Duckstation/src/core/cpu_newrec_compiler_x64.cpp

2231 lines
63 KiB
C++
Raw Normal View History

2023-10-03 14:39:18 +00:00
// SPDX-FileCopyrightText: 2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "cpu_newrec_compiler_x64.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/log.h"
#include "common/string_util.h"
#include "cpu_code_cache_private.h"
#include "cpu_core_private.h"
#include "cpu_recompiler_thunks.h"
#include "cpu_recompiler_types.h"
#include "gte.h"
#include "pgxp.h"
#include "settings.h"
#include "timing_event.h"
#include <limits>
#ifdef CPU_ARCH_X64
2023-10-03 14:39:18 +00:00
Log_SetChannel(CPU::NewRec);
#define RMEMBASE cg->rbx
#define RSTATE cg->rbp
// #define PTR(x) (cg->rip + (x))
#define PTR(x) (RSTATE + (u32)(((u8*)(x)) - ((u8*)&g_state)))
// PGXP TODO: LWL etc, MFC0
// PGXP TODO: Spyro 1 level gates have issues.
static constexpr u32 BACKPATCH_JMP_SIZE = 5;
// on win32, we need to reserve an additional 32 bytes shadow space when calling out to C
#ifdef _WIN32
static constexpr u32 STACK_SHADOW_SIZE = 32;
#else
static constexpr u32 STACK_SHADOW_SIZE = 0;
#endif
2023-10-03 14:39:18 +00:00
using namespace Xbyak;
using CPU::Recompiler::IsCallerSavedRegister;
// TODO: try using a pointer to state instead of rip-relative.. it might end up faster due to smaller code
namespace CPU::NewRec {
X64Compiler s_instance;
Compiler* g_compiler = &s_instance;
} // namespace CPU::NewRec
CPU::NewRec::X64Compiler::X64Compiler() = default;
CPU::NewRec::X64Compiler::~X64Compiler() = default;
void CPU::NewRec::X64Compiler::Reset(CodeCache::Block* block, u8* code_buffer, u32 code_buffer_space,
u8* far_code_buffer, u32 far_code_space)
{
Compiler::Reset(block, code_buffer, code_buffer_space, far_code_buffer, far_code_space);
// TODO: don't recreate this every time..
DebugAssert(!m_emitter && !m_far_emitter && !cg);
m_emitter = std::make_unique<Xbyak::CodeGenerator>(code_buffer_space, code_buffer);
m_far_emitter = std::make_unique<Xbyak::CodeGenerator>(far_code_space, far_code_buffer);
cg = m_emitter.get();
// Need to wipe it out so it's correct when toggling fastmem.
m_host_regs = {};
const u32 membase_idx = CodeCache::IsUsingFastmem() ? static_cast<u32>(RMEMBASE.getIdx()) : NUM_HOST_REGS;
const u32 cpu_idx = static_cast<u32>(RSTATE.getIdx());
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
HostRegAlloc& ra = m_host_regs[i];
if (i == static_cast<u32>(RWRET.getIdx()) || i == static_cast<u32>(RWARG1.getIdx()) ||
i == static_cast<u32>(RWARG2.getIdx()) || i == static_cast<u32>(RWARG3.getIdx()) ||
i == static_cast<u32>(cg->rsp.getIdx()) || i == cpu_idx || i == membase_idx ||
i == static_cast<u32>(cg->ecx.getIdx()) /* keep ecx free for shifts, maybe use BMI? */)
{
continue;
}
ra.flags = HR_USABLE | (IsCallerSavedRegister(i) ? 0 : HR_CALLEE_SAVED);
}
}
void CPU::NewRec::X64Compiler::SwitchToFarCode(bool emit_jump, void (Xbyak::CodeGenerator::*jump_op)(const void*))
{
DebugAssert(cg == m_emitter.get());
if (emit_jump)
{
const void* fcptr = m_far_emitter->getCurr<const void*>();
(jump_op) ? (cg->*jump_op)(fcptr) : cg->jmp(fcptr);
}
cg = m_far_emitter.get();
}
void CPU::NewRec::X64Compiler::SwitchToNearCode(bool emit_jump, void (Xbyak::CodeGenerator::*jump_op)(const void*))
{
DebugAssert(cg == m_far_emitter.get());
if (emit_jump)
{
const void* fcptr = m_emitter->getCurr<const void*>();
(jump_op) ? (cg->*jump_op)(fcptr) : cg->jmp(fcptr);
}
cg = m_emitter.get();
}
void CPU::NewRec::X64Compiler::BeginBlock()
{
Compiler::BeginBlock();
#if 0
if (m_block->pc == 0xBFC06F0C)
{
//__debugbreak();
cg->db(0xcc);
}
#endif
#if 0
cg->nop();
cg->mov(RWARG1, m_block->pc);
cg->nop();
#endif
}
void CPU::NewRec::X64Compiler::GenerateBlockProtectCheck(const u8* ram_ptr, const u8* shadow_ptr, u32 size)
{
// store it first to reduce code size, because we can offset
cg->mov(RXARG1, static_cast<size_t>(reinterpret_cast<uintptr_t>(ram_ptr)));
cg->mov(RXARG2, static_cast<size_t>(reinterpret_cast<uintptr_t>(shadow_ptr)));
bool first = true;
u32 offset = 0;
while (size >= 16)
{
const Xbyak::Xmm& dst = first ? cg->xmm0 : cg->xmm1;
cg->movups(dst, cg->xword[RXARG1 + offset]);
cg->pcmpeqd(dst, cg->xword[RXARG2 + offset]);
if (!first)
cg->pand(cg->xmm0, dst);
else
first = false;
offset += 16;
size -= 16;
}
// TODO: better codegen for 16 byte aligned blocks
if (!first)
{
cg->movmskps(cg->eax, cg->xmm0);
cg->cmp(cg->eax, 0xf);
cg->jne(CodeCache::g_discard_and_recompile_block);
}
while (size >= 8)
{
cg->mov(RXARG3, cg->qword[RXARG1 + offset]);
cg->cmp(RXARG3, cg->qword[RXARG2 + offset]);
cg->jne(CodeCache::g_discard_and_recompile_block);
offset += 8;
size -= 8;
}
while (size >= 4)
{
cg->mov(RWARG3, cg->dword[RXARG1 + offset]);
cg->cmp(RWARG3, cg->dword[RXARG2 + offset]);
cg->jne(CodeCache::g_discard_and_recompile_block);
offset += 4;
size -= 4;
}
DebugAssert(size == 0);
}
void CPU::NewRec::X64Compiler::GenerateICacheCheckAndUpdate()
{
if (GetSegmentForAddress(m_block->pc) >= Segment::KSEG1)
{
cg->add(cg->dword[PTR(&g_state.pending_ticks)], static_cast<u32>(m_block->uncached_fetch_ticks));
}
else if (m_block->icache_line_count > 0)
{
cg->lea(RXARG1, cg->dword[PTR(&g_state.icache_tags)]);
// TODO: Vectorize this...
VirtualMemoryAddress current_pc = m_block->pc & ICACHE_TAG_ADDRESS_MASK;
for (u32 i = 0; i < m_block->icache_line_count; i++, current_pc += ICACHE_LINE_SIZE)
{
const VirtualMemoryAddress tag = GetICacheTagForAddress(current_pc);
const TickCount fill_ticks = GetICacheFillTicks(current_pc);
if (fill_ticks <= 0)
continue;
const u32 line = GetICacheLine(current_pc);
const u32 offset = (line * sizeof(u32));
Xbyak::Label cache_hit;
cg->cmp(cg->dword[RXARG1 + offset], tag);
cg->je(cache_hit);
cg->mov(cg->dword[RXARG1 + offset], tag);
cg->add(cg->dword[PTR(&g_state.pending_ticks)], static_cast<u32>(fill_ticks));
cg->L(cache_hit);
}
}
}
void CPU::NewRec::X64Compiler::GenerateCall(const void* func, s32 arg1reg /*= -1*/, s32 arg2reg /*= -1*/,
s32 arg3reg /*= -1*/)
{
if (arg1reg >= 0 && arg1reg != static_cast<s32>(RXARG1.getIdx()))
cg->mov(RXARG1, Reg64(arg1reg));
if (arg1reg >= 0 && arg2reg != static_cast<s32>(RXARG2.getIdx()))
cg->mov(RXARG2, Reg64(arg2reg));
if (arg1reg >= 0 && arg3reg != static_cast<s32>(RXARG3.getIdx()))
cg->mov(RXARG3, Reg64(arg3reg));
cg->call(func);
}
void CPU::NewRec::X64Compiler::EndBlock(const std::optional<u32>& newpc, bool do_event_test)
{
if (newpc.has_value())
{
if (m_dirty_pc || m_compiler_pc != newpc)
cg->mov(cg->dword[PTR(&g_state.pc)], newpc.value());
}
m_dirty_pc = false;
// flush regs
Flush(FLUSH_END_BLOCK);
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(newpc, do_event_test, false);
2023-10-03 14:39:18 +00:00
}
void CPU::NewRec::X64Compiler::EndBlockWithException(Exception excode)
{
// flush regs, but not pc, it's going to get overwritten
// flush cycles because of the GTE instruction stuff...
