mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			1079 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1079 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								// Copyright (c) 2015-2016 The Khronos Group Inc.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Licensed under the Apache License, Version 2.0 (the "License");
							 | 
						||
| 
								 | 
							
								// you may not use this file except in compliance with the License.
							 | 
						||
| 
								 | 
							
								// You may obtain a copy of the License at
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//     http://www.apache.org/licenses/LICENSE-2.0
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Unless required by applicable law or agreed to in writing, software
							 | 
						||
| 
								 | 
							
								// distributed under the License is distributed on an "AS IS" BASIS,
							 | 
						||
| 
								 | 
							
								// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
							 | 
						||
| 
								 | 
							
								// See the License for the specific language governing permissions and
							 | 
						||
| 
								 | 
							
								// limitations under the License.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
							 | 
						||
| 
								 | 
							
								#define LIBSPIRV_UTIL_HEX_FLOAT_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <cassert>
							 | 
						||
| 
								 | 
							
								#include <cctype>
							 | 
						||
| 
								 | 
							
								#include <cmath>
							 | 
						||
| 
								 | 
							
								#include <cstdint>
							 | 
						||
| 
								 | 
							
								#include <iomanip>
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								#include <sstream>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(_MSC_VER) && _MSC_VER < 1800
							 | 
						||
| 
								 | 
							
								namespace std {
							 | 
						||
| 
								 | 
							
								bool isnan(double f)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return ::_isnan(f) != 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								bool isinf(double f)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  return ::_finite(f) == 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "bitutils.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace spvutils {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class Float16 {
							 | 
						||
| 
								 | 
							
								 public:
							 | 
						||
| 
								 | 
							
								  Float16(uint16_t v) : val(v) {}
							 | 
						||
| 
								 | 
							
								  Float16() {}
							 | 
						||
| 
								 | 
							
								  static bool isNan(const Float16& val) {
							 | 
						||
| 
								 | 
							
								    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  // Returns true if the given value is any kind of infinity.
							 | 
						||
| 
								 | 
							
								  static bool isInfinity(const Float16& val) {
							 | 
						||
| 
								 | 
							
								    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  Float16(const Float16& other) { val = other.val; }
							 | 
						||
| 
								 | 
							
								  uint16_t get_value() const { return val; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the maximum normal value.
							 | 
						||
| 
								 | 
							
								  static Float16 max() { return Float16(0x7bff); }
							 | 
						||
| 
								 | 
							
								  // Returns the lowest normal value.
							 | 
						||
| 
								 | 
							
								  static Float16 lowest() { return Float16(0xfbff); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 private:
							 | 
						||
| 
								 | 
							
								  uint16_t val;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// To specialize this type, you must override uint_type to define
							 | 
						||
| 
								 | 
							
								// an unsigned integer that can fit your floating point type.
							 | 
						||
| 
								 | 
							
								// You must also add a isNan function that returns true if
							 | 
						||
| 
								 | 
							
								// a value is Nan.
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								struct FloatProxyTraits {
							 | 
						||
| 
								 | 
							
								  typedef void uint_type;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								struct FloatProxyTraits<float> {
							 | 
						||
| 
								 | 
							
								  typedef uint32_t uint_type;
							 | 
						||
| 
								 | 
							
								  static bool isNan(float f) { return std::isnan(f); }
							 | 
						||
| 
								 | 
							
								  // Returns true if the given value is any kind of infinity.
							 | 
						||
| 
								 | 
							
								  static bool isInfinity(float f) { return std::isinf(f); }
							 | 
						||
| 
								 | 
							
								  // Returns the maximum normal value.
							 | 
						||
| 
								 | 
							
								  static float max() { return std::numeric_limits<float>::max(); }
							 | 
						||
| 
								 | 
							
								  // Returns the lowest normal value.
							 | 
						||
| 
								 | 
							
								  static float lowest() { return std::numeric_limits<float>::lowest(); }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								struct FloatProxyTraits<double> {
							 | 
						||
| 
								 | 
							
								  typedef uint64_t uint_type;
							 | 
						||
| 
								 | 
							
								  static bool isNan(double f) { return std::isnan(f); }
							 | 
						||
| 
								 | 
							
								  // Returns true if the given value is any kind of infinity.
							 | 
						||
| 
								 | 
							
								  static bool isInfinity(double f) { return std::isinf(f); }
							 | 
						||
| 
								 | 
							
								  // Returns the maximum normal value.
							 | 
						||
| 
								 | 
							
								  static double max() { return std::numeric_limits<double>::max(); }
							 | 
						||
| 
								 | 
							
								  // Returns the lowest normal value.
							 | 
						||
| 
								 | 
							
								  static double lowest() { return std::numeric_limits<double>::lowest(); }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								struct FloatProxyTraits<Float16> {
							 | 
						||
| 
								 | 
							
								  typedef uint16_t uint_type;
							 | 
						||
| 
								 | 
							
								  static bool isNan(Float16 f) { return Float16::isNan(f); }
							 | 
						||
| 
								 | 
							
								  // Returns true if the given value is any kind of infinity.
							 | 
						||
| 
								 | 
							
								  static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
							 | 
						||
| 
								 | 
							
								  // Returns the maximum normal value.
							 | 
						||
| 
								 | 
							
								  static Float16 max() { return Float16::max(); }
							 | 
						||
| 
								 | 
							
								  // Returns the lowest normal value.
							 | 
						||
| 
								 | 
							
								  static Float16 lowest() { return Float16::lowest(); }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Since copying a floating point number (especially if it is NaN)
							 | 
						||
| 
								 | 
							
								// does not guarantee that bits are preserved, this class lets us
							 | 
						||
| 
								 | 
							
								// store the type and use it as a float when necessary.
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								class FloatProxy {
							 | 
						||
| 
								 | 
							
								 public:
							 | 
						||
| 
								 | 
							
								  typedef typename FloatProxyTraits<T>::uint_type uint_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Since this is to act similar to the normal floats,
							 | 
						||
| 
								 | 
							
								  // do not initialize the data by default.
							 | 
						||
| 
								 | 
							
								  FloatProxy() {}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Intentionally non-explicit. This is a proxy type so
							 | 
						||
| 
								 | 
							
								  // implicit conversions allow us to use it more transparently.
							 | 
						||
| 
								 | 
							
								  FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Intentionally non-explicit. This is a proxy type so
							 | 
						||
| 
								 | 
							
								  // implicit conversions allow us to use it more transparently.
							 | 
						||
| 
								 | 
							
								  FloatProxy(uint_type val) { data_ = val; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // This is helpful to have and is guaranteed not to stomp bits.
							 | 
						||
| 
								 | 
							
								  FloatProxy<T> operator-() const {
							 | 
						||
| 
								 | 
							
								    return static_cast<uint_type>(data_ ^
							 | 
						||
| 
								 | 
							
								                                  (uint_type(0x1) << (sizeof(T) * 8 - 1)));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the data as a floating point value.
							 | 
						||
| 
								 | 
							
								  T getAsFloat() const { return BitwiseCast<T>(data_); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the raw data.
							 | 
						||
| 
								 | 
							
								  uint_type data() const { return data_; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns true if the value represents any type of NaN.
							 | 
						||
| 
								 | 
							
								  bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
							 | 
						||
| 
								 | 
							
