Duckstation/src/util/cd_image_device.cpp

1116 lines
34 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "assert.h"
#include "cd_image.h"
#include "common/assert.h"
#include "common/error.h"
#include "common/log.h"
#include "common/small_string.h"
#include "common/string_util.h"
#include <algorithm>
#include <cerrno>
#include <cinttypes>
#include <cmath>
#include <optional>
#include <span>
Log_SetChannel(CDImageDevice);
// Common code
[[maybe_unused]] static constexpr u32 MAX_TRACK_NUMBER = 99;
[[maybe_unused]] static constexpr u32 SCSI_CMD_LENGTH = 12;
enum class SCSIReadMode : u8
{
None,
Raw,
Full,
SubQOnly,
};
[[maybe_unused]] static void FillSCSIReadCommand(u8 cmd[SCSI_CMD_LENGTH], u32 sector_number, SCSIReadMode mode)
{
cmd[0] = 0xBE; // READ CD
cmd[1] = 0x00; // sector type
cmd[2] = Truncate8(sector_number >> 24); // Starting LBA
cmd[3] = Truncate8(sector_number >> 16);
cmd[4] = Truncate8(sector_number >> 8);
cmd[5] = Truncate8(sector_number);
cmd[6] = 0x00; // Transfer Count
cmd[7] = 0x00;
cmd[8] = 0x01;
cmd[9] = (1 << 7) | // include sync
(0b11 << 5) | // include header codes
(1 << 4) | // include user data
(1 << 3) | // edc/ecc
(0 << 2); // don't include C2 data
if (mode == SCSIReadMode::None || mode == SCSIReadMode::Raw)
cmd[10] = 0b000;
else if (mode == SCSIReadMode::Full)
cmd[10] = 0b001;
else // if (mode == SCSIReadMode::SubQOnly)
cmd[10] = 0b010;
cmd[11] = 0;
}
[[maybe_unused]] static void FillSCSISetSpeedCommand(u8 cmd[SCSI_CMD_LENGTH], u32 speed_multiplier)
{
DebugAssert(speed_multiplier > 0);
cmd[0] = 0xDA; // SET CD-ROM SPEED
cmd[1] = 0x00;
cmd[2] = Truncate8(speed_multiplier - 1);
cmd[3] = 0x00;
cmd[4] = 0x00;
cmd[5] = 0x00;
cmd[6] = 0x00;
cmd[7] = 0x00;
cmd[8] = 0x00;
cmd[9] = 0x00;
cmd[10] = 0x00;
cmd[11] = 0x00;
}
[[maybe_unused]] static constexpr u32 SCSIReadCommandOutputSize(SCSIReadMode mode)
{
switch (mode)
{
case SCSIReadMode::None:
case SCSIReadMode::Raw:
return CDImage::RAW_SECTOR_SIZE;
case SCSIReadMode::Full:
return CDImage::RAW_SECTOR_SIZE + CDImage::ALL_SUBCODE_SIZE;
case SCSIReadMode::SubQOnly:
return CDImage::RAW_SECTOR_SIZE + CDImage::SUBCHANNEL_BYTES_PER_FRAME;
default:
UnreachableCode();
}
}
[[maybe_unused]] static bool VerifySCSIReadData(std::span<const u8> buffer, SCSIReadMode mode)
{
const u32 expected_size = SCSIReadCommandOutputSize(mode);
if (buffer.size() != expected_size)
{
Log_ErrorFmt("SCSI returned {} bytes, expected {}", buffer.size(), expected_size);
return false;
}
if (mode == SCSIReadMode::Full)
{
// Validate subcode.
u8 deinterleaved_subcode[CDImage::ALL_SUBCODE_SIZE];
CDImage::SubChannelQ subq;
CDImage::DeinterleaveSubcode(buffer.data() + CDImage::RAW_SECTOR_SIZE, deinterleaved_subcode);
std::memcpy(&subq, &deinterleaved_subcode[CDImage::SUBCHANNEL_BYTES_PER_FRAME], sizeof(subq));
if (!subq.IsCRCValid())
{
Log_WarningFmt("SCSI full subcode read returned invalid SubQ CRC (got {:02X} expected {:02X})", subq.crc,
CDImage::SubChannelQ::ComputeCRC(subq.data));
return false;
}
return true;
}
else if (mode == SCSIReadMode::SubQOnly)
{
CDImage::SubChannelQ subq;
std::memcpy(&subq, buffer.data() + CDImage::RAW_SECTOR_SIZE, sizeof(subq));
if (!subq.IsCRCValid())
{
Log_WarningFmt("SCSI subq read returned invalid SubQ CRC (got {:02X} expected {:02X})", subq.crc,
CDImage::SubChannelQ::ComputeCRC(subq.data));
return false;
}
return true;
}
else // if (mode == SCSIReadMode::None || mode == SCSIReadMode::Raw)
{
// I guess we could check the sector sync data too...
return true;
}
}
2023-09-30 05:44:14 +00:00
#if defined(_WIN32)
// The include order here is critical.
