Duckstation/src/util/gpu_device.cpp

1581 lines
52 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "gpu_device.h"
#include "core/host_settings.h"
#include "core/settings.h"
#include "core/system.h"
#include "postprocessing_chain.h"
#include "shadergen.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/file_system.h"
#include "common/hash_combine.h"
#include "common/heap_array.h"
#include "common/log.h"
#include "common/path.h"
#include "common/string_util.h"
#include "common/timer.h"
#include "fmt/format.h"
#include "imgui.h"
#include "stb_image.h"
#include "stb_image_resize.h"
#include "stb_image_write.h"
#include <cerrno>
#include <cmath>
#include <cstring>
#include <thread>
#include <vector>
Log_SetChannel(GPUDevice);
#ifdef _WIN32
#include "common/windows_headers.h"
#include "d3d11_device.h"
#include "d3d12_device.h"
#endif
#ifdef WITH_OPENGL
#include "opengl_device.h"
#endif
#ifdef WITH_VULKAN
#include "vulkan_device.h"
#endif
std::unique_ptr<GPUDevice> g_gpu_device;
static std::string s_pipeline_cache_path;
GPUFramebuffer::GPUFramebuffer(GPUTexture* rt, GPUTexture* ds, u32 width, u32 height)
: m_rt(rt), m_ds(ds), m_width(width), m_height(height)
{
}
GPUFramebuffer::~GPUFramebuffer() = default;
GPUSampler::GPUSampler() = default;
GPUSampler::~GPUSampler() = default;
GPUSampler::Config GPUSampler::GetNearestConfig()
{
Config config = {};
config.address_u = GPUSampler::AddressMode::ClampToEdge;
config.address_v = GPUSampler::AddressMode::ClampToEdge;
config.address_w = GPUSampler::AddressMode::ClampToEdge;
config.min_filter = GPUSampler::Filter::Nearest;
config.mag_filter = GPUSampler::Filter::Nearest;
return config;
}
GPUSampler::Config GPUSampler::GetLinearConfig()
{
Config config = {};
config.address_u = GPUSampler::AddressMode::ClampToEdge;
config.address_v = GPUSampler::AddressMode::ClampToEdge;
config.address_w = GPUSampler::AddressMode::ClampToEdge;
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Linear;
return config;
}
GPUShader::GPUShader(GPUShaderStage stage) : m_stage(stage)
{
}
GPUShader::~GPUShader() = default;
const char* GPUShader::GetStageName(GPUShaderStage stage)
{
switch (stage)
{
case GPUShaderStage::Vertex:
return "Vertex";
case GPUShaderStage::Fragment:
return "Fragment";
case GPUShaderStage::Compute:
return "Compute";
default:
UnreachableCode();
return "";
}
}
GPUPipeline::GPUPipeline() = default;
GPUPipeline::~GPUPipeline() = default;
size_t GPUPipeline::InputLayoutHash::operator()(const InputLayout& il) const
{
std::size_t h = 0;
hash_combine(h, il.vertex_attributes.size(), il.vertex_stride);
for (const VertexAttribute& va : il.vertex_attributes)
hash_combine(h, va.key);
return h;
}
bool GPUPipeline::InputLayout::operator==(const InputLayout& rhs) const
{
return (vertex_stride == rhs.vertex_stride && vertex_attributes.size() == rhs.vertex_attributes.size() &&
std::memcmp(vertex_attributes.data(), rhs.vertex_attributes.data(),
sizeof(VertexAttribute) * rhs.vertex_attributes.size()) == 0);
}
bool GPUPipeline::InputLayout::operator!=(const InputLayout& rhs) const
{
return (vertex_stride != rhs.vertex_stride ||
vertex_attributes.size() != rhs.vertex_attributes.size() &&
std::memcmp(vertex_attributes.data(), rhs.vertex_attributes.data(),
sizeof(VertexAttribute) * rhs.vertex_attributes.size()) != 0);
}
GPUPipeline::RasterizationState GPUPipeline::RasterizationState::GetNoCullState()
{
RasterizationState ret = {};
ret.cull_mode = CullMode::None;
return ret;
}
GPUPipeline::DepthState GPUPipeline::DepthState::GetNoTestsState()
{
DepthState ret = {};
ret.depth_test = DepthFunc::Always;
return ret;
}
GPUPipeline::DepthState GPUPipeline::DepthState::GetAlwaysWriteState()
{
DepthState ret = {};
ret.depth_test = DepthFunc::Always;
ret.depth_write = true;
return ret;
}
GPUPipeline::BlendState GPUPipeline::BlendState::GetNoBlendingState()
{
BlendState ret = {};
ret.write_mask = 0xf;
return ret;
}
GPUPipeline::BlendState GPUPipeline::BlendState::GetAlphaBlendingState()
{
BlendState ret = {};
ret.enable = true;
ret.src_blend = BlendFunc::SrcAlpha;
ret.dst_blend = BlendFunc::InvSrcAlpha;
ret.blend_op = BlendOp::Add;
ret.src_alpha_blend = BlendFunc::One;
ret.dst_alpha_blend = BlendFunc::Zero;
ret.alpha_blend_op = BlendOp::Add;
ret.write_mask = 0xf;
return ret;
}
GPUTextureBuffer::GPUTextureBuffer(Format format, u32 size) : m_format(format), m_size_in_elements(size)
{
}
GPUTextureBuffer::~GPUTextureBuffer() = default;
u32 GPUTextureBuffer::GetElementSize(Format format)
{
static constexpr std::array<u32, static_cast<u32>(Format::MaxCount)> element_size = {{
sizeof(u16),
}};
return element_size[static_cast<u32>(format)];
}
GPUDevice::~GPUDevice() = default;
RenderAPI GPUDevice::GetPreferredAPI()
{
#ifdef _WIN32
return RenderAPI::D3D11;
#else
return RenderAPI::Metal;
#endif
}
const char* GPUDevice::RenderAPIToString(RenderAPI api)
{
// TODO: Combine ES
switch (api)
{
// clang-format off
#define CASE(x) case RenderAPI::x: return #x
CASE(None);
CASE(D3D11);
CASE(D3D12);
CASE(Metal);
CASE(Vulkan);
CASE(OpenGL);
CASE(OpenGLES);
#undef CASE
// clang-format on
default:
return "Unknown";
}
}
bool GPUDevice::Create(const std::string_view& adapter, const std::string_view& shader_cache_path,
u32 shader_cache_version, bool debug_device, bool vsync, bool threaded_presentation)
{
m_vsync_enabled = vsync;
m_debug_device = debug_device;
if (!AcquireWindow(true))
{
Log_ErrorPrintf("Failed to acquire window from host.");
return false;
}
if (!CreateDevice(adapter, threaded_presentation))
{
Log_ErrorPrintf("Failed to create device.");
return false;
}
Log_InfoPrintf("Graphics Driver Info:\n%s", GetDriverInfo().c_str());
OpenShaderCache(shader_cache_path, shader_cache_version);
if (!CreateResources())
{
Log_ErrorPrintf("Failed to create base resources.");
return false;
}
return true;
}
void GPUDevice::Destroy()
{
m_post_processing_chain.reset();
if (HasSurface())
DestroySurface();
DestroyResources();
CloseShaderCache();
DestroyDevice();
}
bool GPUDevice::SupportsExclusiveFullscreen() const
{
return false;
}
void GPUDevice::OpenShaderCache(const std::string_view& base_path, u32 version)
{
if (m_features.shader_cache && !base_path.empty())
{
const std::string basename = GetShaderCacheBaseName("shaders");
const std::string filename = Path::Combine(base_path, basename);
if (!m_shader_cache.Open(filename.c_str(), version))
{
Log_WarningPrintf("Failed to open shader cache. Creating new cache.");
if (!m_shader_cache.Create())
Log_ErrorPrintf("Failed to create new shader cache.");
// Squish the pipeline cache too, it's going to be stale.