								  // Returns true if the value represents any type of infinity.
							 | 
						||
| 
								 | 
							
								  bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the maximum normal value.
							 | 
						||
| 
								 | 
							
								  static FloatProxy<T> max() {
							 | 
						||
| 
								 | 
							
								    return FloatProxy<T>(FloatProxyTraits<T>::max());
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  // Returns the lowest normal value.
							 | 
						||
| 
								 | 
							
								  static FloatProxy<T> lowest() {
							 | 
						||
| 
								 | 
							
								    return FloatProxy<T>(FloatProxyTraits<T>::lowest());
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 private:
							 | 
						||
| 
								 | 
							
								  uint_type data_;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
							 | 
						||
| 
								 | 
							
								  return first.data() == second.data();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Reads a FloatProxy value as a normal float from a stream.
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
							 | 
						||
| 
								 | 
							
								  T float_val;
							 | 
						||
| 
								 | 
							
								  is >> float_val;
							 | 
						||
| 
								 | 
							
								  value = FloatProxy<T>(float_val);
							 | 
						||
| 
								 | 
							
								  return is;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// This is an example traits. It is not meant to be used in practice, but will
							 | 
						||
| 
								 | 
							
								// be the default for any non-specialized type.
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								struct HexFloatTraits {
							 | 
						||
| 
								 | 
							
								  // Integer type that can store this hex-float.
							 | 
						||
| 
								 | 
							
								  typedef void uint_type;
							 | 
						||
| 
								 | 
							
								  // Signed integer type that can store this hex-float.
							 | 
						||
| 
								 | 
							
								  typedef void int_type;
							 | 
						||
| 
								 | 
							
								  // The numerical type that this HexFloat represents.
							 | 
						||
| 
								 | 
							
								  typedef void underlying_type;
							 | 
						||
| 
								 | 
							
								  // The type needed to construct the underlying type.
							 | 
						||
| 
								 | 
							
								  typedef void native_type;
							 | 
						||
| 
								 | 
							
								  // The number of bits that are actually relevant in the uint_type.
							 | 
						||
| 
								 | 
							
								  // This allows us to deal with, for example, 24-bit values in a 32-bit
							 | 
						||
| 
								 | 
							
								  // integer.
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_used_bits = 0;
							 | 
						||
| 
								 | 
							
								  // Number of bits that represent the exponent.
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_exponent_bits = 0;
							 | 
						||
| 
								 | 
							
								  // Number of bits that represent the fractional part.
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_fraction_bits = 0;
							 | 
						||
| 
								 | 
							
								  // The bias of the exponent. (How much we need to subtract from the stored
							 | 
						||
| 
								 | 
							
								  // value to get the correct value.)
							 | 
						||
| 
								 | 
							
								  static const uint32_t exponent_bias = 0;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Traits for IEEE float.
							 | 
						||
| 
								 | 
							
								// 1 sign bit, 8 exponent bits, 23 fractional bits.
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								struct HexFloatTraits<FloatProxy<float>> {
							 | 
						||
| 
								 | 
							
								  typedef uint32_t uint_type;
							 | 
						||
| 
								 | 
							
								  typedef int32_t int_type;
							 | 
						||
| 
								 | 
							
								  typedef FloatProxy<float> underlying_type;
							 | 
						||
| 
								 | 
							
								  typedef float native_type;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_used_bits = 32;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_exponent_bits = 8;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_fraction_bits = 23;
							 | 
						||
| 
								 | 
							
								  static const uint_type exponent_bias = 127;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Traits for IEEE double.
							 | 
						||
| 
								 | 
							
								// 1 sign bit, 11 exponent bits, 52 fractional bits.
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								struct HexFloatTraits<FloatProxy<double>> {
							 | 
						||
| 
								 | 
							
								  typedef uint64_t uint_type;
							 | 
						||
| 
								 | 
							
								  typedef int64_t int_type;
							 | 
						||
| 
								 | 
							
								  typedef FloatProxy<double> underlying_type;
							 | 
						||
| 
								 | 
							
								  typedef double native_type;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_used_bits = 64;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_exponent_bits = 11;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_fraction_bits = 52;
							 | 
						||
| 
								 | 
							
								  static const uint_type exponent_bias = 1023;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Traits for IEEE half.
							 | 
						||
| 
								 | 
							
								// 1 sign bit, 5 exponent bits, 10 fractional bits.
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								struct HexFloatTraits<FloatProxy<Float16>> {
							 | 
						||
| 
								 | 
							
								  typedef uint16_t uint_type;
							 | 
						||
| 
								 | 
							
								  typedef int16_t int_type;
							 | 
						||
| 
								 | 
							
								  typedef uint16_t underlying_type;
							 | 
						||
| 
								 | 
							
								  typedef uint16_t native_type;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_used_bits = 16;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_exponent_bits = 5;
							 | 
						||
| 
								 | 
							
								  static const uint_type num_fraction_bits = 10;
							 | 
						||
| 
								 | 
							
								  static const uint_type exponent_bias = 15;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								enum round_direction {
							 | 
						||
| 
								 | 
							
								  kRoundToZero,
							 | 
						||
| 
								 | 
							
								  kRoundToNearestEven,
							 | 
						||
| 
								 | 
							
								  kRoundToPositiveInfinity,
							 | 
						||
| 
								 | 
							
								  kRoundToNegativeInfinity
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Template class that houses a floating pointer number.
							 | 
						||
| 
								 | 
							
								// It exposes a number of constants based on the provided traits to
							 | 
						||
| 
								 | 
							
								// assist in interpreting the bits of the value.
							 | 
						||
| 
								 | 
							
								template <typename T, typename Traits = HexFloatTraits<T>>
							 | 
						||
| 
								 | 
							
								class HexFloat {
							 | 
						||
| 
								 | 
							
								 public:
							 | 
						||
| 
								 | 
							
								  typedef typename Traits::uint_type uint_type;
							 | 
						||
| 
								 | 
							
								  typedef typename Traits::int_type int_type;
							 | 
						||
| 
								 | 
							
								  typedef typename Traits::underlying_type underlying_type;
							 | 
						||
| 
								 | 
							
								  typedef typename Traits::native_type native_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  explicit HexFloat(T f) : value_(f) {}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  T value() const { return value_; }
							 | 
						||
| 
								 | 
							
								  void set_value(T f) { value_ = f; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // These are all written like this because it is convenient to have
							 | 
						||
| 
								 | 
							
								  // compile-time constants for all of these values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Pass-through values to save typing.
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_used_bits = Traits::num_used_bits;
							 | 
						||
| 
								 | 
							
								  static const uint32_t exponent_bias = Traits::exponent_bias;
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Number of bits to shift left to set the highest relevant bit.
							 | 
						||
| 
								 | 
							
								  static const uint32_t top_bit_left_shift = num_used_bits - 1;
							 | 
						||
| 
								 | 
							
								  // How many nibbles (hex characters) the fractional part takes up.
							 | 
						||
| 
								 | 
							
								  static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
							 | 
						||
| 
								 | 
							
								  // If the fractional part does not fit evenly into a hex character (4-bits)
							 | 
						||
| 
								 | 
							
								  // then we have to left-shift to get rid of leading 0s. This is the amount
							 | 
						||
| 
								 | 
							
								  // we have to shift (might be 0).
							 | 
						||
| 
								 | 
							
								  static const uint32_t num_overflow_bits =
							 | 
						||
| 
								 | 
							
								      fraction_nibbles * 4 - num_fraction_bits;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The representation of the fraction, not the actual bits. This
							 | 
						||
| 
								 | 
							
								  // includes the leading bit that is usually implicit.
							 | 
						||
| 
								 | 
							
								  static const uint_type fraction_represent_mask =
							 | 
						||
| 
								 | 
							
								      spvutils::SetBits<uint_type, 0,
							 | 
						||
| 
								 | 
							
								                        num_fraction_bits + num_overflow_bits>::get;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The topmost bit in the nibble-aligned fraction.
							 | 
						||
| 
								 | 
							
								  static const uint_type fraction_top_bit =
							 | 
						||
| 
								 | 
							
								      uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The least significant bit in the exponent, which is also the bit
							 | 
						||
| 
								 | 
							
