Duckstation/src/core/cpu_newrec_compiler_aarch64.cpp

2286 lines
68 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: 2024 Connor McLaughlin <stenzek@gmail.com>
2023-10-03 14:39:18 +00:00
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "cpu_newrec_compiler_aarch64.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/log.h"
#include "common/string_util.h"
#include "cpu_core_private.h"
#include "cpu_pgxp.h"
2023-10-03 14:39:18 +00:00
#include "cpu_recompiler_thunks.h"
#include "cpu_recompiler_types.h"
2023-10-03 14:39:18 +00:00
#include "gte.h"
#include "settings.h"
#include "timing_event.h"
#include <limits>
#ifdef CPU_ARCH_ARM64
2023-10-03 14:39:18 +00:00
Log_SetChannel(CPU::NewRec);
2023-10-21 06:23:01 +00:00
#define PTR(x) vixl::aarch64::MemOperand(RSTATE, (((u8*)(x)) - ((u8*)&g_state)))
2023-10-03 14:39:18 +00:00
namespace CPU::NewRec {
using namespace vixl::aarch64;
2023-10-03 14:39:18 +00:00
using CPU::Recompiler::armEmitCall;
using CPU::Recompiler::armEmitCondBranch;
using CPU::Recompiler::armEmitJmp;
using CPU::Recompiler::armEmitMov;
using CPU::Recompiler::armGetJumpTrampoline;
using CPU::Recompiler::armGetPCDisplacement;
using CPU::Recompiler::armIsCallerSavedRegister;
using CPU::Recompiler::armMoveAddressToReg;
AArch64Compiler s_instance;
Compiler* g_compiler = &s_instance;
} // namespace CPU::NewRec
CPU::NewRec::AArch64Compiler::AArch64Compiler()
2023-10-21 12:12:00 +00:00
: m_emitter(PositionDependentCode), m_far_emitter(PositionIndependentCode)
{
}
2023-10-03 14:39:18 +00:00
CPU::NewRec::AArch64Compiler::~AArch64Compiler() = default;
const void* CPU::NewRec::AArch64Compiler::GetCurrentCodePointer()
{
return armAsm->GetCursorAddress<const void*>();
}
void CPU::NewRec::AArch64Compiler::Reset(CodeCache::Block* block, u8* code_buffer, u32 code_buffer_space,
u8* far_code_buffer, u32 far_code_space)
{
Compiler::Reset(block, code_buffer, code_buffer_space, far_code_buffer, far_code_space);
// TODO: don't recreate this every time..
DebugAssert(!armAsm);
m_emitter.GetBuffer()->Reset(code_buffer, code_buffer_space);
m_far_emitter.GetBuffer()->Reset(far_code_buffer, far_code_space);
armAsm = &m_emitter;
2023-10-03 14:39:18 +00:00
#ifdef VIXL_DEBUG
m_emitter_check = std::make_unique<vixl::CodeBufferCheckScope>(m_emitter.get(), code_buffer_space,
vixl::CodeBufferCheckScope::kDontReserveBufferSpace);
m_far_emitter_check = std::make_unique<vixl::CodeBufferCheckScope>(
m_far_emitter.get(), far_code_space, vixl::CodeBufferCheckScope::kDontReserveBufferSpace);
#endif
// Need to wipe it out so it's correct when toggling fastmem.
m_host_regs = {};
const u32 membase_idx = CodeCache::IsUsingFastmem() ? RMEMBASE.GetCode() : NUM_HOST_REGS;
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
HostRegAlloc& ra = m_host_regs[i];
if (i == RWARG1.GetCode() || i == RWARG1.GetCode() || i == RWARG2.GetCode() || i == RWARG3.GetCode() ||
i == RWSCRATCH.GetCode() || i == RSTATE.GetCode() || i == membase_idx || i == x18.GetCode() || i >= 30)
{
continue;
}
ra.flags = HR_USABLE | (armIsCallerSavedRegister(i) ? 0 : HR_CALLEE_SAVED);
}
}
void CPU::NewRec::AArch64Compiler::SwitchToFarCode(bool emit_jump, vixl::aarch64::Condition cond)
{
DebugAssert(armAsm == &m_emitter);
2023-10-03 14:39:18 +00:00
if (emit_jump)
{
const s64 disp = armGetPCDisplacement(GetCurrentCodePointer(), m_far_emitter.GetCursorAddress<const void*>());
2023-10-03 14:39:18 +00:00
if (cond != Condition::al)
{
if (vixl::IsInt19(disp))
{
armAsm->b(disp, cond);
}
else
{
Label skip;
armAsm->b(&skip, vixl::aarch64::InvertCondition(cond));
armAsm->b(armGetPCDisplacement(GetCurrentCodePointer(), m_far_emitter.GetCursorAddress<const void*>()));
2023-10-03 14:39:18 +00:00
armAsm->bind(&skip);
}
}
else
{
armAsm->b(disp);
}
}
armAsm = &m_far_emitter;
2023-10-03 14:39:18 +00:00
}
void CPU::NewRec::AArch64Compiler::SwitchToFarCodeIfBitSet(const vixl::aarch64::Register& reg, u32 bit)
{
const s64 disp = armGetPCDisplacement(GetCurrentCodePointer(), m_far_emitter.GetCursorAddress<const void*>());
2023-10-03 14:39:18 +00:00
if (vixl::IsInt14(disp))
{
armAsm->tbnz(reg, bit, disp);
}
else
{
Label skip;
armAsm->tbz(reg, bit, &skip);
armAsm->b(armGetPCDisplacement(GetCurrentCodePointer(), m_far_emitter.GetCursorAddress<const void*>()));
2023-10-03 14:39:18 +00:00
armAsm->bind(&skip);
}
armAsm = &m_far_emitter;
2023-10-03 14:39:18 +00:00
}
void CPU::NewRec::AArch64Compiler::SwitchToFarCodeIfRegZeroOrNonZero(const vixl::aarch64::Register& reg, bool nonzero)
{
const s64 disp = armGetPCDisplacement(GetCurrentCodePointer(), m_far_emitter.GetCursorAddress<const void*>());
2023-10-03 14:39:18 +00:00
if (vixl::IsInt19(disp))
{
nonzero ? armAsm->cbnz(reg, disp) : armAsm->cbz(reg, disp);
}
else
{
Label skip;
nonzero ? armAsm->cbz(reg, &skip) : armAsm->cbnz(reg, &skip);
armAsm->b(armGetPCDisplacement(GetCurrentCodePointer(), m_far_emitter.GetCursorAddress<const void*>()));
2023-10-03 14:39:18 +00:00
armAsm->bind(&skip);
}
armAsm = &m_far_emitter;
2023-10-03 14:39:18 +00:00
}
void CPU::NewRec::AArch64Compiler::SwitchToNearCode(bool emit_jump, vixl::aarch64::Condition cond)
{
DebugAssert(armAsm == &m_far_emitter);
2023-10-03 14:39:18 +00:00
if (emit_jump)
{
const s64 disp = armGetPCDisplacement(GetCurrentCodePointer(), m_emitter.GetCursorAddress<const void*>());
2023-10-03 14:39:18 +00:00
(cond != Condition::al) ? armAsm->b(disp, cond) : armAsm->b(disp);
}
armAsm = &m_emitter;
2023-10-03 14:39:18 +00:00
}
void CPU::NewRec::AArch64Compiler::EmitMov(const vixl::aarch64::WRegister& dst, u32 val)
{
armEmitMov(armAsm, dst, val);
}
void CPU::NewRec::AArch64Compiler::EmitCall(const void* ptr, bool force_inline /*= false*/)
{
armEmitCall(armAsm, ptr, force_inline);
}
vixl::aarch64::Operand CPU::NewRec::AArch64Compiler::armCheckAddSubConstant(s32 val)
{
if (Assembler::IsImmAddSub(val))
return vixl::aarch64::Operand(static_cast<int64_t>(val));
EmitMov(RWSCRATCH, static_cast<u32>(val));
return vixl::aarch64::Operand(RWSCRATCH);
}
vixl::aarch64::Operand CPU::NewRec::AArch64Compiler::armCheckAddSubConstant(u32 val)
{
return armCheckAddSubConstant(static_cast<s32>(val));
}
vixl::aarch64::Operand CPU::NewRec::AArch64Compiler::armCheckCompareConstant(s32 val)
{
if (Assembler::IsImmConditionalCompare(val))
return vixl::aarch64::Operand(static_cast<int64_t>(val));
EmitMov(RWSCRATCH, static_cast<u32>(val));
return vixl::aarch64::Operand(RWSCRATCH);
}
vixl::aarch64::Operand CPU::NewRec::AArch64Compiler::armCheckLogicalConstant(u32 val)
{
if (Assembler::IsImmLogical(val, 32))
return vixl::aarch64::Operand(static_cast<s64>(static_cast<u64>(val)));
EmitMov(RWSCRATCH, val);
return vixl::aarch64::Operand(RWSCRATCH);
}
void CPU::NewRec::AArch64Compiler::BeginBlock()
{
Compiler::BeginBlock();
}
void CPU::NewRec::AArch64Compiler::GenerateBlockProtectCheck(const u8* ram_ptr, const u8* shadow_ptr, u32 size)
{
// store it first to reduce code size, because we can offset
armMoveAddressToReg(armAsm, RXARG1, ram_ptr);
armMoveAddressToReg(armAsm, RXARG2, shadow_ptr);
bool first = true;
u32 offset = 0;
Label block_changed;
while (size >= 16)
{
const VRegister vtmp = v2.V4S();
const VRegister dst = first ? v0.V4S() : v1.V4S();
armAsm->ldr(dst, MemOperand(RXARG1, offset));
armAsm->ldr(vtmp, MemOperand(RXARG2, offset));
armAsm->cmeq(dst, dst, vtmp);
if (!first)
armAsm->and_(v0.V16B(), v0.V16B(), dst.V16B());
2023-10-03 14:39:18 +00:00
else
first = false;
offset += 16;
size -= 16;
}
if (!first)
{
// TODO: make sure this doesn't choke on ffffffff
armAsm->uminv(s0, v0.V4S());
armAsm->fcmp(s0, 0.0);
armAsm->b(&block_changed, eq);
}
while (size >= 8)
{
armAsm->ldr(RXARG3, MemOperand(RXARG1, offset));
armAsm->ldr(RXSCRATCH, MemOperand(RXARG2, offset));
armAsm->cmp(RXARG3, RXSCRATCH);
armAsm->b(&block_changed, ne);
offset += 8;
size -= 8;
}
while (size >= 4)
{
armAsm->ldr(RWARG3, MemOperand(RXARG1, offset));
armAsm->ldr(RWSCRATCH, MemOperand(RXARG2, offset));
armAsm->cmp(RWARG3, RWSCRATCH);
armAsm->b(&block_changed, ne);
offset += 4;
size -= 4;
}
DebugAssert(size == 0);
Label block_unchanged;
armAsm->b(&block_unchanged);
armAsm->bind(&block_changed);
armEmitJmp(armAsm, CodeCache::g_discard_and_recompile_block, false);
armAsm->bind(&block_unchanged);
}
void CPU::NewRec::AArch64Compiler::GenerateICacheCheckAndUpdate()
{
if (GetSegmentForAddress(m_block->pc) >= Segment::KSEG1)
{
armAsm->ldr(RWARG1, PTR(&g_state.pending_ticks));
armAsm->add(RWARG1, RWARG1, armCheckAddSubConstant(static_cast<u32>(m_block->uncached_fetch_ticks)));
armAsm->str(RWARG1, PTR(&g_state.pending_ticks));
}
else
{
const auto& ticks_reg = RWARG1;
const auto& current_tag_reg = RWARG2;
const auto& existing_tag_reg = RWARG3;
VirtualMemoryAddress current_pc = m_block->pc & ICACHE_TAG_ADDRESS_MASK;
armAsm->ldr(ticks_reg, PTR(&g_state.pending_ticks));
armEmitMov(armAsm, current_tag_reg, current_pc);
for (u32 i = 0; i < m_block->icache_line_count; i++, current_pc += ICACHE_LINE_SIZE)
