mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			1966 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			HLSL
		
	
	
	
	
	
		
		
			
		
	
	
			1966 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			HLSL
		
	
	
	
	
	
|   | #ifndef _BLUR_FUNCTIONS_H | ||
|  | #define _BLUR_FUNCTIONS_H | ||
|  | 
 | ||
|  | /////////////////////////////////  MIT LICENSE  //////////////////////////////// | ||
|  | 
 | ||
|  | //  Copyright (C) 2014 TroggleMonkey | ||
|  | //  Copyright (C) 2020 Alex Gunter <akg7634@gmail.com> | ||
|  | // | ||
|  | //  Permission is hereby granted, free of charge, to any person obtaining a copy | ||
|  | //  of this software and associated documentation files (the "Software"), to | ||
|  | //  deal in the Software without restriction, including without limitation the | ||
|  | //  rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | ||
|  | //  sell copies of the Software, and to permit persons to whom the Software is | ||
|  | //  furnished to do so, subject to the following conditions: | ||
|  | // | ||
|  | //  The above copyright notice and this permission notice shall be included in | ||
|  | //  all copies or substantial portions of the Software. | ||
|  | // | ||
|  | //  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
|  | //  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
|  | //  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
|  | //  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
|  | //  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
|  | //  FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | ||
|  | //  IN THE SOFTWARE. | ||
|  | 
 | ||
|  | /////////////////////////////////  DESCRIPTION  //////////////////////////////// | ||
|  | 
 | ||
|  | //  This file provides reusable one-pass and separable (two-pass) blurs. | ||
|  | //  Requires:   All blurs share these requirements (dxdy requirement is split): | ||
|  | //              1.) All requirements of gamma-management.h must be satisfied! | ||
|  | //              2.) filter_linearN must == "true" in your .cgp preset unless | ||
|  | //                  you're using tex2DblurNresize at 1x scale. | ||
|  | //              3.) mipmap_inputN must == "true" in your .cgp preset if | ||
|  | //                  output_size < video_size. | ||
|  | //              4.) output_size == video_size / pow(2, M), where M is some | ||
|  | //                  positive integer.  tex2Dblur*resize can resize arbitrarily | ||
|  | //                  (and the blur will be done after resizing), but arbitrary | ||
|  | //                  resizes "fail" with other blurs due to the way they mix | ||
|  | //                  static weights with bilinear sample exploitation. | ||
|  | //              5.) In general, dxdy should contain the uv pixel spacing: | ||
|  | //                      dxdy = (video_size/output_size)/texture_size | ||
|  | //              6.) For separable blurs (tex2DblurNresize and tex2DblurNfast), | ||
|  | //                  zero out the dxdy component in the unblurred dimension: | ||
|  | //                      dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y) | ||
|  | //              Many blurs share these requirements: | ||
|  | //              1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0, | ||
|  | //                  or they will blur more in the lower-scaled dimension. | ||
|  | //              2.) One-pass shared sample blurs require ddx(), ddy(), and | ||
|  | //                  tex2Dlod() to be supported by the current Cg profile, and | ||
|  | //                  the drivers must support high-quality derivatives. | ||
|  | //              3.) One-pass shared sample blurs require: | ||
|  | //                      tex_uv.w == log2(video_size/output_size).y; | ||
|  | //              Non-wrapper blurs share this requirement: | ||
|  | //              1.) sigma is the intended standard deviation of the blur | ||
|  | //              Wrapper blurs share this requirement, which is automatically | ||
|  | //              met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below): | ||
|  | //              1.) blurN_std_dev must be global static const float values | ||
|  | //                  specifying standard deviations for Nx blurs in units | ||
|  | //                  of destination pixels | ||
|  | //  Optional:   1.) The including file (or an earlier included file) may | ||
|  | //                  optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace | ||
|  | //                  default standard deviations with those matching a binomial | ||
|  | //                  distribution.  (See below for details/properties.) | ||
|  | //              2.) The including file (or an earlier included file) may | ||
|  | //                  optionally #define OVERRIDE_BLUR_STD_DEVS and override: | ||
|  | //                      static const float blur3_std_dev | ||
|  | //                      static const float blur4_std_dev | ||
|  | //                      static const float blur5_std_dev | ||
|  | //                      static const float blur6_std_dev | ||
|  | //                      static const float blur7_std_dev | ||
|  | //                      static const float blur8_std_dev | ||