// clang-format off
#include "common/windows_headers.h"
#include <winioctl.h>
#include <ntddcdrm.h>
#include <ntddscsi.h>
// clang-format on
static u32 BEToU32(const u8* val)
{
return (static_cast<u32>(val[0]) << 24) | (static_cast<u32>(val[1]) << 16) | (static_cast<u32>(val[2]) << 8) |
static_cast<u32>(val[3]);
}
static void U16ToBE(u8* beval, u16 leval)
{
beval[0] = static_cast<u8>(leval >> 8);
beval[1] = static_cast<u8>(leval);
}
namespace {
class CDImageDeviceWin32 : public CDImage
{
public:
CDImageDeviceWin32();
~CDImageDeviceWin32() override;
2023-08-19 13:40:36 +00:00
bool Open(const char* filename, Error* error);
bool ReadSubChannelQ(SubChannelQ* subq, const Index& index, LBA lba_in_index) override;
bool HasNonStandardSubchannel() const override;
protected:
bool ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index) override;
private:
std::optional<u32> DoSCSICommand(u8 cmd[SCSI_CMD_LENGTH], std::span<u8> out_buffer);
std::optional<u32> DoSCSIRead(LBA lba, SCSIReadMode read_mode);
bool DoRawRead(LBA lba);
bool DoSetSpeed(u32 speed_multiplier);
bool ReadSectorToBuffer(LBA lba);
bool DetermineReadMode(bool try_sptd);
HANDLE m_hDevice = INVALID_HANDLE_VALUE;
u32 m_current_lba = ~static_cast<LBA>(0);
SCSIReadMode m_scsi_read_mode = SCSIReadMode::None;
bool m_has_valid_subcode = false;
std::array<u8, CD_RAW_SECTOR_WITH_SUBCODE_SIZE> m_buffer;
std::array<u8, SUBCHANNEL_BYTES_PER_FRAME> m_subq;
};
} // namespace
CDImageDeviceWin32::CDImageDeviceWin32() = default;
CDImageDeviceWin32::~CDImageDeviceWin32()
{
if (m_hDevice != INVALID_HANDLE_VALUE)
CloseHandle(m_hDevice);
}
2023-08-19 13:40:36 +00:00
bool CDImageDeviceWin32::Open(const char* filename, Error* error)
{
bool try_sptd = true;
m_filename = filename;
m_hDevice = CreateFile(filename, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
OPEN_EXISTING, 0, NULL);
if (m_hDevice == INVALID_HANDLE_VALUE)
{
m_hDevice = CreateFile(filename, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, 0, NULL);
if (m_hDevice != INVALID_HANDLE_VALUE)
{
Log_WarningFmt("Could not open '{}' as read/write, can't use SPTD", filename);
try_sptd = false;
}
else
{
Log_ErrorFmt("CreateFile('{}') failed: %08X", filename, GetLastError());
if (error)
error->SetWin32(GetLastError());
return false;
}
}
// Set it to 4x speed. A good balance between readahead and spinning up way too high.
2023-09-03 04:30:26 +00:00
static constexpr u32 READ_SPEED_MULTIPLIER = 8;
static constexpr u32 READ_SPEED_KBS = (DATA_SECTOR_SIZE * FRAMES_PER_SECOND * READ_SPEED_MULTIPLIER) / 1024;
CDROM_SET_SPEED set_speed = {CdromSetSpeed, READ_SPEED_KBS, 0, CdromDefaultRotation};
if (!DeviceIoControl(m_hDevice, IOCTL_CDROM_SET_SPEED, &set_speed, sizeof(set_speed), nullptr, 0, nullptr, nullptr))
Log_WarningFmt("DeviceIoControl(IOCTL_CDROM_SET_SPEED) failed: {:08X}", GetLastError());
CDROM_READ_TOC_EX read_toc_ex = {};
read_toc_ex.Format = CDROM_READ_TOC_EX_FORMAT_TOC;
read_toc_ex.Msf = 0;
read_toc_ex.SessionTrack = 1;
CDROM_TOC toc = {};
U16ToBE(toc.Length, sizeof(toc) - sizeof(UCHAR) * 2);
DWORD bytes_returned;
if (!DeviceIoControl(m_hDevice, IOCTL_CDROM_READ_TOC_EX, &read_toc_ex, sizeof(read_toc_ex), &toc, sizeof(toc),
&bytes_returned, nullptr) ||
toc.LastTrack < toc.FirstTrack)
{
Log_ErrorPrintf("DeviceIoCtl(IOCTL_CDROM_READ_TOC_EX) failed: %08X", GetLastError());
if (error)
error->SetWin32(GetLastError());
return false;
}
DWORD last_track_address = 0;
LBA disc_lba = 0;
Log_DevPrintf("FirstTrack=%u, LastTrack=%u", toc.FirstTrack, toc.LastTrack);
const u32 num_tracks_to_check = (toc.LastTrack - toc.FirstTrack) + 1 + 1;
for (u32 track_index = 0; track_index < num_tracks_to_check; track_index++)
{
const TRACK_DATA& td = toc.TrackData[track_index];
const u8 track_num = td.TrackNumber;
const DWORD track_address = BEToU32(td.Address);
Log_DevPrintf(" [%u]: Num=%02X, Address=%u", track_index, track_num, track_address);
// fill in the previous track's length
if (!m_tracks.empty())
{
if (track_num < m_tracks.back().track_number)
{
Log_ErrorPrintf("Invalid TOC, track %u less than %u", track_num, m_tracks.back().track_number);
return false;
}
const LBA previous_track_length = static_cast<LBA>(track_address - last_track_address);
m_tracks.back().length += previous_track_length;
m_indices.back().length += previous_track_length;
disc_lba += previous_track_length;
}
last_track_address = track_address;
if (track_num == LEAD_OUT_TRACK_NUMBER)
{
AddLeadOutIndex();
break;
}
// precompute subchannel q flags for the whole track
SubChannelQ::Control control{};
control.bits = td.Adr | (td.Control << 4);
const LBA track_lba = static_cast<LBA>(track_address);
const TrackMode track_mode = control.data ? CDImage::TrackMode::Mode2Raw : CDImage::TrackMode::Audio;
// TODO: How the hell do we handle pregaps here?