{
const TickCount fill_ticks = GetICacheFillTicks(current_pc);
if (fill_ticks <= 0)
continue;
const u32 line = GetICacheLine(current_pc);
const u32 offset = offsetof(State, icache_tags) + (line * sizeof(u32));
Label cache_hit;
armAsm->ldr(existing_tag_reg, MemOperand(RSTATE, offset));
armAsm->cmp(existing_tag_reg, current_tag_reg);
armAsm->b(&cache_hit, eq);
armAsm->str(current_tag_reg, MemOperand(RSTATE, offset));
armAsm->add(ticks_reg, ticks_reg, armCheckAddSubConstant(static_cast<u32>(fill_ticks)));
armAsm->bind(&cache_hit);
if (i != (m_block->icache_line_count - 1))
armAsm->add(current_tag_reg, current_tag_reg, armCheckAddSubConstant(ICACHE_LINE_SIZE));
}
armAsm->str(ticks_reg, PTR(&g_state.pending_ticks));
}
}
void CPU::NewRec::AArch64Compiler::GenerateCall(const void* func, s32 arg1reg /*= -1*/, s32 arg2reg /*= -1*/,
s32 arg3reg /*= -1*/)
{
if (arg1reg >= 0 && arg1reg != static_cast<s32>(RXARG1.GetCode()))
armAsm->mov(RXARG1, XRegister(arg1reg));
if (arg1reg >= 0 && arg2reg != static_cast<s32>(RXARG2.GetCode()))
armAsm->mov(RXARG2, XRegister(arg2reg));
if (arg1reg >= 0 && arg3reg != static_cast<s32>(RXARG3.GetCode()))
armAsm->mov(RXARG3, XRegister(arg3reg));
EmitCall(func);
}
void CPU::NewRec::AArch64Compiler::EndBlock(const std::optional<u32>& newpc, bool do_event_test)
{
if (newpc.has_value())
{
if (m_dirty_pc || m_compiler_pc != newpc)
{
EmitMov(RWSCRATCH, newpc.value());
armAsm->str(RWSCRATCH, PTR(&g_state.pc));
}
}
m_dirty_pc = false;
// flush regs
Flush(FLUSH_END_BLOCK);
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(newpc, do_event_test, false);
2023-10-03 14:39:18 +00:00
}
void CPU::NewRec::AArch64Compiler::EndBlockWithException(Exception excode)
{
// flush regs, but not pc, it's going to get overwritten
// flush cycles because of the GTE instruction stuff...
2023-11-08 16:10:39 +00:00
Flush(FLUSH_END_BLOCK | FLUSH_FOR_EXCEPTION | FLUSH_FOR_C_CALL);
2023-10-03 14:39:18 +00:00
// TODO: flush load delay
// TODO: break for pcdrv
EmitMov(RWARG1, Cop0Registers::CAUSE::MakeValueForException(excode, m_current_instruction_branch_delay_slot, false,
inst->cop.cop_n));
EmitMov(RWARG2, m_current_instruction_pc);
EmitCall(reinterpret_cast<const void*>(static_cast<void (*)(u32, u32)>(&CPU::RaiseException)));
m_dirty_pc = false;
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(std::nullopt, true, false);
2023-10-03 14:39:18 +00:00
}
2023-11-08 16:10:39 +00:00
void CPU::NewRec::AArch64Compiler::EndAndLinkBlock(const std::optional<u32>& newpc, bool do_event_test,
bool force_run_events)
2023-10-03 14:39:18 +00:00
{
// event test
// pc should've been flushed
2023-11-08 16:10:39 +00:00
DebugAssert(!m_dirty_pc && !m_block_ended);
m_block_ended = true;
2023-10-03 14:39:18 +00:00
// TODO: try extracting this to a function
// save cycles for event test
const TickCount cycles = std::exchange(m_cycles, 0);
// pending_ticks += cycles
// if (pending_ticks >= downcount) { dispatch_event(); }
if (do_event_test || m_gte_done_cycle > cycles || cycles > 0)
armAsm->ldr(RWARG1, PTR(&g_state.pending_ticks));
if (do_event_test)
armAsm->ldr(RWARG2, PTR(&g_state.downcount));
if (cycles > 0)
armAsm->add(RWARG1, RWARG1, armCheckAddSubConstant(cycles));
if (m_gte_done_cycle > cycles)
{
armAsm->add(RWARG2, RWARG1, armCheckAddSubConstant(m_gte_done_cycle - cycles));
armAsm->str(RWARG2, PTR(&g_state.gte_completion_tick));
}
if (do_event_test)
armAsm->cmp(RWARG1, RWARG2);
if (cycles > 0)
armAsm->str(RWARG1, PTR(&g_state.pending_ticks));
if (do_event_test)
armEmitCondBranch(armAsm, ge, CodeCache::g_run_events_and_dispatch);
// jump to dispatcher or next block
2023-11-08 16:10:39 +00:00
if (force_run_events)
{
armEmitJmp(armAsm, CodeCache::g_run_events_and_dispatch, false);
}
else if (!newpc.has_value())
2023-10-03 14:39:18 +00:00
{
armEmitJmp(armAsm, CodeCache::g_dispatcher, false);
}
else
{
if (newpc.value() == m_block->pc)
{
// Special case: ourselves! No need to backlink then.
Log_DebugPrintf("Linking block at %08X to self", m_block->pc);
armEmitJmp(armAsm, armAsm->GetBuffer()->GetStartAddress<const void*>(), true);
}
else
{
const void* target = CodeCache::CreateBlockLink(m_block, armAsm->GetCursorAddress<void*>(), newpc.value());
armEmitJmp(armAsm, target, true);
}
}
}
const void* CPU::NewRec::AArch64Compiler::EndCompile(u32* code_size, u32* far_code_size)
{
#ifdef VIXL_DEBUG
m_emitter_check.reset();
m_far_emitter_check.reset();
#endif
m_emitter.FinalizeCode();
m_far_emitter.FinalizeCode();
2023-10-03 14:39:18 +00:00
u8* const code = m_emitter.GetBuffer()->GetStartAddress<u8*>();
*code_size = static_cast<u32>(m_emitter.GetCursorOffset());
*far_code_size = static_cast<u32>(m_far_emitter.GetCursorOffset());
2023-10-03 14:39:18 +00:00
armAsm = nullptr;
return code;
}
const char* CPU::NewRec::AArch64Compiler::GetHostRegName(u32 reg) const
{
static constexpr std::array<const char*, 32> reg64_names = {
{"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "fp", "lr", "sp"}};
return (reg < reg64_names.size()) ? reg64_names[reg] : "UNKNOWN";
}
void CPU::NewRec::AArch64Compiler::LoadHostRegWithConstant(u32 reg, u32 val)
{
EmitMov(WRegister(reg), val);
}
void CPU::NewRec::AArch64Compiler::LoadHostRegFromCPUPointer(u32 reg, const void* ptr)
{
armAsm->ldr(WRegister(reg), PTR(ptr));
}
void CPU::NewRec::AArch64Compiler::StoreHostRegToCPUPointer(u32 reg, const void* ptr)
{
armAsm->str(WRegister(reg), PTR(ptr));
}
void CPU::NewRec::AArch64Compiler::StoreConstantToCPUPointer(u32 val, const void* ptr)
{
if (val == 0)
{
armAsm->str(wzr, PTR(ptr));
return;
}
EmitMov(RWSCRATCH, val);
armAsm->str(RWSCRATCH, PTR(ptr));
}
void CPU::NewRec::AArch64Compiler::CopyHostReg(u32 dst, u32 src)
{
if (src != dst)
armAsm->mov(WRegister(dst), WRegister(src));
}
void CPU::NewRec::AArch64Compiler::AssertRegOrConstS(CompileFlags cf) const
{
DebugAssert(cf.valid_host_s || cf.const_s);
}
void CPU::NewRec::AArch64Compiler::AssertRegOrConstT(CompileFlags cf) const
{
DebugAssert(cf.valid_host_t || cf.const_t);
}
vixl::aarch64::MemOperand CPU::NewRec::AArch64Compiler::MipsPtr(Reg r) const
{
DebugAssert(r < Reg::count);
return PTR(&g_state.regs.r[static_cast<u32>(r)]);
}
vixl::aarch64::WRegister CPU::NewRec::AArch64Compiler::CFGetRegD(CompileFlags cf) const
{
DebugAssert(cf.valid_host_d);
return WRegister(cf.host_d);
}
vixl::aarch64::WRegister CPU::NewRec::AArch64Compiler::CFGetRegS(CompileFlags cf) const
{
DebugAssert(cf.valid_host_s);
return WRegister(cf.host_s);
}
vixl::aarch64::WRegister CPU::NewRec::AArch64Compiler::CFGetRegT(CompileFlags cf) const
{
DebugAssert(cf.valid_host_t);
return WRegister(cf.host_t);
}
vixl::aarch64::WRegister CPU::NewRec::AArch64Compiler::CFGetRegLO(CompileFlags cf) const
{
DebugAssert(cf.valid_host_lo);
return WRegister(cf.host_lo);
}
vixl::aarch64::WRegister CPU::NewRec::AArch64Compiler::CFGetRegHI(CompileFlags cf) const
{
DebugAssert(cf.valid_host_hi);
return WRegister(cf.host_hi);
}
void CPU::NewRec::AArch64Compiler::MoveSToReg(const vixl::aarch64::WRegister& dst, CompileFlags cf)
{
if (cf.valid_host_s)
{
if (cf.host_s != dst.GetCode())
armAsm->mov(dst, WRegister(cf.host_s));
}
else if (cf.const_s)
{
const u32 cv = GetConstantRegU32(cf.MipsS());
if (cv == 0)
armAsm->mov(dst, wzr);
else
EmitMov(dst, cv);
}
else
{
Log_WarningPrintf("Hit memory path in MoveSToReg() for %s", GetRegName(cf.MipsS()));
armAsm->ldr(dst, PTR(&g_state.regs.r[cf.mips_s]));
}
}
void CPU::NewRec::AArch64Compiler::MoveTToReg(const vixl::aarch64::WRegister& dst, CompileFlags cf)
{
if (cf.valid_host_t)
{
if (cf.host_t != dst.GetCode())
armAsm->mov(dst, WRegister(cf.host_t));
}
else if (cf.const_t)
{
const u32 cv = GetConstantRegU32(cf.MipsT());
if (cv == 0)
armAsm->mov(dst, wzr);
else
EmitMov(dst, cv);
}
else
{
Log_WarningPrintf("Hit memory path in MoveTToReg() for %s", GetRegName(cf.MipsT()));
armAsm->ldr(dst, PTR(&g_state.regs.r[cf.mips_t]));
}
}
void CPU::NewRec::AArch64Compiler::MoveMIPSRegToReg(const vixl::aarch64::WRegister& dst, Reg reg)
{
DebugAssert(reg < Reg::count);
if (const std::optional<u32> hreg = CheckHostReg(0, Compiler::HR_TYPE_CPU_REG, reg))
armAsm->mov(dst, WRegister(hreg.value()));
else if (HasConstantReg(reg))
EmitMov(dst, GetConstantRegU32(reg));
else
armAsm->ldr(dst, MipsPtr(reg));
}
void CPU::NewRec::AArch64Compiler::GeneratePGXPCallWithMIPSRegs(const void* func, u32 arg1val,
Reg arg2reg /* = Reg::count */,
Reg arg3reg /* = Reg::count */)
{
DebugAssert(g_settings.gpu_pgxp_enable);
Flush(FLUSH_FOR_C_CALL);
if (arg2reg != Reg::count)
MoveMIPSRegToReg(RWARG2, arg2reg);
if (arg3reg != Reg::count)
MoveMIPSRegToReg(RWARG3, arg3reg);
EmitMov(RWARG1, arg1val);
EmitCall(func);
}
void CPU::NewRec::AArch64Compiler::Flush(u32 flags)
{
Compiler::Flush(flags);
if (flags & FLUSH_PC && m_dirty_pc)
{
StoreConstantToCPUPointer(m_compiler_pc, &g_state.pc);
m_dirty_pc = false;
}
if (flags & FLUSH_INSTRUCTION_BITS)
{
// This sucks, but it's only used for fallbacks.