2023-11-08 16:10:39 +00:00
Flush(FLUSH_END_BLOCK | FLUSH_FOR_EXCEPTION | FLUSH_FOR_C_CALL);
2023-10-03 14:39:18 +00:00
// TODO: flush load delay
// TODO: break for pcdrv
cg->mov(RWARG1, Cop0Registers::CAUSE::MakeValueForException(excode, m_current_instruction_branch_delay_slot, false,
inst->cop.cop_n));
cg->mov(RWARG2, m_current_instruction_pc);
cg->call(static_cast<void (*)(u32, u32)>(&CPU::RaiseException));
m_dirty_pc = false;
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(std::nullopt, true, false);
2023-10-03 14:39:18 +00:00
}
2023-11-08 16:10:39 +00:00
void CPU::NewRec::X64Compiler::EndAndLinkBlock(const std::optional<u32>& newpc, bool do_event_test,
bool force_run_events)
2023-10-03 14:39:18 +00:00
{
// event test
// pc should've been flushed
2023-11-08 16:10:39 +00:00
DebugAssert(!m_dirty_pc && !m_block_ended);
m_block_ended = true;
2023-10-03 14:39:18 +00:00
// TODO: try extracting this to a function
// save cycles for event test
const TickCount cycles = std::exchange(m_cycles, 0);
// fast path when not doing an event test
if (!do_event_test && m_gte_done_cycle <= cycles)
{
if (cycles == 1)
cg->inc(cg->dword[PTR(&g_state.pending_ticks)]);
else if (cycles > 0)
cg->add(cg->dword[PTR(&g_state.pending_ticks)], cycles);
2023-11-08 16:10:39 +00:00
if (force_run_events)
{
cg->jmp(CodeCache::g_run_events_and_dispatch);
return;
}
2023-10-03 14:39:18 +00:00
}
else
{
// pending_ticks += cycles
// if (pending_ticks >= downcount) { dispatch_event(); }
if (do_event_test || cycles > 0 || m_gte_done_cycle > cycles)
cg->mov(RWARG1, cg->dword[PTR(&g_state.pending_ticks)]);
if (cycles > 0)
cg->add(RWARG1, cycles);
if (m_gte_done_cycle > cycles)
{
cg->mov(RWARG2, RWARG1);
((m_gte_done_cycle - cycles) == 1) ? cg->inc(RWARG2) : cg->add(RWARG2, m_gte_done_cycle - cycles);
cg->mov(cg->dword[PTR(&g_state.gte_completion_tick)], RWARG2);
}
if (do_event_test)
cg->cmp(RWARG1, cg->dword[PTR(&g_state.downcount)]);
if (cycles > 0)
cg->mov(cg->dword[PTR(&g_state.pending_ticks)], RWARG1);
if (do_event_test)
cg->jge(CodeCache::g_run_events_and_dispatch);
}
// jump to dispatcher or next block
if (!newpc.has_value())
{
cg->jmp(CodeCache::g_dispatcher);
}
else
{
if (newpc.value() == m_block->pc)
{
// Special case: ourselves! No need to backlink then.
Log_DebugPrintf("Linking block at %08X to self", m_block->pc);
cg->jmp(cg->getCode());
}
else
{
const void* target = CodeCache::CreateBlockLink(m_block, cg->getCurr<void*>(), newpc.value());
cg->jmp(target, CodeGenerator::T_NEAR);
}
}
}
const void* CPU::NewRec::X64Compiler::EndCompile(u32* code_size, u32* far_code_size)
{
const void* code = m_emitter->getCode();
*code_size = static_cast<u32>(m_emitter->getSize());
*far_code_size = static_cast<u32>(m_far_emitter->getSize());
cg = nullptr;
m_far_emitter.reset();
m_emitter.reset();
return code;
}
const void* CPU::NewRec::X64Compiler::GetCurrentCodePointer()
{
return cg->getCurr();
}
const char* CPU::NewRec::X64Compiler::GetHostRegName(u32 reg) const
{
static constexpr std::array<const char*, 16> reg64_names = {
{"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"}};
return (reg < reg64_names.size()) ? reg64_names[reg] : "UNKNOWN";
}
void CPU::NewRec::X64Compiler::LoadHostRegWithConstant(u32 reg, u32 val)
{
cg->mov(Reg32(reg), val);
}
void CPU::NewRec::X64Compiler::LoadHostRegFromCPUPointer(u32 reg, const void* ptr)
{
cg->mov(Reg32(reg), cg->dword[PTR(ptr)]);
}
void CPU::NewRec::X64Compiler::StoreHostRegToCPUPointer(u32 reg, const void* ptr)
{
cg->mov(cg->dword[PTR(ptr)], Reg32(reg));
}
void CPU::NewRec::X64Compiler::StoreConstantToCPUPointer(u32 val, const void* ptr)
{
cg->mov(cg->dword[PTR(ptr)], val);
}
void CPU::NewRec::X64Compiler::CopyHostReg(u32 dst, u32 src)
{
if (src != dst)
cg->mov(Reg32(dst), Reg32(src));
}
Xbyak::Address CPU::NewRec::X64Compiler::MipsPtr(Reg r) const
{
DebugAssert(r < Reg::count);
return cg->dword[PTR(&g_state.regs.r[static_cast<u32>(r)])];
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::CFGetRegD(CompileFlags cf) const
{
DebugAssert(cf.valid_host_d);
return Reg32(cf.host_d);
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::CFGetRegS(CompileFlags cf) const
{
DebugAssert(cf.valid_host_s);
return Reg32(cf.host_s);
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::CFGetRegT(CompileFlags cf) const
{
DebugAssert(cf.valid_host_t);
return Reg32(cf.host_t);
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::CFGetRegLO(CompileFlags cf) const
{
DebugAssert(cf.valid_host_lo);
return Reg32(cf.host_lo);
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::CFGetRegHI(CompileFlags cf) const
{
DebugAssert(cf.valid_host_hi);
return Reg32(cf.host_hi);
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::MoveSToD(CompileFlags cf)
{
DebugAssert(cf.valid_host_d);
DebugAssert(!cf.valid_host_t || cf.host_t != cf.host_d);
const Reg32 rd = CFGetRegD(cf);
MoveSToReg(rd, cf);
return rd;
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::MoveSToT(CompileFlags cf)
{
DebugAssert(cf.valid_host_t);
const Reg32 rt = CFGetRegT(cf);
if (cf.valid_host_s)
{
const Reg32 rs = CFGetRegS(cf);
if (rt != rs)
cg->mov(rt, rs);
}
else if (cf.const_s)
{
if (const u32 cv = GetConstantRegU32(cf.MipsS()); cv != 0)
cg->mov(rt, cv);
else
cg->xor_(rt, rt);
}
else
{
cg->mov(rt, MipsPtr(cf.MipsS()));
}
return rt;
}
Xbyak::Reg32 CPU::NewRec::X64Compiler::MoveTToD(CompileFlags cf)
{
DebugAssert(cf.valid_host_d);
DebugAssert(!cf.valid_host_s || cf.host_s != cf.host_d);
const Reg32 rd = CFGetRegD(cf);
MoveTToReg(rd, cf);
return rd;
}
void CPU::NewRec::X64Compiler::MoveSToReg(const Xbyak::Reg32& dst, CompileFlags cf)
{
if (cf.valid_host_s)
{
if (cf.host_s != static_cast<u32>(dst.getIdx()))
cg->mov(dst, Reg32(cf.host_s));
}
else if (cf.const_s)
{
const u32 cv = GetConstantRegU32(cf.MipsS());
if (cv == 0)
cg->xor_(dst, dst);
else
cg->mov(dst, cv);
}
else
{
cg->mov(dst, cg->dword[PTR(&g_state.regs.r[cf.mips_s])]);
}
}
void CPU::NewRec::X64Compiler::MoveTToReg(const Xbyak::Reg32& dst, CompileFlags cf)
{
if (cf.valid_host_t)
{
if (cf.host_t != static_cast<u32>(dst.getIdx()))
cg->mov(dst, Reg32(cf.host_t));
}
else if (cf.const_t)
{
const u32 cv = GetConstantRegU32(cf.MipsT());
if (cv == 0)
cg->xor_(dst, dst);
else
cg->mov(dst, cv);
}
else
{
cg->mov(dst, cg->dword[PTR(&g_state.regs.r[cf.mips_t])]);
}
}
void CPU::NewRec::X64Compiler::MoveMIPSRegToReg(const Xbyak::Reg32& dst, Reg reg)
{
DebugAssert(reg < Reg::count);
if (const std::optional<u32> hreg = CheckHostReg(0, Compiler::HR_TYPE_CPU_REG, reg))
cg->mov(dst, Reg32(hreg.value()));
else if (HasConstantReg(reg))
cg->mov(dst, GetConstantRegU32(reg));
else
cg->mov(dst, MipsPtr(reg));
}
void CPU::NewRec::X64Compiler::GeneratePGXPCallWithMIPSRegs(const void* func, u32 arg1val,
Reg arg2reg /* = Reg::count */,
Reg arg3reg /* = Reg::count */)
{
DebugAssert(g_settings.gpu_pgxp_enable);
Flush(FLUSH_FOR_C_CALL);
if (arg2reg != Reg::count)
MoveMIPSRegToReg(RWARG2, arg2reg);
if (arg3reg != Reg::count)
MoveMIPSRegToReg(RWARG3, arg3reg);
cg->mov(RWARG1, arg1val);
cg->call(func);
}
void CPU::NewRec::X64Compiler::Flush(u32 flags)
{
Compiler::Flush(flags);
if (flags & FLUSH_PC && m_dirty_pc)
{
cg->mov(cg->dword[PTR(&g_state.pc)], m_compiler_pc);
m_dirty_pc = false;
}
if (flags & FLUSH_INSTRUCTION_BITS)
{
cg->mov(cg->dword[PTR(&g_state.current_instruction.bits)], inst->bits);
cg->mov(cg->dword[PTR(&g_state.current_instruction_pc)], m_current_instruction_pc);
cg->mov(cg->byte[PTR(&g_state.current_instruction_in_branch_delay_slot)], m_current_instruction_branch_delay_slot);
}
if (flags & FLUSH_LOAD_DELAY_FROM_STATE && m_load_delay_dirty)
{
// This sucks :(
// TODO: make it a function?
cg->movzx(RWARG1, cg->byte[PTR(&g_state.load_delay_reg)]);
cg->mov(RWARG2, cg->dword[PTR(&g_state.load_delay_value)]);
cg->mov(cg->dword[PTR(&g_state.regs.r[0]) + RXARG1 * 4], RWARG2);
cg->mov(cg->byte[PTR(&g_state.load_delay_reg)], static_cast<u8>(Reg::count));
m_load_delay_dirty = false;
}
if (flags & FLUSH_LOAD_DELAY && m_load_delay_register != Reg::count)
{
if (m_load_delay_value_register != NUM_HOST_REGS)
FreeHostReg(m_load_delay_value_register);
cg->mov(cg->byte[PTR(&g_state.load_delay_reg)], static_cast<u8>(m_load_delay_register));
m_load_delay_register = Reg::count;
m_load_delay_dirty = true;
}
if (flags & FLUSH_GTE_STALL_FROM_STATE && m_dirty_gte_done_cycle)
{
// May as well flush cycles while we're here.