if (m_features.pipeline_cache)
{
const std::string pc_filename =
Path::Combine(base_path, TinyString::FromFmt("{}.bin", GetShaderCacheBaseName("pipelines")));
if (FileSystem::FileExists(pc_filename.c_str()))
{
Log_InfoPrintf("Removing old pipeline cache '%s'", pc_filename.c_str());
FileSystem::DeleteFile(pc_filename.c_str());
}
}
}
}
else
{
// Still need to set the version - GL needs it.
m_shader_cache.Open(std::string_view(), version);
}
s_pipeline_cache_path = {};
if (m_features.pipeline_cache && !base_path.empty())
{
const std::string basename = GetShaderCacheBaseName("pipelines");
const std::string filename = Path::Combine(base_path, TinyString::FromFmt("{}.bin", basename));
if (ReadPipelineCache(filename))
s_pipeline_cache_path = std::move(filename);
else
Log_WarningPrintf("Failed to read pipeline cache.");
}
}
void GPUDevice::CloseShaderCache()
{
m_shader_cache.Close();
if (!s_pipeline_cache_path.empty())
{
DynamicHeapArray<u8> data;
if (GetPipelineCacheData(&data))
{
// Save disk writes if it hasn't changed, think of the poor SSDs.
FILESYSTEM_STAT_DATA sd;
if (!FileSystem::StatFile(s_pipeline_cache_path.c_str(), &sd) || sd.Size != static_cast<s64>(data.size()))
{
Log_InfoPrintf("Writing %zu bytes to '%s'", data.size(), s_pipeline_cache_path.c_str());
if (!FileSystem::WriteBinaryFile(s_pipeline_cache_path.c_str(), data.data(), data.size()))
Log_ErrorPrintf("Failed to write pipeline cache to '%s'", s_pipeline_cache_path.c_str());
}
else
{
Log_InfoPrintf("Skipping updating pipeline cache '%s' due to no changes.", s_pipeline_cache_path.c_str());
}
}
s_pipeline_cache_path = {};
}
}
std::string GPUDevice::GetShaderCacheBaseName(const std::string_view& type) const
{
const std::string_view debug_suffix = m_debug_device ? "_debug" : "";
std::string ret;
switch (GetRenderAPI())
{
#ifdef _WIN32
case RenderAPI::D3D11:
ret = fmt::format("d3d11_{}{}", type, debug_suffix);
break;
case RenderAPI::D3D12:
ret = fmt::format("d3d12_{}{}", type, debug_suffix);
break;
#endif
#ifdef WITH_VULKAN
case RenderAPI::Vulkan:
ret = fmt::format("vulkan_{}{}", type, debug_suffix);
break;
#endif
#ifdef WITH_OPENGL
case RenderAPI::OpenGL:
ret = fmt::format("opengl_{}{}", type, debug_suffix);
break;
case RenderAPI::OpenGLES:
ret = fmt::format("opengles_{}{}", type, debug_suffix);
break;
#endif
#ifdef __APPLE__
case RenderAPI::Metal:
ret = fmt::format("metal_{}{}", type, debug_suffix);
break;
#endif
default:
UnreachableCode();
break;
}
return ret;
}
bool GPUDevice::ReadPipelineCache(const std::string& filename)
{
return false;
}
bool GPUDevice::GetPipelineCacheData(DynamicHeapArray<u8>* data)
{
return false;
}
bool GPUDevice::AcquireWindow(bool recreate_window)
{
std::optional<WindowInfo> wi = Host::AcquireRenderWindow(recreate_window);
if (!wi.has_value())
return false;
Log_InfoPrintf("Render window is %ux%u.", wi->surface_width, wi->surface_height);
m_window_info = wi.value();
return true;
}
bool GPUDevice::CreateResources()
{
if (!(m_nearest_sampler = CreateSampler(GPUSampler::GetNearestConfig())))
return false;
if (!(m_linear_sampler = CreateSampler(GPUSampler::GetLinearConfig())))
return false;
ShaderGen shadergen(GetRenderAPI(), m_features.dual_source_blend);
GPUPipeline::GraphicsConfig plconfig;
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.input_layout.vertex_stride = 0;
plconfig.primitive = GPUPipeline::Primitive::Triangles;
plconfig.rasterization = GPUPipeline::RasterizationState::GetNoCullState();
plconfig.depth = GPUPipeline::DepthState::GetNoTestsState();
plconfig.blend = GPUPipeline::BlendState::GetNoBlendingState();
plconfig.color_format = HasSurface() ? m_window_info.surface_format : GPUTexture::Format::RGBA8;
plconfig.depth_format = GPUTexture::Format::Unknown;
plconfig.samples = 1;
plconfig.per_sample_shading = false;
std::unique_ptr<GPUShader> display_vs = CreateShader(GPUShaderStage::Vertex, shadergen.GenerateDisplayVertexShader());
std::unique_ptr<GPUShader> display_fs =
CreateShader(GPUShaderStage::Fragment, shadergen.GenerateDisplayFragmentShader(true));
std::unique_ptr<GPUShader> cursor_fs =
CreateShader(GPUShaderStage::Fragment, shadergen.GenerateDisplayFragmentShader(false));
if (!display_vs || !display_fs || !cursor_fs)
return false;
GL_OBJECT_NAME(display_vs, "Display Vertex Shader");
GL_OBJECT_NAME(display_fs, "Display Fragment Shader");
GL_OBJECT_NAME(cursor_fs, "Cursor Fragment Shader");
plconfig.vertex_shader = display_vs.get();
plconfig.fragment_shader = display_fs.get();
if (!(m_display_pipeline = CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_display_pipeline, "Display Pipeline");
plconfig.blend = GPUPipeline::BlendState::GetAlphaBlendingState();
plconfig.fragment_shader = cursor_fs.get();
if (!(m_cursor_pipeline = CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_cursor_pipeline, "Cursor Pipeline");
std::unique_ptr<GPUShader> imgui_vs = CreateShader(GPUShaderStage::Vertex, shadergen.GenerateImGuiVertexShader());
std::unique_ptr<GPUShader> imgui_fs = CreateShader(GPUShaderStage::Fragment, shadergen.GenerateImGuiFragmentShader());
if (!imgui_vs || !imgui_fs)
return false;
GL_OBJECT_NAME(imgui_vs, "ImGui Vertex Shader");
GL_OBJECT_NAME(imgui_fs, "ImGui Fragment Shader");
static constexpr GPUPipeline::VertexAttribute imgui_attributes[] = {
GPUPipeline::VertexAttribute::Make(0, GPUPipeline::VertexAttribute::Semantic::Position, 0,