const u32 pregap_frames = (control.data && track_index == 0) ? 150 : 0;
if (pregap_frames > 0)
{
Index pregap_index = {};
pregap_index.start_lba_on_disc = disc_lba;
pregap_index.start_lba_in_track = static_cast<LBA>(-static_cast<s32>(pregap_frames));
pregap_index.length = pregap_frames;
pregap_index.track_number = track_num;
pregap_index.index_number = 0;
pregap_index.mode = track_mode;
pregap_index.submode = CDImage::SubchannelMode::None;
pregap_index.control.bits = control.bits;
pregap_index.is_pregap = true;
m_indices.push_back(pregap_index);
disc_lba += pregap_frames;
}
// index 1, will be filled in next iteration
if (track_num <= MAX_TRACK_NUMBER)
{
// add the track itself
m_tracks.push_back(
Track{track_num, disc_lba, static_cast<u32>(m_indices.size()), 0, track_mode, SubchannelMode::None, control});
Index index1;
index1.start_lba_on_disc = disc_lba;
index1.start_lba_in_track = 0;
index1.length = 0;
index1.track_number = track_num;
index1.index_number = 1;
index1.file_index = 0;
index1.file_sector_size = RAW_SECTOR_SIZE;
index1.file_offset = static_cast<u64>(track_lba);
index1.mode = track_mode;
index1.submode = CDImage::SubchannelMode::None;
index1.control.bits = control.bits;
index1.is_pregap = false;
m_indices.push_back(index1);
}
}
if (m_tracks.empty())
{
Log_ErrorPrintf("File '%s' contains no tracks", filename);
2023-08-19 13:40:36 +00:00
Error::SetString(error, fmt::format("File '{}' contains no tracks", filename));
return false;
}
m_lba_count = disc_lba;
Log_DevPrintf("%u tracks, %u indices, %u lbas", static_cast<u32>(m_tracks.size()), static_cast<u32>(m_indices.size()),
static_cast<u32>(m_lba_count));
for (u32 i = 0; i < m_tracks.size(); i++)
{
Log_DevPrintf(" Track %u: Start %u, length %u, mode %u, control 0x%02X", static_cast<u32>(m_tracks[i].track_number),
static_cast<u32>(m_tracks[i].start_lba), static_cast<u32>(m_tracks[i].length),
static_cast<u32>(m_tracks[i].mode), static_cast<u32>(m_tracks[i].control.bits));
}
for (u32 i = 0; i < m_indices.size(); i++)
{
Log_DevPrintf(" Index %u: Track %u, Index %u, Start %u, length %u, file sector size %u, file offset %" PRIu64, i,
static_cast<u32>(m_indices[i].track_number), static_cast<u32>(m_indices[i].index_number),
static_cast<u32>(m_indices[i].start_lba_on_disc), static_cast<u32>(m_indices[i].length),
static_cast<u32>(m_indices[i].file_sector_size), m_indices[i].file_offset);
}
if (!DetermineReadMode(try_sptd))
{
Log_ErrorPrintf("Could not determine read mode");
2023-08-19 13:40:36 +00:00
Error::SetString(error, "Could not determine read mode");
return false;
}
return Seek(1, Position{0, 0, 0});
}
bool CDImageDeviceWin32::ReadSubChannelQ(SubChannelQ* subq, const Index& index, LBA lba_in_index)
{
if (index.file_sector_size == 0 || !m_has_valid_subcode)
return CDImage::ReadSubChannelQ(subq, index, lba_in_index);
const LBA offset = static_cast<LBA>(index.file_offset) + lba_in_index;
if (m_current_lba != offset && !ReadSectorToBuffer(offset))
return false;
// P, Q, ...