// GTE spanning blocks is very rare, we _could_ disable this for speed.
cg->mov(RWARG1, cg->dword[PTR(&g_state.pending_ticks)]);
cg->mov(RWARG2, cg->dword[PTR(&g_state.gte_completion_tick)]);
if (m_cycles > 0)
{
(m_cycles == 1) ? cg->inc(RWARG1) : cg->add(RWARG1, m_cycles);
m_cycles = 0;
}
cg->cmp(RWARG2, RWARG1);
cg->cmova(RWARG1, RWARG2);
cg->mov(cg->dword[PTR(&g_state.pending_ticks)], RWARG1);
m_dirty_gte_done_cycle = false;
}
if (flags & FLUSH_GTE_DONE_CYCLE && m_gte_done_cycle > m_cycles)
{
cg->mov(RWARG1, cg->dword[PTR(&g_state.pending_ticks)]);
// update cycles at the same time
if (flags & FLUSH_CYCLES && m_cycles > 0)
{
(m_cycles == 1) ? cg->inc(RWARG1) : cg->add(RWARG1, m_cycles);
cg->mov(cg->dword[PTR(&g_state.pending_ticks)], RWARG1);
m_gte_done_cycle -= m_cycles;
m_cycles = 0;
}
(m_gte_done_cycle == 1) ? cg->inc(RWARG1) : cg->add(RWARG1, m_gte_done_cycle);
cg->mov(cg->dword[PTR(&g_state.gte_completion_tick)], RWARG1);
m_gte_done_cycle = 0;
m_dirty_gte_done_cycle = true;
}
if (flags & FLUSH_CYCLES && m_cycles > 0)
{
(m_cycles == 1) ? cg->inc(cg->dword[PTR(&g_state.pending_ticks)]) :
cg->add(cg->dword[PTR(&g_state.pending_ticks)], m_cycles);
m_gte_done_cycle = std::max<TickCount>(m_gte_done_cycle - m_cycles, 0);
m_cycles = 0;
}
}
void CPU::NewRec::X64Compiler::Compile_Fallback()
{
Flush(FLUSH_FOR_INTERPRETER);
cg->call(&CPU::Recompiler::Thunks::InterpretInstruction);
// TODO: make me less garbage
// TODO: this is wrong, it flushes the load delay on the same cycle when we return.
// but nothing should be going through here..
Label no_load_delay;
cg->movzx(RWARG1, cg->byte[PTR(&g_state.next_load_delay_reg)]);
cg->cmp(RWARG1, static_cast<u8>(Reg::count));
cg->je(no_load_delay, CodeGenerator::T_SHORT);
cg->mov(RWARG2, cg->dword[PTR(&g_state.next_load_delay_value)]);
cg->mov(cg->byte[PTR(&g_state.load_delay_reg)], RWARG1);
cg->mov(cg->dword[PTR(&g_state.load_delay_value)], RWARG2);
cg->mov(cg->byte[PTR(&g_state.next_load_delay_reg)], static_cast<u32>(Reg::count));
cg->L(no_load_delay);
m_load_delay_dirty = EMULATE_LOAD_DELAYS;
}
void CPU::NewRec::X64Compiler::CheckBranchTarget(const Xbyak::Reg32& pcreg)
{
if (!g_settings.cpu_recompiler_memory_exceptions)
return;
cg->test(pcreg, 0x3);
SwitchToFarCode(true, &CodeGenerator::jnz);
BackupHostState();
EndBlockWithException(Exception::AdEL);
RestoreHostState();
SwitchToNearCode(false);
}
void CPU::NewRec::X64Compiler::Compile_jr(CompileFlags cf)
{
if (!cf.valid_host_s)
cg->mov(RWARG1, MipsPtr(cf.MipsS()));
const Reg32 pcreg = cf.valid_host_s ? CFGetRegS(cf) : RWARG1;
CheckBranchTarget(pcreg);
cg->mov(cg->dword[PTR(&g_state.pc)], pcreg);
CompileBranchDelaySlot(false);
EndBlock(std::nullopt, true);
}
void CPU::NewRec::X64Compiler::Compile_jalr(CompileFlags cf)
{
if (!cf.valid_host_s)
cg->mov(RWARG1, MipsPtr(cf.MipsS()));
const Reg32 pcreg = cf.valid_host_s ? CFGetRegS(cf) : RWARG1;
if (MipsD() != Reg::zero)
SetConstantReg(MipsD(), GetBranchReturnAddress(cf));
CheckBranchTarget(pcreg);
cg->mov(cg->dword[PTR(&g_state.pc)], pcreg);
CompileBranchDelaySlot(false);
EndBlock(std::nullopt, true);
}
void CPU::NewRec::X64Compiler::Compile_bxx(CompileFlags cf, BranchCondition cond)
{
const u32 taken_pc = GetConditionalBranchTarget(cf);
Flush(FLUSH_FOR_BRANCH);
DebugAssert(cf.valid_host_s);
// MipsT() here should equal zero for zero branches.
DebugAssert(cond == BranchCondition::Equal || cond == BranchCondition::NotEqual || cf.MipsT() == Reg::zero);
// TODO: Swap this back to near once instructions don't blow up
constexpr CodeGenerator::LabelType type = CodeGenerator::T_NEAR;
Label taken;
switch (cond)
{
case BranchCondition::Equal:
case BranchCondition::NotEqual:
{
// we should always have S, maybe not T
// TODO: if it's zero, we can just do test rs, rs
if (cf.valid_host_t)
cg->cmp(CFGetRegS(cf), CFGetRegT(cf));
else if (cf.const_t)
cg->cmp(CFGetRegS(cf), GetConstantRegU32(cf.MipsT()));
else
cg->cmp(CFGetRegS(cf), MipsPtr(cf.MipsT()));
(cond == BranchCondition::Equal) ? cg->je(taken, type) : cg->jne(taken, type);
}
break;
case BranchCondition::GreaterThanZero:
{
cg->cmp(CFGetRegS(cf), 0);
cg->jg(taken, type);
}
break;
case BranchCondition::GreaterEqualZero:
{
cg->test(CFGetRegS(cf), CFGetRegS(cf));
cg->jns(taken, type);
}
break;
case BranchCondition::LessThanZero:
{
cg->test(CFGetRegS(cf), CFGetRegS(cf));
cg->js(taken, type);
}
break;
case BranchCondition::LessEqualZero:
{
cg->cmp(CFGetRegS(cf), 0);
cg->jle(taken, type);
}
break;
}
BackupHostState();
if (!cf.delay_slot_swapped)
CompileBranchDelaySlot();
EndBlock(m_compiler_pc, true);
cg->L(taken);
RestoreHostState();
if (!cf.delay_slot_swapped)
CompileBranchDelaySlot();
EndBlock(taken_pc, true);
}
void CPU::NewRec::X64Compiler::Compile_addi(CompileFlags cf)
{
const Reg32 rt = MoveSToT(cf);
if (const u32 imm = inst->i.imm_sext32(); imm != 0)
{
cg->add(rt, imm);
if (g_settings.cpu_recompiler_memory_exceptions)
{
DebugAssert(cf.valid_host_t);
TestOverflow(rt);
}
}
}
void CPU::NewRec::X64Compiler::Compile_addiu(CompileFlags cf)
{
const Reg32 rt = MoveSToT(cf);
if (const u32 imm = inst->i.imm_sext32(); imm != 0)
cg->add(rt, imm);
}
void CPU::NewRec::X64Compiler::Compile_slti(CompileFlags cf)
{
Compile_slti(cf, true);
}
void CPU::NewRec::X64Compiler::Compile_sltiu(CompileFlags cf)
{
Compile_slti(cf, false);
}
void CPU::NewRec::X64Compiler::Compile_slti(CompileFlags cf, bool sign)
{
const Reg32 rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG1;
// Case where T == S, can't use xor because it changes flags
if (!cf.valid_host_t || !cf.valid_host_s || cf.host_t != cf.host_s)
cg->xor_(rt, rt);
if (cf.valid_host_s)
cg->cmp(CFGetRegS(cf), inst->i.imm_sext32());
else
cg->cmp(MipsPtr(cf.MipsS()), inst->i.imm_sext32());
if (cf.valid_host_t && cf.valid_host_s && cf.host_t == cf.host_s)
cg->mov(rt, 0);
sign ? cg->setl(rt.cvt8()) : cg->setb(rt.cvt8());
if (!cf.valid_host_t)
cg->mov(MipsPtr(cf.MipsT()), rt);
}
void CPU::NewRec::X64Compiler::Compile_andi(CompileFlags cf)
{
if (const u32 imm = inst->i.imm_zext32(); imm != 0)
{
const Reg32 rt = MoveSToT(cf);
cg->and_(rt, imm);
}
else
{
const Reg32 rt = CFGetRegT(cf);
cg->xor_(rt, rt);
}
}
void CPU::NewRec::X64Compiler::Compile_ori(CompileFlags cf)
{
const Reg32 rt = MoveSToT(cf);
if (const u32 imm = inst->i.imm_zext32(); imm != 0)
cg->or_(rt, imm);
}
void CPU::NewRec::X64Compiler::Compile_xori(CompileFlags cf)
{
const Reg32 rt = MoveSToT(cf);
if (const u32 imm = inst->i.imm_zext32(); imm != 0)
cg->xor_(rt, imm);
}
void CPU::NewRec::X64Compiler::Compile_sll(CompileFlags cf)
{
const Reg32 rd = MoveTToD(cf);
if (inst->r.shamt > 0)
cg->shl(rd, inst->r.shamt);
}
void CPU::NewRec::X64Compiler::Compile_srl(CompileFlags cf)
{
const Reg32 rd = MoveTToD(cf);
if (inst->r.shamt > 0)
cg->shr(rd, inst->r.shamt);
}
void CPU::NewRec::X64Compiler::Compile_sra(CompileFlags cf)
{
const Reg32 rd = MoveTToD(cf);
if (inst->r.shamt > 0)
cg->sar(rd, inst->r.shamt);
}
void CPU::NewRec::X64Compiler::Compile_variable_shift(
CompileFlags cf, void (Xbyak::CodeGenerator::*op)(const Xbyak::Operand&, const Xbyak::Reg8&),
void (Xbyak::CodeGenerator::*op_const)(const Xbyak::Operand&, int))
{
const Reg32 rd = CFGetRegD(cf);
if (!cf.const_s)
{
MoveSToReg(cg->ecx, cf);
MoveTToReg(rd, cf);
(cg->*op)(rd, cg->cl);
}
else
{
MoveTToReg(rd, cf);
(cg->*op_const)(rd, GetConstantRegU32(cf.MipsS()));
}
}
void CPU::NewRec::X64Compiler::Compile_sllv(CompileFlags cf)
{
Compile_variable_shift(cf, &CodeGenerator::shl, &CodeGenerator::shl);
}
void CPU::NewRec::X64Compiler::Compile_srlv(CompileFlags cf)
{
Compile_variable_shift(cf, &CodeGenerator::shr, &CodeGenerator::shr);
}
void CPU::NewRec::X64Compiler::Compile_srav(CompileFlags cf)
{
Compile_variable_shift(cf, &CodeGenerator::sar, &CodeGenerator::sar);
}
void CPU::NewRec::X64Compiler::Compile_mult(CompileFlags cf, bool sign)
{
// RAX/RDX shouldn't be allocatable..