GPUPipeline::VertexAttribute::Type::Float, 2, offsetof(ImDrawVert, pos)),
GPUPipeline::VertexAttribute::Make(1, GPUPipeline::VertexAttribute::Semantic::TexCoord, 0,
GPUPipeline::VertexAttribute::Type::Float, 2, offsetof(ImDrawVert, uv)),
GPUPipeline::VertexAttribute::Make(2, GPUPipeline::VertexAttribute::Semantic::Color, 0,
GPUPipeline::VertexAttribute::Type::UNorm8, 4, offsetof(ImDrawVert, col)),
};
plconfig.input_layout.vertex_attributes = imgui_attributes;
plconfig.input_layout.vertex_stride = sizeof(ImDrawVert);
plconfig.vertex_shader = imgui_vs.get();
plconfig.fragment_shader = imgui_fs.get();
m_imgui_pipeline = CreatePipeline(plconfig);
if (!m_imgui_pipeline)
{
Log_ErrorPrintf("Failed to compile ImGui pipeline.");
return false;
}
GL_OBJECT_NAME(m_imgui_pipeline, "ImGui Pipeline");
return true;
}
void GPUDevice::DestroyResources()
{
m_cursor_texture.reset();
m_imgui_font_texture.reset();
m_imgui_pipeline.reset();
m_cursor_pipeline.reset();
m_display_pipeline.reset();
m_imgui_pipeline.reset();
m_linear_sampler.reset();
m_nearest_sampler.reset();
m_shader_cache.Close();
}
bool GPUDevice::SetPostProcessingChain(const std::string_view& config)
{
m_post_processing_chain.reset();
if (config.empty())
return true;
else if (m_window_info.surface_format == GPUTexture::Format::Unknown)
return false;
m_post_processing_chain = std::make_unique<PostProcessingChain>();
if (!m_post_processing_chain->CreateFromString(config) ||
!m_post_processing_chain->CheckTargets(m_window_info.surface_format, m_window_info.surface_width,
m_window_info.surface_height))
{
m_post_processing_chain.reset();
return false;
}
else if (m_post_processing_chain->IsEmpty())
{
m_post_processing_chain.reset();
return true;
}
return true;
}
void GPUDevice::RenderImGui()
{
GL_SCOPE("RenderImGui");
ImGui::Render();
const ImDrawData* draw_data = ImGui::GetDrawData();
if (draw_data->CmdListsCount == 0)
return;
SetPipeline(m_imgui_pipeline.get());
SetViewportAndScissor(0, 0, m_window_info.surface_width, m_window_info.surface_height);
const float L = 0.0f;
const float R = static_cast<float>(m_window_info.surface_width);
const float T = 0.0f;
const float B = static_cast<float>(m_window_info.surface_height);
const float ortho_projection[4][4] = {
{2.0f / (R - L), 0.0f, 0.0f, 0.0f},
{0.0f, 2.0f / (T - B), 0.0f, 0.0f},
{0.0f, 0.0f, 0.5f, 0.0f},
{(R + L) / (L - R), (T + B) / (B - T), 0.5f, 1.0f},
};
PushUniformBuffer(ortho_projection, sizeof(ortho_projection));
// Render command lists
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
static_assert(sizeof(ImDrawIdx) == sizeof(DrawIndex));
u32 base_vertex, base_index;
UploadVertexBuffer(cmd_list->VtxBuffer.Data, sizeof(ImDrawVert), cmd_list->VtxBuffer.Size, &base_vertex);
UploadIndexBuffer(cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size, &base_index);
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
DebugAssert(!pcmd->UserCallback);
if (pcmd->ElemCount == 0 || pcmd->ClipRect.z <= pcmd->ClipRect.x || pcmd->ClipRect.w <= pcmd->ClipRect.y)
continue;
SetScissor(static_cast<s32>(pcmd->ClipRect.x), static_cast<s32>(pcmd->ClipRect.y),
static_cast<s32>(pcmd->ClipRect.z - pcmd->ClipRect.x),
static_cast<s32>(pcmd->ClipRect.w - pcmd->ClipRect.y));
SetTextureSampler(0, reinterpret_cast<GPUTexture*>(pcmd->TextureId), m_linear_sampler.get());
DrawIndexed(pcmd->ElemCount, base_index + pcmd->IdxOffset, base_vertex + pcmd->VtxOffset);
}
}
}
void GPUDevice::UploadVertexBuffer(const void* vertices, u32 vertex_size, u32 vertex_count, u32* base_vertex)
{
void* map;
u32 space;
MapVertexBuffer(vertex_size, vertex_count, &map, &space, base_vertex);
std::memcpy(map, vertices, vertex_size * vertex_count);
UnmapVertexBuffer(vertex_size, vertex_count);
}
void GPUDevice::UploadIndexBuffer(const u16* indices, u32 index_count, u32* base_index)
{
u16* map;
u32 space;
MapIndexBuffer(index_count, &map, &space, base_index);
std::memcpy(map, indices, sizeof(u16) * index_count);
UnmapIndexBuffer(index_count);
}
void GPUDevice::UploadUniformBuffer(const void* data, u32 data_size)
{
void* map = MapUniformBuffer(data_size);
std::memcpy(map, data, data_size);
UnmapUniformBuffer(data_size);
}
void GPUDevice::SetViewportAndScissor(s32 x, s32 y, s32 width, s32 height)
{
SetViewport(x, y, width, height);
SetScissor(x, y, width, height);
}
void GPUDevice::ClearRenderTarget(GPUTexture* t, u32 c)
{
t->SetClearColor(c);
}
void GPUDevice::ClearDepth(GPUTexture* t, float d)
{
t->SetClearDepth(d);
}
void GPUDevice::InvalidateRenderTarget(GPUTexture* t)
{
t->SetState(GPUTexture::State::Invalidated);
}
std::unique_ptr<GPUShader> GPUDevice::CreateShader(GPUShaderStage stage, const std::string_view& source,
const char* entry_point /* = "main" */)
{
std::unique_ptr<GPUShader> shader;
if (!m_shader_cache.IsOpen())
{
shader = CreateShaderFromSource(stage, source, entry_point, nullptr);
return shader;
}
const GPUShaderCache::CacheIndexKey key = m_shader_cache.GetCacheKey(stage, source, entry_point);
DynamicHeapArray<u8> binary;
if (m_shader_cache.Lookup(key, &binary))
{
shader = CreateShaderFromBinary(stage, binary);
if (shader)
return shader;
Log_ErrorPrintf("Failed to create shader from binary (driver changed?). Clearing cache.");
m_shader_cache.Clear();
}
shader = CreateShaderFromSource(stage, source, entry_point, &binary);
if (!shader)
return shader;
// Don't insert empty shaders into the cache...
