Duckstation/data/resources/shaders/reshade/Shaders/overlay/geom-overlay.fx

416 lines
12 KiB
HLSL
Raw Normal View History

#include "ReShade.fxh"
/*
Geom Shader - a modified CRT-Geom without CRT features made to be appended/integrated
into any other shaders and provide curvature/warping/oversampling features.
Adapted by Hyllian (2024).
*/
/*
CRT-interlaced
Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
(cgwg gave their consent to have the original version of this shader
distributed under the GPL in this message:
http://board.byuu.org/viewtopic.php?p=26075#p26075
"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
)
This shader variant is pre-configured with screen curvature
*/
uniform bool geom_curvature <
ui_type = "radio";
ui_label = "Geom Curvature Toggle";
ui_category = "Curvature";
ui_tooltip = "This shader only works with Aspect Ratio: Stretch to Fill.";
> = true;
uniform float geom_R <
ui_type = "drag";
ui_min = 0.1;
ui_max = 10.0;
ui_step = 0.1;
ui_label = "Geom Curvature Radius";
> = 10.0;
uniform float geom_d <
ui_type = "drag";
ui_min = 0.1;
ui_max = 10.0;
ui_step = 0.1;
ui_label = "Geom Distance";
> = 10.0;
uniform bool geom_invert_aspect <
ui_type = "radio";
ui_label = "Geom Curvature Aspect Inversion";
> = 0.0;
uniform float geom_cornersize <
ui_type = "drag";
ui_min = 0.001;
ui_max = 1.0;
ui_step = 0.005;
ui_label = "Geom Corner Size";
> = 0.006;
uniform float geom_cornersmooth <
ui_type = "drag";
ui_min = 80.0;
ui_max = 2000.0;
ui_step = 100.0;
ui_label = "Geom Corner Smoothness";
> = 200.0;
uniform float geom_x_tilt <
ui_type = "drag";
ui_min = -1.0;
ui_max = 1.0;
ui_step = 0.05;
ui_label = "Geom Horizontal Tilt";
> = 0.0;
uniform float geom_y_tilt <
ui_type = "drag";
ui_min = -1.0;
ui_max = 1.0;
ui_step = 0.05;
ui_label = "Geom Vertical Tilt";
> = 0.0;
uniform float geom_overscan_x <
ui_type = "drag";
ui_min = -125.0;
ui_max = 125.0;
ui_step = 0.5;
ui_label = "Geom Horiz. Overscan %";
> = 48.5;
uniform float geom_overscan_y <
ui_type = "drag";
ui_min = -125.0;
ui_max = 125.0;
ui_step = 0.5;
ui_label = "Geom Vert. Overscan %";
> = 64.5;
uniform float centerx <
ui_type = "drag";
ui_min = -100.0;
ui_max = 100.0;
ui_step = 0.1;
ui_label = "Image Center X";
> = 0.0;
uniform float centery <
ui_type = "drag";
ui_min = -100.0;
ui_max = 100.0;
ui_step = 0.1;
ui_label = "Image Center Y";
> = -8.8;
uniform float geom_lum <
ui_type = "drag";
ui_min = 0.5;
ui_max = 2.0;
ui_step = 0.01;
ui_label = "Geom Luminance";
> = 1.0;
uniform float geom_target_gamma <
ui_type = "drag";
ui_min = 0.1;
ui_max = 5.0;
ui_step = 0.1;
ui_label = "Geom Target Gamma";
> = 2.4;
uniform float geom_monitor_gamma <
ui_type = "drag";
ui_min = 0.1;
ui_max = 5.0;
ui_step = 0.1;
ui_label = "Geom Monitor Gamma";
> = 2.2;
uniform float2 BufferToViewportRatio < source = "buffer_to_viewport_ratio"; >;
uniform float2 NormalizedNativePixelSize < source = "normalized_native_pixel_size"; >;
uniform float2 ViewportSize < source = "viewportsize"; >;
uniform float ViewportX < source = "viewportx"; >;
uniform float ViewportY < source = "viewporty"; >;
uniform float ViewportWidth < source = "viewportwidth"; >;
uniform float ViewportHeight < source = "viewportheight"; >;
uniform float2 ViewportOffset < source = "viewportoffset"; >;
sampler2D sBackBuffer{Texture=ReShade::BackBufferTex;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
texture tOverlay < source = "overlay/psx.jpg"; >
{
Width = BUFFER_WIDTH;
Height = BUFFER_HEIGHT;
MipLevels = 1;
};
sampler sOverlay { Texture = tOverlay; AddressU = BORDER; AddressV = BORDER; MinFilter = LINEAR; MagFilter = LINEAR;};
// Comment the next line to disable interpolation in linear gamma (and
// gain speed).