std::memcpy(subq->data.data(), m_subq.data(), SUBCHANNEL_BYTES_PER_FRAME);
return true;
}
bool CDImageDeviceWin32::HasNonStandardSubchannel() const
{
return m_has_valid_subcode;
}
bool CDImageDeviceWin32::ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index)
{
if (index.file_sector_size == 0)
return false;
const LBA offset = static_cast<LBA>(index.file_offset) + lba_in_index;
if (m_current_lba != offset && !ReadSectorToBuffer(offset))
return false;
std::memcpy(buffer, m_buffer.data(), RAW_SECTOR_SIZE);
return true;
}
std::optional<u32> CDImageDeviceWin32::DoSCSICommand(u8 cmd[SCSI_CMD_LENGTH], std::span<u8> out_buffer)
{
struct SPTDBuffer
{
SCSI_PASS_THROUGH_DIRECT cmd;
u8 sense[20];
};
SPTDBuffer sptd = {};
sptd.cmd.Length = sizeof(sptd.cmd);
sptd.cmd.CdbLength = SCSI_CMD_LENGTH;
sptd.cmd.SenseInfoLength = sizeof(sptd.sense);
sptd.cmd.DataIn = out_buffer.empty() ? SCSI_IOCTL_DATA_UNSPECIFIED : SCSI_IOCTL_DATA_IN;
sptd.cmd.DataTransferLength = static_cast<u32>(out_buffer.size());
sptd.cmd.TimeOutValue = 10;
sptd.cmd.SenseInfoOffset = offsetof(SPTDBuffer, sense);
sptd.cmd.DataBuffer = out_buffer.empty() ? nullptr : out_buffer.data();
std::memcpy(sptd.cmd.Cdb, cmd, SCSI_CMD_LENGTH);
DWORD bytes_returned;
if (!DeviceIoControl(m_hDevice, IOCTL_SCSI_PASS_THROUGH_DIRECT, &sptd, sizeof(sptd), &sptd, sizeof(sptd),
&bytes_returned, nullptr))
{
Log_ErrorFmt("DeviceIoControl() for SCSI 0x{:02X} failed: {}", cmd[0], GetLastError());
return std::nullopt;
}
if (sptd.cmd.ScsiStatus != 0)
{
Log_ErrorFmt("SCSI command 0x{:02X} failed: {}", cmd[0], sptd.cmd.ScsiStatus);
return std::nullopt;
}
if (sptd.cmd.DataTransferLength != out_buffer.size())
Log_WarningFmt("Only read {} of {} bytes", sptd.cmd.DataTransferLength, out_buffer.size());
return sptd.cmd.DataTransferLength;
}
std::optional<u32> CDImageDeviceWin32::DoSCSIRead(LBA lba, SCSIReadMode read_mode)
{
u8 cmd[SCSI_CMD_LENGTH];
FillSCSIReadCommand(cmd, lba, read_mode);
const u32 size = SCSIReadCommandOutputSize(read_mode);
return DoSCSICommand(cmd, std::span<u8>(m_buffer.data(), size));
}
bool CDImageDeviceWin32::DoSetSpeed(u32 speed_multiplier)
{
u8 cmd[SCSI_CMD_LENGTH];
FillSCSISetSpeedCommand(cmd, speed_multiplier);
return DoSCSICommand(cmd, {}).has_value();
}
bool CDImageDeviceWin32::DoRawRead(LBA lba)
{
const DWORD expected_size = RAW_SECTOR_SIZE + ALL_SUBCODE_SIZE;
RAW_READ_INFO rri;
rri.DiskOffset.QuadPart = static_cast<u64>(lba) * 2048;
rri.SectorCount = 1;
rri.TrackMode = RawWithSubCode;
DWORD bytes_returned;
if (!DeviceIoControl(m_hDevice, IOCTL_CDROM_RAW_READ, &rri, sizeof(rri), m_buffer.data(),
static_cast<DWORD>(m_buffer.size()), &bytes_returned, nullptr))
{
Log_ErrorFmt("DeviceIoControl(IOCTL_CDROM_RAW_READ) for LBA {} failed: {:08X}", lba, GetLastError());
return false;
}
if (bytes_returned != expected_size)
Log_WarningFmt("Only read {} of {} bytes", bytes_returned, expected_size);
return true;
}
bool CDImageDeviceWin32::ReadSectorToBuffer(LBA lba)
{
if (m_scsi_read_mode != SCSIReadMode::None)
{
const std::optional<u32> size = DoSCSIRead(lba, m_scsi_read_mode);
const u32 expected_size = SCSIReadCommandOutputSize(m_scsi_read_mode);
if (size.value_or(0) != expected_size)
{
Log_ErrorFmt("Read of LBA {} failed: only got {} of {} bytes", lba, size.value(), expected_size);
return false;
}
if (m_scsi_read_mode == SCSIReadMode::Full)
{
// need to deinterleave the subcode
u8 deinterleaved_subcode[ALL_SUBCODE_SIZE];
DeinterleaveSubcode(m_buffer.data() + RAW_SECTOR_SIZE, deinterleaved_subcode);
std::memcpy(&m_subq, deinterleaved_subcode + SUBCHANNEL_BYTES_PER_FRAME, sizeof(m_subq)); // P,Q
}
else if (m_scsi_read_mode == SCSIReadMode::SubQOnly)
{
// copy out subq
std::memcpy(&m_subq, m_buffer.data() + RAW_SECTOR_SIZE, sizeof(m_subq));
}
}
else
{
if (!DoRawRead(lba))
return false;
}
m_current_lba = lba;
return true;
}
bool CDImageDeviceWin32::DetermineReadMode(bool try_sptd)
{
// Prefer raw reads if we can use them
const LBA track_1_lba = static_cast<LBA>(m_indices[m_tracks[0].first_index].file_offset);
Log_DevPrint("Trying raw reads...");
if (DoRawRead(track_1_lba))
{
// verify subcode
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), SCSIReadCommandOutputSize(SCSIReadMode::Full)),
SCSIReadMode::Full))
{
Log_VerbosePrint("Using raw reads with full subcode");
m_scsi_read_mode = SCSIReadMode::None;
m_has_valid_subcode = true;
return true;
}
}
std::optional<u32> transfer_size;
Log_DevPrint("Trying SCSI read with full subcode...");
if ((transfer_size = DoSCSIRead(track_1_lba, SCSIReadMode::Full)).has_value())
{
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), transfer_size.value()), SCSIReadMode::Full))
{
Log_VerbosePrint("Using SCSI reads with subcode");
m_scsi_read_mode = SCSIReadMode::Full;
m_has_valid_subcode = true;
return true;
}
}
Log_WarningPrint("Full subcode failed, trying SCSI read with only subq...");
if ((transfer_size = DoSCSIRead(track_1_lba, SCSIReadMode::SubQOnly)).has_value())
{
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), transfer_size.value()), SCSIReadMode::SubQOnly))
{
Log_VerbosePrint("Using SCSI reads with subq only");
m_scsi_read_mode = SCSIReadMode::SubQOnly;
m_has_valid_subcode = true;
return true;
}
}
// As a last ditch effort, try SCSI without subcode.