DebugAssert(!(m_host_regs[Xbyak::Operand::RAX].flags & HR_USABLE) &&
!(m_host_regs[Xbyak::Operand::RDX].flags & HR_USABLE));
MoveSToReg(cg->eax, cf);
if (cf.valid_host_t)
{
sign ? cg->imul(CFGetRegT(cf)) : cg->mul(CFGetRegT(cf));
}
else if (cf.const_t)
{
cg->mov(cg->edx, GetConstantRegU32(cf.MipsT()));
sign ? cg->imul(cg->edx) : cg->mul(cg->edx);
}
else
{
sign ? cg->imul(MipsPtr(cf.MipsT())) : cg->mul(MipsPtr(cf.MipsT()));
}
// TODO: skip writeback if it's not needed
if (cf.valid_host_lo)
cg->mov(CFGetRegLO(cf), cg->eax);
else
cg->mov(MipsPtr(Reg::lo), cg->eax);
if (cf.valid_host_lo)
cg->mov(CFGetRegHI(cf), cg->edx);
else
cg->mov(MipsPtr(Reg::hi), cg->edx);
}
void CPU::NewRec::X64Compiler::Compile_mult(CompileFlags cf)
{
Compile_mult(cf, true);
}
void CPU::NewRec::X64Compiler::Compile_multu(CompileFlags cf)
{
Compile_mult(cf, false);
}
void CPU::NewRec::X64Compiler::Compile_div(CompileFlags cf)
{
// not supported without registers for now..
DebugAssert(cf.valid_host_lo && cf.valid_host_hi);
const Reg32 rt = cf.valid_host_t ? CFGetRegT(cf) : cg->ecx;
if (!cf.valid_host_t)
MoveTToReg(rt, cf);
const Reg32 rlo = CFGetRegLO(cf);
const Reg32 rhi = CFGetRegHI(cf);
MoveSToReg(cg->eax, cf);
cg->cdq();
Label done;
Label not_divide_by_zero;
cg->test(rt, rt);
cg->jnz(not_divide_by_zero, CodeGenerator::T_SHORT);
cg->test(cg->eax, cg->eax);
cg->mov(rhi, cg->eax); // hi = num
cg->mov(rlo, 1);
cg->mov(cg->eax, static_cast<u32>(-1));
cg->cmovns(rlo, cg->eax); // lo = s >= 0 ? -1 : 1
cg->jmp(done, CodeGenerator::T_SHORT);
cg->L(not_divide_by_zero);
Label not_unrepresentable;
cg->cmp(cg->eax, 0x80000000u);
cg->jne(not_unrepresentable, CodeGenerator::T_SHORT);
cg->cmp(rt, static_cast<u32>(-1));
cg->jne(not_unrepresentable, CodeGenerator::T_SHORT);
cg->mov(rlo, 0x80000000u);
cg->xor_(rhi, rhi);
cg->jmp(done, CodeGenerator::T_SHORT);
cg->L(not_unrepresentable);
cg->idiv(rt);
cg->mov(rlo, cg->eax);
cg->mov(rhi, cg->edx);
cg->L(done);
}
void CPU::NewRec::X64Compiler::Compile_divu(CompileFlags cf)
{
// not supported without registers for now..
DebugAssert(cf.valid_host_lo && cf.valid_host_hi);
const Reg32 rt = cf.valid_host_t ? CFGetRegT(cf) : cg->ecx;
if (!cf.valid_host_t)
MoveTToReg(rt, cf);
const Reg32 rlo = CFGetRegLO(cf);
const Reg32 rhi = CFGetRegHI(cf);
MoveSToReg(cg->eax, cf);
cg->xor_(cg->edx, cg->edx);
Label done;
Label not_divide_by_zero;
cg->test(rt, rt);
cg->jnz(not_divide_by_zero, CodeGenerator::T_SHORT);
cg->mov(rlo, static_cast<u32>(-1));
cg->mov(rhi, cg->eax);
cg->jmp(done, CodeGenerator::T_SHORT);
cg->L(not_divide_by_zero);
cg->div(rt);
cg->mov(rlo, cg->eax);
cg->mov(rhi, cg->edx);
cg->L(done);
}
void CPU::NewRec::X64Compiler::TestOverflow(const Xbyak::Reg32& result)
{
SwitchToFarCode(true, &Xbyak::CodeGenerator::jo);
BackupHostState();
// toss the result
ClearHostReg(result.getIdx());
EndBlockWithException(Exception::Ov);
RestoreHostState();
SwitchToNearCode(false);
}
void CPU::NewRec::X64Compiler::Compile_dst_op(
CompileFlags cf, void (Xbyak::CodeGenerator::*op)(const Xbyak::Operand&, const Xbyak::Operand&),
void (Xbyak::CodeGenerator::*op_const)(const Xbyak::Operand&, u32), bool commutative, bool overflow)
{
if (cf.valid_host_s && cf.valid_host_t)
{
if (cf.host_d == cf.host_s)
{
(cg->*op)(CFGetRegD(cf), CFGetRegT(cf));
}
else if (cf.host_d == cf.host_t)
{
if (commutative)
{
(cg->*op)(CFGetRegD(cf), CFGetRegS(cf));
}
else
{
cg->mov(RWARG1, CFGetRegT(cf));
cg->mov(CFGetRegD(cf), CFGetRegS(cf));
(cg->*op)(CFGetRegD(cf), RWARG1);
}
}
else
{
cg->mov(CFGetRegD(cf), CFGetRegS(cf));
(cg->*op)(CFGetRegD(cf), CFGetRegT(cf));
}
}
else if (commutative && (cf.const_s || cf.const_t))
{
const Reg32 rd = CFGetRegD(cf);
(cf.const_s) ? MoveTToReg(rd, cf) : MoveSToReg(rd, cf);
if (const u32 cv = GetConstantRegU32(cf.const_s ? cf.MipsS() : cf.MipsT()); cv != 0)
(cg->*op_const)(CFGetRegD(cf), cv);
else
overflow = false;
}
else if (cf.const_s)
{
// need to backup T?