EmitMov(RWARG1, inst->bits);
EmitMov(RWARG2, m_current_instruction_pc);
EmitMov(RWARG3, m_current_instruction_branch_delay_slot);
armAsm->str(RWARG1, PTR(&g_state.current_instruction.bits));
armAsm->str(RWARG2, PTR(&g_state.current_instruction_pc));
armAsm->strb(RWARG3, PTR(&g_state.current_instruction_in_branch_delay_slot));
2023-10-03 14:39:18 +00:00
}
if (flags & FLUSH_LOAD_DELAY_FROM_STATE && m_load_delay_dirty)
{
// This sucks :(
// TODO: make it a function?
armAsm->ldrb(RWARG1, PTR(&g_state.load_delay_reg));
armAsm->ldr(RWARG2, PTR(&g_state.load_delay_value));
EmitMov(RWSCRATCH, offsetof(CPU::State, regs.r[0]));
armAsm->add(RWARG1, RWSCRATCH, vixl::aarch64::Operand(RWARG1, LSL, 2));
armAsm->str(RWARG2, MemOperand(RSTATE, RXARG1));
EmitMov(RWSCRATCH, static_cast<u8>(Reg::count));
armAsm->strb(RWSCRATCH, PTR(&g_state.load_delay_reg));
m_load_delay_dirty = false;
}
if (flags & FLUSH_LOAD_DELAY && m_load_delay_register != Reg::count)
{
if (m_load_delay_value_register != NUM_HOST_REGS)
FreeHostReg(m_load_delay_value_register);
EmitMov(RWSCRATCH, static_cast<u8>(m_load_delay_register));
armAsm->strb(RWSCRATCH, PTR(&g_state.load_delay_reg));
m_load_delay_register = Reg::count;
m_load_delay_dirty = true;
}
if (flags & FLUSH_GTE_STALL_FROM_STATE && m_dirty_gte_done_cycle)
{
// May as well flush cycles while we're here.
// GTE spanning blocks is very rare, we _could_ disable this for speed.
armAsm->ldr(RWARG1, PTR(&g_state.pending_ticks));
armAsm->ldr(RWARG2, PTR(&g_state.gte_completion_tick));
if (m_cycles > 0)
{
armAsm->add(RWARG1, RWARG1, armCheckAddSubConstant(m_cycles));
m_cycles = 0;
}
armAsm->cmp(RWARG2, RWARG1);
armAsm->csel(RWARG1, RWARG2, RWARG1, hs);
armAsm->str(RWARG1, PTR(&g_state.pending_ticks));
m_dirty_gte_done_cycle = false;
}
if (flags & FLUSH_GTE_DONE_CYCLE && m_gte_done_cycle > m_cycles)
{
armAsm->ldr(RWARG1, PTR(&g_state.pending_ticks));
// update cycles at the same time
if (flags & FLUSH_CYCLES && m_cycles > 0)
{
armAsm->add(RWARG1, RWARG1, armCheckAddSubConstant(m_cycles));
armAsm->str(RWARG1, PTR(&g_state.pending_ticks));
m_gte_done_cycle -= m_cycles;
m_cycles = 0;
}
armAsm->add(RWARG1, RWARG1, armCheckAddSubConstant(m_gte_done_cycle));
armAsm->str(RWARG1, PTR(&g_state.gte_completion_tick));
m_gte_done_cycle = 0;
m_dirty_gte_done_cycle = true;
}
if (flags & FLUSH_CYCLES && m_cycles > 0)
{
armAsm->ldr(RWARG1, PTR(&g_state.pending_ticks));
armAsm->add(RWARG1, RWARG1, armCheckAddSubConstant(m_cycles));
armAsm->str(RWARG1, PTR(&g_state.pending_ticks));
m_gte_done_cycle = std::max<TickCount>(m_gte_done_cycle - m_cycles, 0);
m_cycles = 0;
}
}
void CPU::NewRec::AArch64Compiler::Compile_Fallback()
{
Flush(FLUSH_FOR_INTERPRETER);
EmitCall(armAsm, &CPU::Recompiler::Thunks::InterpretInstruction);
2023-10-03 14:39:18 +00:00
// TODO: make me less garbage
// TODO: this is wrong, it flushes the load delay on the same cycle when we return.
// but nothing should be going through here..
Label no_load_delay;
armAsm->ldrb(RWARG1, PTR(&g_state.next_load_delay_reg));
armAsm->cmp(RWARG1, static_cast<u8>(Reg::count));
armAsm->b(&no_load_delay, eq);
armAsm->ldr(RWARG2, PTR(&g_state.next_load_delay_value));
armAsm->strb(RWARG1, PTR(&g_state.load_delay_reg));
armAsm->str(RWARG2, PTR(&g_state.load_delay_value));
EmitMov(RWARG1, static_cast<u32>(Reg::count));
armAsm->strb(RWARG1, PTR(&g_state.next_load_delay_reg));
armAsm->bind(&no_load_delay);
2023-10-03 14:39:18 +00:00
m_load_delay_dirty = EMULATE_LOAD_DELAYS;
}
void CPU::NewRec::AArch64Compiler::CheckBranchTarget(const vixl::aarch64::WRegister& pcreg)
{
if (!g_settings.cpu_recompiler_memory_exceptions)
return;
armAsm->tst(pcreg, armCheckLogicalConstant(0x3));
SwitchToFarCode(true, ne);
BackupHostState();
EndBlockWithException(Exception::AdEL);
RestoreHostState();
SwitchToNearCode(false);
}
void CPU::NewRec::AArch64Compiler::Compile_jr(CompileFlags cf)
{
const WRegister pcreg = CFGetRegS(cf);
CheckBranchTarget(pcreg);
armAsm->str(pcreg, PTR(&g_state.pc));
CompileBranchDelaySlot(false);
EndBlock(std::nullopt, true);
}
void CPU::NewRec::AArch64Compiler::Compile_jalr(CompileFlags cf)
{
const WRegister pcreg = CFGetRegS(cf);
if (MipsD() != Reg::zero)
SetConstantReg(MipsD(), GetBranchReturnAddress(cf));
CheckBranchTarget(pcreg);
armAsm->str(pcreg, PTR(&g_state.pc));
CompileBranchDelaySlot(false);
EndBlock(std::nullopt, true);
}
void CPU::NewRec::AArch64Compiler::Compile_bxx(CompileFlags cf, BranchCondition cond)
{
AssertRegOrConstS(cf);
const u32 taken_pc = GetConditionalBranchTarget(cf);
Flush(FLUSH_FOR_BRANCH);
DebugAssert(cf.valid_host_s);
// MipsT() here should equal zero for zero branches.