Log_WarningPrint("Subq only failed failed, trying SCSI without subcode...");
if ((transfer_size = DoSCSIRead(track_1_lba, SCSIReadMode::Raw)).has_value())
{
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), transfer_size.value()), SCSIReadMode::Raw))
{
Log_WarningPrint("Using SCSI raw reads, libcrypt games will not run correctly");
m_scsi_read_mode = SCSIReadMode::Raw;
m_has_valid_subcode = false;
return true;
}
}
Log_WarningPrint("Raw SCSI read failed, trying raw but ignoring subcode...");
if (DoRawRead(track_1_lba))
{
Log_WarningPrint("Using raw reads without subcode, libcrypt games will not run correctly");
m_scsi_read_mode = SCSIReadMode::None;
m_has_valid_subcode = false;
return true;
}
Log_ErrorPrint("No read modes were successful, cannot use device.");
return false;
}
2023-08-19 13:40:36 +00:00
std::unique_ptr<CDImage> CDImage::OpenDeviceImage(const char* filename, Error* error)
{
std::unique_ptr<CDImageDeviceWin32> image = std::make_unique<CDImageDeviceWin32>();
if (!image->Open(filename, error))
return {};
return image;
}
std::vector<std::pair<std::string, std::string>> CDImage::GetDeviceList()
{
std::vector<std::pair<std::string, std::string>> ret;
char buf[256];
if (GetLogicalDriveStringsA(sizeof(buf), buf) != 0)
{
const char* ptr = buf;
while (*ptr != '\0')
{
std::size_t len = std::strlen(ptr);
const DWORD type = GetDriveTypeA(ptr);
if (type != DRIVE_CDROM)
{
ptr += len + 1u;
continue;
}
// Drop the trailing slash.
const std::size_t append_len = (ptr[len - 1] == '\\') ? (len - 1) : len;
std::string path;
path.append("\\\\.\\");
path.append(ptr, append_len);
std::string name(ptr, append_len);
ret.emplace_back(std::move(path), std::move(name));
ptr += len + 1u;
}
}
return ret;
}
bool CDImage::IsDeviceName(const char* filename)
{
return std::string_view(filename).starts_with("\\\\.\\");
}
#elif defined(__linux__) && !defined(__ANDROID__)
#include <fcntl.h>
#include <libudev.h>
#include <linux/cdrom.h>
#include <scsi/sg.h>
#include <sys/ioctl.h>
#include <unistd.h>
namespace {
class CDImageDeviceLinux : public CDImage
{
public:
CDImageDeviceLinux();
~CDImageDeviceLinux() override;
bool Open(const char* filename, Error* error);
bool ReadSubChannelQ(SubChannelQ* subq, const Index& index, LBA lba_in_index) override;
bool HasNonStandardSubchannel() const override;
protected:
bool ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index) override;
private:
// Raw reads use an offset of 00:02:00
static constexpr LBA RAW_READ_OFFSET = 2 * FRAMES_PER_SECOND;
bool ReadSectorToBuffer(LBA lba);
bool DetermineReadMode(Error* error);
std::optional<u32> DoSCSICommand(u8 cmd[SCSI_CMD_LENGTH], std::span<u8> out_buffer);
std::optional<u32> DoSCSIRead(LBA lba, SCSIReadMode read_mode);
bool DoRawRead(LBA lba);
bool DoSetSpeed(u32 speed_multiplier);
int m_fd = -1;
LBA m_current_lba = ~static_cast<LBA>(0);
SCSIReadMode m_scsi_read_mode = SCSIReadMode::None;
std::array<u8, RAW_SECTOR_SIZE + ALL_SUBCODE_SIZE> m_buffer;
std::array<u8, SUBCHANNEL_BYTES_PER_FRAME> m_subq;
};
} // namespace
CDImageDeviceLinux::CDImageDeviceLinux() = default;
CDImageDeviceLinux::~CDImageDeviceLinux()
{
if (m_fd >= 0)
close(m_fd);
}
bool CDImageDeviceLinux::Open(const char* filename, Error* error)
{
m_filename = filename;
m_fd = open(filename, O_RDONLY);
if (m_fd < 0)
{
Error::SetErrno(error, "Failed to open device: ", errno);
return false;
}
// Set it to 4x speed. A good balance between readahead and spinning up way too high.