if (!binary.empty())
{
if (!m_shader_cache.Insert(key, binary.data(), static_cast<u32>(binary.size())))
m_shader_cache.Close();
}
return shader;
}
bool GPUDevice::GetRequestedExclusiveFullscreenMode(u32* width, u32* height, float* refresh_rate)
{
const std::string mode = Host::GetBaseStringSettingValue("GPU", "FullscreenMode", "");
if (!mode.empty())
{
const std::string_view mode_view = mode;
std::string_view::size_type sep1 = mode.find('x');
if (sep1 != std::string_view::npos)
{
std::optional<u32> owidth = StringUtil::FromChars<u32>(mode_view.substr(0, sep1));
sep1++;
while (sep1 < mode.length() && std::isspace(mode[sep1]))
sep1++;
if (owidth.has_value() && sep1 < mode.length())
{
std::string_view::size_type sep2 = mode.find('@', sep1);
if (sep2 != std::string_view::npos)
{
std::optional<u32> oheight = StringUtil::FromChars<u32>(mode_view.substr(sep1, sep2 - sep1));
sep2++;
while (sep2 < mode.length() && std::isspace(mode[sep2]))
sep2++;
if (oheight.has_value() && sep2 < mode.length())
{
std::optional<float> orefresh_rate = StringUtil::FromChars<float>(mode_view.substr(sep2));
if (orefresh_rate.has_value())
{
*width = owidth.value();
*height = oheight.value();
*refresh_rate = orefresh_rate.value();
return true;
}
}
}
}
}
}
*width = 0;
*height = 0;
*refresh_rate = 0;
return false;
}
std::string GPUDevice::GetFullscreenModeString(u32 width, u32 height, float refresh_rate)
{
return StringUtil::StdStringFromFormat("%u x %u @ %f hz", width, height, refresh_rate);
}
std::string GPUDevice::GetShaderDumpPath(const std::string_view& name)
{
return Path::Combine(EmuFolders::Dumps, name);
}
std::array<float, 4> GPUDevice::RGBA8ToFloat(u32 rgba)
{
return std::array<float, 4>{static_cast<float>(rgba & UINT32_C(0xFF)) * (1.0f / 255.0f),
static_cast<float>((rgba >> 8) & UINT32_C(0xFF)) * (1.0f / 255.0f),
static_cast<float>((rgba >> 16) & UINT32_C(0xFF)) * (1.0f / 255.0f),
static_cast<float>(rgba >> 24) * (1.0f / 255.0f)};
}
bool GPUDevice::UpdateImGuiFontTexture()
{
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
const u32 pitch = sizeof(u32) * width;
if (m_imgui_font_texture && m_imgui_font_texture->GetWidth() == static_cast<u32>(width) &&
m_imgui_font_texture->GetHeight() == static_cast<u32>(height) &&
m_imgui_font_texture->Update(0, 0, static_cast<u32>(width), static_cast<u32>(height), pixels, pitch))
{
io.Fonts->SetTexID(m_imgui_font_texture.get());
return true;
}
std::unique_ptr<GPUTexture> new_font =
CreateTexture(width, height, 1, 1, 1, GPUTexture::Type::Texture, GPUTexture::Format::RGBA8, pixels, pitch);
if (!new_font)
return false;
m_imgui_font_texture = std::move(new_font);
io.Fonts->SetTexID(m_imgui_font_texture.get());
return true;
}
bool GPUDevice::UsesLowerLeftOrigin() const
{
const RenderAPI api = GetRenderAPI();
return (api == RenderAPI::OpenGL || api == RenderAPI::OpenGLES);
}
void GPUDevice::SetDisplayMaxFPS(float max_fps)
{
m_display_frame_interval = (max_fps > 0.0f) ? (1.0f / max_fps) : 0.0f;
}
bool GPUDevice::ShouldSkipDisplayingFrame()
{
if (m_display_frame_interval == 0.0f)
return false;
const u64 now = Common::Timer::GetCurrentValue();
const double diff = Common::Timer::ConvertValueToSeconds(now - m_last_frame_displayed_time);
if (diff < m_display_frame_interval)
return true;
m_last_frame_displayed_time = now;
return false;
}
void GPUDevice::ThrottlePresentation()
{
const float throttle_rate = (m_window_info.surface_refresh_rate > 0.0f) ? m_window_info.surface_refresh_rate : 60.0f;
const u64 sleep_period = Common::Timer::ConvertNanosecondsToValue(1e+9f / static_cast<double>(throttle_rate));
const u64 current_ts = Common::Timer::GetCurrentValue();
// Allow it to fall behind/run ahead up to 2*period. Sleep isn't that precise, plus we need to
// allow time for the actual rendering.