|  | //                      static const float blur9_std_dev | ||
|  | //                      static const float blur10_std_dev | ||
|  | //                      static const float blur11_std_dev | ||
|  | //                      static const float blur12_std_dev | ||
|  | //                      static const float blur17_std_dev | ||
|  | //                      static const float blur25_std_dev | ||
|  | //                      static const float blur31_std_dev | ||
|  | //                      static const float blur43_std_dev | ||
|  | //              3.) The including file (or an earlier included file) may | ||
|  | //                  optionally #define OVERRIDE_ERROR_BLURRING and override: | ||
|  | //                      static const float error_blurring | ||
|  | //                  This tuning value helps mitigate weighting errors from one- | ||
|  | //                  pass shared-sample blurs sharing bilinear samples between | ||
|  | //                  fragments.  Values closer to 0.0 have "correct" blurriness | ||
|  | //                  but allow more artifacts, and values closer to 1.0 blur away | ||
|  | //                  artifacts by sampling closer to halfway between texels. | ||
|  | //              UPDATE 6/21/14: The above static constants may now be overridden | ||
|  | //              by non-static uniform constants.  This permits exposing blur | ||
|  | //              standard deviations as runtime GUI shader parameters.  However, | ||
|  | //              using them keeps weights from being statically computed, and the | ||
|  | //              speed hit depends on the blur: On my machine, uniforms kill over | ||
|  | //              53% of the framerate with tex2Dblur12x12shared, but they only | ||
|  | //              drop the framerate by about 18% with tex2Dblur11fast. | ||
|  | //  Quality and Performance Comparisons: | ||
|  | //  For the purposes of the following discussion, "no sRGB" means | ||
|  | //  GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't. | ||
|  | //  1.) tex2DblurNfast is always faster than tex2DblurNresize. | ||
|  | //  2.) tex2DblurNresize functions are the only ones that can arbitrarily resize | ||
|  | //      well, because they're the only ones that don't exploit bilinear samples. | ||
|  | //      This also means they're the only functions which can be truly gamma- | ||
|  | //      correct without linear (or sRGB FBO) input, but only at 1x scale. | ||
|  | //  3.) One-pass shared sample blurs only have a speed advantage without sRGB. | ||
|  | //      They also have some inaccuracies due to their shared-[bilinear-]sample | ||
|  | //      design, which grow increasingly bothersome for smaller blurs and higher- | ||
|  | //      frequency source images (relative to their resolution).  I had high | ||
|  | //      hopes for them, but their most realistic use case is limited to quickly | ||
|  | //      reblurring an already blurred input at full resolution.  Otherwise: | ||
|  | //      a.) If you're blurring a low-resolution source, you want a better blur. | ||
|  | //      b.) If you're blurring a lower mipmap, you want a better blur. | ||
|  | //      c.) If you're blurring a high-resolution, high-frequency source, you | ||
|  | //          want a better blur. | ||
|  | //  4.) The one-pass blurs without shared samples grow slower for larger blurs, | ||
|  | //      but they're competitive with separable blurs at 5x5 and smaller, and | ||
|  | //      even tex2Dblur7x7 isn't bad if you're wanting to conserve passes. | ||
|  | //  Here are some framerates from a GeForce 8800GTS.  The first pass resizes to | ||
|  | //  viewport size (4x in this test) and linearizes for sRGB codepaths, and the | ||
|  | //  remaining passes perform 6 full blurs.  Mipmapped tests are performed at the | ||
|  | //  same scale, so they just measure the cost of mipmapping each FBO (only every | ||
|  | //  other FBO is mipmapped for separable blurs, to mimic realistic usage). | ||
|  | //  Mipmap      Neither     sRGB+Mipmap sRGB        Function | ||
|  | //  76.0        92.3        131.3       193.7       tex2Dblur3fast | ||
|  | //  63.2        74.4        122.4       175.5       tex2Dblur3resize | ||
|  | //  93.7        121.2       159.3       263.2       tex2Dblur3x3 | ||
|  | //  59.7        68.7        115.4       162.1       tex2Dblur3x3resize | ||
|  | //  63.2        74.4        122.4       175.5       tex2Dblur5fast | ||
|  | //  49.3        54.8        100.0       132.7       tex2Dblur5resize | ||
|  | //  59.7        68.7        115.4       162.1       tex2Dblur5x5 | ||
|  | //  64.9        77.2        99.1        137.2       tex2Dblur6x6shared | ||
|  | //  55.8        63.7        110.4       151.8       tex2Dblur7fast | ||
|  | //  39.8        43.9        83.9        105.8       tex2Dblur7resize | ||
|  | //  40.0        44.2        83.2        104.9       tex2Dblur7x7 | ||
|  | //  56.4        65.5        71.9        87.9        tex2Dblur8x8shared | ||
|  | //  49.3        55.1        99.9        132.5       tex2Dblur9fast | ||
|  | //  33.3        36.2        72.4        88.0        tex2Dblur9resize | ||
|  | //  27.8        29.7        61.3        72.2        tex2Dblur9x9 | ||