DebugAssert(cond == BranchCondition::Equal || cond == BranchCondition::NotEqual || cf.MipsT() == Reg::zero);
Label taken;
const WRegister rs = CFGetRegS(cf);
switch (cond)
{
case BranchCondition::Equal:
case BranchCondition::NotEqual:
{
AssertRegOrConstT(cf);
if (cf.const_t && HasConstantRegValue(cf.MipsT(), 0))
{
(cond == BranchCondition::Equal) ? armAsm->cbz(rs, &taken) : armAsm->cbnz(rs, &taken);
}
else
{
if (cf.valid_host_t)
armAsm->cmp(rs, CFGetRegT(cf));
else if (cf.const_t)
armAsm->cmp(rs, armCheckCompareConstant(GetConstantRegU32(cf.MipsT())));
armAsm->b(&taken, (cond == BranchCondition::Equal) ? eq : ne);
}
}
break;
case BranchCondition::GreaterThanZero:
{
armAsm->cmp(rs, 0);
armAsm->b(&taken, gt);
}
break;
case BranchCondition::GreaterEqualZero:
{
armAsm->cmp(rs, 0);
armAsm->b(&taken, ge);
}
break;
case BranchCondition::LessThanZero:
{
armAsm->cmp(rs, 0);
armAsm->b(&taken, lt);
}
break;
case BranchCondition::LessEqualZero:
{
armAsm->cmp(rs, 0);
armAsm->b(&taken, le);
}
break;
}
BackupHostState();
if (!cf.delay_slot_swapped)
CompileBranchDelaySlot();
EndBlock(m_compiler_pc, true);
armAsm->bind(&taken);
RestoreHostState();
if (!cf.delay_slot_swapped)
CompileBranchDelaySlot();
EndBlock(taken_pc, true);
}
void CPU::NewRec::AArch64Compiler::Compile_addi(CompileFlags cf, bool overflow)
{
const WRegister rs = CFGetRegS(cf);
const WRegister rt = CFGetRegT(cf);
if (const u32 imm = inst->i.imm_sext32(); imm != 0)
{
if (!overflow)
{
armAsm->add(rt, rs, armCheckAddSubConstant(imm));
}
else
{
armAsm->adds(rt, rs, armCheckAddSubConstant(imm));
TestOverflow(rt);
}
}
else if (rt.GetCode() != rs.GetCode())
{
armAsm->mov(rt, rs);
}
}
void CPU::NewRec::AArch64Compiler::Compile_addi(CompileFlags cf)
{
Compile_addi(cf, g_settings.cpu_recompiler_memory_exceptions);
}
void CPU::NewRec::AArch64Compiler::Compile_addiu(CompileFlags cf)
{
Compile_addi(cf, false);
}
void CPU::NewRec::AArch64Compiler::Compile_slti(CompileFlags cf)
{
Compile_slti(cf, true);
}
void CPU::NewRec::AArch64Compiler::Compile_sltiu(CompileFlags cf)
{
Compile_slti(cf, false);
}
void CPU::NewRec::AArch64Compiler::Compile_slti(CompileFlags cf, bool sign)
{
armAsm->cmp(CFGetRegS(cf), armCheckCompareConstant(static_cast<s32>(inst->i.imm_sext32())));
armAsm->cset(CFGetRegT(cf), sign ? lt : lo);
}
void CPU::NewRec::AArch64Compiler::Compile_andi(CompileFlags cf)
{
const WRegister rt = CFGetRegT(cf);
if (const u32 imm = inst->i.imm_zext32(); imm != 0)
armAsm->and_(rt, CFGetRegS(cf), armCheckLogicalConstant(imm));
else
armAsm->mov(rt, wzr);
}
void CPU::NewRec::AArch64Compiler::Compile_ori(CompileFlags cf)
{
const WRegister rt = CFGetRegT(cf);
const WRegister rs = CFGetRegS(cf);
if (const u32 imm = inst->i.imm_zext32(); imm != 0)
armAsm->orr(rt, rs, armCheckLogicalConstant(imm));
else if (rt.GetCode() != rs.GetCode())
armAsm->mov(rt, rs);
}
void CPU::NewRec::AArch64Compiler::Compile_xori(CompileFlags cf)
{
const WRegister rt = CFGetRegT(cf);
const WRegister rs = CFGetRegS(cf);
if (const u32 imm = inst->i.imm_zext32(); imm != 0)
armAsm->eor(rt, rs, armCheckLogicalConstant(imm));
else if (rt.GetCode() != rs.GetCode())
armAsm->mov(rt, rs);
}
void CPU::NewRec::AArch64Compiler::Compile_shift(CompileFlags cf,
void (vixl::aarch64::Assembler::*op)(const vixl::aarch64::Register&,
const vixl::aarch64::Register&,
unsigned))
{
const WRegister rd = CFGetRegD(cf);
const WRegister rt = CFGetRegT(cf);
if (inst->r.shamt > 0)
(armAsm->*op)(rd, rt, inst->r.shamt);
else if (rd.GetCode() != rt.GetCode())
armAsm->mov(rd, rt);
}
void CPU::NewRec::AArch64Compiler::Compile_sll(CompileFlags cf)
{
Compile_shift(cf, &Assembler::lsl);
}
void CPU::NewRec::AArch64Compiler::Compile_srl(CompileFlags cf)
{
Compile_shift(cf, &Assembler::lsr);
}
void CPU::NewRec::AArch64Compiler::Compile_sra(CompileFlags cf)
{
Compile_shift(cf, &Assembler::asr);
}
void CPU::NewRec::AArch64Compiler::Compile_variable_shift(
CompileFlags cf,
void (vixl::aarch64::Assembler::*op)(const vixl::aarch64::Register&, const vixl::aarch64::Register&,
const vixl::aarch64::Register&),
void (vixl::aarch64::Assembler::*op_const)(const vixl::aarch64::Register&, const vixl::aarch64::Register&, unsigned))
{
const WRegister rd = CFGetRegD(cf);
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
const WRegister rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG2;
if (!cf.valid_host_t)
MoveTToReg(rt, cf);
if (cf.const_s)
{
if (const u32 shift = GetConstantRegU32(cf.MipsS()); shift != 0)
(armAsm->*op_const)(rd, rt, shift);
else if (rd.GetCode() != rt.GetCode())
armAsm->mov(rd, rt);
}
else
{
(armAsm->*op)(rd, rt, CFGetRegS(cf));
}
}
void CPU::NewRec::AArch64Compiler::Compile_sllv(CompileFlags cf)
{
Compile_variable_shift(cf, &Assembler::lslv, &Assembler::lsl);
}
void CPU::NewRec::AArch64Compiler::Compile_srlv(CompileFlags cf)
{
Compile_variable_shift(cf, &Assembler::lsrv, &Assembler::lsr);
}
void CPU::NewRec::AArch64Compiler::Compile_srav(CompileFlags cf)
{
Compile_variable_shift(cf, &Assembler::asrv, &Assembler::asr);
}
void CPU::NewRec::AArch64Compiler::Compile_mult(CompileFlags cf, bool sign)
{
const WRegister rs = cf.valid_host_s ? CFGetRegS(cf) : RWARG1;
if (!cf.valid_host_s)
MoveSToReg(rs, cf);
const WRegister rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG2;
if (!cf.valid_host_t)
MoveTToReg(rt, cf);
// TODO: if lo/hi gets killed, we can use a 32-bit multiply
const WRegister lo = CFGetRegLO(cf);
const WRegister hi = CFGetRegHI(cf);
(sign) ? armAsm->smull(lo.X(), rs, rt) : armAsm->umull(lo.X(), rs, rt);
armAsm->lsr(hi.X(), lo.X(), 32);
}
void CPU::NewRec::AArch64Compiler::Compile_mult(CompileFlags cf)
{
Compile_mult(cf, true);
}
void CPU::NewRec::AArch64Compiler::Compile_multu(CompileFlags cf)
{
Compile_mult(cf, false);
}
void CPU::NewRec::AArch64Compiler::Compile_div(CompileFlags cf)
{
const WRegister rs = cf.valid_host_s ? CFGetRegS(cf) : RWARG1;
if (!cf.valid_host_s)
MoveSToReg(rs, cf);
const WRegister rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG2;
if (!cf.valid_host_t)
MoveTToReg(rt, cf);
const WRegister rlo = CFGetRegLO(cf);
const WRegister rhi = CFGetRegHI(cf);
// TODO: This could be slightly more optimal
Label done;
Label not_divide_by_zero;
armAsm->cbnz(rt, &not_divide_by_zero);
armAsm->mov(rhi, rs); // hi = num
EmitMov(rlo, 1);
EmitMov(RWSCRATCH, static_cast<u32>(-1));
2023-10-21 06:23:01 +00:00
armAsm->cmp(rs, 0);
2023-10-03 14:39:18 +00:00
armAsm->csel(rlo, RWSCRATCH, rlo, ge); // lo = s >= 0 ? -1 : 1
armAsm->b(&done);
armAsm->bind(&not_divide_by_zero);
Label not_unrepresentable;
armAsm->cmp(rs, armCheckCompareConstant(static_cast<s32>(0x80000000u)));
armAsm->b(&not_unrepresentable, ne);
armAsm->cmp(rt, armCheckCompareConstant(-1));
armAsm->b(&not_unrepresentable, ne);
EmitMov(rlo, 0x80000000u);
EmitMov(rhi, 0);
armAsm->b(&done);
armAsm->bind(&not_unrepresentable);
armAsm->sdiv(rlo, rs, rt);
// TODO: skip when hi is dead
armAsm->msub(rhi, rlo, rt, rs);
armAsm->bind(&done);
}
void CPU::NewRec::AArch64Compiler::Compile_divu(CompileFlags cf)
{
const WRegister rs = cf.valid_host_s ? CFGetRegS(cf) : RWARG1;
if (!cf.valid_host_s)
MoveSToReg(rs, cf);
const WRegister rt = cf.valid_host_t ? CFGetRegT(cf) : RWARG2;
if (!cf.valid_host_t)
MoveTToReg(rt, cf);
const WRegister rlo = CFGetRegLO(cf);
const WRegister rhi = CFGetRegHI(cf);
Label done;
Label not_divide_by_zero;
armAsm->cbnz(rt, &not_divide_by_zero);
EmitMov(rlo, static_cast<u32>(-1));
armAsm->mov(rhi, rs);
armAsm->b(&done);
armAsm->bind(&not_divide_by_zero);
armAsm->udiv(rlo, rs, rt);
// TODO: skip when hi is dead
armAsm->msub(rhi, rlo, rt, rs);
armAsm->bind(&done);
}
void CPU::NewRec::AArch64Compiler::TestOverflow(const vixl::aarch64::WRegister& result)
{
SwitchToFarCode(true, vs);
BackupHostState();
// toss the result
ClearHostReg(result.GetCode());
EndBlockWithException(Exception::Ov);
RestoreHostState();
SwitchToNearCode(false);
}
void CPU::NewRec::AArch64Compiler::Compile_dst_op(CompileFlags cf,
void (vixl::aarch64::Assembler::*op)(const vixl::aarch64::Register&,
const vixl::aarch64::Register&,
const vixl::aarch64::Operand&),
bool commutative, bool logical, bool overflow)
{
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
const WRegister rd = CFGetRegD(cf);
if (cf.valid_host_s && cf.valid_host_t)
{
(armAsm->*op)(rd, CFGetRegS(cf), CFGetRegT(cf));
}
else if (commutative && (cf.const_s || cf.const_t))
{
const WRegister src = cf.const_s ? CFGetRegT(cf) : CFGetRegS(cf);
if (const u32 cv = GetConstantRegU32(cf.const_s ? cf.MipsS() : cf.MipsT()); cv != 0)
{
(armAsm->*op)(rd, src, logical ? armCheckLogicalConstant(cv) : armCheckAddSubConstant(cv));
}
else
{
if (rd.GetCode() != src.GetCode())
armAsm->mov(rd, src);
overflow = false;
}
}
else if (cf.const_s)
{
// TODO: Check where we can use wzr here
EmitMov(RWSCRATCH, GetConstantRegU32(cf.MipsS()));
(armAsm->*op)(rd, RWSCRATCH, CFGetRegT(cf));
}
else if (cf.const_t)
{
const WRegister rs = CFGetRegS(cf);
if (const u32 cv = GetConstantRegU32(cf.const_s ? cf.MipsS() : cf.MipsT()); cv != 0)
{
(armAsm->*op)(rd, rs, logical ? armCheckLogicalConstant(cv) : armCheckAddSubConstant(cv));
}
else
{
if (rd.GetCode() != rs.GetCode())
armAsm->mov(rd, rs);
overflow = false;
}
}
if (overflow)
TestOverflow(rd);
}
void CPU::NewRec::AArch64Compiler::Compile_add(CompileFlags cf)