								  // immediately to the left of the significand.
							 | 
						||
| 
								 | 
							
								  static const uint_type first_exponent_bit = uint_type(1)
							 | 
						||
| 
								 | 
							
								                                              << (num_fraction_bits);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The mask for the encoded fraction. It does not include the
							 | 
						||
| 
								 | 
							
								  // implicit bit.
							 | 
						||
| 
								 | 
							
								  static const uint_type fraction_encode_mask =
							 | 
						||
| 
								 | 
							
								      spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The bit that is used as a sign.
							 | 
						||
| 
								 | 
							
								  static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The bits that represent the exponent.
							 | 
						||
| 
								 | 
							
								  static const uint_type exponent_mask =
							 | 
						||
| 
								 | 
							
								      spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // How far left the exponent is shifted.
							 | 
						||
| 
								 | 
							
								  static const uint32_t exponent_left_shift = num_fraction_bits;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // How far from the right edge the fraction is shifted.
							 | 
						||
| 
								 | 
							
								  static const uint32_t fraction_right_shift =
							 | 
						||
| 
								 | 
							
								      static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // The maximum representable unbiased exponent.
							 | 
						||
| 
								 | 
							
								  static const int_type max_exponent =
							 | 
						||
| 
								 | 
							
								      (exponent_mask >> num_fraction_bits) - exponent_bias;
							 | 
						||
| 
								 | 
							
								  // The minimum representable exponent for normalized numbers.
							 | 
						||
| 
								 | 
							
								  static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the bits associated with the value.
							 | 
						||
| 
								 | 
							
								  uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the bits associated with the value, without the leading sign bit.
							 | 
						||
| 
								 | 
							
								  uint_type getUnsignedBits() const {
							 | 
						||
| 
								 | 
							
								    return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
							 | 
						||
| 
								 | 
							
								                                  ~sign_mask);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the bits associated with the exponent, shifted to start at the
							 | 
						||
| 
								 | 
							
								  // lsb of the type.
							 | 
						||
| 
								 | 
							
								  const uint_type getExponentBits() const {
							 | 
						||
| 
								 | 
							
								    return static_cast<uint_type>((getBits() & exponent_mask) >>
							 | 
						||
| 
								 | 
							
								                                  num_fraction_bits);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the exponent in unbiased form. This is the exponent in the
							 | 
						||
| 
								 | 
							
								  // human-friendly form.
							 | 
						||
| 
								 | 
							
								  const int_type getUnbiasedExponent() const {
							 | 
						||
| 
								 | 
							
								    return static_cast<int_type>(getExponentBits() - exponent_bias);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns just the significand bits from the value.
							 | 
						||
| 
								 | 
							
								  const uint_type getSignificandBits() const {
							 | 
						||
| 
								 | 
							
								    return getBits() & fraction_encode_mask;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // If the number was normalized, returns the unbiased exponent.
							 | 
						||
| 
								 | 
							
								  // If the number was denormal, normalize the exponent first.
							 | 
						||
| 
								 | 
							
								  const int_type getUnbiasedNormalizedExponent() const {
							 | 
						||
| 
								 | 
							
								    if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
							 | 
						||
| 
								 | 
							
								      return 0;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    int_type exp = getUnbiasedExponent();
							 | 
						||
| 
								 | 
							
								    if (exp == min_exponent) {  // We are in denorm land.
							 | 
						||
| 
								 | 
							
								      uint_type significand_bits = getSignificandBits();
							 | 
						||
| 
								 | 
							
								      while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
							 | 
						||
| 
								 | 
							
								        significand_bits = static_cast<uint_type>(significand_bits << 1);
							 | 
						||
| 
								 | 
							
								        exp = static_cast<int_type>(exp - 1);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      significand_bits &= fraction_encode_mask;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return exp;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the signficand after it has been normalized.
							 | 
						||
| 
								 | 
							
								  const uint_type getNormalizedSignificand() const {
							 | 
						||
| 
								 | 
							
								    int_type unbiased_exponent = getUnbiasedNormalizedExponent();
							 | 
						||
| 
								 | 
							
								    uint_type significand = getSignificandBits();
							 | 
						||
| 
								 | 
							
								    for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
							 | 
						||
| 
								 | 
							
								      significand = static_cast<uint_type>(significand << 1);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    significand &= fraction_encode_mask;
							 | 
						||
| 
								 | 
							
								    return significand;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns true if this number represents a negative value.
							 | 
						||
| 
								 | 
							
								  bool isNegative() const { return (getBits() & sign_mask) != 0; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Sets this HexFloat from the individual components.
							 | 
						||
| 
								 | 
							
								  // Note this assumes EVERY significand is normalized, and has an implicit
							 | 
						||
| 
								 | 
							
								  // leading one. This means that the only way that this method will set 0,
							 | 
						||
| 
								 | 
							
								  // is if you set a number so denormalized that it underflows.
							 | 
						||
| 
								 | 
							
								  // Do not use this method with raw bits extracted from a subnormal number,
							 | 
						||
| 
								 | 
							
								  // since subnormals do not have an implicit leading 1 in the significand.
							 | 
						||
| 
								 | 
							
								  // The significand is also expected to be in the
							 | 
						||
| 
								 | 
							
								  // lowest-most num_fraction_bits of the uint_type.
							 | 
						||
| 
								 | 
							
								  // The exponent is expected to be unbiased, meaning an exponent of
							 | 
						||
| 
								 | 
							
								  // 0 actually means 0.
							 | 
						||
| 
								 | 
							
								  // If underflow_round_up is set, then on underflow, if a number is non-0
							 | 
						||
| 
								 | 
							
								  // and would underflow, we round up to the smallest denorm.
							 | 
						||
| 
								 | 
							
								  void setFromSignUnbiasedExponentAndNormalizedSignificand(
							 | 
						||
| 
								 | 
							
								      bool negative, int_type exponent, uint_type significand,
							 | 
						||
| 
								 | 
							
								      bool round_denorm_up) {
							 | 
						||
| 
								 | 
							
								    bool significand_is_zero = significand == 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (exponent <= min_exponent) {
							 | 
						||
| 
								 | 
							
								      // If this was denormalized, then we have to shift the bit on, meaning
							 | 
						||
| 
								 | 
							
								      // the significand is not zero.
							 | 
						||
| 
								 | 
							
								      significand_is_zero = false;
							 | 
						||
| 
								 | 
							
								      significand |= first_exponent_bit;
							 | 
						||
| 
								 | 
							
								      significand = static_cast<uint_type>(significand >> 1);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    while (exponent < min_exponent) {
							 | 
						||
| 
								 | 
							
								      significand = static_cast<uint_type>(significand >> 1);
							 | 
						||
| 
								 | 
							
								      ++exponent;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (exponent == min_exponent) {
							 | 
						||
| 
								 | 
							
								      if (significand == 0 && !significand_is_zero && round_denorm_up) {
							 | 
						||
| 
								 | 
							
								        significand = static_cast<uint_type>(0x1);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    uint_type new_value = 0;
							 | 
						||
| 
								 | 
							
								    if (negative) {
							 | 
						||
| 
								 | 
							
								      new_value = static_cast<uint_type>(new_value | sign_mask);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    exponent = static_cast<int_type>(exponent + exponent_bias);
							 | 
						||
| 
								 | 
							
								    assert(exponent >= 0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // put it all together
							 | 
						||
| 
								 | 
							
								    exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
							 | 
						||
| 
								 | 
							