|  | //  37.2        41.1        52.6        60.2        tex2Dblur10x10shared | ||
|  | //  44.4        49.5        91.3        117.8       tex2Dblur11fast | ||
|  | //  28.8        30.8        63.6        75.4        tex2Dblur11resize | ||
|  | //  33.6        36.5        40.9        45.5        tex2Dblur12x12shared | ||
|  | //  TODO: Fill in benchmarks for new untested blurs. | ||
|  | //                                                  tex2Dblur17fast | ||
|  | //                                                  tex2Dblur25fast | ||
|  | //                                                  tex2Dblur31fast | ||
|  | //                                                  tex2Dblur43fast | ||
|  | //                                                  tex2Dblur3x3resize | ||
|  | 
 | ||
|  | 
 | ||
|  | /////////////////////////////  SETTINGS MANAGEMENT  //////////////////////////// | ||
|  | 
 | ||
|  | //  Set static standard deviations, but allow users to override them with their | ||
|  | //  own constants (even non-static uniforms if they're okay with the speed hit): | ||
|  | #ifndef OVERRIDE_BLUR_STD_DEVS | ||
|  |     //  blurN_std_dev values are specified in terms of dxdy strides. | ||
|  |     #ifdef USE_BINOMIAL_BLUR_STD_DEVS | ||
|  |         //  By request, we can define standard deviations corresponding to a | ||
|  |         //  binomial distribution with p = 0.5 (related to Pascal's triangle). | ||
|  |         //  This distribution works such that blurring multiple times should | ||
|  |         //  have the same result as a single larger blur.  These values are | ||
|  |         //  larger than default for blurs up to 6x and smaller thereafter. | ||
|  |         static const float blur3_std_dev = 0.84931640625; | ||
|  |         static const float blur4_std_dev = 0.84931640625; | ||
|  |         static const float blur5_std_dev = 1.0595703125; | ||
|  |         static const float blur6_std_dev = 1.06591796875; | ||
|  |         static const float blur7_std_dev = 1.17041015625; | ||
|  |         static const float blur8_std_dev = 1.1720703125; | ||
|  |         static const float blur9_std_dev = 1.2259765625; | ||
|  |         static const float blur10_std_dev = 1.21982421875; | ||
|  |         static const float blur11_std_dev = 1.25361328125; | ||
|  |         static const float blur12_std_dev = 1.2423828125; | ||
|  |         static const float blur17_std_dev = 1.27783203125; | ||
|  |         static const float blur25_std_dev = 1.2810546875; | ||
|  |         static const float blur31_std_dev = 1.28125; | ||
|  |         static const float blur43_std_dev = 1.28125; | ||
|  |     #else | ||
|  |         //  The defaults are the largest values that keep the largest unused | ||
|  |         //  blur term on each side <= 1.0/256.0.  (We could get away with more | ||
|  |         //  or be more conservative, but this compromise is pretty reasonable.) | ||
|  |         static const float blur3_std_dev = 0.62666015625; | ||
|  |         static const float blur4_std_dev = 0.66171875; | ||
|  |         static const float blur5_std_dev = 0.9845703125; | ||
|  |         static const float blur6_std_dev = 1.02626953125; | ||
|  |         static const float blur7_std_dev = 1.36103515625; | ||
|  |         static const float blur8_std_dev = 1.4080078125; | ||
|  |         static const float blur9_std_dev = 1.7533203125; | ||
|  |         static const float blur10_std_dev = 1.80478515625; | ||
|  |         static const float blur11_std_dev = 2.15986328125; | ||
|  |         static const float blur12_std_dev = 2.215234375; | ||
|  |         static const float blur17_std_dev = 3.45535583496; | ||
|  |         static const float blur25_std_dev = 5.3409576416; | ||
|  |         static const float blur31_std_dev = 6.86488037109; | ||
|  |         static const float blur43_std_dev = 10.1852050781; | ||
|  |     #endif  //  USE_BINOMIAL_BLUR_STD_DEVS | ||
|  | #endif  //  OVERRIDE_BLUR_STD_DEVS | ||
|  | 
 | ||
|  | #ifndef OVERRIDE_ERROR_BLURRING | ||
|  |     //  error_blurring should be in [0.0, 1.0].  Higher values reduce ringing | ||
|  |     //  in shared-sample blurs but increase blurring and feature shifting. | ||
|  |     static const float error_blurring = 0.5; | ||
|  | #endif | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////////////////////  INCLUDES  ////////////////////////////////// | ||
|  | 
 | ||
|  | //  gamma-management.h relies on pass-specific settings to guide its behavior: | ||
|  | //  FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc.  See it for details. | ||
|  | //#include "gamma-management.h" | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "gamma-management.fxh" | ||
|  | #include "quad-pixel-communication.fxh" | ||
|  | #include "special-functions.fxh" | ||
|  | 
 | ||
|  | ////////////////////////////////  END INCLUDES  //////////////////////////////// | ||
|  | 
 | ||
|  | ///////////////////////////////////  HELPERS  ////////////////////////////////// | ||
|  | 
 | ||
|  | float4 uv2_to_uv4(float2 tex_uv) | ||
|  | { | ||
|  |     //  Make a float2 uv offset safe for adding to float4 tex2Dlod coords: | ||
|  |     return float4(tex_uv, 0.0, 0.0); | ||
|  | } | ||
|  | 
 | ||