{
if (g_settings.cpu_recompiler_memory_exceptions)
Compile_dst_op(cf, &Assembler::adds, true, false, true);
else
Compile_dst_op(cf, &Assembler::add, true, false, false);
}
void CPU::NewRec::AArch64Compiler::Compile_addu(CompileFlags cf)
{
Compile_dst_op(cf, &Assembler::add, true, false, false);
}
void CPU::NewRec::AArch64Compiler::Compile_sub(CompileFlags cf)
{
if (g_settings.cpu_recompiler_memory_exceptions)
Compile_dst_op(cf, &Assembler::subs, false, false, true);
else
Compile_dst_op(cf, &Assembler::sub, false, false, false);
}
void CPU::NewRec::AArch64Compiler::Compile_subu(CompileFlags cf)
{
Compile_dst_op(cf, &Assembler::sub, false, false, false);
}
void CPU::NewRec::AArch64Compiler::Compile_and(CompileFlags cf)
{
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
// special cases - and with self -> self, and with 0 -> 0
const WRegister regd = CFGetRegD(cf);
if (cf.MipsS() == cf.MipsT())
{
armAsm->mov(regd, CFGetRegS(cf));
return;
}
else if (HasConstantRegValue(cf.MipsS(), 0) || HasConstantRegValue(cf.MipsT(), 0))
{
armAsm->mov(regd, wzr);
return;
}
Compile_dst_op(cf, &Assembler::and_, true, true, false);
}
void CPU::NewRec::AArch64Compiler::Compile_or(CompileFlags cf)
{
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
// or/nor with 0 -> no effect
const WRegister regd = CFGetRegD(cf);
if (HasConstantRegValue(cf.MipsS(), 0) || HasConstantRegValue(cf.MipsT(), 0) || cf.MipsS() == cf.MipsT())
{
cf.const_s ? MoveTToReg(regd, cf) : MoveSToReg(regd, cf);
return;
}
Compile_dst_op(cf, &Assembler::orr, true, true, false);
}
void CPU::NewRec::AArch64Compiler::Compile_xor(CompileFlags cf)
{
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
const WRegister regd = CFGetRegD(cf);
if (cf.MipsS() == cf.MipsT())
{
// xor with self -> zero
armAsm->mov(regd, wzr);
return;
}
else if (HasConstantRegValue(cf.MipsS(), 0) || HasConstantRegValue(cf.MipsT(), 0))
{
// xor with zero -> no effect
cf.const_s ? MoveTToReg(regd, cf) : MoveSToReg(regd, cf);
return;
}
Compile_dst_op(cf, &Assembler::eor, true, true, false);
}
void CPU::NewRec::AArch64Compiler::Compile_nor(CompileFlags cf)
{
Compile_or(cf);
armAsm->mvn(CFGetRegD(cf), CFGetRegD(cf));
}
void CPU::NewRec::AArch64Compiler::Compile_slt(CompileFlags cf)
{
Compile_slt(cf, true);
}
void CPU::NewRec::AArch64Compiler::Compile_sltu(CompileFlags cf)
{
Compile_slt(cf, false);
}
void CPU::NewRec::AArch64Compiler::Compile_slt(CompileFlags cf, bool sign)
{
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
// TODO: swap and reverse op for constants
if (cf.const_s)
{
EmitMov(RWSCRATCH, GetConstantRegS32(cf.MipsS()));
armAsm->cmp(RWSCRATCH, CFGetRegT(cf));
}
else if (cf.const_t)
{
armAsm->cmp(CFGetRegS(cf), armCheckCompareConstant(GetConstantRegS32(cf.MipsT())));
}
else
{
armAsm->cmp(CFGetRegS(cf), CFGetRegT(cf));
}
armAsm->cset(CFGetRegD(cf), sign ? lt : lo);
}
vixl::aarch64::WRegister
CPU::NewRec::AArch64Compiler::ComputeLoadStoreAddressArg(CompileFlags cf,
const std::optional<VirtualMemoryAddress>& address,
const std::optional<const vixl::aarch64::WRegister>& reg)
{
const u32 imm = inst->i.imm_sext32();
if (cf.valid_host_s && imm == 0 && !reg.has_value())
return CFGetRegS(cf);
const WRegister dst = reg.has_value() ? reg.value() : RWARG1;
if (address.has_value())
{
EmitMov(dst, address.value());
}
else if (imm == 0)
{
if (cf.valid_host_s)
{
if (const WRegister src = CFGetRegS(cf); src.GetCode() != dst.GetCode())
armAsm->mov(dst, CFGetRegS(cf));
}
else
{
armAsm->ldr(dst, MipsPtr(cf.MipsS()));
}
}
else
{
if (cf.valid_host_s)
{
armAsm->add(dst, CFGetRegS(cf), armCheckAddSubConstant(static_cast<s32>(inst->i.imm_sext32())));
}
else
{
armAsm->ldr(dst, MipsPtr(cf.MipsS()));
armAsm->add(dst, dst, armCheckAddSubConstant(static_cast<s32>(inst->i.imm_sext32())));
}
}
return dst;
}
template<typename RegAllocFn>
vixl::aarch64::WRegister CPU::NewRec::AArch64Compiler::GenerateLoad(const vixl::aarch64::WRegister& addr_reg,
2023-10-21 12:12:00 +00:00
MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const RegAllocFn& dst_reg_alloc)
{
2023-10-21 12:12:00 +00:00
if (use_fastmem)
2023-10-03 14:39:18 +00:00
{
m_cycles += Bus::RAM_READ_TICKS;
const WRegister dst = dst_reg_alloc();
if (g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT)
{
DebugAssert(addr_reg.GetCode() != RWARG3.GetCode());
armAsm->lsr(RXARG3, addr_reg, Bus::FASTMEM_LUT_PAGE_SHIFT);
2023-10-21 06:23:01 +00:00
armAsm->ldr(RXARG3, MemOperand(RMEMBASE, RXARG3, LSL, 3));
2023-10-03 14:39:18 +00:00
}
const MemOperand mem =
MemOperand((g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT) ? RXARG3 : RMEMBASE, addr_reg.X());
u8* start = armAsm->GetCursorAddress<u8*>();
2023-10-03 14:39:18 +00:00
switch (size)
{
case MemoryAccessSize::Byte:
sign ? armAsm->ldrsb(dst, mem) : armAsm->ldrb(dst, mem);
break;
case MemoryAccessSize::HalfWord:
sign ? armAsm->ldrsh(dst, mem) : armAsm->ldrh(dst, mem);
break;
case MemoryAccessSize::Word:
armAsm->ldr(dst, mem);
break;
}
AddLoadStoreInfo(start, kInstructionSize, addr_reg.GetCode(), dst.GetCode(), size, sign, true);
return dst;
}
if (addr_reg.GetCode() != RWARG1.GetCode())
armAsm->mov(RWARG1, addr_reg);
2023-10-21 12:12:00 +00:00
const bool checked = g_settings.cpu_recompiler_memory_exceptions;
2023-10-03 14:39:18 +00:00
switch (size)
{
case MemoryAccessSize::Byte:
{
EmitCall(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::ReadMemoryByte) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryByte));
}
break;
case MemoryAccessSize::HalfWord:
{
EmitCall(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::ReadMemoryHalfWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryHalfWord));
}
break;
case MemoryAccessSize::Word:
{
EmitCall(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::ReadMemoryWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryWord));
}
break;
}
// TODO: turn this into an asm function instead
if (checked)
{
SwitchToFarCodeIfBitSet(RXRET, 63);
BackupHostState();
// Need to stash this in a temp because of the flush.
const WRegister temp = WRegister(AllocateTempHostReg(HR_CALLEE_SAVED));
armAsm->neg(temp.X(), RXRET);
armAsm->lsl(temp, temp, 2);
Flush(FLUSH_FOR_C_CALL | FLUSH_FLUSH_MIPS_REGISTERS | FLUSH_FOR_EXCEPTION);
// cause_bits = (-result << 2) | BD | cop_n
armAsm->orr(RWARG1, temp,
armCheckLogicalConstant(Cop0Registers::CAUSE::MakeValueForException(
static_cast<Exception>(0), m_current_instruction_branch_delay_slot, false, inst->cop.cop_n)));
EmitMov(RWARG2, m_current_instruction_pc);
EmitCall(reinterpret_cast<const void*>(static_cast<void (*)(u32, u32)>(&CPU::RaiseException)));
FreeHostReg(temp.GetCode());
EndBlock(std::nullopt, true);
RestoreHostState();
SwitchToNearCode(false);
}
const WRegister dst_reg = dst_reg_alloc();
switch (size)
{
case MemoryAccessSize::Byte:
{
sign ? armAsm->sxtb(dst_reg, RWRET) : armAsm->uxtb(dst_reg, RWRET);
}
break;
case MemoryAccessSize::HalfWord:
{
sign ? armAsm->sxth(dst_reg, RWRET) : armAsm->uxth(dst_reg, RWRET);
}
break;
case MemoryAccessSize::Word:
{
if (dst_reg.GetCode() != RWRET.GetCode())
armAsm->mov(dst_reg, RWRET);
}
break;
}
return dst_reg;
}
void CPU::NewRec::AArch64Compiler::GenerateStore(const vixl::aarch64::WRegister& addr_reg,
2023-10-21 12:12:00 +00:00
const vixl::aarch64::WRegister& value_reg, MemoryAccessSize size,
bool use_fastmem)
2023-10-03 14:39:18 +00:00
{
2023-10-21 12:12:00 +00:00
if (use_fastmem)
2023-10-03 14:39:18 +00:00
{
if (g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT)
{
DebugAssert(addr_reg.GetCode() != RWARG3.GetCode());
armAsm->lsr(RXARG3, addr_reg, Bus::FASTMEM_LUT_PAGE_SHIFT);
2023-10-21 06:23:01 +00:00
armAsm->ldr(RXARG3, MemOperand(RMEMBASE, RXARG3, LSL, 3));
2023-10-03 14:39:18 +00:00
}
const MemOperand mem =
MemOperand((g_settings.cpu_fastmem_mode == CPUFastmemMode::LUT) ? RXARG3 : RMEMBASE, addr_reg.X());
u8* start = armAsm->GetCursorAddress<u8*>();
2023-10-03 14:39:18 +00:00
switch (size)
{
case MemoryAccessSize::Byte:
armAsm->strb(value_reg, mem);
break;
case MemoryAccessSize::HalfWord:
armAsm->strh(value_reg, mem);
break;
case MemoryAccessSize::Word:
armAsm->str(value_reg, mem);
break;
}
AddLoadStoreInfo(start, kInstructionSize, addr_reg.GetCode(), value_reg.GetCode(), size, false, false);
return;
}
if (addr_reg.GetCode() != RWARG1.GetCode())
armAsm->mov(RWARG1, addr_reg);
if (value_reg.GetCode() != RWARG2.GetCode())
armAsm->mov(RWARG2, value_reg);
2023-10-21 12:12:00 +00:00
const bool checked = g_settings.cpu_recompiler_memory_exceptions;
2023-10-03 14:39:18 +00:00
switch (size)
{
case MemoryAccessSize::Byte:
{
EmitCall(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::WriteMemoryByte) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryByte));
}
break;
case MemoryAccessSize::HalfWord:
{
EmitCall(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::WriteMemoryHalfWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryHalfWord));
}
break;
case MemoryAccessSize::Word:
{
EmitCall(checked ? reinterpret_cast<const void*>(&Recompiler::Thunks::WriteMemoryWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryWord));
}
break;
}
// TODO: turn this into an asm function instead
if (checked)
{
SwitchToFarCodeIfRegZeroOrNonZero(RXRET, true);
BackupHostState();
// Need to stash this in a temp because of the flush.