								                                      exponent_mask);
							 | 
						||
| 
								 | 
							
								    significand = static_cast<uint_type>(significand & fraction_encode_mask);
							 | 
						||
| 
								 | 
							
								    new_value = static_cast<uint_type>(new_value | (exponent | significand));
							 | 
						||
| 
								 | 
							
								    value_ = BitwiseCast<T>(new_value);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Increments the significand of this number by the given amount.
							 | 
						||
| 
								 | 
							
								  // If this would spill the significand into the implicit bit,
							 | 
						||
| 
								 | 
							
								  // carry is set to true and the significand is shifted to fit into
							 | 
						||
| 
								 | 
							
								  // the correct location, otherwise carry is set to false.
							 | 
						||
| 
								 | 
							
								  // All significands and to_increment are assumed to be within the bounds
							 | 
						||
| 
								 | 
							
								  // for a valid significand.
							 | 
						||
| 
								 | 
							
								  static uint_type incrementSignificand(uint_type significand,
							 | 
						||
| 
								 | 
							
								                                        uint_type to_increment, bool* carry) {
							 | 
						||
| 
								 | 
							
								    significand = static_cast<uint_type>(significand + to_increment);
							 | 
						||
| 
								 | 
							
								    *carry = false;
							 | 
						||
| 
								 | 
							
								    if (significand & first_exponent_bit) {
							 | 
						||
| 
								 | 
							
								      *carry = true;
							 | 
						||
| 
								 | 
							
								      // The implicit 1-bit will have carried, so we should zero-out the
							 | 
						||
| 
								 | 
							
								      // top bit and shift back.
							 | 
						||
| 
								 | 
							
								      significand = static_cast<uint_type>(significand & ~first_exponent_bit);
							 | 
						||
| 
								 | 
							
								      significand = static_cast<uint_type>(significand >> 1);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return significand;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // These exist because MSVC throws warnings on negative right-shifts
							 | 
						||
| 
								 | 
							
								  // even if they are not going to be executed. Eg:
							 | 
						||
| 
								 | 
							
								  // constant_number < 0? 0: constant_number
							 | 
						||
| 
								 | 
							
								  // These convert the negative left-shifts into right shifts.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <typename int_type>
							 | 
						||
| 
								 | 
							
								  uint_type negatable_left_shift(int_type N, uint_type val)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    if(N >= 0)
							 | 
						||
| 
								 | 
							
								      return val << N;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return val >> -N;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <typename int_type>
							 | 
						||
| 
								 | 
							
								  uint_type negatable_right_shift(int_type N, uint_type val)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    if(N >= 0)
							 | 
						||
| 
								 | 
							
								      return val >> N;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return val << -N;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the significand, rounded to fit in a significand in
							 | 
						||
| 
								 | 
							
								  // other_T. This is shifted so that the most significant
							 | 
						||
| 
								 | 
							
								  // bit of the rounded number lines up with the most significant bit
							 | 
						||
| 
								 | 
							
								  // of the returned significand.
							 | 
						||
| 
								 | 
							
								  template <typename other_T>
							 | 
						||
| 
								 | 
							
								  typename other_T::uint_type getRoundedNormalizedSignificand(
							 | 
						||
| 
								 | 
							
								      round_direction dir, bool* carry_bit) {
							 | 
						||
| 
								 | 
							
								    typedef typename other_T::uint_type other_uint_type;
							 | 
						||
| 
								 | 
							
								    static const int_type num_throwaway_bits =
							 | 
						||
| 
								 | 
							
								        static_cast<int_type>(num_fraction_bits) -
							 | 
						||
| 
								 | 
							
								        static_cast<int_type>(other_T::num_fraction_bits);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    static const uint_type last_significant_bit =
							 | 
						||
| 
								 | 
							
								        (num_throwaway_bits < 0)
							 | 
						||
| 
								 | 
							
								            ? 0
							 | 
						||
| 
								 | 
							
								            : negatable_left_shift(num_throwaway_bits, 1u);
							 | 
						||
| 
								 | 
							
								    static const uint_type first_rounded_bit =
							 | 
						||
| 
								 | 
							
								        (num_throwaway_bits < 1)
							 | 
						||
| 
								 | 
							
								            ? 0
							 | 
						||
| 
								 | 
							
								            : negatable_left_shift(num_throwaway_bits - 1, 1u);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    static const uint_type throwaway_mask_bits =
							 | 
						||
| 
								 | 
							
								        num_throwaway_bits > 0 ? num_throwaway_bits : 0;
							 | 
						||
| 
								 | 
							
								    static const uint_type throwaway_mask =
							 | 
						||
| 
								 | 
							
								        spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    *carry_bit = false;
							 | 
						||
| 
								 | 
							
								    other_uint_type out_val = 0;
							 | 
						||
| 
								 | 
							
								    uint_type significand = getNormalizedSignificand();
							 | 
						||
| 
								 | 
							
								    // If we are up-casting, then we just have to shift to the right location.
							 | 
						||
| 
								 | 
							
								    if (num_throwaway_bits <= 0) {
							 | 
						||
| 
								 | 
							
								      out_val = static_cast<other_uint_type>(significand);
							 | 
						||
| 
								 | 
							
								      uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
							 | 
						||
| 
								 | 
							
								      out_val = static_cast<other_uint_type>(out_val << shift_amount);
							 | 
						||
| 
								 | 
							
								      return out_val;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // If every non-representable bit is 0, then we don't have any casting to
							 | 
						||
| 
								 | 
							
								    // do.
							 | 
						||
| 
								 | 
							
								    if ((significand & throwaway_mask) == 0) {
							 | 
						||
| 
								 | 
							
								      return static_cast<other_uint_type>(
							 | 
						||
| 
								 | 
							
								          negatable_right_shift(num_throwaway_bits, significand));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    bool round_away_from_zero = false;
							 | 
						||
| 
								 | 
							
								    // We actually have to narrow the significand here, so we have to follow the
							 | 
						||
| 
								 | 
							
								    // rounding rules.
							 | 
						||
| 
								 | 
							
								    switch (dir) {
							 | 
						||
| 
								 | 
							
								      case kRoundToZero:
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      case kRoundToPositiveInfinity:
							 | 
						||
| 
								 | 
							
								        round_away_from_zero = !isNegative();
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      case kRoundToNegativeInfinity:
							 | 
						||
| 
								 | 
							
								        round_away_from_zero = isNegative();
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      case kRoundToNearestEven:
							 | 
						||
| 
								 | 
							
								        // Have to round down, round bit is 0
							 | 
						||
| 
								 | 
							
								        if ((first_rounded_bit & significand) == 0) {
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
							 | 
						||
| 
								 | 
							
								          // If any subsequent bit of the rounded portion is non-0 then we round
							 | 
						||
| 
								 | 
							
								          // up.
							 | 
						||
| 
								 | 
							
								          round_away_from_zero = true;
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        // We are exactly half-way between 2 numbers, pick even.
							 | 
						||
| 
								 | 
							
								        if ((significand & last_significant_bit) != 0) {
							 | 
						||
| 
								 | 
							
								          // 1 for our last bit, round up.
							 | 
						||
| 
								 | 
							
								          round_away_from_zero = true;
							 | 
						||
| 
								 | 
							
								          break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (round_away_from_zero) {
							 | 
						||
| 
								 | 
							
								      return static_cast<other_uint_type>(
							 | 
						||
| 
								 | 
							
								          negatable_right_shift(num_throwaway_bits, incrementSignificand(
							 | 
						||
| 
								 | 
							
								              significand, last_significant_bit, carry_bit)));
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      return static_cast<other_uint_type>(
							 | 
						||
| 
								 | 
							
								          negatable_right_shift(num_throwaway_bits, significand));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Casts this value to another HexFloat. If the cast is widening,
							 | 
						||
| 
								 | 
							