const u64 max_variance = sleep_period * 2;
if (static_cast<u64>(std::abs(static_cast<s64>(current_ts - m_last_frame_displayed_time))) > max_variance)
m_last_frame_displayed_time = current_ts + sleep_period;
else
m_last_frame_displayed_time += sleep_period;
Common::Timer::SleepUntil(m_last_frame_displayed_time, false);
}
void GPUDevice::ClearDisplayTexture()
{
m_display_texture = nullptr;
m_display_texture_view_x = 0;
m_display_texture_view_y = 0;
m_display_texture_view_width = 0;
m_display_texture_view_height = 0;
m_display_changed = true;
}
void GPUDevice::SetDisplayTexture(GPUTexture* texture, s32 view_x, s32 view_y, s32 view_width, s32 view_height)
{
DebugAssert(texture);
m_display_texture = texture;
m_display_texture_view_x = view_x;
m_display_texture_view_y = view_y;
m_display_texture_view_width = view_width;
m_display_texture_view_height = view_height;
m_display_changed = true;
}
void GPUDevice::SetDisplayTextureRect(s32 view_x, s32 view_y, s32 view_width, s32 view_height)
{
m_display_texture_view_x = view_x;
m_display_texture_view_y = view_y;
m_display_texture_view_width = view_width;
m_display_texture_view_height = view_height;
m_display_changed = true;
}
void GPUDevice::SetDisplayParameters(s32 display_width, s32 display_height, s32 active_left, s32 active_top,
s32 active_width, s32 active_height, float display_aspect_ratio)
{
m_display_width = display_width;
m_display_height = display_height;
m_display_active_left = active_left;
m_display_active_top = active_top;
m_display_active_width = active_width;
m_display_active_height = active_height;
m_display_aspect_ratio = display_aspect_ratio;
m_display_changed = true;
}
bool GPUDevice::GetHostRefreshRate(float* refresh_rate)
{
if (m_window_info.surface_refresh_rate > 0.0f)
{
*refresh_rate = m_window_info.surface_refresh_rate;
return true;
}
return WindowInfo::QueryRefreshRateForWindow(m_window_info, refresh_rate);
}
bool GPUDevice::SetGPUTimingEnabled(bool enabled)
{
return false;
}
float GPUDevice::GetAndResetAccumulatedGPUTime()
{
return 0.0f;
}
void GPUDevice::SetSoftwareCursor(std::unique_ptr<GPUTexture> texture, float scale /*= 1.0f*/)
{
if (texture)
texture->MakeReadyForSampling();
m_cursor_texture = std::move(texture);
m_cursor_texture_scale = scale;
}
bool GPUDevice::SetSoftwareCursor(const void* pixels, u32 width, u32 height, u32 stride, float scale /*= 1.0f*/)
{
std::unique_ptr<GPUTexture> tex =
CreateTexture(width, height, 1, 1, 1, GPUTexture::Type::Texture, GPUTexture::Format::RGBA8, pixels, stride, false);
if (!tex)
return false;
SetSoftwareCursor(std::move(tex), scale);
return true;
}
bool GPUDevice::SetSoftwareCursor(const char* path, float scale /*= 1.0f*/)
{
auto fp = FileSystem::OpenManagedCFile(path, "rb");
if (!fp)
{
return false;
}
int width, height, file_channels;
u8* pixel_data = stbi_load_from_file(fp.get(), &width, &height, &file_channels, 4);
if (!pixel_data)
{
const char* error_reason = stbi_failure_reason();
Log_ErrorPrintf("Failed to load image from '%s': %s", path, error_reason ? error_reason : "unknown error");
return false;
}
std::unique_ptr<GPUTexture> tex =
CreateTexture(static_cast<u32>(width), static_cast<u32>(height), 1, 1, 1, GPUTexture::Type::Texture,
GPUTexture::Format::RGBA8, pixel_data, sizeof(u32) * static_cast<u32>(width), false);
stbi_image_free(pixel_data);
if (!tex)
return false;
Log_InfoPrintf("Loaded %dx%d image from '%s' for software cursor", width, height, path);
SetSoftwareCursor(std::move(tex), scale);
return true;
}
void GPUDevice::ClearSoftwareCursor()
{
m_cursor_texture.reset();
m_cursor_texture_scale = 1.0f;
}
bool GPUDevice::IsUsingLinearFiltering() const
{
return g_settings.display_linear_filtering;
}
bool GPUDevice::Render(bool skip_present)
{
// Moved here because there can be draws after UpdateDisplay().
if (HasDisplayTexture())
m_display_texture->MakeReadyForSampling();
if (skip_present)
{
// Should never return true here..
if (UNLIKELY(BeginPresent(skip_present)))
Panic("BeginPresent() returned true when skipping...");
// Need to kick ImGui state.
ImGui::Render();
return false;
}
bool render_frame;
if (HasDisplayTexture())
{
const auto [left, top, width, height] = CalculateDrawRect(GetWindowWidth(), GetWindowHeight());
render_frame = RenderDisplay(nullptr, left, top, width, height, m_display_texture, m_display_texture_view_x,
m_display_texture_view_y, m_display_texture_view_width, m_display_texture_view_height,
IsUsingLinearFiltering());
}
else
{
render_frame = BeginPresent(false);
}
if (!render_frame)
{
// Window minimized etc.
ImGui::Render();
return false;
}
SetViewportAndScissor(0, 0, GetWindowWidth(), GetWindowHeight());
RenderImGui();
RenderSoftwareCursor();
EndPresent();
return true;
}
bool GPUDevice::RenderScreenshot(u32 width, u32 height, const Common::Rectangle<s32>& draw_rect,
std::vector<u32>* out_pixels, u32* out_stride, GPUTexture::Format* out_format)
{
const GPUTexture::Format hdformat = HasSurface() ? m_window_info.surface_format : GPUTexture::Format::RGBA8;
std::unique_ptr<GPUTexture> render_texture =
CreateTexture(width, height, 1, 1, 1, GPUTexture::Type::RenderTarget, hdformat);
if (!render_texture)
return false;
std::unique_ptr<GPUFramebuffer> render_fb = CreateFramebuffer(render_texture.get());
if (!render_fb)
return false;
ClearRenderTarget(render_texture.get(), 0);
RenderDisplay(render_fb.get(), draw_rect.left, draw_rect.top, draw_rect.GetWidth(), draw_rect.GetHeight(),
m_display_texture, m_display_texture_view_x, m_display_texture_view_y, m_display_texture_view_width,
m_display_texture_view_height, IsUsingLinearFiltering());
SetFramebuffer(nullptr);
const u32 stride = GPUTexture::GetPixelSize(hdformat) * width;
out_pixels->resize(width * height);
if (!DownloadTexture(render_texture.get(), 0, 0, width, height, out_pixels->data(), stride))
return false;
*out_stride = stride;
*out_format = hdformat;
return true;
}
bool GPUDevice::RenderDisplay(GPUFramebuffer* target, s32 left, s32 top, s32 width, s32 height, GPUTexture* texture,
s32 texture_view_x, s32 texture_view_y, s32 texture_view_width, s32 texture_view_height,
bool linear_filter)
{
GL_SCOPE("RenderDisplay: %dx%d at %d,%d", left, top, width, height);
const GPUTexture::Format hdformat =
(target && target->GetRT()) ? target->GetRT()->GetFormat() : m_window_info.surface_format;
const u32 target_width = target ? target->GetWidth() : m_window_info.surface_width;
const u32 target_height = target ? target->GetHeight() : m_window_info.surface_height;
const bool postfx =
(m_post_processing_chain && m_post_processing_chain->CheckTargets(hdformat, target_width, target_height));
if (postfx)
{
ClearRenderTarget(m_post_processing_chain->GetInputTexture(), 0);
SetFramebuffer(m_post_processing_chain->GetInputFramebuffer());
}
else
{
if (target)
SetFramebuffer(target);
else if (!BeginPresent(false))
return false;
}
SetPipeline(m_display_pipeline.get());
SetTextureSampler(0, texture, linear_filter ? m_linear_sampler.get() : m_nearest_sampler.get());
const bool linear = IsUsingLinearFiltering();
const float position_adjust = linear ? 0.5f : 0.0f;
const float size_adjust = linear ? 1.0f : 0.0f;
const float uniforms[4] = {
(static_cast<float>(texture_view_x) + position_adjust) / static_cast<float>(texture->GetWidth()),
(static_cast<float>(texture_view_y) + position_adjust) / static_cast<float>(texture->GetHeight()),
(static_cast<float>(texture_view_width) - size_adjust) / static_cast<float>(texture->GetWidth()),
(static_cast<float>(texture_view_height) - size_adjust) / static_cast<float>(texture->GetHeight())};
PushUniformBuffer(uniforms, sizeof(uniforms));
SetViewportAndScissor(left, top, width, height);
Draw(3, 0);
if (postfx)
{
return m_post_processing_chain->Apply(target, left, top, width, height, texture_view_width, texture_view_height);
}
else
{
return true;
}
}
void GPUDevice::RenderSoftwareCursor()
{
if (!HasSoftwareCursor())
return;
const auto [left, top, width, height] = CalculateSoftwareCursorDrawRect();
RenderSoftwareCursor(left, top, width, height, m_cursor_texture.get());
}
void GPUDevice::RenderSoftwareCursor(s32 left, s32 top, s32 width, s32 height, GPUTexture* texture)
{
SetPipeline(m_display_pipeline.get());
SetTextureSampler(0, texture, m_linear_sampler.get());
const float uniforms[4] = {0.0f, 0.0f, 1.0f, 1.0f};
PushUniformBuffer(uniforms, sizeof(uniforms));
SetViewportAndScissor(left, top, width, height);
Draw(3, 0);
}
void GPUDevice::CalculateDrawRect(s32 window_width, s32 window_height, float* out_left, float* out_top,
float* out_width, float* out_height, float* out_left_padding, float* out_top_padding,
float* out_scale, float* out_x_scale, bool apply_aspect_ratio /* = true */) const
{
const float window_ratio = static_cast<float>(window_width) / static_cast<float>(window_height);
const float display_aspect_ratio = g_settings.display_stretch ? window_ratio : m_display_aspect_ratio;
const float x_scale =
apply_aspect_ratio ?