|  | //  Make a length squared helper macro (for usage with static constants): | ||
|  | #define LENGTH_SQ(vec) (dot(vec, vec)) | ||
|  | 
 | ||
|  | float get_fast_gaussian_weight_sum_inv(const float sigma) | ||
|  | { | ||
|  |     //  We can use the Gaussian integral to calculate the asymptotic weight for | ||
|  |     //  the center pixel.  Since the unnormalized center pixel weight is 1.0, | ||
|  |     //  the normalized weight is the same as the weight sum inverse.  Given a | ||
|  |     //  large enough blur (9+), the asymptotic weight sum is close and faster: | ||
|  |     //      center_weight = 0.5 * | ||
|  |     //          (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0)))) | ||
|  |     //      erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)): | ||
|  |     //  However, we can get even faster results with curve-fitting.  These are | ||
|  |     //  also closer than the asymptotic results, because they were constructed | ||
|  |     //  from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from | ||
|  |     //  (0, blurN_std_dev), so the results for smaller sigmas are biased toward | ||
|  |     //  smaller blurs.  The max error is 0.0031793913. | ||
|  |     //  Relative FPS: 134.3 with erf, 135.8 with curve-fitting. | ||
|  |     //static const float temp = 0.5/sqrt(2.0); | ||
|  |     //return erf(temp/sigma); | ||
|  |     return min(exp(exp(0.348348412457428/ | ||
|  |         (sigma - 0.0860587260734721))), 0.399334576340352/sigma); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ////////////////////  ARBITRARILY RESIZABLE SEPARABLE BLURS  /////////////////// | ||
|  | 
 | ||
|  | float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Global requirements must be met (see file description). | ||
|  |     //  Returns:    A 1D 11x Gaussian blurred texture lookup using a 11-tap blur. | ||
|  |     //              It may be mipmapped depending on settings and dxdy. | ||
|  |     //  Calculate Gaussian blur kernel weights and a normalization factor for | ||
|  |     //  distances of 0-4, ignoring constant factors (since we're normalizing). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float w5 = exp(-25.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / | ||
|  |         (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); | ||
|  |     //  Statically normalize weights, sum weighted samples, and return.  Blurs are | ||
|  |     //  currently optimized for dynamic weights. | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Global requirements must be met (see file description). | ||
|  |     //  Returns:    A 1D 9x Gaussian blurred texture lookup using a 9-tap blur. | ||
|  |     //              It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Global requirements must be met (see file description). | ||
|  |     //  Returns:    A 1D 7x Gaussian blurred texture lookup using a 7-tap blur. | ||
|  |     //              It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Global requirements must be met (see file description). | ||
|  |     //  Returns:    A 1D 5x Gaussian blurred texture lookup using a 5-tap blur. | ||
|  |     //              It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Global requirements must be met (see file description). | ||
|  |     //  Returns:    A 1D 3x Gaussian blurred texture lookup using a 3-tap blur. | ||
|  |     //              It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ///////////////////////////  FAST SEPARABLE BLURS  /////////////////////////// | ||
|  | 
 | ||
|  | float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   1.) Global requirements must be met (see file description). | ||
|  |     //              2.) filter_linearN must = "true" in your .cgp file. | ||
|  |     //              3.) For gamma-correct bilinear filtering, global | ||
|  |     //                  gamma_aware_bilinear == true (from gamma-management.h) | ||
|  |     //  Returns:    A 1D 11x Gaussian blurred texture lookup using 6 linear | ||
|  |     //              taps.  It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float w5 = exp(-25.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / | ||
|  |         (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     //  The center texel (with weight w0) is used twice, so halve its weight. | ||
|  |     const float w01 = w0 * 0.5 + w1; | ||
|  |     const float w23 = w2 + w3; | ||
|  |     const float w45 = w4 + w5; | ||
|  |     const float w01_ratio = w1/w01; | ||
|  |     const float w23_ratio = w3/w23; | ||
|  |     const float w45_ratio = w5/w45; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 9x Gaussian blurred texture lookup using 1 nearest | ||
|  |     //              neighbor and 4 linear taps.  It may be mipmapped depending | ||
|  |     //              on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     const float w12 = w1 + w2; | ||
|  |     const float w34 = w3 + w4; | ||
|  |     const float w12_ratio = w2/w12; | ||
|  |     const float w34_ratio = w4/w34; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 7x Gaussian blurred texture lookup using 4 linear | ||
|  |     //              taps.  It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     //  The center texel (with weight w0) is used twice, so halve its weight. | ||