								  // then round_dir is ignored. If the cast is narrowing, then
							 | 
						||
| 
								 | 
							
								  // the result is rounded in the direction specified.
							 | 
						||
| 
								 | 
							
								  // This number will retain Nan and Inf values.
							 | 
						||
| 
								 | 
							
								  // It will also saturate to Inf if the number overflows, and
							 | 
						||
| 
								 | 
							
								  // underflow to (0 or min depending on rounding) if the number underflows.
							 | 
						||
| 
								 | 
							
								  template <typename other_T>
							 | 
						||
| 
								 | 
							
								  void castTo(other_T& other, round_direction round_dir) {
							 | 
						||
| 
								 | 
							
								    other = other_T(static_cast<typename other_T::native_type>(0));
							 | 
						||
| 
								 | 
							
								    bool negate = isNegative();
							 | 
						||
| 
								 | 
							
								    if (getUnsignedBits() == 0) {
							 | 
						||
| 
								 | 
							
								      if (negate) {
							 | 
						||
| 
								 | 
							
								        other.set_value(-other.value());
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    uint_type significand = getSignificandBits();
							 | 
						||
| 
								 | 
							
								    bool carried = false;
							 | 
						||
| 
								 | 
							
								    typename other_T::uint_type rounded_significand =
							 | 
						||
| 
								 | 
							
								        getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int_type exponent = getUnbiasedExponent();
							 | 
						||
| 
								 | 
							
								    if (exponent == min_exponent) {
							 | 
						||
| 
								 | 
							
								      // If we are denormal, normalize the exponent, so that we can encode
							 | 
						||
| 
								 | 
							
								      // easily.
							 | 
						||
| 
								 | 
							
								      exponent = static_cast<int_type>(exponent + 1);
							 | 
						||
| 
								 | 
							
								      for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
							 | 
						||
| 
								 | 
							
								           check_bit = static_cast<uint_type>(check_bit >> 1)) {
							 | 
						||
| 
								 | 
							
								        exponent = static_cast<int_type>(exponent - 1);
							 | 
						||
| 
								 | 
							
								        if (check_bit & significand) break;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    bool is_nan =
							 | 
						||
| 
								 | 
							
								        (getBits() & exponent_mask) == exponent_mask && significand != 0;
							 | 
						||
| 
								 | 
							
								    bool is_inf =
							 | 
						||
| 
								 | 
							
								        !is_nan &&
							 | 
						||
| 
								 | 
							
								        ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
							 | 
						||
| 
								 | 
							
								         (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // If we are Nan or Inf we should pass that through.
							 | 
						||
| 
								 | 
							
								    if (is_inf) {
							 | 
						||
| 
								 | 
							
								      other.set_value(BitwiseCast<typename other_T::underlying_type>(
							 | 
						||
| 
								 | 
							
								          static_cast<typename other_T::uint_type>(
							 | 
						||
| 
								 | 
							
								              (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (is_nan) {
							 | 
						||
| 
								 | 
							
								      typename other_T::uint_type shifted_significand;
							 | 
						||
| 
								 | 
							
								      shifted_significand = static_cast<typename other_T::uint_type>(
							 | 
						||
| 
								 | 
							
								          negatable_left_shift(
							 | 
						||
| 
								 | 
							
								              static_cast<int_type>(other_T::num_fraction_bits) -
							 | 
						||
| 
								 | 
							
								              static_cast<int_type>(num_fraction_bits), significand));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // We are some sort of Nan. We try to keep the bit-pattern of the Nan
							 | 
						||
| 
								 | 
							
								      // as close as possible. If we had to shift off bits so we are 0, then we
							 | 
						||
| 
								 | 
							
								      // just set the last bit.
							 | 
						||
| 
								 | 
							
								      other.set_value(BitwiseCast<typename other_T::underlying_type>(
							 | 
						||
| 
								 | 
							
								          static_cast<typename other_T::uint_type>(
							 | 
						||
| 
								 | 
							
								              (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
							 | 
						||
| 
								 | 
							
								              (shifted_significand == 0 ? 0x1 : shifted_significand))));
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    bool round_underflow_up =
							 | 
						||
| 
								 | 
							
								        isNegative() ? round_dir == kRoundToNegativeInfinity
							 | 
						||
| 
								 | 
							
								                     : round_dir == kRoundToPositiveInfinity;
							 | 
						||
| 
								 | 
							
								    typedef typename other_T::int_type other_int_type;
							 | 
						||
| 
								 | 
							
								    // setFromSignUnbiasedExponentAndNormalizedSignificand will
							 | 
						||
| 
								 | 
							
								    // zero out any underflowing value (but retain the sign).
							 | 
						||
| 
								 | 
							
								    other.setFromSignUnbiasedExponentAndNormalizedSignificand(
							 | 
						||
| 
								 | 
							
								        negate, static_cast<other_int_type>(exponent), rounded_significand,
							 | 
						||
| 
								 | 
							
								        round_underflow_up);
							 | 
						||
| 
								 | 
							
								    return;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 private:
							 | 
						||
| 
								 | 
							
								  T value_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  static_assert(num_used_bits ==
							 | 
						||
| 
								 | 
							
								                    Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
							 | 
						||
| 
								 | 
							
								                "The number of bits do not fit");
							 | 
						||
| 
								 | 
							
								  static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns 4 bits represented by the hex character.
							 | 
						||
| 
								 | 
							
								inline uint8_t get_nibble_from_character(int character) {
							 | 
						||
| 
								 | 
							
								  const char* dec = "0123456789";
							 | 
						||
| 
								 | 
							
								  const char* lower = "abcdef";
							 | 
						||
| 
								 | 
							
								  const char* upper = "ABCDEF";
							 | 
						||
| 
								 | 
							
								  const char* p = nullptr;
							 | 
						||
| 
								 | 
							
								  if ((p = strchr(dec, character))) {
							 | 
						||
| 
								 | 
							
								    return static_cast<uint8_t>(p - dec);
							 | 
						||
| 
								 | 
							
								  } else if ((p = strchr(lower, character))) {
							 | 
						||
| 
								 | 
							
								    return static_cast<uint8_t>(p - lower + 0xa);
							 | 
						||
| 
								 | 
							
								  } else if ((p = strchr(upper, character))) {
							 | 
						||
| 
								 | 
							
								    return static_cast<uint8_t>(p - upper + 0xa);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  assert(false && "This was called with a non-hex character");
							 | 
						||
| 
								 | 
							
								  return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Outputs the given HexFloat to the stream.
							 | 
						||
| 
								 | 
							
								template <typename T, typename Traits>
							 | 
						||
| 
								 | 
							
								std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
							 | 
						||
| 
								 | 
							
								  typedef HexFloat<T, Traits> HF;
							 | 
						||
| 
								 | 
							
								  typedef typename HF::uint_type uint_type;
							 | 
						||
| 
								 | 
							
								  typedef typename HF::int_type int_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  static_assert(HF::num_used_bits != 0,
							 | 
						||
| 
								 | 
							