if (cf.valid_host_d && cf.valid_host_t && cf.host_d == cf.host_t)
{
cg->mov(RWARG1, CFGetRegT(cf));
MoveSToReg(CFGetRegD(cf), cf);
(cg->*op)(CFGetRegD(cf), RWARG1);
}
else
{
MoveSToReg(CFGetRegD(cf), cf);
(cg->*op)(CFGetRegD(cf), CFGetRegT(cf));
}
}
else if (cf.const_t)
{
MoveSToReg(CFGetRegD(cf), cf);
if (const u32 cv = GetConstantRegU32(cf.MipsT()); cv != 0)
(cg->*op_const)(CFGetRegD(cf), cv);
else
overflow = false;
}
else if (cf.valid_host_s)
{
if (cf.host_d != cf.host_s)
cg->mov(CFGetRegD(cf), CFGetRegS(cf));
(cg->*op)(CFGetRegD(cf), MipsPtr(cf.MipsT()));
}
else if (cf.valid_host_t)
{
if (cf.host_d != cf.host_t)
cg->mov(CFGetRegD(cf), CFGetRegT(cf));
(cg->*op)(CFGetRegD(cf), MipsPtr(cf.MipsS()));
}
else
{
cg->mov(CFGetRegD(cf), MipsPtr(cf.MipsS()));
(cg->*op)(CFGetRegD(cf), MipsPtr(cf.MipsT()));
}
if (overflow)
{
DebugAssert(cf.valid_host_d);
TestOverflow(CFGetRegD(cf));
}
}
void CPU::NewRec::X64Compiler::Compile_add(CompileFlags cf)
{
Compile_dst_op(cf, &CodeGenerator::add, &CodeGenerator::add, true, g_settings.cpu_recompiler_memory_exceptions);
}
void CPU::NewRec::X64Compiler::Compile_addu(CompileFlags cf)
{
Compile_dst_op(cf, &CodeGenerator::add, &CodeGenerator::add, true, false);
}
void CPU::NewRec::X64Compiler::Compile_sub(CompileFlags cf)
{
Compile_dst_op(cf, &CodeGenerator::sub, &CodeGenerator::sub, false, g_settings.cpu_recompiler_memory_exceptions);
}
void CPU::NewRec::X64Compiler::Compile_subu(CompileFlags cf)
{
Compile_dst_op(cf, &CodeGenerator::sub, &CodeGenerator::sub, false, false);
}
void CPU::NewRec::X64Compiler::Compile_and(CompileFlags cf)
{
// special cases - and with self -> self, and with 0 -> 0
const Reg32 regd = CFGetRegD(cf);
if (cf.MipsS() == cf.MipsT())
{
MoveSToReg(regd, cf);
return;
}
else if (HasConstantRegValue(cf.MipsS(), 0) || HasConstantRegValue(cf.MipsT(), 0))
{
cg->xor_(regd, regd);
return;
}
Compile_dst_op(cf, &CodeGenerator::and_, &CodeGenerator::and_, true, false);
}
void CPU::NewRec::X64Compiler::Compile_or(CompileFlags cf)
{
// or/nor with 0 -> no effect
const Reg32 regd = CFGetRegD(cf);
if (HasConstantRegValue(cf.MipsS(), 0) || HasConstantRegValue(cf.MipsT(), 0) || cf.MipsS() == cf.MipsT())
{
cf.const_s ? MoveTToReg(regd, cf) : MoveSToReg(regd, cf);
return;
}
Compile_dst_op(cf, &CodeGenerator::or_, &CodeGenerator::or_, true, false);
}
void CPU::NewRec::X64Compiler::Compile_xor(CompileFlags cf)
{
const Reg32 regd = CFGetRegD(cf);
if (cf.MipsS() == cf.MipsT())
{
// xor with self -> zero
cg->xor_(regd, regd);
return;
}
else if (HasConstantRegValue(cf.MipsS(), 0) || HasConstantRegValue(cf.MipsT(), 0))
{
// xor with zero -> no effect
cf.const_s ? MoveTToReg(regd, cf) : MoveSToReg(regd, cf);
return;
}
Compile_dst_op(cf, &CodeGenerator::xor_, &CodeGenerator::xor_, true, false);
}
void CPU::NewRec::X64Compiler::Compile_nor(CompileFlags cf)
{
Compile_or(cf);
cg->not_(CFGetRegD(cf));
}
void CPU::NewRec::X64Compiler::Compile_slt(CompileFlags cf)
{
Compile_slt(cf, true);
}
void CPU::NewRec::X64Compiler::Compile_sltu(CompileFlags cf)
{
Compile_slt(cf, false);
}
void CPU::NewRec::X64Compiler::Compile_slt(CompileFlags cf, bool sign)
{
const Reg32 rd = CFGetRegD(cf);
const Reg32 rs = cf.valid_host_s ? CFGetRegS(cf) : RWARG1;
const Reg32 rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG1;
if (!cf.valid_host_s)
MoveSToReg(rs, cf);
// Case where D == S, can't use xor because it changes flags
// TODO: swap and reverse op for constants
if (rd != rs && rd != rt)
cg->xor_(rd, rd);
if (cf.valid_host_t)
cg->cmp(rs, CFGetRegT(cf));
else if (cf.const_t)
cg->cmp(rs, GetConstantRegU32(cf.MipsT()));
else
cg->cmp(rs, MipsPtr(cf.MipsT()));
if (rd == rs || rd == rt)
cg->mov(rd, 0);
sign ? cg->setl(rd.cvt8()) : cg->setb(rd.cvt8());
}
Xbyak::Reg32
CPU::NewRec::X64Compiler::ComputeLoadStoreAddressArg(CompileFlags cf,
const std::optional<VirtualMemoryAddress>& address,
const std::optional<const Xbyak::Reg32>& reg /* = std::nullopt */)
{
const u32 imm = inst->i.imm_sext32();
if (cf.valid_host_s && imm == 0 && !reg.has_value())
return CFGetRegS(cf);
const Reg32 dst = reg.has_value() ? reg.value() : RWARG1;
if (address.has_value())
{
cg->mov(dst, address.value());
}
else
{
if (cf.valid_host_s)
{
if (const Reg32 src = CFGetRegS(cf); src != dst)
cg->mov(dst, CFGetRegS(cf));
}
else
{
cg->mov(dst, MipsPtr(cf.MipsS()));
}
if (imm != 0)
cg->add(dst, inst->i.imm_sext32());
}
return dst;
}
template<typename RegAllocFn>
Xbyak::Reg32 CPU::NewRec::X64Compiler::GenerateLoad(const Xbyak::Reg32& addr_reg, MemoryAccessSize size, bool sign,
2023-10-21 12:12:00 +00:00
bool use_fastmem, const RegAllocFn& dst_reg_alloc)
2023-10-03 14:39:18 +00:00
{
2023-10-21 12:12:00 +00:00
if (use_fastmem)
2023-10-03 14:39:18 +00:00
{
m_cycles += Bus::RAM_READ_TICKS;
const Reg32 dst = dst_reg_alloc();
if (g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT)
{
DebugAssert(addr_reg != RWARG3);
cg->mov(RWARG3, addr_reg.cvt32());
cg->shr(RXARG3, Bus::FASTMEM_LUT_PAGE_SHIFT);
2023-10-03 14:39:18 +00:00
cg->mov(RXARG3, cg->qword[RMEMBASE + RXARG3 * 8]);
}
const Reg64 membase = (g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT) ? RXARG3 : RMEMBASE;
u8* start = cg->getCurr<u8*>();
switch (size)
{
case MemoryAccessSize::Byte:
{
sign ? cg->movsx(dst, cg->byte[membase + addr_reg.cvt64()]) :
cg->movzx(dst, cg->byte[membase + addr_reg.cvt64()]);
}
break;
case MemoryAccessSize::HalfWord:
{
sign ? cg->movsx(dst, cg->word[membase + addr_reg.cvt64()]) :
cg->movzx(dst, cg->word[membase + addr_reg.cvt64()]);
}
break;
case MemoryAccessSize::Word:
{
cg->mov(dst, cg->word[membase + addr_reg.cvt64()]);
}
break;
}
u8* end = cg->getCurr<u8*>();
while ((end - start) < BACKPATCH_JMP_SIZE)
{
cg->nop();
end = cg->getCurr<u8*>();
}
AddLoadStoreInfo(start, static_cast<u32>(end - start), static_cast<u32>(addr_reg.getIdx()),
static_cast<u32>(dst.getIdx()), size, sign, true);
return dst;
}
if (addr_reg != RWARG1)
cg->mov(RWARG1, addr_reg);
2023-10-21 12:12:00 +00:00
const bool checked = g_settings.cpu_recompiler_memory_exceptions;
2023-10-03 14:39:18 +00:00
switch (size)
{
case MemoryAccessSize::Byte:
{
cg->call(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::ReadMemoryByte) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryByte));
}
break;
case MemoryAccessSize::HalfWord:
{
cg->call(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::ReadMemoryHalfWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryHalfWord));
}
break;
case MemoryAccessSize::Word:
{
cg->call(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::ReadMemoryWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryWord));
}
break;
}
// TODO: turn this into an asm function instead
if (checked)
{
cg->test(RXRET, RXRET);
BackupHostState();
SwitchToFarCode(true, &CodeGenerator::js);
// flush regs, but not pc, it's going to get overwritten
// flush cycles because of the GTE instruction stuff...
Flush(FLUSH_FOR_C_CALL | FLUSH_FLUSH_MIPS_REGISTERS | FLUSH_FOR_EXCEPTION);
// cause_bits = (-result << 2) | BD | cop_n
cg->mov(RWARG1, RWRET);
cg->neg(RWARG1);
cg->shl(RWARG1, 2);
cg->or_(RWARG1, Cop0Registers::CAUSE::MakeValueForException(
static_cast<Exception>(0), m_current_instruction_branch_delay_slot, false, inst->cop.cop_n));
cg->mov(RWARG2, m_current_instruction_pc);
cg->call(static_cast<void (*)(u32, u32)>(&CPU::RaiseException));
m_dirty_pc = false;
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(std::nullopt, true, false);
2023-10-03 14:39:18 +00:00
SwitchToNearCode(false);
RestoreHostState();
}
const Xbyak::Reg32 dst_reg = dst_reg_alloc();
switch (size)
{
case MemoryAccessSize::Byte:
{
sign ? cg->movsx(dst_reg, RWRET.cvt8()) : cg->movzx(dst_reg, RWRET.cvt8());
}
break;
case MemoryAccessSize::HalfWord:
{
sign ? cg->movsx(dst_reg, RWRET.cvt16()) : cg->movzx(dst_reg, RWRET.cvt16());
}
break;
case MemoryAccessSize::Word:
{
if (dst_reg != RWRET)
cg->mov(dst_reg, RWRET);
}
break;
}
return dst_reg;
}
void CPU::NewRec::X64Compiler::GenerateStore(const Xbyak::Reg32& addr_reg, const Xbyak::Reg32& value_reg,
2023-10-21 12:12:00 +00:00
MemoryAccessSize size, bool use_fastmem)
2023-10-03 14:39:18 +00:00
{
2023-10-21 12:12:00 +00:00
if (use_fastmem)
2023-10-03 14:39:18 +00:00
{
if (g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT)
{
DebugAssert(addr_reg != RWARG3 && value_reg != RWARG3);
cg->mov(RWARG3, addr_reg.cvt32());
cg->shr(RXARG3, Bus::FASTMEM_LUT_PAGE_SHIFT);
2023-10-03 14:39:18 +00:00
cg->mov(RXARG3, cg->qword[RMEMBASE + RXARG3 * 8]);
}
const Reg64 membase = (g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT) ? RXARG3 : RMEMBASE;
u8* start = cg->getCurr<u8*>();
switch (size)
{
case MemoryAccessSize::Byte:
cg->mov(cg->byte[membase + addr_reg.cvt64()], value_reg.cvt8());
break;
case MemoryAccessSize::HalfWord:
cg->mov(cg->word[membase + addr_reg.cvt64()], value_reg.cvt16());
break;
case MemoryAccessSize::Word:
cg->mov(cg->word[membase + addr_reg.cvt64()], value_reg.cvt32());
break;
}
u8* end = cg->getCurr<u8*>();
while ((end - start) < BACKPATCH_JMP_SIZE)
{
cg->nop();
end = cg->getCurr<u8*>();
}
AddLoadStoreInfo(start, static_cast<u32>(end - start), static_cast<u32>(addr_reg.getIdx()),
static_cast<u32>(value_reg.getIdx()), size, false, false);
return;
}
if (addr_reg != RWARG1)
cg->mov(RWARG1, addr_reg);
if (value_reg != RWARG2)
cg->mov(RWARG2, value_reg);
2023-10-21 12:12:00 +00:00
const bool checked = g_settings.cpu_recompiler_memory_exceptions;
2023-10-03 14:39:18 +00:00
switch (size)
{
case MemoryAccessSize::Byte:
{
cg->call(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::WriteMemoryByte) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryByte));
}
break;
case MemoryAccessSize::HalfWord:
{
cg->call(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::WriteMemoryHalfWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryHalfWord));
}
break;
case MemoryAccessSize::Word:
{
cg->call(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::WriteMemoryWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryWord));
}
break;
}
// TODO: turn this into an asm function instead
if (checked)
{
cg->test(RWRET, RWRET);
BackupHostState();
SwitchToFarCode(true, &CodeGenerator::jnz);
// flush regs, but not pc, it's going to get overwritten
// flush cycles because of the GTE instruction stuff...