|  |     const float w01 = w0 * 0.5 + w1; | ||
|  |     const float w23 = w2 + w3; | ||
|  |     const float w01_ratio = w1/w01; | ||
|  |     const float w23_ratio = w3/w23; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 5x Gaussian blurred texture lookup using 1 nearest | ||
|  |     //              neighbor and 2 linear taps.  It may be mipmapped depending | ||
|  |     //              on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     const float w12 = w1 + w2; | ||
|  |     const float w12_ratio = w2/w12; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 3x Gaussian blurred texture lookup using 2 linear | ||
|  |     //              taps.  It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     //  The center texel (with weight w0) is used twice, so halve its weight. | ||
|  |     const float w01 = w0 * 0.5 + w1; | ||
|  |     const float w01_ratio = w1/w01; | ||
|  |     //  Weights for all samples are the same, so just average them: | ||
|  |     return 0.5 * ( | ||
|  |         tex2D_linearize(tex, tex_uv - w01_ratio * dxdy, input_gamma).rgb + | ||
|  |         tex2D_linearize(tex, tex_uv + w01_ratio * dxdy, input_gamma).rgb); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ////////////////////////////  HUGE SEPARABLE BLURS  //////////////////////////// | ||
|  | 
 | ||
|  | //  Huge separable blurs come only in "fast" versions. | ||
|  | float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 43x Gaussian blurred texture lookup using 22 linear | ||
|  |     //              taps.  It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float w5 = exp(-25.0 * denom_inv); | ||
|  |     const float w6 = exp(-36.0 * denom_inv); | ||
|  |     const float w7 = exp(-49.0 * denom_inv); | ||
|  |     const float w8 = exp(-64.0 * denom_inv); | ||
|  |     const float w9 = exp(-81.0 * denom_inv); | ||
|  |     const float w10 = exp(-100.0 * denom_inv); | ||
|  |     const float w11 = exp(-121.0 * denom_inv); | ||
|  |     const float w12 = exp(-144.0 * denom_inv); | ||
|  |     const float w13 = exp(-169.0 * denom_inv); | ||
|  |     const float w14 = exp(-196.0 * denom_inv); | ||
|  |     const float w15 = exp(-225.0 * denom_inv); | ||
|  |     const float w16 = exp(-256.0 * denom_inv); | ||
|  |     const float w17 = exp(-289.0 * denom_inv); | ||
|  |     const float w18 = exp(-324.0 * denom_inv); | ||
|  |     const float w19 = exp(-361.0 * denom_inv); | ||
|  |     const float w20 = exp(-400.0 * denom_inv); | ||
|  |     const float w21 = exp(-441.0 * denom_inv); | ||
|  |     //const float weight_sum_inv = 1.0 / | ||
|  |     //    (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + | ||
|  |     //        w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21)); | ||
|  |     const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     //  The center texel (with weight w0) is used twice, so halve its weight. | ||
|  |     const float w0_1 = w0 * 0.5 + w1; | ||
|  |     const float w2_3 = w2 + w3; | ||
|  |     const float w4_5 = w4 + w5; | ||
|  |     const float w6_7 = w6 + w7; | ||
|  |     const float w8_9 = w8 + w9; | ||
|  |     const float w10_11 = w10 + w11; | ||
|  |     const float w12_13 = w12 + w13; | ||
|  |     const float w14_15 = w14 + w15; | ||
|  |     const float w16_17 = w16 + w17; | ||
|  |     const float w18_19 = w18 + w19; | ||
|  |     const float w20_21 = w20 + w21; | ||
|  |     const float w0_1_ratio = w1/w0_1; | ||
|  |     const float w2_3_ratio = w3/w2_3; | ||
|  |     const float w4_5_ratio = w5/w4_5; | ||
|  |     const float w6_7_ratio = w7/w6_7; | ||
|  |     const float w8_9_ratio = w9/w8_9; | ||
|  |     const float w10_11_ratio = w11/w10_11; | ||
|  |     const float w12_13_ratio = w13/w12_13; | ||
|  |     const float w14_15_ratio = w15/w14_15; | ||
|  |     const float w16_17_ratio = w17/w16_17; | ||
|  |     const float w18_19_ratio = w19/w18_19; | ||
|  |     const float w20_21_ratio = w21/w20_21; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 31x Gaussian blurred texture lookup using 16 linear | ||
|  |     //              taps.  It may be mipmapped depending on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float w5 = exp(-25.0 * denom_inv); | ||
|  |     const float w6 = exp(-36.0 * denom_inv); | ||
|  |     const float w7 = exp(-49.0 * denom_inv); | ||
|  |     const float w8 = exp(-64.0 * denom_inv); | ||
|  |     const float w9 = exp(-81.0 * denom_inv); | ||
|  |     const float w10 = exp(-100.0 * denom_inv); | ||
|  |     const float w11 = exp(-121.0 * denom_inv); | ||
|  |     const float w12 = exp(-144.0 * denom_inv); | ||
|  |     const float w13 = exp(-169.0 * denom_inv); | ||
|  |     const float w14 = exp(-196.0 * denom_inv); | ||
|  |     const float w15 = exp(-225.0 * denom_inv); | ||
|  |     //const float weight_sum_inv = 1.0 / | ||
|  |     //    (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + | ||
|  |     //        w9 + w10 + w11 + w12 + w13 + w14 + w15)); | ||
|  |     const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     //  The center texel (with weight w0) is used twice, so halve its weight. | ||
|  |     const float w0_1 = w0 * 0.5 + w1; | ||
|  |     const float w2_3 = w2 + w3; | ||