								                "num_used_bits must be non-zero for a valid float");
							 | 
						||
| 
								 | 
							
								  static_assert(HF::num_exponent_bits != 0,
							 | 
						||
| 
								 | 
							
								                "num_exponent_bits must be non-zero for a valid float");
							 | 
						||
| 
								 | 
							
								  static_assert(HF::num_fraction_bits != 0,
							 | 
						||
| 
								 | 
							
								                "num_fractin_bits must be non-zero for a valid float");
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
							 | 
						||
| 
								 | 
							
								  const char* const sign = (bits & HF::sign_mask) ? "-" : "";
							 | 
						||
| 
								 | 
							
								  const uint_type exponent = static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								      (bits & HF::exponent_mask) >> HF::num_fraction_bits);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
							 | 
						||
| 
								 | 
							
								                                              << HF::num_overflow_bits);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  const bool is_zero = exponent == 0 && fraction == 0;
							 | 
						||
| 
								 | 
							
								  const bool is_denorm = exponent == 0 && !is_zero;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // exponent contains the biased exponent we have to convert it back into
							 | 
						||
| 
								 | 
							
								  // the normal range.
							 | 
						||
| 
								 | 
							
								  int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
							 | 
						||
| 
								 | 
							
								  // If the number is all zeros, then we actually have to NOT shift the
							 | 
						||
| 
								 | 
							
								  // exponent.
							 | 
						||
| 
								 | 
							
								  int_exponent = is_zero ? 0 : int_exponent;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // If we are denorm, then start shifting, and decreasing the exponent until
							 | 
						||
| 
								 | 
							
								  // our leading bit is 1.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (is_denorm) {
							 | 
						||
| 
								 | 
							
								    while ((fraction & HF::fraction_top_bit) == 0) {
							 | 
						||
| 
								 | 
							
								      fraction = static_cast<uint_type>(fraction << 1);
							 | 
						||
| 
								 | 
							
								      int_exponent = static_cast<int_type>(int_exponent - 1);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    // Since this is denormalized, we have to consume the leading 1 since it
							 | 
						||
| 
								 | 
							
								    // will end up being implicit.
							 | 
						||
| 
								 | 
							
								    fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
							 | 
						||
| 
								 | 
							
								    fraction &= HF::fraction_represent_mask;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  uint_type fraction_nibbles = HF::fraction_nibbles;
							 | 
						||
| 
								 | 
							
								  // We do not have to display any trailing 0s, since this represents the
							 | 
						||
| 
								 | 
							
								  // fractional part.
							 | 
						||
| 
								 | 
							
								  while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
							 | 
						||
| 
								 | 
							
								    // Shift off any trailing values;
							 | 
						||
| 
								 | 
							
								    fraction = static_cast<uint_type>(fraction >> 4);
							 | 
						||
| 
								 | 
							
								    --fraction_nibbles;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  const auto saved_flags = os.flags();
							 | 
						||
| 
								 | 
							
								  const auto saved_fill = os.fill();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  os << sign << "0x" << (is_zero ? '0' : '1');
							 | 
						||
| 
								 | 
							
								  if (fraction_nibbles) {
							 | 
						||
| 
								 | 
							
								    // Make sure to keep the leading 0s in place, since this is the fractional
							 | 
						||
| 
								 | 
							
								    // part.
							 | 
						||
| 
								 | 
							
								    os << "." << std::setw(static_cast<int>(fraction_nibbles))
							 | 
						||
| 
								 | 
							
								       << std::setfill('0') << std::hex << fraction;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  os.flags(saved_flags);
							 | 
						||
| 
								 | 
							
								  os.fill(saved_fill);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return os;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Returns true if negate_value is true and the next character on the
							 | 
						||
| 
								 | 
							
								// input stream is a plus or minus sign.  In that case we also set the fail bit
							 | 
						||
| 
								 | 
							
								// on the stream and set the value to the zero value for its type.
							 | 
						||
| 
								 | 
							
								template <typename T, typename Traits>
							 | 
						||
| 
								 | 
							
								inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
							 | 
						||
| 
								 | 
							
								                                        HexFloat<T, Traits>& value) {
							 | 
						||
| 
								 | 
							
								  if (negate_value) {
							 | 
						||
| 
								 | 
							
								    auto next_char = is.peek();
							 | 
						||
| 
								 | 
							
								    if (next_char == '-' || next_char == '+') {
							 | 
						||
| 
								 | 
							
								      // Fail the parse.  Emulate standard behaviour by setting the value to
							 | 
						||
| 
								 | 
							
								      // the zero value, and set the fail bit on the stream.
							 | 
						||
| 
								 | 
							
								      value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
							 | 
						||
| 
								 | 
							
								      is.setstate(std::ios_base::failbit);
							 | 
						||
| 
								 | 
							
								      return true;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Parses a floating point number from the given stream and stores it into the
							 | 
						||
| 
								 | 
							
								// value parameter.
							 | 
						||
| 
								 | 
							
								// If negate_value is true then the number may not have a leading minus or
							 | 
						||
| 
								 | 
							
								// plus, and if it successfully parses, then the number is negated before
							 | 
						||
| 
								 | 
							
								// being stored into the value parameter.
							 | 
						||
| 
								 | 
							
								// If the value cannot be correctly parsed or overflows the target floating
							 | 
						||
| 
								 | 
							
								// point type, then set the fail bit on the stream.
							 | 
						||
| 
								 | 
							
								// TODO(dneto): Promise C++11 standard behavior in how the value is set in
							 | 
						||
| 
								 | 
							
								// the error case, but only after all target platforms implement it correctly.
							 | 
						||
| 
								 | 
							
								// In particular, the Microsoft C++ runtime appears to be out of spec.
							 | 
						||
| 
								 | 
							
								template <typename T, typename Traits>
							 | 
						||
| 
								 | 
							
								inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
							 | 
						||
| 
								 | 
							
								                                      HexFloat<T, Traits>& value) {
							 | 
						||
| 
								 | 
							
								  if (RejectParseDueToLeadingSign(is, negate_value, value)) {
							 | 
						||
| 
								 | 
							
								    return is;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  T val;
							 | 
						||
| 
								 | 
							
								  is >> val;
							 | 
						||
| 
								 | 
							
								  if (negate_value) {
							 | 
						||
| 
								 | 
							
								    val = -val;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  value.set_value(val);
							 | 
						||
| 
								 | 
							
								  // In the failure case, map -0.0 to 0.0.
							 | 
						||
| 
								 | 
							
								  if (is.fail() && value.getUnsignedBits() == 0u) {
							 | 
						||
| 
								 | 
							
								    value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  if (val.isInfinity()) {
							 | 
						||
| 
								 | 
							
								    // Fail the parse.  Emulate standard behaviour by setting the value to
							 | 
						||
| 
								 | 
							
								    // the closest normal value, and set the fail bit on the stream.
							 | 
						||
| 
								 | 
							
								    value.set_value((value.isNegative() || negate_value) ? T::lowest()
							 | 
						||
| 
								 | 
							
								                                                         : T::max());
							 | 
						||
| 
								 | 
							
								    is.setstate(std::ios_base::failbit);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return is;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
							 | 
						||
| 
								 | 
							
								// This will parse the float as it were a 32-bit floating point number,
							 | 
						||
| 
								 | 
							
								// and then round it down to fit into a Float16 value.
							 | 
						||
| 
								 | 
							
								// The number is rounded towards zero.
							 | 
						||
| 
								 | 
							
								// If negate_value is true then the number may not have a leading minus or
							 | 
						||
| 
								 | 
							
								// plus, and if it successfully parses, then the number is negated before
							 | 
						||
| 
								 | 
							
								// being stored into the value parameter.
							 | 
						||
| 
								 | 
							
								// If the value cannot be correctly parsed or overflows the target floating
							 | 
						||
| 
								 | 
							
								// point type, then set the fail bit on the stream.
							 | 
						||
| 
								 | 
							