#define LINEAR_PROCESSING
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
#define OVERSAMPLE
// Use the older, purely gaussian beam profile; uncomment for speed
//#define USEGAUSSIAN
// Macros.
#define FIX(c) max(abs(c), 1e-5);
#define PI 3.141592653589
#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(tex2D(sBackBuffer, (c)), float4(geom_target_gamma,geom_target_gamma,geom_target_gamma,geom_target_gamma))
#else
# define TEX2D(c) tex2D(sBackBuffer, (c))
#endif
// aspect ratio
#define aspect (geom_invert_aspect==true?float2(ViewportHeight/ViewportWidth,1.0):float2(1.0,ViewportHeight/ViewportWidth))
#define overscan (float2(1.01,1.01));
struct ST_VertexOut
{
float2 sinangle : TEXCOORD1;
float2 cosangle : TEXCOORD2;
float3 stretch : TEXCOORD3;
float2 TextureSize : TEXCOORD4;
};
float vs_intersect(float2 xy, float2 sinangle, float2 cosangle)
{
float A = dot(xy,xy) + geom_d*geom_d;
float B = 2.0*(geom_R*(dot(xy,sinangle)-geom_d*cosangle.x*cosangle.y)-geom_d*geom_d);
float C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
float2 vs_bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
{
float c = vs_intersect(xy, sinangle, cosangle);
float2 point = (float2(c, c)*xy - float2(-geom_R, -geom_R)*sinangle) / float2(geom_R, geom_R);
float2 poc = point/cosangle;
float2 tang = sinangle/cosangle;
float A = dot(tang, tang) + 1.0;
float B = -2.0*dot(poc, tang);
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B*B - 4.0*A*C))/(2.0*A);
float2 uv = (point - a*sinangle)/cosangle;
float r = FIX(geom_R*acos(a));
return uv*r/sin(r/geom_R);
}
float2 vs_fwtrans(float2 uv, float2 sinangle, float2 cosangle)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/geom_R)/r;
float x = 1.0-cos(r/geom_R);
float D = geom_d/geom_R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return geom_d*(uv*cosangle-x*sinangle)/D;
}
float3 vs_maxscale(float2 sinangle, float2 cosangle)
{
float2 c = vs_bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
float2 a = float2(0.5,0.5)*aspect;
float2 lo = float2(vs_fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
vs_fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
float2 hi = float2(vs_fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
vs_fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
// Vertex shader generating a triangle covering the entire screen
void VS_CRT_Geom(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out ST_VertexOut vVARS)
{
texcoord.x = (id == 2) ? 2.0 : 0.0;
texcoord.y = (id == 1) ? 2.0 : 0.0;
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
float2 SourceSize = 1.0/NormalizedNativePixelSize;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
vVARS.sinangle = sin(float2(geom_x_tilt, geom_y_tilt));
vVARS.cosangle = cos(float2(geom_x_tilt, geom_y_tilt));
vVARS.stretch = vs_maxscale(vVARS.sinangle, vVARS.cosangle);
vVARS.TextureSize = float2(SourceSize.x, SourceSize.y);
}
float intersect(float2 xy, float2 sinangle, float2 cosangle)
{
float A = dot(xy,xy) + geom_d*geom_d;
float B, C;
B = 2.0*(geom_R*(dot(xy,sinangle) - geom_d*cosangle.x*cosangle.y) - geom_d*geom_d);
C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
}
float2 bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