|  |     const float w4_5 = w4 + w5; | ||
|  |     const float w6_7 = w6 + w7; | ||
|  |     const float w8_9 = w8 + w9; | ||
|  |     const float w10_11 = w10 + w11; | ||
|  |     const float w12_13 = w12 + w13; | ||
|  |     const float w14_15 = w14 + w15; | ||
|  |     const float w0_1_ratio = w1/w0_1; | ||
|  |     const float w2_3_ratio = w3/w2_3; | ||
|  |     const float w4_5_ratio = w5/w4_5; | ||
|  |     const float w6_7_ratio = w7/w6_7; | ||
|  |     const float w8_9_ratio = w9/w8_9; | ||
|  |     const float w10_11_ratio = w11/w10_11; | ||
|  |     const float w12_13_ratio = w13/w12_13; | ||
|  |     const float w14_15_ratio = w15/w14_15; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy, input_gamma).rgb; | ||
|  |     sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 25x Gaussian blurred texture lookup using 1 nearest | ||
|  |     //              neighbor and 12 linear taps.  It may be mipmapped depending | ||
|  |     //              on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float w5 = exp(-25.0 * denom_inv); | ||
|  |     const float w6 = exp(-36.0 * denom_inv); | ||
|  |     const float w7 = exp(-49.0 * denom_inv); | ||
|  |     const float w8 = exp(-64.0 * denom_inv); | ||
|  |     const float w9 = exp(-81.0 * denom_inv); | ||
|  |     const float w10 = exp(-100.0 * denom_inv); | ||
|  |     const float w11 = exp(-121.0 * denom_inv); | ||
|  |     const float w12 = exp(-144.0 * denom_inv); | ||
|  |     //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( | ||
|  |     //    w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)); | ||
|  |     const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     const float w1_2 = w1 + w2; | ||
|  |     const float w3_4 = w3 + w4; | ||
|  |     const float w5_6 = w5 + w6; | ||
|  |     const float w7_8 = w7 + w8; | ||
|  |     const float w9_10 = w9 + w10; | ||
|  |     const float w11_12 = w11 + w12; | ||
|  |     const float w1_2_ratio = w2/w1_2; | ||
|  |     const float w3_4_ratio = w4/w3_4; | ||
|  |     const float w5_6_ratio = w6/w5_6; | ||
|  |     const float w7_8_ratio = w8/w7_8; | ||
|  |     const float w9_10_ratio = w10/w9_10; | ||
|  |     const float w11_12_ratio = w12/w11_12; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Same as tex2Dblur11() | ||
|  |     //  Returns:    A 1D 17x Gaussian blurred texture lookup using 1 nearest | ||
|  |     //              neighbor and 8 linear taps.  It may be mipmapped depending | ||
|  |     //              on settings and dxdy. | ||
|  |     //  First get the texel weights and normalization factor as above. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = exp(-1.0 * denom_inv); | ||
|  |     const float w2 = exp(-4.0 * denom_inv); | ||
|  |     const float w3 = exp(-9.0 * denom_inv); | ||
|  |     const float w4 = exp(-16.0 * denom_inv); | ||
|  |     const float w5 = exp(-25.0 * denom_inv); | ||
|  |     const float w6 = exp(-36.0 * denom_inv); | ||
|  |     const float w7 = exp(-49.0 * denom_inv); | ||
|  |     const float w8 = exp(-64.0 * denom_inv); | ||
|  |     //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( | ||
|  |     //    w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)); | ||
|  |     const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); | ||
|  |     //  Calculate combined weights and linear sample ratios between texel pairs. | ||
|  |     const float w1_2 = w1 + w2; | ||
|  |     const float w3_4 = w3 + w4; | ||
|  |     const float w5_6 = w5 + w6; | ||
|  |     const float w7_8 = w7 + w8; | ||
|  |     const float w1_2_ratio = w2/w1_2; | ||
|  |     const float w3_4_ratio = w4/w3_4; | ||
|  |     const float w5_6_ratio = w6/w5_6; | ||
|  |     const float w7_8_ratio = w8/w7_8; | ||
|  |     //  Statically normalize weights, sum weighted samples, and return: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w0 * tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy, input_gamma).rgb; | ||
|  |     sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy, input_gamma).rgb; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ////////////////////  ARBITRARILY RESIZABLE ONE-PASS BLURS  //////////////////// | ||
|  | 
 | ||
|  | float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Requires:   Global requirements must be met (see file description). | ||
|  |     //  Returns:    A 3x3 Gaussian blurred mipmapped texture lookup of the | ||
|  |     //              resized input. | ||
|  |     //  Description: | ||
|  |     //  This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize | ||
|  |     //  would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     //  Load each sample.  We need all 3x3 samples.  Quad-pixel communication | ||
|  |     //  won't help either: This should perform like tex2Dblur5x5, but sharing a | ||
|  |     //  4x4 sample field would perform more like tex2Dblur8x8shared (worse). | ||
|  |     const float2 sample4_uv = tex_uv; | ||
|  |     const float2 dx = float2(dxdy.x, 0.0); | ||
|  |     const float2 dy = float2(0.0, dxdy.y); | ||
|  |     const float2 sample1_uv = sample4_uv - dy; | ||
|  |     const float2 sample7_uv = sample4_uv + dy; | ||
|  |     const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx, input_gamma).rgb; | ||