								// TODO(dneto): Promise C++11 standard behavior in how the value is set in
							 | 
						||
| 
								 | 
							
								// the error case, but only after all target platforms implement it correctly.
							 | 
						||
| 
								 | 
							
								// In particular, the Microsoft C++ runtime appears to be out of spec.
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								inline std::istream&
							 | 
						||
| 
								 | 
							
								ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
							 | 
						||
| 
								 | 
							
								    std::istream& is, bool negate_value,
							 | 
						||
| 
								 | 
							
								    HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
							 | 
						||
| 
								 | 
							
								  // First parse as a 32-bit float.
							 | 
						||
| 
								 | 
							
								  HexFloat<FloatProxy<float>> float_val(0.0f);
							 | 
						||
| 
								 | 
							
								  ParseNormalFloat(is, negate_value, float_val);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Then convert to 16-bit float, saturating at infinities, and
							 | 
						||
| 
								 | 
							
								  // rounding toward zero.
							 | 
						||
| 
								 | 
							
								  float_val.castTo(value, kRoundToZero);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
							 | 
						||
| 
								 | 
							
								  // fail bit and set the lowest or highest value.
							 | 
						||
| 
								 | 
							
								  if (Float16::isInfinity(value.value().getAsFloat())) {
							 | 
						||
| 
								 | 
							
								    value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
							 | 
						||
| 
								 | 
							
								    is.setstate(std::ios_base::failbit);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return is;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Reads a HexFloat from the given stream.
							 | 
						||
| 
								 | 
							
								// If the float is not encoded as a hex-float then it will be parsed
							 | 
						||
| 
								 | 
							
								// as a regular float.
							 | 
						||
| 
								 | 
							
								// This may fail if your stream does not support at least one unget.
							 | 
						||
| 
								 | 
							
								// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
							 | 
						||
| 
								 | 
							
								// This would normally overflow a float and round to
							 | 
						||
| 
								 | 
							
								// infinity but this special pattern is the exact representation for a NaN,
							 | 
						||
| 
								 | 
							
								// and therefore is actually encoded as the correct NaN. To encode inf,
							 | 
						||
| 
								 | 
							
								// either 0x0p+exponent_bias can be specified or any exponent greater than
							 | 
						||
| 
								 | 
							
								// exponent_bias.
							 | 
						||
| 
								 | 
							
								// Examples using IEEE 32-bit float encoding.
							 | 
						||
| 
								 | 
							
								//    0x1.0p+128 (+inf)
							 | 
						||
| 
								 | 
							
								//    -0x1.0p-128 (-inf)
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//    0x1.1p+128 (+Nan)
							 | 
						||
| 
								 | 
							
								//    -0x1.1p+128 (-Nan)
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//    0x1p+129 (+inf)
							 | 
						||
| 
								 | 
							
								//    -0x1p+129 (-inf)
							 | 
						||
| 
								 | 
							
								template <typename T, typename Traits>
							 | 
						||
| 
								 | 
							
								std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
							 | 
						||
| 
								 | 
							
								  using HF = HexFloat<T, Traits>;
							 | 
						||
| 
								 | 
							
								  using uint_type = typename HF::uint_type;
							 | 
						||
| 
								 | 
							
								  using int_type = typename HF::int_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  value.set_value(static_cast<typename HF::native_type>(0.f));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (is.flags() & std::ios::skipws) {
							 | 
						||
| 
								 | 
							
								    // If the user wants to skip whitespace , then we should obey that.
							 | 
						||
| 
								 | 
							
								    while (std::isspace(is.peek())) {
							 | 
						||
| 
								 | 
							
								      is.get();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  auto next_char = is.peek();
							 | 
						||
| 
								 | 
							
								  bool negate_value = false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (next_char != '-' && next_char != '0') {
							 | 
						||
| 
								 | 
							
								    return ParseNormalFloat(is, negate_value, value);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (next_char == '-') {
							 | 
						||
| 
								 | 
							
								    negate_value = true;
							 | 
						||
| 
								 | 
							
								    is.get();
							 | 
						||
| 
								 | 
							
								    next_char = is.peek();
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (next_char == '0') {
							 | 
						||
| 
								 | 
							
								    is.get();  // We may have to unget this.
							 | 
						||
| 
								 | 
							
								    auto maybe_hex_start = is.peek();
							 | 
						||
| 
								 | 
							
								    if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
							 | 
						||
| 
								 | 
							
								      is.unget();
							 | 
						||
| 
								 | 
							
								      return ParseNormalFloat(is, negate_value, value);
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      is.get();  // Throw away the 'x';
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    return ParseNormalFloat(is, negate_value, value);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // This "looks" like a hex-float so treat it as one.
							 | 
						||
| 
								 | 
							
								  bool seen_p = false;
							 | 
						||
| 
								 | 
							
								  bool seen_dot = false;
							 | 
						||
| 
								 | 
							
								  uint_type fraction_index = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  uint_type fraction = 0;
							 | 
						||
| 
								 | 
							
								  int_type exponent = HF::exponent_bias;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Strip off leading zeros so we don't have to special-case them later.
							 | 
						||
| 
								 | 
							
								  while ((next_char = is.peek()) == '0') {
							 | 
						||
| 
								 | 
							
								    is.get();
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  bool is_denorm =
							 | 
						||
| 
								 | 
							
								      true;  // Assume denorm "representation" until we hear otherwise.
							 | 
						||
| 
								 | 
							
								             // NB: This does not mean the value is actually denorm,
							 | 
						||
| 
								 | 
							
								             // it just means that it was written 0.
							 | 
						||
| 
								 | 
							
								  bool bits_written = false;  // Stays false until we write a bit.
							 | 
						||
| 
								 | 
							
								  while (!seen_p && !seen_dot) {
							 | 
						||
| 
								 | 
							
								    // Handle characters that are left of the fractional part.
							 | 
						||
| 
								 | 
							
								    if (next_char == '.') {
							 | 
						||
| 
								 | 
							
								      seen_dot = true;
							 | 
						||
| 
								 | 
							
								    } else if (next_char == 'p') {
							 | 
						||
| 
								 | 
							
								      seen_p = true;
							 | 
						||
| 
								 | 
							
								    } else if (::isxdigit(next_char)) {
							 | 
						||
| 
								 | 
							
								      // We know this is not denormalized since we have stripped all leading
							 | 
						||
| 
								 | 
							
								      // zeroes and we are not a ".".
							 | 
						||
| 
								 | 
							
								      is_denorm = false;
							 | 
						||
| 
								 | 
							
								      int number = get_nibble_from_character(next_char);
							 | 
						||
| 
								 | 
							
								      for (int i = 0; i < 4; ++i, number <<= 1) {
							 | 
						||
| 
								 | 
							
								        uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
							 | 
						||
| 
								 | 
							
								        if (bits_written) {
							 | 
						||
| 
								 | 
							
								          // If we are here the bits represented belong in the fractional
							 | 
						||
| 
								 | 
							