Flush(FLUSH_FOR_C_CALL | FLUSH_FLUSH_MIPS_REGISTERS | FLUSH_FOR_EXCEPTION);
// cause_bits = (result << 2) | BD | cop_n
cg->mov(RWARG1, RWRET);
cg->shl(RWARG1, 2);
cg->or_(RWARG1, Cop0Registers::CAUSE::MakeValueForException(
static_cast<Exception>(0), m_current_instruction_branch_delay_slot, false, inst->cop.cop_n));
cg->mov(RWARG2, m_current_instruction_pc);
cg->call(reinterpret_cast<const void*>(static_cast<void (*)(u32, u32)>(&CPU::RaiseException)));
m_dirty_pc = false;
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(std::nullopt, true, false);
2023-10-03 14:39:18 +00:00
SwitchToNearCode(false);
RestoreHostState();
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::X64Compiler::Compile_lxx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
const std::optional<Reg32> addr_reg = g_settings.gpu_pgxp_enable ?
std::optional<Reg32>(Reg32(AllocateTempHostReg(HR_CALLEE_SAVED))) :
std::optional<Reg32>();
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, false, use_fastmem);
2023-10-03 14:39:18 +00:00
const Reg32 addr = ComputeLoadStoreAddressArg(cf, address, addr_reg);
2023-10-21 12:12:00 +00:00
const Reg32 data = GenerateLoad(addr, size, sign, use_fastmem, [this, cf]() {
2023-10-03 14:39:18 +00:00
if (cf.MipsT() == Reg::zero)
return RWRET;
return Reg32(AllocateHostReg(GetFlagsForNewLoadDelayedReg(),
EMULATE_LOAD_DELAYS ? HR_TYPE_NEXT_LOAD_DELAY_VALUE : HR_TYPE_CPU_REG, cf.MipsT()));
});
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG1, inst->bits);
cg->mov(RWARG2, addr);
cg->mov(RWARG3, data);
cg->call(s_pgxp_mem_load_functions[static_cast<u32>(size)][static_cast<u32>(sign)]);
FreeHostReg(addr_reg.value().getIdx());
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::X64Compiler::Compile_lwx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
DebugAssert(size == MemoryAccessSize::Word && !sign);
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, false, use_fastmem);
2023-10-03 14:39:18 +00:00
// TODO: if address is constant, this can be simplified..
// If we're coming from another block, just flush the load delay and hope for the best..
if (m_load_delay_dirty)
UpdateLoadDelay();
// We'd need to be careful here if we weren't overwriting it..
const Reg32 addr = Reg32(AllocateHostReg(HR_CALLEE_SAVED, HR_TYPE_TEMP));
ComputeLoadStoreAddressArg(cf, address, addr);
cg->mov(RWARG1, addr);
cg->and_(RWARG1, ~0x3u);
2023-10-21 12:12:00 +00:00
GenerateLoad(RWARG1, MemoryAccessSize::Word, false, use_fastmem, []() { return RWRET; });
2023-10-03 14:39:18 +00:00
if (inst->r.rt == Reg::zero)
{
FreeHostReg(addr.getIdx());
return;
}
// lwl/lwr from a load-delayed value takes the new value, but it itself, is load delayed, so the original value is
// never written back. NOTE: can't trust T in cf because of the flush
const Reg rt = inst->r.rt;
Reg32 value;
if (m_load_delay_register == rt)
{
const u32 existing_ld_rt = (m_load_delay_value_register == NUM_HOST_REGS) ?
AllocateHostReg(HR_MODE_READ, HR_TYPE_LOAD_DELAY_VALUE, rt) :
m_load_delay_value_register;
RenameHostReg(existing_ld_rt, HR_MODE_WRITE, HR_TYPE_NEXT_LOAD_DELAY_VALUE, rt);
value = Reg32(existing_ld_rt);
}
else
{
if constexpr (EMULATE_LOAD_DELAYS)
{
value = Reg32(AllocateHostReg(HR_MODE_WRITE, HR_TYPE_NEXT_LOAD_DELAY_VALUE, rt));
if (HasConstantReg(rt))
cg->mov(value, GetConstantRegU32(rt));
else if (const std::optional<u32> rtreg = CheckHostReg(HR_MODE_READ, HR_TYPE_CPU_REG, rt); rtreg.has_value())
cg->mov(value, Reg32(rtreg.value()));
else
cg->mov(value, MipsPtr(rt));
}
else
{
value = Reg32(AllocateHostReg(HR_MODE_READ | HR_MODE_WRITE, HR_TYPE_CPU_REG, rt));
}
}
DebugAssert(value != cg->ecx);
cg->mov(cg->ecx, addr);
cg->and_(cg->ecx, 3);
cg->shl(cg->ecx, 3); // *8
// TODO for other arch: reverse subtract
DebugAssert(RWARG2 != cg->ecx);
cg->mov(RWARG2, 24);
cg->sub(RWARG2, cg->ecx);
if (inst->op == InstructionOp::lwl)
{
// const u32 mask = UINT32_C(0x00FFFFFF) >> shift;
// new_value = (value & mask) | (RWRET << (24 - shift));
cg->mov(addr, 0xFFFFFFu);
cg->shr(addr, cg->cl);
cg->and_(value, addr);
cg->mov(cg->ecx, RWARG2);
cg->shl(RWRET, cg->cl);
cg->or_(value, RWRET);
}
else
{
// const u32 mask = UINT32_C(0xFFFFFF00) << (24 - shift);
// new_value = (value & mask) | (RWRET >> shift);
cg->shr(RWRET, cg->cl);
cg->mov(addr, 0xFFFFFF00u);
cg->mov(cg->ecx, RWARG2);
cg->shl(addr, cg->cl);
cg->and_(value, addr);
cg->or_(value, RWRET);
}
FreeHostReg(addr.getIdx());
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::X64Compiler::Compile_lwc2(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
const std::optional<Reg32> addr_reg = g_settings.gpu_pgxp_enable ?
std::optional<Reg32>(Reg32(AllocateTempHostReg(HR_CALLEE_SAVED))) :
std::optional<Reg32>();
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, false, use_fastmem);
2023-10-03 14:39:18 +00:00
const Reg32 addr = ComputeLoadStoreAddressArg(cf, address, addr_reg);
2023-10-21 12:12:00 +00:00
GenerateLoad(addr, MemoryAccessSize::Word, false, use_fastmem, []() { return RWRET; });
2023-10-03 14:39:18 +00:00
const u32 index = static_cast<u32>(inst->r.rt.GetValue());
const auto [ptr, action] = GetGTERegisterPointer(index, true);
switch (action)
{
case GTERegisterAccessAction::Ignore:
{
break;
}
case GTERegisterAccessAction::Direct:
{
cg->mov(cg->dword[PTR(ptr)], RWRET);
break;
}
case GTERegisterAccessAction::SignExtend16:
{
cg->movsx(RWRET, RWRET.cvt16());
cg->mov(cg->dword[PTR(ptr)], RWRET);
break;
}
case GTERegisterAccessAction::ZeroExtend16:
{
cg->movzx(RWRET, RWRET.cvt16());
cg->mov(cg->dword[PTR(ptr)], RWRET);
break;
}
case GTERegisterAccessAction::CallHandler:
{
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG2, RWRET);
cg->mov(RWARG1, index);
cg->call(&GTE::WriteRegister);
break;
}
case GTERegisterAccessAction::PushFIFO:
{
// SXY0 <- SXY1
// SXY1 <- SXY2
// SXY2 <- SXYP
DebugAssert(RWRET != RWARG1 && RWRET != RWARG2);
cg->mov(RWARG1, cg->dword[PTR(&g_state.gte_regs.SXY1[0])]);
cg->mov(RWARG2, cg->dword[PTR(&g_state.gte_regs.SXY2[0])]);
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY0[0])], RWARG1);
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY1[0])], RWARG2);
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY2[0])], RWRET);
break;
}
default:
{
Panic("Unknown action");
return;
}
}
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG3, RWRET);
cg->mov(RWARG2, addr);
cg->mov(RWARG1, inst->bits);
cg->call(reinterpret_cast<const void*>(&PGXP::CPU_LWC2));
FreeHostReg(addr_reg.value().getIdx());
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::X64Compiler::Compile_sxx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
const std::optional<Reg32> addr_reg = g_settings.gpu_pgxp_enable ?
std::optional<Reg32>(Reg32(AllocateTempHostReg(HR_CALLEE_SAVED))) :
std::optional<Reg32>();
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
const Reg32 addr = ComputeLoadStoreAddressArg(cf, address, addr_reg);
const Reg32 data = cf.valid_host_t ? CFGetRegT(cf) : RWARG2;
if (!cf.valid_host_t)
MoveTToReg(RWARG2, cf);
2023-10-21 12:12:00 +00:00
GenerateStore(addr, data, size, use_fastmem);
2023-10-03 14:39:18 +00:00
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
MoveMIPSRegToReg(RWARG3, cf.MipsT());
cg->mov(RWARG2, addr);
cg->mov(RWARG1, inst->bits);
cg->call(s_pgxp_mem_store_functions[static_cast<u32>(size)]);
FreeHostReg(addr_reg.value().getIdx());
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::X64Compiler::Compile_swx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
DebugAssert(size == MemoryAccessSize::Word && !sign);
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
// TODO: if address is constant, this can be simplified..