const WRegister temp = WRegister(AllocateTempHostReg(HR_CALLEE_SAVED));
armAsm->lsl(temp, RWRET, 2);
Flush(FLUSH_FOR_C_CALL | FLUSH_FLUSH_MIPS_REGISTERS | FLUSH_FOR_EXCEPTION);
// cause_bits = (result << 2) | BD | cop_n
armAsm->orr(RWARG1, temp,
armCheckLogicalConstant(Cop0Registers::CAUSE::MakeValueForException(
static_cast<Exception>(0), m_current_instruction_branch_delay_slot, false, inst->cop.cop_n)));
EmitMov(RWARG2, m_current_instruction_pc);
EmitCall(reinterpret_cast<const void*>(static_cast<void (*)(u32, u32)>(&CPU::RaiseException)));
FreeHostReg(temp.GetCode());
EndBlock(std::nullopt, true);
RestoreHostState();
SwitchToNearCode(false);
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::AArch64Compiler::Compile_lxx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
const std::optional<WRegister> addr_reg =
g_settings.gpu_pgxp_enable ? std::optional<WRegister>(WRegister(AllocateTempHostReg(HR_CALLEE_SAVED))) :
std::optional<WRegister>();
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, false, use_fastmem);
2023-10-03 14:39:18 +00:00
const WRegister addr = ComputeLoadStoreAddressArg(cf, address, addr_reg);
2023-10-21 12:12:00 +00:00
const WRegister data = GenerateLoad(addr, size, sign, use_fastmem, [this, cf]() {
2023-10-03 14:39:18 +00:00
if (cf.MipsT() == Reg::zero)
return RWRET;
return WRegister(AllocateHostReg(GetFlagsForNewLoadDelayedReg(),
EMULATE_LOAD_DELAYS ? HR_TYPE_NEXT_LOAD_DELAY_VALUE : HR_TYPE_CPU_REG,
cf.MipsT()));
});
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
EmitMov(RWARG1, inst->bits);
armAsm->mov(RWARG2, addr);
armAsm->mov(RWARG3, data);
EmitCall(s_pgxp_mem_load_functions[static_cast<u32>(size)][static_cast<u32>(sign)]);
FreeHostReg(addr_reg.value().GetCode());
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::AArch64Compiler::Compile_lwx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
DebugAssert(size == MemoryAccessSize::Word && !sign);
const WRegister addr = WRegister(AllocateTempHostReg(HR_CALLEE_SAVED));
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, false, use_fastmem);
2023-10-03 14:39:18 +00:00
// TODO: if address is constant, this can be simplified..
// If we're coming from another block, just flush the load delay and hope for the best..
if (m_load_delay_dirty)
UpdateLoadDelay();
// We'd need to be careful here if we weren't overwriting it..
ComputeLoadStoreAddressArg(cf, address, addr);
armAsm->and_(RWARG1, addr, armCheckLogicalConstant(~0x3u));
2023-10-21 12:12:00 +00:00
GenerateLoad(RWARG1, MemoryAccessSize::Word, false, use_fastmem, []() { return RWRET; });
2023-10-03 14:39:18 +00:00
if (inst->r.rt == Reg::zero)
{
FreeHostReg(addr.GetCode());
return;
}
// lwl/lwr from a load-delayed value takes the new value, but it itself, is load delayed, so the original value is
// never written back. NOTE: can't trust T in cf because of the flush
const Reg rt = inst->r.rt;
WRegister value;
if (m_load_delay_register == rt)
{
const u32 existing_ld_rt = (m_load_delay_value_register == NUM_HOST_REGS) ?
AllocateHostReg(HR_MODE_READ, HR_TYPE_LOAD_DELAY_VALUE, rt) :
m_load_delay_value_register;
RenameHostReg(existing_ld_rt, HR_MODE_WRITE, HR_TYPE_NEXT_LOAD_DELAY_VALUE, rt);
value = WRegister(existing_ld_rt);
}
else
{
if constexpr (EMULATE_LOAD_DELAYS)
{
value = WRegister(AllocateHostReg(HR_MODE_WRITE, HR_TYPE_NEXT_LOAD_DELAY_VALUE, rt));
if (const std::optional<u32> rtreg = CheckHostReg(HR_MODE_READ, HR_TYPE_CPU_REG, rt); rtreg.has_value())
armAsm->mov(value, WRegister(rtreg.value()));
else if (HasConstantReg(rt))
EmitMov(value, GetConstantRegU32(rt));
else
armAsm->ldr(value, MipsPtr(rt));
}
else
{
value = WRegister(AllocateHostReg(HR_MODE_READ | HR_MODE_WRITE, HR_TYPE_CPU_REG, rt));
}
}
DebugAssert(value.GetCode() != RWARG2.GetCode() && value.GetCode() != RWARG3.GetCode());
armAsm->and_(RWARG2, addr, 3);
armAsm->lsl(RWARG2, RWARG2, 3); // *8
EmitMov(RWARG3, 24);
armAsm->sub(RWARG3, RWARG3, RWARG2);
if (inst->op == InstructionOp::lwl)
{
// const u32 mask = UINT32_C(0x00FFFFFF) >> shift;
// new_value = (value & mask) | (RWRET << (24 - shift));
EmitMov(RWARG4, 0xFFFFFFu);
armAsm->lsrv(RWARG4, RWARG4, RWARG2);
armAsm->and_(value, value, RWARG4);
2023-10-03 14:39:18 +00:00
armAsm->lslv(RWRET, RWRET, RWARG3);
armAsm->orr(value, value, RWRET);
}
else
{
// const u32 mask = UINT32_C(0xFFFFFF00) << (24 - shift);
// new_value = (value & mask) | (RWRET >> shift);
armAsm->lsrv(RWRET, RWRET, RWARG2);
EmitMov(RWARG4, 0xFFFFFF00u);
armAsm->lslv(RWARG4, RWARG4, RWARG3);
armAsm->and_(value, value, RWARG4);
2023-10-03 14:39:18 +00:00
armAsm->orr(value, value, RWRET);
}
FreeHostReg(addr.GetCode());
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
armAsm->mov(RWARG3, value);
armAsm->and_(RWARG2, addr, armCheckLogicalConstant(~0x3u));
EmitMov(RWARG1, inst->bits);
EmitCall(reinterpret_cast<const void*>(&PGXP::CPU_LW));
}
2023-10-03 14:39:18 +00:00
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::AArch64Compiler::Compile_lwc2(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
const u32 index = static_cast<u32>(inst->r.rt.GetValue());
const auto [ptr, action] = GetGTERegisterPointer(index, true);
2023-10-03 14:39:18 +00:00
const std::optional<WRegister> addr_reg =
g_settings.gpu_pgxp_enable ? std::optional<WRegister>(WRegister(AllocateTempHostReg(HR_CALLEE_SAVED))) :
std::optional<WRegister>();
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, false, use_fastmem);
2023-10-03 14:39:18 +00:00
const WRegister addr = ComputeLoadStoreAddressArg(cf, address, addr_reg);
const WRegister value = GenerateLoad(addr, MemoryAccessSize::Word, false, use_fastmem, [this, action]() {
return (action == GTERegisterAccessAction::CallHandler && g_settings.gpu_pgxp_enable) ?
WRegister(AllocateTempHostReg(HR_CALLEE_SAVED)) :
RWRET;
});
2023-10-03 14:39:18 +00:00
switch (action)
{
case GTERegisterAccessAction::Ignore:
{
break;
}
case GTERegisterAccessAction::Direct:
{
armAsm->str(value, PTR(ptr));
2023-10-03 14:39:18 +00:00
break;
}
case GTERegisterAccessAction::SignExtend16:
{
armAsm->sxth(RWARG3, value);
armAsm->str(RWARG3, PTR(ptr));
2023-10-03 14:39:18 +00:00
break;
}
case GTERegisterAccessAction::ZeroExtend16:
{
armAsm->uxth(RWARG3, value);
armAsm->str(RWARG3, PTR(ptr));
2023-10-03 14:39:18 +00:00
break;
}
case GTERegisterAccessAction::CallHandler:
{
Flush(FLUSH_FOR_C_CALL);
armAsm->mov(RWARG2, value);
2023-10-03 14:39:18 +00:00
EmitMov(RWARG1, index);
EmitCall(reinterpret_cast<const void*>(&GTE::WriteRegister));
break;
}
case GTERegisterAccessAction::PushFIFO:
{
// SXY0 <- SXY1
// SXY1 <- SXY2
// SXY2 <- SXYP
DebugAssert(value.GetCode() != RWARG2.GetCode() && value.GetCode() != RWARG3.GetCode());
2023-10-03 14:39:18 +00:00
armAsm->ldr(RWARG2, PTR(&g_state.gte_regs.SXY1[0]));
armAsm->ldr(RWARG3, PTR(&g_state.gte_regs.SXY2[0]));
armAsm->str(RWARG2, PTR(&g_state.gte_regs.SXY0[0]));
armAsm->str(RWARG3, PTR(&g_state.gte_regs.SXY1[0]));
armAsm->str(value, PTR(&g_state.gte_regs.SXY2[0]));
2023-10-03 14:39:18 +00:00
break;
}
default:
{
Panic("Unknown action");
return;
}
}
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
armAsm->mov(RWARG3, value);
if (value.GetCode() != RWRET.GetCode())
FreeHostReg(value.GetCode());
2023-10-03 14:39:18 +00:00
armAsm->mov(RWARG2, addr);
FreeHostReg(addr_reg.value().GetCode());
2023-10-03 14:39:18 +00:00
EmitMov(RWARG1, inst->bits);
EmitCall(reinterpret_cast<const void*>(&PGXP::CPU_LWC2));
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::AArch64Compiler::Compile_sxx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
AssertRegOrConstS(cf);
AssertRegOrConstT(cf);
const std::optional<WRegister> addr_reg =
g_settings.gpu_pgxp_enable ? std::optional<WRegister>(WRegister(AllocateTempHostReg(HR_CALLEE_SAVED))) :
std::optional<WRegister>();
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
const WRegister addr = ComputeLoadStoreAddressArg(cf, address, addr_reg);
const WRegister data = cf.valid_host_t ? CFGetRegT(cf) : RWARG2;
if (!cf.valid_host_t)
MoveTToReg(RWARG2, cf);
2023-10-21 12:12:00 +00:00
GenerateStore(addr, data, size, use_fastmem);
2023-10-03 14:39:18 +00:00
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
MoveMIPSRegToReg(RWARG3, cf.MipsT());
armAsm->mov(RWARG2, addr);
EmitMov(RWARG1, inst->bits);
EmitCall(s_pgxp_mem_store_functions[static_cast<u32>(size)]);
FreeHostReg(addr_reg.value().GetCode());
}
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::AArch64Compiler::Compile_swx(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
DebugAssert(size == MemoryAccessSize::Word && !sign);
// TODO: this can take over rt's value if it's no longer needed
// NOTE: can't trust T in cf because of the alloc
const WRegister addr = WRegister(AllocateTempHostReg(HR_CALLEE_SAVED));
const WRegister value = g_settings.gpu_pgxp_enable ? WRegister(AllocateTempHostReg(HR_CALLEE_SAVED)) : RWARG2;
if (g_settings.gpu_pgxp_enable)
MoveMIPSRegToReg(value, inst->r.rt);
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
// TODO: if address is constant, this can be simplified..