const int read_speed = 4;
if (!DoSetSpeed(read_speed) && ioctl(m_fd, CDROM_SELECT_SPEED, &read_speed) != 0)
Log_WarningFmt("ioctl(CDROM_SELECT_SPEED) failed: {}", errno);
// Read ToC
cdrom_tochdr toc_hdr = {};
if (ioctl(m_fd, CDROMREADTOCHDR, &toc_hdr) != 0)
{
Error::SetErrno(error, "ioctl(CDROMREADTOCHDR) failed: ", errno);
return false;
}
Log_DevFmt("FirstTrack={}, LastTrack={}", toc_hdr.cdth_trk0, toc_hdr.cdth_trk1);
if (toc_hdr.cdth_trk1 < toc_hdr.cdth_trk0)
{
Error::SetStringFmt(error, "Last track {} is before first track {}", toc_hdr.cdth_trk1, toc_hdr.cdth_trk0);
return false;
}
cdrom_tocentry toc_ent = {};
toc_ent.cdte_format = CDROM_LBA;
LBA disc_lba = 0;
int last_track_lba = 0;
const u32 num_tracks_to_check = (toc_hdr.cdth_trk1 - toc_hdr.cdth_trk0) + 1;
for (u32 track_index = 0; track_index < num_tracks_to_check; track_index++)
{
const u32 track_num = toc_hdr.cdth_trk0 + track_index;
toc_ent.cdte_track = static_cast<u8>(track_num);
if (ioctl(m_fd, CDROMREADTOCENTRY, &toc_ent) < 0)
{
Error::SetErrno(error, "ioctl(CDROMREADTOCENTRY) failed: ", errno);
return false;
}
Log_DevFmt(" [{}]: Num={}, LBA={}", track_index, track_num, toc_ent.cdte_addr.lba);
// fill in the previous track's length
if (!m_tracks.empty())
{
if (track_num < m_tracks.back().track_number)
{
Log_ErrorPrintf("Invalid TOC, track %u less than %u", track_num, m_tracks.back().track_number);
return false;
}
const LBA previous_track_length = static_cast<LBA>(toc_ent.cdte_addr.lba - last_track_lba);
m_tracks.back().length += previous_track_length;
m_indices.back().length += previous_track_length;
disc_lba += previous_track_length;
}
last_track_lba = toc_ent.cdte_addr.lba;
// precompute subchannel q flags for the whole track
SubChannelQ::Control control{};
control.bits = toc_ent.cdte_adr | (toc_ent.cdte_ctrl << 4);
const LBA track_lba = static_cast<LBA>(toc_ent.cdte_addr.lba);
const TrackMode track_mode = control.data ? CDImage::TrackMode::Mode2Raw : CDImage::TrackMode::Audio;
// TODO: How the hell do we handle pregaps here?
const u32 pregap_frames = (control.data && track_index == 0) ? 150 : 0;
if (pregap_frames > 0)
{
Index pregap_index = {};
pregap_index.start_lba_on_disc = disc_lba;
pregap_index.start_lba_in_track = static_cast<LBA>(-static_cast<s32>(pregap_frames));
pregap_index.length = pregap_frames;
pregap_index.track_number = track_num;
pregap_index.index_number = 0;
pregap_index.mode = track_mode;
pregap_index.submode = CDImage::SubchannelMode::None;
pregap_index.control.bits = control.bits;
pregap_index.is_pregap = true;
m_indices.push_back(pregap_index);
disc_lba += pregap_frames;
}
// index 1, will be filled in next iteration
if (track_num <= MAX_TRACK_NUMBER)
{
// add the track itself
m_tracks.push_back(
Track{track_num, disc_lba, static_cast<u32>(m_indices.size()), 0, track_mode, SubchannelMode::None, control});
Index index1;
index1.start_lba_on_disc = disc_lba;
index1.start_lba_in_track = 0;
index1.length = 0;
index1.track_number = track_num;
index1.index_number = 1;
index1.file_index = 0;
index1.file_sector_size = RAW_SECTOR_SIZE;
index1.file_offset = static_cast<u64>(track_lba);
index1.mode = track_mode;
index1.submode = CDImage::SubchannelMode::None;
index1.control.bits = control.bits;
index1.is_pregap = false;
m_indices.push_back(index1);
}
}
if (m_tracks.empty())
{
Log_ErrorPrintf("File '%s' contains no tracks", filename);
Error::SetString(error, fmt::format("File '{}' contains no tracks", filename));
return false;
}
// Read lead-out.
toc_ent.cdte_track = 0xAA;
if (ioctl(m_fd, CDROMREADTOCENTRY, &toc_ent) < 0)
{
Error::SetErrno(error, "ioctl(CDROMREADTOCENTRY) for lead-out failed: ", errno);
return false;
}
if (toc_ent.cdte_addr.lba < last_track_lba)
{
Error::SetStringFmt(error, "Lead-out LBA {} is less than last track {}", toc_ent.cdte_addr.lba, last_track_lba);
return false;
}
// Fill last track length from lead-out.
const LBA previous_track_length = static_cast<LBA>(toc_ent.cdte_addr.lba - last_track_lba);
m_tracks.back().length += previous_track_length;
m_indices.back().length += previous_track_length;
disc_lba += previous_track_length;
// And add the lead-out itself.