|  |     const float3 sample1 = tex2D_linearize(tex, sample1_uv, input_gamma).rgb; | ||
|  |     const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx, input_gamma).rgb; | ||
|  |     const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx, input_gamma).rgb; | ||
|  |     const float3 sample4 = tex2D_linearize(tex, sample4_uv, input_gamma).rgb; | ||
|  |     const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx, input_gamma).rgb; | ||
|  |     const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx, input_gamma).rgb; | ||
|  |     const float3 sample7 = tex2D_linearize(tex, sample7_uv, input_gamma).rgb; | ||
|  |     const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx, input_gamma).rgb; | ||
|  |     //  Statically compute Gaussian sample weights: | ||
|  |     const float w4 = 1.0; | ||
|  |     const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv); | ||
|  |     const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); | ||
|  |     const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8)); | ||
|  |     //  Weight and sum the samples: | ||
|  |     const float3 sum = w4 * sample4 + | ||
|  |         w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) + | ||
|  |         w0_2_6_8 * (sample0 + sample2 + sample6 + sample8); | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ////////////////////////////  FASTER ONE-PASS BLURS  /////////////////////////// | ||
|  | 
 | ||
|  | float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass 9x9 blur with 5x5 bilinear samples. | ||
|  |     //  Requires:   Same as tex2Dblur9() | ||
|  |     //  Returns:    A 9x9 Gaussian blurred mipmapped texture lookup composed of | ||
|  |     //              5x5 carefully selected bilinear samples. | ||
|  |     //  Description: | ||
|  |     //  Perform a 1-pass 9x9 blur with 5x5 bilinear samples.  Adjust the | ||
|  |     //  bilinear sample location to reflect the true Gaussian weights for each | ||
|  |     //  underlying texel.  The following diagram illustrates the relative | ||
|  |     //  locations of bilinear samples.  Each sample with the same number has the | ||
|  |     //  same weight (notice the symmetry).  The letters a, b, c, d distinguish | ||
|  |     //  quadrants, and the letters U, D, L, R, C (up, down, left, right, center) | ||
|  |     //  distinguish 1D directions along the line containing the pixel center: | ||
|  |     //      6a 5a 2U 5b 6b | ||
|  |     //      4a 3a 1U 3b 4b | ||
|  |     //      2L 1L 0C 1R 2R | ||
|  |     //      4c 3c 1D 3d 4d | ||
|  |     //      6c 5c 2D 5d 6d | ||
|  |     //  The following diagram illustrates the underlying equally spaced texels, | ||
|  |     //  named after the sample that accesses them and subnamed by their location | ||
|  |     //  within their 2x2, 2x1, 1x2, or 1x1 texel block: | ||
|  |     //      6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4 | ||
|  |     //      6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2 | ||
|  |     //      4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4 | ||
|  |     //      4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2 | ||
|  |     //      2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2 | ||
|  |     //      4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2 | ||
|  |     //      4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4 | ||
|  |     //      6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2 | ||
|  |     //      6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4 | ||
|  |     //  Note there is only one C texel and only two texels for each U, D, L, or | ||
|  |     //  R sample.  The center sample is effectively a nearest neighbor sample, | ||
|  |     //  and the U/D/L/R samples use 1D linear filtering.  All other texels are | ||
|  |     //  read with bilinear samples somewhere within their 2x2 texel blocks. | ||
|  | 
 | ||
|  |     //  COMPUTE TEXTURE COORDS: | ||
|  |     //  Statically compute sampling offsets within each 2x2 texel block, based | ||
|  |     //  on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from | ||
|  |     //  the center, and reuse them independently for both dimensions.  Compute | ||
|  |     //  these offsets based on the relative 1D Gaussian weights of the texels | ||
|  |     //  in question.  (w1off means "Gaussian weight for the texel 1.0 texels | ||
|  |     //  away from the pixel center," etc.). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w1off = exp(-1.0 * denom_inv); | ||
|  |     const float w2off = exp(-4.0 * denom_inv); | ||
|  |     const float w3off = exp(-9.0 * denom_inv); | ||
|  |     const float w4off = exp(-16.0 * denom_inv); | ||
|  |     const float texel1to2ratio = w2off/(w1off + w2off); | ||
|  |     const float texel3to4ratio = w4off/(w3off + w4off); | ||
|  |     //  Statically compute texel offsets from the fragment center to each | ||
|  |     //  bilinear sample in the bottom-right quadrant, including x-axis-aligned: | ||
|  |     const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0); | ||
|  |     const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0); | ||
|  |     const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio); | ||