// We'd need to be careful here if we weren't overwriting it..
ComputeLoadStoreAddressArg(cf, address, addr);
armAsm->and_(RWARG1, addr, armCheckLogicalConstant(~0x3u));
2023-10-21 12:12:00 +00:00
GenerateLoad(RWARG1, MemoryAccessSize::Word, false, use_fastmem, []() { return RWRET; });
2023-10-03 14:39:18 +00:00
armAsm->and_(RWSCRATCH, addr, 3);
armAsm->lsl(RWSCRATCH, RWSCRATCH, 3); // *8
armAsm->and_(addr, addr, armCheckLogicalConstant(~0x3u));
2023-10-03 14:39:18 +00:00
// Need to load down here for PGXP-off, because it's in a volatile reg that can get overwritten by flush.
if (!g_settings.gpu_pgxp_enable)
MoveMIPSRegToReg(value, inst->r.rt);
2023-10-03 14:39:18 +00:00
if (inst->op == InstructionOp::swl)
{
// const u32 mem_mask = UINT32_C(0xFFFFFF00) << shift;
// new_value = (RWRET & mem_mask) | (value >> (24 - shift));
EmitMov(RWARG3, 0xFFFFFF00u);
armAsm->lslv(RWARG3, RWARG3, RWSCRATCH);
armAsm->and_(RWRET, RWRET, RWARG3);
EmitMov(RWARG3, 24);
armAsm->sub(RWARG3, RWARG3, RWSCRATCH);
armAsm->lsrv(value, value, RWARG3);
armAsm->orr(value, value, RWRET);
}
else
{
// const u32 mem_mask = UINT32_C(0x00FFFFFF) >> (24 - shift);
// new_value = (RWRET & mem_mask) | (value << shift);
armAsm->lslv(value, value, RWSCRATCH);
EmitMov(RWARG3, 24);
armAsm->sub(RWARG3, RWARG3, RWSCRATCH);
EmitMov(RWSCRATCH, 0x00FFFFFFu);
armAsm->lsrv(RWSCRATCH, RWSCRATCH, RWARG3);
armAsm->and_(RWRET, RWRET, RWSCRATCH);
armAsm->orr(value, value, RWRET);
}
if (!g_settings.gpu_pgxp_enable)
{
GenerateStore(addr, value, MemoryAccessSize::Word, use_fastmem);
FreeHostReg(addr.GetCode());
}
else
{
GenerateStore(addr, value, MemoryAccessSize::Word, use_fastmem);
Flush(FLUSH_FOR_C_CALL);
armAsm->mov(RWARG3, value);
FreeHostReg(value.GetCode());
armAsm->mov(RWARG2, addr);
FreeHostReg(addr.GetCode());
EmitMov(RWARG1, inst->bits);
EmitCall(reinterpret_cast<const void*>(&PGXP::CPU_SW));
}
2023-10-03 14:39:18 +00:00
}
2023-10-21 12:12:00 +00:00
void CPU::NewRec::AArch64Compiler::Compile_swc2(CompileFlags cf, MemoryAccessSize size, bool sign, bool use_fastmem,
2023-10-03 14:39:18 +00:00
const std::optional<VirtualMemoryAddress>& address)
{
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
const u32 index = static_cast<u32>(inst->r.rt.GetValue());
const auto [ptr, action] = GetGTERegisterPointer(index, false);
switch (action)
{
case GTERegisterAccessAction::Direct:
{
armAsm->ldr(RWARG2, PTR(ptr));
}
break;
case GTERegisterAccessAction::CallHandler:
{
// should already be flushed.. except in fastmem case
Flush(FLUSH_FOR_C_CALL);
EmitMov(RWARG1, index);
EmitCall(reinterpret_cast<const void*>(&GTE::ReadRegister));
armAsm->mov(RWARG2, RWRET);
}
break;
default:
{
Panic("Unknown action");
}
break;
}
// PGXP makes this a giant pain.
if (!g_settings.gpu_pgxp_enable)
{
const WRegister addr = ComputeLoadStoreAddressArg(cf, address);
2023-10-21 12:12:00 +00:00
GenerateStore(addr, RWARG2, size, use_fastmem);
2023-10-03 14:39:18 +00:00
return;
}
// TODO: This can be simplified because we don't need to validate in PGXP..
const WRegister addr_reg = WRegister(AllocateTempHostReg(HR_CALLEE_SAVED));
const WRegister data_backup = WRegister(AllocateTempHostReg(HR_CALLEE_SAVED));
2023-10-21 12:12:00 +00:00
FlushForLoadStore(address, true, use_fastmem);
2023-10-03 14:39:18 +00:00
ComputeLoadStoreAddressArg(cf, address, addr_reg);
armAsm->mov(data_backup, RWARG2);
2023-10-21 12:12:00 +00:00
GenerateStore(addr_reg, RWARG2, size, use_fastmem);
2023-10-03 14:39:18 +00:00
Flush(FLUSH_FOR_C_CALL);
armAsm->mov(RWARG3, data_backup);
armAsm->mov(RWARG2, addr_reg);
EmitMov(RWARG1, inst->bits);
EmitCall(reinterpret_cast<const void*>(&PGXP::CPU_SWC2));
FreeHostReg(addr_reg.GetCode());
FreeHostReg(data_backup.GetCode());
}
void CPU::NewRec::AArch64Compiler::Compile_mtc0(CompileFlags cf)
{
// TODO: we need better constant setting here.. which will need backprop
AssertRegOrConstT(cf);
const Cop0Reg reg = static_cast<Cop0Reg>(MipsD());
const u32* ptr = GetCop0RegPtr(reg);
const u32 mask = GetCop0RegWriteMask(reg);
if (!ptr)
{
Compile_Fallback();
return;
}
if (mask == 0)
{
// if it's a read-only register, ignore
Log_DebugPrintf("Ignoring write to read-only cop0 reg %u", static_cast<u32>(reg));
return;
}
// for some registers, we need to test certain bits
const bool needs_bit_test = (reg == Cop0Reg::SR);
const WRegister new_value = RWARG1;
const WRegister old_value = RWARG2;
const WRegister changed_bits = RWARG3;
const WRegister mask_reg = RWSCRATCH;
// Load old value
armAsm->ldr(old_value, PTR(ptr));
// No way we fit this in an immediate..
EmitMov(mask_reg, mask);
// update value
if (cf.valid_host_t)
armAsm->and_(new_value, CFGetRegT(cf), mask_reg);
else
EmitMov(new_value, GetConstantRegU32(cf.MipsT()) & mask);
if (needs_bit_test)
armAsm->eor(changed_bits, old_value, new_value);
armAsm->bic(old_value, old_value, mask_reg);
armAsm->orr(new_value, old_value, new_value);
armAsm->str(new_value, PTR(ptr));
if (reg == Cop0Reg::SR)
{
// TODO: replace with register backup
// We could just inline the whole thing..
Flush(FLUSH_FOR_C_CALL);
SwitchToFarCodeIfBitSet(changed_bits, 16);
armAsm->sub(sp, sp, 16);
armAsm->str(RWARG1, MemOperand(sp));
2023-10-03 14:39:18 +00:00
EmitCall(reinterpret_cast<const void*>(&CPU::UpdateMemoryPointers));
armAsm->ldr(RWARG1, MemOperand(sp));
2023-10-03 14:39:18 +00:00
armAsm->add(sp, sp, 16);
armAsm->ldr(RMEMBASE, PTR(&g_state.fastmem_base));
SwitchToNearCode(true);
TestInterrupts(RWARG1);
}
else if (reg == Cop0Reg::CAUSE)
2023-10-03 14:39:18 +00:00
{
armAsm->ldr(RWARG1, PTR(&g_state.cop0_regs.sr.bits));
TestInterrupts(RWARG1);
2023-10-03 14:39:18 +00:00
}
if (reg == Cop0Reg::DCIC && g_settings.cpu_recompiler_memory_exceptions)
{
// TODO: DCIC handling for debug breakpoints
Log_WarningPrintf("TODO: DCIC handling for debug breakpoints");
}
}
void CPU::NewRec::AArch64Compiler::Compile_rfe(CompileFlags cf)
{
// shift mode bits right two, preserving upper bits
armAsm->ldr(RWARG1, PTR(&g_state.cop0_regs.sr.bits));
armAsm->bfxil(RWARG1, RWARG1, 2, 4);
armAsm->str(RWARG1, PTR(&g_state.cop0_regs.sr.bits));
TestInterrupts(RWARG1);
}
void CPU::NewRec::AArch64Compiler::TestInterrupts(const vixl::aarch64::WRegister& sr)
{
// if Iec == 0 then goto no_interrupt
Label no_interrupt;
armAsm->tbz(sr, 0, &no_interrupt);
// sr & cause
armAsm->ldr(RWSCRATCH, PTR(&g_state.cop0_regs.cause.bits));
armAsm->and_(sr, sr, RWSCRATCH);
// ((sr & cause) & 0xff00) == 0 goto no_interrupt
armAsm->tst(sr, 0xFF00);
SwitchToFarCode(true, ne);
BackupHostState();
// Update load delay, this normally happens at the end of an instruction, but we're finishing it early.