AddLeadOutIndex();
m_lba_count = disc_lba;
Log_DevPrintf("%u tracks, %u indices, %u lbas", static_cast<u32>(m_tracks.size()), static_cast<u32>(m_indices.size()),
static_cast<u32>(m_lba_count));
for (u32 i = 0; i < m_tracks.size(); i++)
{
Log_DevPrintf(" Track %u: Start %u, length %u, mode %u, control 0x%02X", static_cast<u32>(m_tracks[i].track_number),
static_cast<u32>(m_tracks[i].start_lba), static_cast<u32>(m_tracks[i].length),
static_cast<u32>(m_tracks[i].mode), static_cast<u32>(m_tracks[i].control.bits));
}
for (u32 i = 0; i < m_indices.size(); i++)
{
Log_DevPrintf(" Index %u: Track %u, Index %u, Start %u, length %u, file sector size %u, file offset %" PRIu64, i,
static_cast<u32>(m_indices[i].track_number), static_cast<u32>(m_indices[i].index_number),
static_cast<u32>(m_indices[i].start_lba_on_disc), static_cast<u32>(m_indices[i].length),
static_cast<u32>(m_indices[i].file_sector_size), m_indices[i].file_offset);
}
if (!DetermineReadMode(error))
return false;
return Seek(1, Position{0, 0, 0});
}
bool CDImageDeviceLinux::ReadSubChannelQ(SubChannelQ* subq, const Index& index, LBA lba_in_index)
{
if (index.file_sector_size == 0 || m_scsi_read_mode < SCSIReadMode::Full)
return CDImage::ReadSubChannelQ(subq, index, lba_in_index);
const LBA disc_lba = static_cast<LBA>(index.file_offset) + lba_in_index;
if (m_current_lba != disc_lba && !ReadSectorToBuffer(disc_lba))
return false;
std::memcpy(subq->data.data(), m_subq.data(), SUBCHANNEL_BYTES_PER_FRAME);
return true;
}
bool CDImageDeviceLinux::HasNonStandardSubchannel() const
{
// Can only read subchannel through SPTD.
return m_scsi_read_mode >= SCSIReadMode::Full;
}
bool CDImageDeviceLinux::ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index)
{
if (index.file_sector_size == 0)
return false;
const LBA disc_lba = static_cast<LBA>(index.file_offset) + lba_in_index;
if (m_current_lba != disc_lba && !ReadSectorToBuffer(disc_lba))
return false;
std::memcpy(buffer, m_buffer.data(), RAW_SECTOR_SIZE);
return true;
}
std::optional<u32> CDImageDeviceLinux::DoSCSICommand(u8 cmd[SCSI_CMD_LENGTH], std::span<u8> out_buffer)
{
sg_io_hdr_t hdr;
std::memset(&hdr, 0, sizeof(hdr));
hdr.cmd_len = SCSI_CMD_LENGTH;
hdr.interface_id = 'S';
hdr.dxfer_direction = out_buffer.empty() ? SG_DXFER_NONE : SG_DXFER_FROM_DEV;
hdr.mx_sb_len = 0;
hdr.dxfer_len = static_cast<u32>(out_buffer.size());
hdr.dxferp = out_buffer.empty() ? nullptr : out_buffer.data();
hdr.cmdp = cmd;
hdr.timeout = 10000; // milliseconds
if (ioctl(m_fd, SG_IO, &hdr) != 0)
{
Log_ErrorFmt("ioctl(SG_IO) for command {:02X} failed: {}", cmd[0], errno);
return std::nullopt;
}
else if (hdr.status != 0)
{
Log_ErrorFmt("SCSI command {:02X} failed with status {}", cmd[0], hdr.status);
return std::nullopt;
}
return hdr.dxfer_len;
}
std::optional<u32> CDImageDeviceLinux::DoSCSIRead(LBA lba, SCSIReadMode read_mode)
{
u8 cmd[SCSI_CMD_LENGTH];
FillSCSIReadCommand(cmd, lba, read_mode);
const u32 size = SCSIReadCommandOutputSize(read_mode);
return DoSCSICommand(cmd, std::span<u8>(m_buffer.data(), size));
}
bool CDImageDeviceLinux::DoSetSpeed(u32 speed_multiplier)
{
u8 cmd[SCSI_CMD_LENGTH];
FillSCSISetSpeedCommand(cmd, speed_multiplier);
return DoSCSICommand(cmd, {}).has_value();
}
bool CDImageDeviceLinux::DoRawRead(LBA lba)
{
const Position msf = Position::FromLBA(lba + RAW_READ_OFFSET);
std::memcpy(m_buffer.data(), &msf, sizeof(msf));
if (ioctl(m_fd, CDROMREADRAW, m_buffer.data()) != 0)
{
Log_ErrorFmt("CDROMREADRAW for LBA {} (MSF {}:{}:{}) failed: {}", lba, msf.minute, msf.second, msf.frame, errno);
return false;
}
return true;
}
bool CDImageDeviceLinux::ReadSectorToBuffer(LBA lba)
{
if (m_scsi_read_mode != SCSIReadMode::None)
{
const std::optional<u32> size = DoSCSIRead(lba, m_scsi_read_mode);
const u32 expected_size = SCSIReadCommandOutputSize(m_scsi_read_mode);
if (size.value_or(0) != expected_size)
{
Log_ErrorFmt("Read of LBA {} failed: only got {} of {} bytes", lba, size.value(), expected_size);
return false;
}