(display_aspect_ratio / (static_cast<float>(m_display_width) / static_cast<float>(m_display_height))) :
1.0f;
const float display_width = g_settings.display_stretch_vertically ? static_cast<float>(m_display_width) :
static_cast<float>(m_display_width) * x_scale;
const float display_height = g_settings.display_stretch_vertically ? static_cast<float>(m_display_height) / x_scale :
static_cast<float>(m_display_height);
const float active_left = g_settings.display_stretch_vertically ? static_cast<float>(m_display_active_left) :
static_cast<float>(m_display_active_left) * x_scale;
const float active_top = g_settings.display_stretch_vertically ? static_cast<float>(m_display_active_top) / x_scale :
static_cast<float>(m_display_active_top);
const float active_width = g_settings.display_stretch_vertically ?
static_cast<float>(m_display_active_width) :
static_cast<float>(m_display_active_width) * x_scale;
const float active_height = g_settings.display_stretch_vertically ?
static_cast<float>(m_display_active_height) / x_scale :
static_cast<float>(m_display_active_height);
if (out_x_scale)
*out_x_scale = x_scale;
// now fit it within the window
float scale;
if ((display_width / display_height) >= window_ratio)
{
// align in middle vertically
scale = static_cast<float>(window_width) / display_width;
if (g_settings.display_integer_scaling)
scale = std::max(std::floor(scale), 1.0f);
if (out_left_padding)
{
if (g_settings.display_integer_scaling)
*out_left_padding = std::max<float>((static_cast<float>(window_width) - display_width * scale) / 2.0f, 0.0f);
else
*out_left_padding = 0.0f;
}
if (out_top_padding)
{
switch (g_settings.display_alignment)
{
case DisplayAlignment::RightOrBottom:
*out_top_padding = std::max<float>(static_cast<float>(window_height) - (display_height * scale), 0.0f);
break;
case DisplayAlignment::Center:
*out_top_padding =
std::max<float>((static_cast<float>(window_height) - (display_height * scale)) / 2.0f, 0.0f);
break;
case DisplayAlignment::LeftOrTop:
default:
*out_top_padding = 0.0f;
break;
}
}
}
else
{
// align in middle horizontally
scale = static_cast<float>(window_height) / display_height;
if (g_settings.display_integer_scaling)
scale = std::max(std::floor(scale), 1.0f);
if (out_left_padding)
{
switch (g_settings.display_alignment)
{
case DisplayAlignment::RightOrBottom:
*out_left_padding = std::max<float>(static_cast<float>(window_width) - (display_width * scale), 0.0f);
break;
case DisplayAlignment::Center:
*out_left_padding =
std::max<float>((static_cast<float>(window_width) - (display_width * scale)) / 2.0f, 0.0f);
break;
case DisplayAlignment::LeftOrTop:
default:
*out_left_padding = 0.0f;
break;
}
}
if (out_top_padding)
{
if (g_settings.display_integer_scaling)
*out_top_padding = std::max<float>((static_cast<float>(window_height) - (display_height * scale)) / 2.0f, 0.0f);
else
*out_top_padding = 0.0f;
}
}
*out_width = active_width * scale;
*out_height = active_height * scale;
*out_left = active_left * scale;
*out_top = active_top * scale;
if (out_scale)
*out_scale = scale;
}
std::tuple<s32, s32, s32, s32> GPUDevice::CalculateDrawRect(s32 window_width, s32 window_height,
bool apply_aspect_ratio /* = true */) const
{
float left, top, width, height, left_padding, top_padding;
CalculateDrawRect(window_width, window_height, &left, &top, &width, &height, &left_padding, &top_padding, nullptr,
nullptr, apply_aspect_ratio);
return std::make_tuple(static_cast<s32>(left + left_padding), static_cast<s32>(top + top_padding),
static_cast<s32>(width), static_cast<s32>(height));
}
std::tuple<s32, s32, s32, s32> GPUDevice::CalculateSoftwareCursorDrawRect() const
{
return CalculateSoftwareCursorDrawRect(m_mouse_position_x, m_mouse_position_y);
}
std::tuple<s32, s32, s32, s32> GPUDevice::CalculateSoftwareCursorDrawRect(s32 cursor_x, s32 cursor_y) const
{
const float scale = m_window_info.surface_scale * m_cursor_texture_scale;
const u32 cursor_extents_x = static_cast<u32>(static_cast<float>(m_cursor_texture->GetWidth()) * scale * 0.5f);
const u32 cursor_extents_y = static_cast<u32>(static_cast<float>(m_cursor_texture->GetHeight()) * scale * 0.5f);
const s32 out_left = cursor_x - cursor_extents_x;
const s32 out_top = cursor_y - cursor_extents_y;
const s32 out_width = cursor_extents_x * 2u;
const s32 out_height = cursor_extents_y * 2u;
return std::tie(out_left, out_top, out_width, out_height);
}
std::tuple<float, float> GPUDevice::ConvertWindowCoordinatesToDisplayCoordinates(s32 window_x, s32 window_y,
s32 window_width,
s32 window_height) const
{
float left, top, width, height, left_padding, top_padding;
float scale, x_scale;
CalculateDrawRect(window_width, window_height, &left, &top, &width, &height, &left_padding, &top_padding, &scale,
&x_scale);
// convert coordinates to active display region, then to full display region
