||
|  |     HUF_buildCTable_wksp_tables workspace; | ||
|  |     return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace)); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress1X (void* dst, size_t dstSize, | ||
|  |                  const void* src, size_t srcSize, | ||
|  |                  unsigned maxSymbolValue, unsigned huffLog) | ||
|  | { | ||
|  |     U64 workSpace[HUF_WORKSPACE_SIZE_U64]; | ||
|  |     return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress2 (void* dst, size_t dstSize, | ||
|  |                 const void* src, size_t srcSize, | ||
|  |                 unsigned maxSymbolValue, unsigned huffLog) | ||
|  | { | ||
|  |     U64 workSpace[HUF_WORKSPACE_SIZE_U64]; | ||
|  |     return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); | ||
|  | } | ||
|  | 
 | ||
|  | size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize) | ||
|  | { | ||
|  |     return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT); | ||
|  | } | ||
|  | #endif
 |