								          // part of the float, and we have to adjust the exponent accordingly.
							 | 
						||
| 
								 | 
							
								          fraction = static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								              fraction |
							 | 
						||
| 
								 | 
							
								              static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								                  write_bit << (HF::top_bit_left_shift - fraction_index++)));
							 | 
						||
| 
								 | 
							
								          exponent = static_cast<int_type>(exponent + 1);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        bits_written |= write_bit != 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      // We have not found our exponent yet, so we have to fail.
							 | 
						||
| 
								 | 
							
								      is.setstate(std::ios::failbit);
							 | 
						||
| 
								 | 
							
								      return is;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    is.get();
							 | 
						||
| 
								 | 
							
								    next_char = is.peek();
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  bits_written = false;
							 | 
						||
| 
								 | 
							
								  while (seen_dot && !seen_p) {
							 | 
						||
| 
								 | 
							
								    // Handle only fractional parts now.
							 | 
						||
| 
								 | 
							
								    if (next_char == 'p') {
							 | 
						||
| 
								 | 
							
								      seen_p = true;
							 | 
						||
| 
								 | 
							
								    } else if (::isxdigit(next_char)) {
							 | 
						||
| 
								 | 
							
								      int number = get_nibble_from_character(next_char);
							 | 
						||
| 
								 | 
							
								      for (int i = 0; i < 4; ++i, number <<= 1) {
							 | 
						||
| 
								 | 
							
								        uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
							 | 
						||
| 
								 | 
							
								        bits_written |= write_bit != 0;
							 | 
						||
| 
								 | 
							
								        if (is_denorm && !bits_written) {
							 | 
						||
| 
								 | 
							
								          // Handle modifying the exponent here this way we can handle
							 | 
						||
| 
								 | 
							
								          // an arbitrary number of hex values without overflowing our
							 | 
						||
| 
								 | 
							
								          // integer.
							 | 
						||
| 
								 | 
							
								          exponent = static_cast<int_type>(exponent - 1);
							 | 
						||
| 
								 | 
							
								        } else {
							 | 
						||
| 
								 | 
							
								          fraction = static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								              fraction |
							 | 
						||
| 
								 | 
							
								              static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								                  write_bit << (HF::top_bit_left_shift - fraction_index++)));
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      // We still have not found our 'p' exponent yet, so this is not a valid
							 | 
						||
| 
								 | 
							
								      // hex-float.
							 | 
						||
| 
								 | 
							
								      is.setstate(std::ios::failbit);
							 | 
						||
| 
								 | 
							
								      return is;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    is.get();
							 | 
						||
| 
								 | 
							
								    next_char = is.peek();
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  bool seen_sign = false;
							 | 
						||
| 
								 | 
							
								  int8_t exponent_sign = 1;
							 | 
						||
| 
								 | 
							
								  int_type written_exponent = 0;
							 | 
						||
| 
								 | 
							
								  while (true) {
							 | 
						||
| 
								 | 
							
								    if ((next_char == '-' || next_char == '+')) {
							 | 
						||
| 
								 | 
							
								      if (seen_sign) {
							 | 
						||
| 
								 | 
							
								        is.setstate(std::ios::failbit);
							 | 
						||
| 
								 | 
							
								        return is;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      seen_sign = true;
							 | 
						||
| 
								 | 
							
								      exponent_sign = (next_char == '-') ? -1 : 1;
							 | 
						||
| 
								 | 
							
								    } else if (::isdigit(next_char)) {
							 | 
						||
| 
								 | 
							
								      // Hex-floats express their exponent as decimal.
							 | 
						||
| 
								 | 
							
								      written_exponent = static_cast<int_type>(written_exponent * 10);
							 | 
						||
| 
								 | 
							
								      written_exponent =
							 | 
						||
| 
								 | 
							
								          static_cast<int_type>(written_exponent + (next_char - '0'));
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      break;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    is.get();
							 | 
						||
| 
								 | 
							
								    next_char = is.peek();
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
							 | 
						||
| 
								 | 
							
								  exponent = static_cast<int_type>(exponent + written_exponent);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  bool is_zero = is_denorm && (fraction == 0);
							 | 
						||
| 
								 | 
							
								  if (is_denorm && !is_zero) {
							 | 
						||
| 
								 | 
							
								    fraction = static_cast<uint_type>(fraction << 1);
							 | 
						||
| 
								 | 
							
								    exponent = static_cast<int_type>(exponent - 1);
							 | 
						||
| 
								 | 
							
								  } else if (is_zero) {
							 | 
						||
| 
								 | 
							
								    exponent = 0;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (exponent <= 0 && !is_zero) {
							 | 
						||
| 
								 | 
							
								    fraction = static_cast<uint_type>(fraction >> 1);
							 | 
						||
| 
								 | 
							
								    fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  const int_type max_exponent =
							 | 
						||
| 
								 | 
							
								      SetBits<uint_type, 0, HF::num_exponent_bits>::get;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Handle actual denorm numbers
							 | 
						||
| 
								 | 
							
								  while (exponent < 0 && !is_zero) {
							 | 
						||
| 
								 | 
							
								    fraction = static_cast<uint_type>(fraction >> 1);
							 | 
						||
| 
								 | 
							
								    exponent = static_cast<int_type>(exponent + 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    fraction &= HF::fraction_encode_mask;
							 | 
						||
| 
								 | 
							
								    if (fraction == 0) {
							 | 
						||
| 
								 | 
							
								      // We have underflowed our fraction. We should clamp to zero.
							 | 
						||
| 
								 | 
							
								      is_zero = true;
							 | 
						||
| 
								 | 
							
								      exponent = 0;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // We have overflowed so we should be inf/-inf.
							 | 
						||
| 
								 | 
							
								  if (exponent > max_exponent) {
							 | 
						||
| 
								 | 
							
								    exponent = max_exponent;
							 | 
						||
| 
								 | 
							
								    fraction = 0;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  uint_type output_bits = static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								      static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
							 | 
						||
| 
								 | 
							
								  output_bits |= fraction;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  uint_type shifted_exponent = static_cast<uint_type>(
							 | 
						||
| 
								 | 
							
								      static_cast<uint_type>(exponent << HF::exponent_left_shift) &
							 | 
						||
| 
								 | 
							
								      HF::exponent_mask);
							 | 
						||
| 
								 | 
							
								  output_bits |= shifted_exponent;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  T output_float = spvutils::BitwiseCast<T>(output_bits);
							 | 
						||
| 
								 | 
							
								  value.set_value(output_float);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return is;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Writes a FloatProxy value to a stream.
							 | 
						||
| 
								 | 
							
								// Zero and normal numbers are printed in the usual notation, but with
							 | 
						||
| 
								 | 
							
								// enough digits to fully reproduce the value.  Other values (subnormal,
							 | 
						||
| 
								 | 
							
								// NaN, and infinity) are printed as a hex float.
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
							 | 
						||
| 
								 | 
							
								  auto float_val = value.getAsFloat();
							 | 
						||
| 
								 | 
							
								  switch (std::fpclassify(float_val)) {
							 | 
						||
| 
								 | 
							
								    case FP_ZERO:
							 | 
						||
| 
								 | 
							
								    case FP_NORMAL: {
							 | 
						||
| 
								 | 
							
								      auto saved_precision = os.precision();
							 | 
						||
| 
								 | 
							
								      os.precision(std::numeric_limits<T>::digits10);
							 | 
						||
| 
								 | 
							
								      os << float_val;
							 | 
						||
| 
								 | 
							
								      os.precision(saved_precision);
							 | 
						||
| 
								 | 
							
								    } break;
							 | 
						||
| 
								 | 
							
								    default:
							 | 
						||
| 
								 | 
							
								      os << HexFloat<FloatProxy<T>>(value);
							 | 
						||
| 
								 | 
							
								      break;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return os;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <>
							 | 
						||
| 
								 | 
							
								inline std::ostream& operator<<<Float16>(std::ostream& os,
							 | 
						||
| 
								 | 
							
								                                         const FloatProxy<Float16>& value) {
							 | 
						||
| 
								 | 
							
								  os << HexFloat<FloatProxy<Float16>>(value);
							 | 
						||
| 
								 | 
							
								  return os;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_
							 |