if (m_scsi_read_mode == SCSIReadMode::Full)
{
// need to deinterleave the subcode
u8 deinterleaved_subcode[ALL_SUBCODE_SIZE];
DeinterleaveSubcode(m_buffer.data() + RAW_SECTOR_SIZE, deinterleaved_subcode);
std::memcpy(&m_subq, deinterleaved_subcode + SUBCHANNEL_BYTES_PER_FRAME, sizeof(m_subq)); // P,Q
}
else if (m_scsi_read_mode == SCSIReadMode::SubQOnly)
{
// copy out subq
std::memcpy(&m_subq, m_buffer.data() + RAW_SECTOR_SIZE, sizeof(m_subq));
}
}
else
{
if (!DoRawRead(lba))
return false;
}
m_current_lba = lba;
return true;
}
bool CDImageDeviceLinux::DetermineReadMode(Error* error)
{
const LBA track_1_lba = static_cast<LBA>(m_indices[m_tracks[0].first_index].file_offset);
std::optional<u32> transfer_size;
Log_DevPrint("Trying SCSI read with full subcode...");
if ((transfer_size = DoSCSIRead(track_1_lba, SCSIReadMode::Full)).has_value())
{
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), transfer_size.value()), SCSIReadMode::Full))
{
Log_VerbosePrint("Using SCSI reads with subcode");
m_scsi_read_mode = SCSIReadMode::Full;
return true;
}
}
Log_WarningPrint("Full subcode failed, trying SCSI read with only subq...");
if ((transfer_size = DoSCSIRead(track_1_lba, SCSIReadMode::SubQOnly)).has_value())
{
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), transfer_size.value()), SCSIReadMode::SubQOnly))
{
Log_VerbosePrint("Using SCSI reads with subq only");
m_scsi_read_mode = SCSIReadMode::SubQOnly;
return true;
}
}
Log_WarningPrint("SCSI subcode reads failed, trying CDROMREADRAW...");
if (DoRawRead(track_1_lba))
{
Log_WarningPrint("Using CDROMREADRAW, libcrypt games will not run correctly");
m_scsi_read_mode = SCSIReadMode::None;
return true;
}
// As a last ditch effort, try SCSI without subcode.
Log_WarningPrint("CDROMREADRAW failed, trying SCSI without subcode...");
if ((transfer_size = DoSCSIRead(track_1_lba, SCSIReadMode::Raw)).has_value())
{
if (VerifySCSIReadData(std::span<u8>(m_buffer.data(), transfer_size.value()), SCSIReadMode::Raw))
{
Log_WarningPrint("Using SCSI raw reads, libcrypt games will not run correctly");
m_scsi_read_mode = SCSIReadMode::Raw;
return true;
}
}
Log_ErrorPrint("No read modes were successful, cannot use device.");
return false;
}
std::unique_ptr<CDImage> CDImage::OpenDeviceImage(const char* filename, Error* error)
{
std::unique_ptr<CDImageDeviceLinux> image = std::make_unique<CDImageDeviceLinux>();
if (!image->Open(filename, error))
return {};
return image;
}
std::vector<std::pair<std::string, std::string>> CDImage::GetDeviceList()
{
std::vector<std::pair<std::string, std::string>> ret;
// borrowed from PCSX2
udev* udev_context = udev_new();
if (udev_context)
{
udev_enumerate* enumerate = udev_enumerate_new(udev_context);
if (enumerate)
{
udev_enumerate_add_match_subsystem(enumerate, "block");
udev_enumerate_add_match_property(enumerate, "ID_CDROM", "1");
udev_enumerate_scan_devices(enumerate);
udev_list_entry* devices = udev_enumerate_get_list_entry(enumerate);
udev_list_entry* dev_list_entry;
udev_list_entry_foreach(dev_list_entry, devices)
{
const char* path = udev_list_entry_get_name(dev_list_entry);
udev_device* device = udev_device_new_from_syspath(udev_context, path);
const char* devnode = udev_device_get_devnode(device);
if (devnode)
ret.emplace_back(devnode, devnode);
udev_device_unref(device);
}
udev_enumerate_unref(enumerate);
}
udev_unref(udev_context);
}
return ret;
}
bool CDImage::IsDeviceName(const char* filename)
{
if (!std::string_view(filename).starts_with("/dev"))
return false;
const int fd = open(filename, O_RDONLY | O_NONBLOCK);
if (fd < 0)
return false;
const bool is_cdrom = (ioctl(fd, CDROM_GET_CAPABILITY, 0) >= 0);
close(fd);
return is_cdrom;
}
#else
2023-08-19 13:40:36 +00:00
std::unique_ptr<CDImage> CDImage::OpenDeviceImage(const char* filename, Error* error)
{
return {};
}
std::vector<std::pair<std::string, std::string>> CDImage::GetDeviceList()
{
return {};
}
bool CDImage::IsDeviceName(const char* filename)
{
return false;
}
2023-09-30 05:44:14 +00:00
#endif