// We'd need to be careful here if we weren't overwriting it..
const Reg32 addr = Reg32(AllocateHostReg(HR_CALLEE_SAVED, HR_TYPE_TEMP));
ComputeLoadStoreAddressArg(cf, address, addr);
cg->mov(RWARG1, addr);
cg->and_(RWARG1, ~0x3u);
2023-10-21 12:12:00 +00:00
GenerateLoad(RWARG1, MemoryAccessSize::Word, false, use_fastmem, []() { return RWRET; });
2023-10-03 14:39:18 +00:00
// TODO: this can take over rt's value if it's no longer needed
// NOTE: can't trust T in cf because of the flush
const Reg rt = inst->r.rt;
const Reg32 value = RWARG2;
DebugAssert(value != cg->ecx);
if (HasConstantReg(rt))
cg->mov(value, GetConstantRegU32(rt));
else if (const std::optional<u32> rtreg = CheckHostReg(HR_MODE_READ, HR_TYPE_CPU_REG, rt); rtreg.has_value())
cg->mov(value, Reg32(rtreg.value()));
else
cg->mov(value, MipsPtr(rt));
cg->mov(cg->ecx, addr);
cg->and_(cg->ecx, 3);
cg->shl(cg->ecx, 3); // *8
if (inst->op == InstructionOp::swl)
{
// const u32 mem_mask = UINT32_C(0xFFFFFF00) << shift;
// new_value = (RWRET & mem_mask) | (value >> (24 - shift));
cg->mov(RWARG3, 0xFFFFFF00u);
cg->shl(RWARG3, cg->cl);
cg->and_(RWRET, RWARG3);
cg->mov(RWARG3, 24);
cg->sub(RWARG3, cg->ecx);
cg->mov(cg->ecx, RWARG3);
cg->shr(value, cg->cl);
cg->or_(value, RWRET);
}
else
{
// const u32 mem_mask = UINT32_C(0x00FFFFFF) >> (24 - shift);
// new_value = (RWRET & mem_mask) | (value << shift);
cg->shl(value, cg->cl);
DebugAssert(RWARG3 != cg->ecx);
cg->mov(RWARG3, 24);
cg->sub(RWARG3, cg->ecx);
cg->mov(cg->ecx, RWARG3);
cg->mov(RWARG3, 0x00FFFFFFu);
cg->shr(RWARG3, cg->cl);
cg->and_(RWRET, RWARG3);
cg->or_(value, RWRET);
}
FreeHostReg(addr.getIdx());
cg->mov(RWARG1, addr);
cg->and_(RWARG1, ~0x3u);
2023-10-21 12:12:00 +00:00
GenerateStore(RWARG1, value, MemoryAccessSize::Word, use_fastmem);
2023-10-03 14:39:18 +00:00
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::X64Compiler::Compile_swc2(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
const u32 index = static_cast<u32>(inst->r.rt.GetValue());
const auto [ptr, action] = GetGTERegisterPointer(index, false);
switch (action)
{
case GTERegisterAccessAction::Direct:
{
cg->mov(RWARG2, cg->dword[PTR(ptr)]);
}
break;
case GTERegisterAccessAction::CallHandler:
{
// should already be flushed.. except in fastmem case
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG1, index);
cg->call(&GTE::ReadRegister);
cg->mov(RWARG2, RWRET);
}
break;
default:
{
Panic("Unknown action");
}
break;
}
// PGXP makes this a giant pain.
if (!g_settings.gpu_pgxp_enable)
{
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
const Reg32 addr = ComputeLoadStoreAddressArg(cf, address);
2023-10-21 12:12:00 +00:00
GenerateStore(addr, RWARG2, size, use_fastmem);
2023-10-03 14:39:18 +00:00
return;
}
// TODO: This can be simplified because we don't need to validate in PGXP..
const Reg32 addr_reg = Reg32(AllocateTempHostReg(HR_CALLEE_SAVED));
const Reg32 data_backup = Reg32(AllocateTempHostReg(HR_CALLEE_SAVED));
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
ComputeLoadStoreAddressArg(cf, address, addr_reg);
cg->mov(data_backup, RWARG2);
2023-10-21 12:12:00 +00:00
GenerateStore(addr_reg, RWARG2, size, use_fastmem);
2023-10-03 14:39:18 +00:00
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG3, data_backup);
cg->mov(RWARG2, addr_reg);
cg->mov(RWARG1, inst->bits);
cg->call(reinterpret_cast<const void*>(&PGXP::CPU_SWC2));
FreeHostReg(addr_reg.getIdx());
FreeHostReg(data_backup.getIdx());
}
void CPU::NewRec::X64Compiler::Compile_mtc0(CompileFlags cf)
{
const Cop0Reg reg = static_cast<Cop0Reg>(MipsD());
const u32* ptr = GetCop0RegPtr(reg);
const u32 mask = GetCop0RegWriteMask(reg);
if (!ptr)
{
Compile_Fallback();
return;
}
// TODO: const apply mask
const Reg32 rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG1;
const u32 constant_value = cf.const_t ? GetConstantRegU32(cf.MipsT()) : 0;
if (mask == 0)
{
// if it's a read-only register, ignore
Log_DebugPrintf("Ignoring write to read-only cop0 reg %u", static_cast<u32>(reg));
return;
}
// for some registers, we need to test certain bits
const bool needs_bit_test = (reg == Cop0Reg::SR);
const Reg32 changed_bits = RWARG3;
// update value
if (cf.valid_host_t)
{
cg->mov(RWARG1, rt);
cg->mov(RWARG2, cg->dword[PTR(ptr)]);
cg->and_(RWARG1, mask);
if (needs_bit_test)
{
cg->mov(changed_bits, RWARG2);
cg->xor_(changed_bits, RWARG1);
}
cg->and_(RWARG2, ~mask);
cg->or_(RWARG2, RWARG1);
cg->mov(cg->dword[PTR(ptr)], RWARG2);
}
else
{
cg->mov(RWARG2, cg->dword[PTR(ptr)]);
if (needs_bit_test)
{
cg->mov(changed_bits, RWARG2);
cg->xor_(changed_bits, constant_value & mask);
}
cg->and_(RWARG2, ~mask);
cg->or_(RWARG2, constant_value & mask);
cg->mov(cg->dword[PTR(ptr)], RWARG2);
}
if (reg == Cop0Reg::SR)
{
// TODO: replace with register backup
// We could just inline the whole thing..
Flush(FLUSH_FOR_C_CALL);
cg->test(changed_bits, 1u << 16);
SwitchToFarCode(true, &CodeGenerator::jnz);
cg->mov(cg->dword[cg->rsp], RWARG2);
cg->sub(cg->rsp, STACK_SHADOW_SIZE + 8);
2023-10-03 14:39:18 +00:00
cg->call(&CPU::UpdateMemoryPointers);
cg->add(cg->rsp, STACK_SHADOW_SIZE + 8);
cg->mov(RWARG2, cg->dword[cg->rsp]);
2023-10-03 14:39:18 +00:00
cg->mov(RMEMBASE, cg->qword[PTR(&g_state.fastmem_base)]);
SwitchToNearCode(true);
TestInterrupts(RWARG2);
}
else if (reg == Cop0Reg::CAUSE)
2023-10-03 14:39:18 +00:00
{
cg->mov(RWARG1, cg->dword[PTR(&g_state.cop0_regs.sr.bits)]);
TestInterrupts(RWARG1);
2023-10-03 14:39:18 +00:00
}
if (reg == Cop0Reg::DCIC && g_settings.cpu_recompiler_memory_exceptions)
{
// TODO: DCIC handling for debug breakpoints
Log_WarningPrintf("TODO: DCIC handling for debug breakpoints");
}
}
void CPU::NewRec::X64Compiler::Compile_rfe(CompileFlags cf)
{
// shift mode bits right two, preserving upper bits
static constexpr u32 mode_bits_mask = UINT32_C(0b1111);
cg->mov(RWARG1, cg->dword[PTR(&g_state.cop0_regs.sr.bits)]);
cg->mov(RWARG2, RWARG1);
cg->shr(RWARG2, 2);
cg->and_(RWARG1, ~mode_bits_mask);
cg->and_(RWARG2, mode_bits_mask);
cg->or_(RWARG1, RWARG2);
cg->mov(cg->dword[PTR(&g_state.cop0_regs.sr.bits)], RWARG1);
TestInterrupts(RWARG1);
}
void CPU::NewRec::X64Compiler::TestInterrupts(const Xbyak::Reg32& sr)
{
// if Iec == 0 then goto no_interrupt
Label no_interrupt;
cg->test(sr, 1);
cg->jz(no_interrupt, CodeGenerator::T_NEAR);
// sr & cause
cg->and_(sr, cg->dword[PTR(&g_state.cop0_regs.cause.bits)]);
// ((sr & cause) & 0xff00) == 0 goto no_interrupt
cg->test(sr, 0xFF00);
SwitchToFarCode(true, &CodeGenerator::jnz);
BackupHostState();
// Update load delay, this normally happens at the end of an instruction, but we're finishing it early.