{
float c = intersect(xy, sinangle, cosangle);
float2 point = (float2(c, c)*xy - float2(-geom_R, -geom_R)*sinangle) / float2(geom_R, geom_R);
float2 poc = point/cosangle;
float2 tang = sinangle/cosangle;
float A = dot(tang, tang) + 1.0;
float B = -2.0*dot(poc, tang);
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A);
float2 uv = (point - a*sinangle) / cosangle;
float r = FIX(geom_R*acos(a));
return uv*r/sin(r/geom_R);
}
float2 fwtrans(float2 uv, float2 sinangle, float2 cosangle)
{
float r = FIX(sqrt(dot(uv, uv)));
uv *= sin(r/geom_R)/r;
float x = 1.0 - cos(r/geom_R);
float D;
D = geom_d/geom_R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
return geom_d*(uv*cosangle - x*sinangle)/D;
}
float3 maxscale(float2 sinangle, float2 cosangle)
{
float2 c = bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
float2 a = float2(0.5, 0.5)*aspect;
float2 lo = float2(fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
float2 hi = float2(fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
}
float2 transform(float2 coord, float2 sinangle, float2 cosangle, float3 stretch)
{
coord = (coord - float2(0.5, 0.5))*aspect*stretch.z + stretch.xy;
return (bkwtrans(coord, sinangle, cosangle) /
float2(geom_overscan_x / 100.0, geom_overscan_y / 100.0)/aspect + float2(0.5, 0.5));
}
float corner(float2 coord)
{
coord = min(coord, float2(1.0, 1.0) - coord) * aspect;
float2 cdist = float2(geom_cornersize, geom_cornersize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*geom_cornersmooth, 0.0, 1.0);
}
float fwidth(float value){
return abs(ddx(value)) + abs(ddy(value));
}
// Code snippet borrowed from crt-cyclon. (credits to DariusG)
float2 Warp(float2 pos)
{
pos = pos*2.0 - 1.0;
pos *= float2(1.0 + pos.y*pos.y*0, 1.0 + pos.x*pos.x*0);
pos = pos*0.5 + 0.5;
return pos;
}
float4 PS_CRT_Geom(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in ST_VertexOut vVARS) : SV_Target
{
// Texture coordinates of the texel containing the active pixel.
float2 xy;
if (geom_curvature == true)
xy = transform(vTexCoord, vVARS.sinangle, vVARS.cosangle, vVARS.stretch);
else
xy = vTexCoord;
// center screen
xy = Warp(xy - float2(centerx,centery)/100.0);
float cval = corner((xy-float2(0.5,0.5)) * BufferToViewportRatio + float2(0.5,0.5));
float2 uv_ratio = frac((xy * vVARS.TextureSize - float2(0.5, 0.5)) / vVARS.TextureSize);
float4 col = TEX2D(xy);
#ifndef LINEAR_PROCESSING
col = pow(col , float4(geom_target_gamma, geom_target_gamma, geom_target_gamma, geom_target_gamma));
#endif
col.rgb *= (geom_lum * step(0.0, uv_ratio.y));
float3 mul_res = col.rgb * float3(cval, cval, cval);
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, float3(1.0 / geom_monitor_gamma, 1.0 / geom_monitor_gamma, 1.0 / geom_monitor_gamma));
float4 overlay = tex2D(sOverlay, vTexCoord);
float2 top_left = (float2(ViewportX, ViewportY) - ViewportOffset)/ViewportSize;
float2 bottom_right = (float2(ViewportX + ViewportWidth, ViewportY + ViewportHeight) - ViewportOffset)/ViewportSize;
if (xy.x < top_left.x || xy.x > bottom_right.x || xy.y < top_left.y || xy.y > bottom_right.y)
mul_res = overlay.rgb;
return float4(mul_res, 1.0);
}
technique CRT_Geom
{
pass
{
VertexShader = VS_CRT_Geom;
PixelShader = PS_CRT_Geom;
}
}