UpdateLoadDelay();
2023-11-08 16:10:39 +00:00
Flush(FLUSH_END_BLOCK | FLUSH_FOR_EXCEPTION | FLUSH_FOR_C_CALL);
// Can't use EndBlockWithException() here, because it'll use the wrong PC.
// Can't use RaiseException() on the fast path if we're the last instruction, because the next PC is unknown.
if (!iinfo->is_last_instruction)
{
EmitMov(RWARG1, Cop0Registers::CAUSE::MakeValueForException(Exception::INT, iinfo->is_branch_instruction, false,
(inst + 1)->cop.cop_n));
EmitMov(RWARG2, m_compiler_pc);
EmitCall(reinterpret_cast<const void*>(static_cast<void (*)(u32, u32)>(&CPU::RaiseException)));
m_dirty_pc = false;
2023-11-08 16:10:39 +00:00
EndAndLinkBlock(std::nullopt, true, false);
}
else
{
if (m_dirty_pc)
EmitMov(RWARG1, m_compiler_pc);
armAsm->str(wzr, PTR(&g_state.downcount));
if (m_dirty_pc)
armAsm->str(RWARG1, PTR(&g_state.pc));
m_dirty_pc = false;
EndAndLinkBlock(std::nullopt, false, true);
}
2023-10-03 14:39:18 +00:00
RestoreHostState();
SwitchToNearCode(false);
armAsm->bind(&no_interrupt);
}
void CPU::NewRec::AArch64Compiler::Compile_mfc2(CompileFlags cf)
{
const u32 index = inst->cop.Cop2Index();
const Reg rt = inst->r.rt;
const auto [ptr, action] = GetGTERegisterPointer(index, false);
if (action == GTERegisterAccessAction::Ignore)
return;
u32 hreg;
if (action == GTERegisterAccessAction::Direct)
{
hreg = AllocateHostReg(GetFlagsForNewLoadDelayedReg(),
EMULATE_LOAD_DELAYS ? HR_TYPE_NEXT_LOAD_DELAY_VALUE : HR_TYPE_CPU_REG, rt);
armAsm->ldr(WRegister(hreg), PTR(ptr));
}
else if (action == GTERegisterAccessAction::CallHandler)
{
Flush(FLUSH_FOR_C_CALL);
EmitMov(RWARG1, index);
EmitCall(reinterpret_cast<const void*>(&GTE::ReadRegister));
hreg = AllocateHostReg(GetFlagsForNewLoadDelayedReg(),
EMULATE_LOAD_DELAYS ? HR_TYPE_NEXT_LOAD_DELAY_VALUE : HR_TYPE_CPU_REG, rt);
armAsm->mov(WRegister(hreg), RWRET);
}
else
{
Panic("Unknown action");
return;
}
if (g_settings.gpu_pgxp_enable)
{
Flush(FLUSH_FOR_C_CALL);
EmitMov(RWARG1, inst->bits);
armAsm->mov(RWARG2, WRegister(hreg));
EmitCall(reinterpret_cast<const void*>(&PGXP::CPU_MFC2));
}
}
void CPU::NewRec::AArch64Compiler::Compile_mtc2(CompileFlags cf)
{
const u32 index = inst->cop.Cop2Index();
const auto [ptr, action] = GetGTERegisterPointer(index, true);
if (action == GTERegisterAccessAction::Ignore)
return;
if (action == GTERegisterAccessAction::Direct)
{
if (cf.const_t)
StoreConstantToCPUPointer(GetConstantRegU32(cf.MipsT()), ptr);
else
armAsm->str(CFGetRegT(cf), PTR(ptr));
}
else if (action == GTERegisterAccessAction::SignExtend16 || action == GTERegisterAccessAction::ZeroExtend16)
{
const bool sign = (action == GTERegisterAccessAction::SignExtend16);
if (cf.valid_host_t)
{
sign ? armAsm->sxth(RWARG1, CFGetRegT(cf)) : armAsm->uxth(RWARG1, CFGetRegT(cf));
armAsm->str(RWARG1, PTR(ptr));
}
else if (cf.const_t)
{
const u16 cv = Truncate16(GetConstantRegU32(cf.MipsT()));
StoreConstantToCPUPointer(sign ? ::SignExtend32(cv) : ::ZeroExtend32(cv), ptr);
}
else
{
Panic("Unsupported setup");
}
}
else if (action == GTERegisterAccessAction::CallHandler)
{
Flush(FLUSH_FOR_C_CALL);
EmitMov(RWARG1, index);
MoveTToReg(RWARG2, cf);
EmitCall(reinterpret_cast<const void*>(&GTE::WriteRegister));
}
else if (action == GTERegisterAccessAction::PushFIFO)
{
// SXY0 <- SXY1
// SXY1 <- SXY2
// SXY2 <- SXYP
DebugAssert(RWRET.GetCode() != RWARG2.GetCode() && RWRET.GetCode() != RWARG3.GetCode());
armAsm->ldr(RWARG2, PTR(&g_state.gte_regs.SXY1[0]));
armAsm->ldr(RWARG3, PTR(&g_state.gte_regs.SXY2[0]));
armAsm->str(RWARG2, PTR(&g_state.gte_regs.SXY0[0]));
armAsm->str(RWARG3, PTR(&g_state.gte_regs.SXY1[0]));
if (cf.valid_host_t)
armAsm->str(CFGetRegT(cf), PTR(&g_state.gte_regs.SXY2[0]));
else if (cf.const_t)
StoreConstantToCPUPointer(GetConstantRegU32(cf.MipsT()), &g_state.gte_regs.SXY2[0]);
else
Panic("Unsupported setup");
}
else
{
Panic("Unknown action");
}
}
void CPU::NewRec::AArch64Compiler::Compile_cop2(CompileFlags cf)
{
TickCount func_ticks;
GTE::InstructionImpl func = GTE::GetInstructionImpl(inst->bits, &func_ticks);
Flush(FLUSH_FOR_C_CALL);
EmitMov(RWARG1, inst->bits & GTE::Instruction::REQUIRED_BITS_MASK);
EmitCall(reinterpret_cast<const void*>(func));
AddGTETicks(func_ticks);
}
u32 CPU::NewRec::CompileLoadStoreThunk(void* thunk_code, u32 thunk_space, void* code_address, u32 code_size,
TickCount cycles_to_add, TickCount cycles_to_remove, u32 gpr_bitmask,
u8 address_register, u8 data_register, MemoryAccessSize size, bool is_signed,
bool is_load)
{
Assembler arm_asm(static_cast<u8*>(thunk_code), thunk_space);
Assembler* armAsm = &arm_asm;
#ifdef VIXL_DEBUG
vixl::CodeBufferCheckScope asm_check(armAsm, thunk_space, vixl::CodeBufferCheckScope::kDontReserveBufferSpace);
#endif
static constexpr u32 GPR_SIZE = 8;
// save regs
u32 num_gprs = 0;
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
if ((gpr_bitmask & (1u << i)) && armIsCallerSavedRegister(i) && (!is_load || data_register != i))
num_gprs++;
}
const u32 stack_size = (((num_gprs + 1) & ~1u) * GPR_SIZE);
// TODO: use stp+ldp, vixl helper?
if (stack_size > 0)
{
armAsm->sub(sp, sp, stack_size);
u32 stack_offset = 0;
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
if ((gpr_bitmask & (1u << i)) && armIsCallerSavedRegister(i) && (!is_load || data_register != i))
{
armAsm->str(XRegister(i), MemOperand(sp, stack_offset));
stack_offset += GPR_SIZE;
}
}
}
if (cycles_to_add != 0)
{
// NOTE: we have to reload here, because memory writes can run DMA, which can screw with cycles
Assert(Assembler::IsImmAddSub(cycles_to_add));
armAsm->ldr(RWSCRATCH, PTR(&g_state.pending_ticks));
armAsm->add(RWSCRATCH, RWSCRATCH, cycles_to_add);
armAsm->str(RWSCRATCH, PTR(&g_state.pending_ticks));
}
if (address_register != static_cast<u8>(RWARG1.GetCode()))
armAsm->mov(RWARG1, WRegister(address_register));
if (!is_load)
{
if (data_register != static_cast<u8>(RWARG2.GetCode()))
armAsm->mov(RWARG2, WRegister(data_register));
}
switch (size)
{
case MemoryAccessSize::Byte:
{
armEmitCall(armAsm,
is_load ? reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryByte) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryByte),
false);
}
break;
case MemoryAccessSize::HalfWord:
{
armEmitCall(armAsm,
is_load ? reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryHalfWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryHalfWord),
false);
}
break;
case MemoryAccessSize::Word:
{
armEmitCall(armAsm,
is_load ? reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedReadMemoryWord) :
reinterpret_cast<const void*>(&Recompiler::Thunks::UncheckedWriteMemoryWord),
false);
}
break;
}
if (is_load)
{
const WRegister dst = WRegister(data_register);
switch (size)
{
case MemoryAccessSize::Byte:
{
is_signed ? armAsm->sxtb(dst, RWRET) : armAsm->uxtb(dst, RWRET);
}
break;
case MemoryAccessSize::HalfWord:
{
is_signed ? armAsm->sxth(dst, RWRET) : armAsm->uxth(dst, RWRET);
}
break;
case MemoryAccessSize::Word:
{
if (dst.GetCode() != RWRET.GetCode())
armAsm->mov(dst, RWRET);
}
break;
}
}
if (cycles_to_remove != 0)
{
Assert(Assembler::IsImmAddSub(cycles_to_remove));
armAsm->ldr(RWSCRATCH, PTR(&g_state.pending_ticks));
armAsm->sub(RWSCRATCH, RWSCRATCH, cycles_to_remove);
armAsm->str(RWSCRATCH, PTR(&g_state.pending_ticks));
}
// restore regs
if (stack_size > 0)
{
u32 stack_offset = 0;
for (u32 i = 0; i < NUM_HOST_REGS; i++)
{
if ((gpr_bitmask & (1u << i)) && armIsCallerSavedRegister(i) && (!is_load || data_register != i))
{
armAsm->ldr(XRegister(i), MemOperand(sp, stack_offset));
stack_offset += GPR_SIZE;
}
}
armAsm->add(sp, sp, stack_size);
}
armEmitJmp(armAsm, static_cast<const u8*>(code_address) + code_size, true);
armAsm->FinalizeCode();
return static_cast<u32>(armAsm->GetCursorOffset());
}
#endif // CPU_ARCH_ARM64