UpdateLoadDelay();
2023-11-08 16:10:39 +00:00
Flush(FLUSH_END_BLOCK | FLUSH_FOR_EXCEPTION | FLUSH_FOR_C_CALL);
// Can't use EndBlockWithException() here, because it'll use the wrong PC.
// Can't use RaiseException() on the fast path if we're the last instruction, because the next PC is unknown.
if (!iinfo->is_last_instruction)
{
cg->mov(RWARG1, Cop0Registers::CAUSE::MakeValueForException(Exception::INT, iinfo->is_branch_instruction, false,
(inst + 1)->cop.cop_n));
cg->mov(RWARG2, m_compiler_pc);
cg->call(static_cast<void (*)(u32, u32)>(&CPU::RaiseException));
m_dirty_pc = false;
EndAndLinkBlock(std::nullopt, true, false);
}
else
{
if (m_dirty_pc)
cg->mov(cg->dword[PTR(&g_state.pc)], m_compiler_pc);
m_dirty_pc = false;
cg->mov(cg->dword[PTR(&g_state.downcount)], 0);
EndAndLinkBlock(std::nullopt, false, true);
}
2023-10-03 14:39:18 +00:00
RestoreHostState();
SwitchToNearCode(false);
cg->L(no_interrupt);
}
void CPU::NewRec::X64Compiler::Compile_mfc2(CompileFlags cf)
{
const u32 index = inst->cop.Cop2Index();
const Reg rt = inst->r.rt;
const auto [ptr, action] = GetGTERegisterPointer(index, false);
if (action == GTERegisterAccessAction::Ignore)
return;
u32 hreg;
if (action == GTERegisterAccessAction::Direct)
{
hreg = AllocateHostReg(GetFlagsForNewLoadDelayedReg(),
EMULATE_LOAD_DELAYS ? HR_TYPE_NEXT_LOAD_DELAY_VALUE : HR_TYPE_CPU_REG, rt);
cg->mov(Reg32(hreg), cg->dword[PTR(ptr)]);
}
else if (action == GTERegisterAccessAction::CallHandler)
{
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG1, index);
cg->call(&GTE::ReadRegister);
hreg = AllocateHostReg(GetFlagsForNewLoadDelayedReg(),
EMULATE_LOAD_DELAYS ? HR_TYPE_NEXT_LOAD_DELAY_VALUE : HR_TYPE_CPU_REG, rt);
cg->mov(Reg32(hreg), RWRET);
}
else
{
Panic("Unknown action");
return;
}
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG1, inst->bits);
cg->mov(RWARG2, Reg32(hreg));
cg->call(reinterpret_cast<const void*>(&PGXP::CPU_MFC2));
}
}
void CPU::NewRec::X64Compiler::Compile_mtc2(CompileFlags cf)
{
const u32 index = inst->cop.Cop2Index();
const auto [ptr, action] = GetGTERegisterPointer(index, true);
if (action == GTERegisterAccessAction::Ignore)
return;
if (action == GTERegisterAccessAction::Direct)
{
if (cf.const_t)
{
cg->mov(cg->dword[PTR(ptr)], GetConstantRegU32(cf.MipsT()));
}
else if (cf.valid_host_t)
{
cg->mov(cg->dword[PTR(ptr)], CFGetRegT(cf));
}
else
{
cg->mov(RWARG1, MipsPtr(cf.MipsT()));
cg->mov(cg->dword[PTR(ptr)], RWARG1);
}
}
else if (action == GTERegisterAccessAction::SignExtend16 || action == GTERegisterAccessAction::ZeroExtend16)
{
const bool sign = (action == GTERegisterAccessAction::SignExtend16);
if (cf.const_t)
{
const u16 cv = Truncate16(GetConstantRegU32(cf.MipsT()));
cg->mov(cg->dword[PTR(ptr)], sign ? ::SignExtend32(cv) : ::ZeroExtend32(cv));
}
else if (cf.valid_host_t)
{
sign ? cg->movsx(RWARG1, Reg16(cf.host_t)) : cg->movzx(RWARG1, Reg16(cf.host_t));
cg->mov(cg->dword[PTR(ptr)], RWARG1);
}
else
{
sign ? cg->movsx(RWARG1, cg->word[PTR(&g_state.regs.r[cf.mips_t])]) :
cg->movzx(RWARG1, cg->word[PTR(&g_state.regs.r[cf.mips_t])]);
cg->mov(cg->dword[PTR(ptr)], RWARG1);
}
}
else if (action == GTERegisterAccessAction::CallHandler)
{
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG1, index);
MoveTToReg(RWARG2, cf);
cg->call(&GTE::WriteRegister);
}
else if (action == GTERegisterAccessAction::PushFIFO)
{
// SXY0 <- SXY1
// SXY1 <- SXY2
// SXY2 <- SXYP
cg->mov(RWARG1, cg->dword[PTR(&g_state.gte_regs.SXY1[0])]);
cg->mov(RWARG2, cg->dword[PTR(&g_state.gte_regs.SXY2[0])]);
if (!cf.const_t && !cf.valid_host_t)
cg->mov(RWARG3, MipsPtr(cf.MipsT()));
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY0[0])], RWARG1);
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY1[0])], RWARG2);
if (cf.const_t)
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY2[0])], GetConstantRegU32(cf.MipsT()));
else if (cf.valid_host_t)
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY2[0])], CFGetRegT(cf));
else
cg->mov(cg->dword[PTR(&g_state.gte_regs.SXY2[0])], RWARG3);
}
else
{
Panic("Unknown action");
}
}
void CPU::NewRec::X64Compiler::Compile_cop2(CompileFlags cf)
{
TickCount func_ticks;
GTE::InstructionImpl func = GTE::GetInstructionImpl(inst->bits, &func_ticks);
Flush(FLUSH_FOR_C_CALL);
cg->mov(RWARG1, inst->bits & GTE::Instruction::REQUIRED_BITS_MASK);
cg->call(reinterpret_cast<const void*>(func));
AddGTETicks(func_ticks);
}
u32 CPU::NewRec::CompileLoadStoreThunk(void* thunk_code, u32 thunk_space, void* code_address, u32 code_size,
2023-10-21 12:12:00 +00:00
TickCount cycles_to_add, TickCount cycles_to_remove, u32 gpr_bitmask,
u8 address_register, u8 data_register, MemoryAccessSize size, bool is_signed,
bool is_load)
2023-10-03 14:39:18 +00:00
{
CodeGenerator acg(thunk_space, thunk_code);
CodeGenerator* cg = &acg;
static constexpr u32 GPR_SIZE = 8;
// save regs
u32 num_gprs = 0;
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
if ((gpr_bitmask & (1u << i)) && IsCallerSavedRegister(i) && (!is_load || data_register != i))
num_gprs++;
}
const u32 stack_size = (((num_gprs + 1) & ~1u) * GPR_SIZE) + STACK_SHADOW_SIZE;
2023-10-03 14:39:18 +00:00
if (stack_size > 0)
{
cg->sub(cg->rsp, stack_size);
u32 stack_offset = STACK_SHADOW_SIZE;
2023-10-03 14:39:18 +00:00
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
if ((gpr_bitmask & (1u << i)) && IsCallerSavedRegister(i) && (!is_load || data_register != i))
{
cg->mov(cg->qword[cg->rsp + stack_offset], Reg64(i));
stack_offset += GPR_SIZE;
}
}
}
if (cycles_to_add != 0)
cg->add(cg->dword[PTR(&g_state.pending_ticks)], cycles_to_add);
if (address_register != static_cast<u8>(RWARG1.getIdx()))
cg->mov(RWARG1, Reg32(address_register));
if (!is_load)
{
if (data_register != static_cast<u8>(RWARG2.getIdx()))
cg->mov(RWARG2, Reg32(data_register));
}
switch (size)
{
case MemoryAccessSize::Byte:
{
cg->call(is_load ? reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryByte) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryByte));
}
break;
case MemoryAccessSize::HalfWord:
{
cg->call(is_load ? reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryHalfWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryHalfWord));
}
break;
case MemoryAccessSize::Word:
{
cg->call(is_load ? reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryWord));
}
break;
}
if (is_load)
{
const Reg32 dst = Reg32(data_register);
switch (size)
{
case MemoryAccessSize::Byte:
{
is_signed ? cg->movsx(dst, RWRET.cvt8()) : cg->movzx(dst, RWRET.cvt8());
}
break;
case MemoryAccessSize::HalfWord:
{
is_signed ? cg->movsx(dst, RWRET.cvt16()) : cg->movzx(dst, RWRET.cvt16());
}
break;
case MemoryAccessSize::Word:
{
if (dst != RWRET)
cg->mov(dst, RWRET);
}
break;
}
}
if (cycles_to_remove != 0)
cg->sub(cg->dword[PTR(&g_state.pending_ticks)], cycles_to_remove);
// restore regs
if (stack_size > 0)
{
u32 stack_offset = STACK_SHADOW_SIZE;
2023-10-03 14:39:18 +00:00
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
if ((gpr_bitmask & (1u << i)) && IsCallerSavedRegister(i) && (!is_load || data_register != i))
{
cg->mov(Reg64(i), cg->qword[cg->rsp + stack_offset]);
stack_offset += GPR_SIZE;
}
}
cg->add(cg->rsp, stack_size);
}
cg->jmp(static_cast<const u8*>(code_address) + code_size);
// fill the rest of it with nops, if any
DebugAssert(code_size >= BACKPATCH_JMP_SIZE);
if (code_size > BACKPATCH_JMP_SIZE)
std::memset(static_cast<u8*>(code_address) + BACKPATCH_JMP_SIZE, 0x90, code_size - BACKPATCH_JMP_SIZE);
return static_cast<u32>(cg->getSize());
}
#endif // CPU_ARCH_X64