const float scaled_display_x = static_cast<float>(window_x) - left_padding;
const float scaled_display_y = static_cast<float>(window_y) - top_padding;
// scale back to internal resolution
const float display_x = scaled_display_x / scale / x_scale;
const float display_y = scaled_display_y / scale;
return std::make_tuple(display_x, display_y);
}
static bool CompressAndWriteTextureToFile(u32 width, u32 height, std::string filename, FileSystem::ManagedCFilePtr fp,
bool clear_alpha, bool flip_y, u32 resize_width, u32 resize_height,
std::vector<u32> texture_data, u32 texture_data_stride,
GPUTexture::Format texture_format)
{
const char* extension = std::strrchr(filename.c_str(), '.');
if (!extension)
{
Log_ErrorPrintf("Unable to determine file extension for '%s'", filename.c_str());
return false;
}
if (!GPUTexture::ConvertTextureDataToRGBA8(width, height, texture_data, texture_data_stride, texture_format))
return false;
if (clear_alpha)
{
for (u32& pixel : texture_data)
pixel |= 0xFF000000;
}
if (flip_y)
GPUTexture::FlipTextureDataRGBA8(width, height, texture_data, texture_data_stride);
if (resize_width > 0 && resize_height > 0 && (resize_width != width || resize_height != height))
{
std::vector<u32> resized_texture_data(resize_width * resize_height);
u32 resized_texture_stride = sizeof(u32) * resize_width;
if (!stbir_resize_uint8(reinterpret_cast<u8*>(texture_data.data()), width, height, texture_data_stride,
reinterpret_cast<u8*>(resized_texture_data.data()), resize_width, resize_height,
resized_texture_stride, 4))
{
Log_ErrorPrintf("Failed to resize texture data from %ux%u to %ux%u", width, height, resize_width, resize_height);
return false;
}
width = resize_width;
height = resize_height;
texture_data = std::move(resized_texture_data);
texture_data_stride = resized_texture_stride;
}
const auto write_func = [](void* context, void* data, int size) {
std::fwrite(data, 1, size, static_cast<std::FILE*>(context));
};
bool result = false;
if (StringUtil::Strcasecmp(extension, ".png") == 0)
{
result =
(stbi_write_png_to_func(write_func, fp.get(), width, height, 4, texture_data.data(), texture_data_stride) != 0);
}
else if (StringUtil::Strcasecmp(extension, ".jpg") == 0)
{
result = (stbi_write_jpg_to_func(write_func, fp.get(), width, height, 4, texture_data.data(), 95) != 0);
}
else if (StringUtil::Strcasecmp(extension, ".tga") == 0)
{
result = (stbi_write_tga_to_func(write_func, fp.get(), width, height, 4, texture_data.data()) != 0);
}
else if (StringUtil::Strcasecmp(extension, ".bmp") == 0)
{
result = (stbi_write_bmp_to_func(write_func, fp.get(), width, height, 4, texture_data.data()) != 0);
}
if (!result)
{
Log_ErrorPrintf("Unknown extension in filename '%s' or save error: '%s'", filename.c_str(), extension);
return false;
}
return true;
}
bool GPUDevice::WriteTextureToFile(GPUTexture* texture, u32 x, u32 y, u32 width, u32 height, std::string filename,
bool clear_alpha /* = true */, bool flip_y /* = false */, u32 resize_width /* = 0 */,
u32 resize_height /* = 0 */, bool compress_on_thread /* = false */)
{
std::vector<u32> texture_data(width * height);
u32 texture_data_stride = Common::AlignUpPow2(GPUTexture::GetPixelSize(texture->GetFormat()) * width, 4);
if (!DownloadTexture(texture, x, y, width, height, texture_data.data(), texture_data_stride))
{
Log_ErrorPrintf("Texture download failed");
return false;
}
auto fp = FileSystem::OpenManagedCFile(filename.c_str(), "wb");
if (!fp)
{
Log_ErrorPrintf("Can't open file '%s': errno %d", filename.c_str(), errno);
return false;
}
if (!compress_on_thread)
{
return CompressAndWriteTextureToFile(width, height, std::move(filename), std::move(fp), clear_alpha, flip_y,
resize_width, resize_height, std::move(texture_data), texture_data_stride,
texture->GetFormat());
}
std::thread compress_thread(CompressAndWriteTextureToFile, width, height, std::move(filename), std::move(fp),
clear_alpha, flip_y, resize_width, resize_height, std::move(texture_data),
texture_data_stride, texture->GetFormat());
compress_thread.detach();
return true;
}
bool GPUDevice::WriteDisplayTextureToFile(std::string filename, bool full_resolution /* = true */,
bool apply_aspect_ratio /* = true */, bool compress_on_thread /* = false */)
{
if (!m_display_texture)
return false;
s32 resize_width = 0;
s32 resize_height = std::abs(m_display_texture_view_height);
if (apply_aspect_ratio)
{
const float ss_width_scale = static_cast<float>(m_display_active_width) / static_cast<float>(m_display_width);
const float ss_height_scale = static_cast<float>(m_display_active_height) / static_cast<float>(m_display_height);
const float ss_aspect_ratio = m_display_aspect_ratio * ss_width_scale / ss_height_scale;
resize_width = g_settings.display_stretch_vertically ?
m_display_texture_view_width :
static_cast<s32>(static_cast<float>(resize_height) * ss_aspect_ratio);
resize_height = g_settings.display_stretch_vertically ?
static_cast<s32>(static_cast<float>(resize_height) /
(m_display_aspect_ratio /
(static_cast<float>(m_display_width) / static_cast<float>(m_display_height)))) :
resize_height;
}
else
{
resize_width = m_display_texture_view_width;
}
if (!full_resolution)
{
const s32 resolution_scale = std::abs(m_display_texture_view_height) / m_display_active_height;
resize_height /= resolution_scale;
resize_width /= resolution_scale;
}
if (resize_width <= 0 || resize_height <= 0)
return false;
const bool flip_y = (m_display_texture_view_height < 0);
s32 read_height = m_display_texture_view_height;
s32 read_y = m_display_texture_view_y;
if (flip_y)
{
read_height = -m_display_texture_view_height;
read_y =
(m_display_texture->GetHeight() - read_height) - (m_display_texture->GetHeight() - m_display_texture_view_y);
}
return WriteTextureToFile(m_display_texture, m_display_texture_view_x, read_y, m_display_texture_view_width,
read_height, std::move(filename), true, flip_y, static_cast<u32>(resize_width),
static_cast<u32>(resize_height), compress_on_thread);
}
bool GPUDevice::WriteDisplayTextureToBuffer(std::vector<u32>* buffer, u32 resize_width /* = 0 */,
u32 resize_height /* = 0 */, bool clear_alpha /* = true */)
{
if (!m_display_texture)
return false;
const bool flip_y = (m_display_texture_view_height < 0);
s32 read_width = m_display_texture_view_width;
s32 read_height = m_display_texture_view_height;
s32 read_x = m_display_texture_view_x;
s32 read_y = m_display_texture_view_y;
if (flip_y)
{
read_height = -m_display_texture_view_height;
read_y =
(m_display_texture->GetHeight() - read_height) - (m_display_texture->GetHeight() - m_display_texture_view_y);
}
u32 width = static_cast<u32>(read_width);
u32 height = static_cast<u32>(read_height);
std::vector<u32> texture_data(width * height);
u32 texture_data_stride = Common::AlignUpPow2(m_display_texture->GetPixelSize() * width, 4);
if (!DownloadTexture(m_display_texture, read_x, read_y, width, height, texture_data.data(), texture_data_stride))
{
Log_ErrorPrintf("Failed to download texture from GPU.");
return false;
}
if (!GPUTexture::ConvertTextureDataToRGBA8(width, height, texture_data, texture_data_stride,
m_display_texture->GetFormat()))
{
return false;
}
if (clear_alpha)
{
for (u32& pixel : texture_data)
pixel |= 0xFF000000;
}
if (flip_y)
{
std::vector<u32> temp(width);
for (u32 flip_row = 0; flip_row < (height / 2); flip_row++)
{
u32* top_ptr = &texture_data[flip_row * width];
u32* bottom_ptr = &texture_data[((height - 1) - flip_row) * width];
std::memcpy(temp.data(), top_ptr, texture_data_stride);
std::memcpy(top_ptr, bottom_ptr, texture_data_stride);
std::memcpy(bottom_ptr, temp.data(), texture_data_stride);
}
}
if (resize_width > 0 && resize_height > 0 && (resize_width != width || resize_height != height))
{
std::vector<u32> resized_texture_data(resize_width * resize_height);
u32 resized_texture_stride = sizeof(u32) * resize_width;
if (!stbir_resize_uint8(reinterpret_cast<u8*>(texture_data.data()), width, height, texture_data_stride,
reinterpret_cast<u8*>(resized_texture_data.data()), resize_width, resize_height,
resized_texture_stride, 4))
{
Log_ErrorPrintf("Failed to resize texture data from %ux%u to %ux%u", width, height, resize_width, resize_height);
return false;
}
width = resize_width;
height = resize_height;
*buffer = std::move(resized_texture_data);
texture_data_stride = resized_texture_stride;
}
else
{
*buffer = texture_data;
}
return true;
}
bool GPUDevice::WriteScreenshotToFile(std::string filename, bool internal_resolution /* = false */,
bool compress_on_thread /* = false */)
{
u32 width = m_window_info.surface_width;
u32 height = m_window_info.surface_height;
auto [draw_left, draw_top, draw_width, draw_height] = CalculateDrawRect(width, height);
if (internal_resolution && m_display_texture_view_width != 0 && m_display_texture_view_height != 0)
{
// If internal res, scale the computed draw rectangle to the internal res.
// We re-use the draw rect because it's already been AR corrected.
const float sar =
static_cast<float>(m_display_texture_view_width) / static_cast<float>(m_display_texture_view_height);
const float dar = static_cast<float>(draw_width) / static_cast<float>(draw_height);
if (sar >= dar)
{
// stretch height, preserve width
const float scale = static_cast<float>(m_display_texture_view_width) / static_cast<float>(draw_width);
width = m_display_texture_view_width;
height = static_cast<u32>(std::round(static_cast<float>(draw_height) * scale));
}
else
{
// stretch width, preserve height
const float scale = static_cast<float>(m_display_texture_view_height) / static_cast<float>(draw_height);
width = static_cast<u32>(std::round(static_cast<float>(draw_width) * scale));
height = m_display_texture_view_height;
}
// DX11 won't go past 16K texture size.
constexpr u32 MAX_TEXTURE_SIZE = 16384;
if (width > MAX_TEXTURE_SIZE)
{
height = static_cast<u32>(static_cast<float>(height) /
(static_cast<float>(width) / static_cast<float>(MAX_TEXTURE_SIZE)));
width = MAX_TEXTURE_SIZE;
}
if (height > MAX_TEXTURE_SIZE)
{
height = MAX_TEXTURE_SIZE;
width = static_cast<u32>(static_cast<float>(width) /
(static_cast<float>(height) / static_cast<float>(MAX_TEXTURE_SIZE)));
}
// Remove padding, it's not part of the framebuffer.
draw_left = 0;
draw_top = 0;
draw_width = static_cast<s32>(width);
draw_height = static_cast<s32>(height);
}
if (width == 0 || height == 0)
return false;
std::vector<u32> pixels;
u32 pixels_stride;
GPUTexture::Format pixels_format;
if (!RenderScreenshot(width, height,
Common::Rectangle<s32>::FromExtents(draw_left, draw_top, draw_width, draw_height), &pixels,
&pixels_stride, &pixels_format))
{
Log_ErrorPrintf("Failed to render %ux%u screenshot", width, height);
return false;
}
auto fp = FileSystem::OpenManagedCFile(filename.c_str(), "wb");
if (!fp)
{
Log_ErrorPrintf("Can't open file '%s': errno %d", filename.c_str(), errno);
return false;
}
if (!compress_on_thread)
{
return CompressAndWriteTextureToFile(width, height, std::move(filename), std::move(fp), true, UsesLowerLeftOrigin(),
width, height, std::move(pixels), pixels_stride, pixels_format);
}
std::thread compress_thread(CompressAndWriteTextureToFile, width, height, std::move(filename), std::move(fp), true,
UsesLowerLeftOrigin(), width, height, std::move(pixels), pixels_stride, pixels_format);
compress_thread.detach();
return true;
}
std::unique_ptr<GPUDevice> GPUDevice::CreateDeviceForAPI(RenderAPI api)
{
switch (api)
{
#ifdef WITH_VULKAN
case RenderAPI::Vulkan:
return std::make_unique<VulkanDevice>();
#endif
#ifdef WITH_OPENGL
case RenderAPI::OpenGL:
case RenderAPI::OpenGLES:
return std::make_unique<OpenGLDevice>();
#endif
#ifdef _WIN32
case RenderAPI::D3D12:
return std::make_unique<D3D12Device>();
case RenderAPI::D3D11:
return std::make_unique<D3D11Device>();
#endif
#ifdef __APPLE__
case RenderAPI::Metal:
return WrapNewMetalDevice();
#endif
default:
return {};
}
}