|  |     const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio); | ||
|  |     const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio); | ||
|  |     const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: | ||
|  |     //  Statically compute Gaussian texel weights for the bottom-right quadrant. | ||
|  |     //  Read underscores as "and." | ||
|  |     const float w1R1 = w1off; | ||
|  |     const float w1R2 = w2off; | ||
|  |     const float w2R1 = w3off; | ||
|  |     const float w2R2 = w4off; | ||
|  |     const float w3d1 =     exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); | ||
|  |     const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); | ||
|  |     const float w3d4 =     exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); | ||
|  |     const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv); | ||
|  |     const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv); | ||
|  |     const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv); | ||
|  |     const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv); | ||
|  |     const float w6d1 =     exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv); | ||
|  |     const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv); | ||
|  |     const float w6d4 =     exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv); | ||
|  |     //  Statically add texel weights in each sample to get sample weights: | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = w1R1 + w1R2; | ||
|  |     const float w2 = w2R1 + w2R2; | ||
|  |     const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4; | ||
|  |     const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4; | ||
|  |     const float w5 = w4; | ||
|  |     const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4; | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float weight_sum_inv = | ||
|  |         1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6)); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES: | ||
|  |     //  Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry: | ||
|  |     const float2 mirror_x = float2(-1.0, 1.0); | ||
|  |     const float2 mirror_y = float2(1.0, -1.0); | ||
|  |     const float2 mirror_xy = float2(-1.0, -1.0); | ||
|  |     const float2 dxdy_mirror_x = dxdy * mirror_x; | ||
|  |     const float2 dxdy_mirror_y = dxdy * mirror_y; | ||
|  |     const float2 dxdy_mirror_xy = dxdy * mirror_xy; | ||
|  |     //  Sampling order doesn't seem to affect performance, so just be clear: | ||
|  |     const float3 sample0C = tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx, input_gamma).rgb; | ||
|  |     const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx, input_gamma).rgb; | ||
|  |     const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx, input_gamma).rgb; | ||
|  |     const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx, input_gamma).rgb; | ||
|  |     const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset, input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  SUM WEIGHTED SAMPLES: | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     float3 sum = w0 * sample0C; | ||
|  |     sum += w1 * (sample1R + sample1D + sample1L + sample1U); | ||
|  |     sum += w2 * (sample2R + sample2D + sample2L + sample2U); | ||
|  |     sum += w3 * (sample3d + sample3c + sample3b + sample3a); | ||
|  |     sum += w4 * (sample4d + sample4c + sample4b + sample4a); | ||
|  |     sum += w5 * (sample5d + sample5c + sample5b + sample5a); | ||
|  |     sum += w6 * (sample6d + sample6c + sample6b + sample6a); | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass 7x7 blur with 5x5 bilinear samples. | ||
|  |     //  Requires:   Same as tex2Dblur9() | ||
|  |     //  Returns:    A 7x7 Gaussian blurred mipmapped texture lookup composed of | ||
|  |     //              4x4 carefully selected bilinear samples. | ||
|  |     //  Description: | ||
|  |     //  First see the descriptions for tex2Dblur9x9() and tex2Dblur7().  This | ||
|  |     //  blur mixes concepts from both.  The sample layout is as follows: | ||
|  |     //      4a 3a 3b 4b | ||
|  |     //      2a 1a 1b 2b | ||
|  |     //      2c 1c 1d 2d | ||
|  |     //      4c 3c 3d 4d | ||
|  |     //  The texel layout is as follows.  Note that samples 3a/3b, 1a/1b, 1c/1d, | ||
|  |     //  and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c, | ||
|  |     //  1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share | ||
|  |     //  the center texel): | ||
|  |     //      4a4  4a3  3a4  3ab3 3b4  4b3  4b4 | ||
|  |     //      4a2  4a1  3a2  3ab1 3b2  4b1  4b2 | ||
|  |     //      2a4  2a3  1a4  1ab3 1b4  2b3  2b4 | ||
|  |     //      2ac2 2ac1 1ac2 1*   1bd2 2bd1 2bd2 | ||
|  |     //      2c4  2c3  1c4  1cd3 1d4  2d3  2d4 | ||
|  |     //      4c2  4c1  3c2  3cd1 3d2  4d1  4d2 | ||
|  |     //      4c4  4c3  3c4  3cd3 3d4  4d3  4d4 | ||
|  | 
 | ||
|  |     //  COMPUTE TEXTURE COORDS: | ||
|  |     //  Statically compute bilinear sampling offsets (details in tex2Dblur9x9). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0off = 1.0; | ||
|  |     const float w1off = exp(-1.0 * denom_inv); | ||
|  |     const float w2off = exp(-4.0 * denom_inv); | ||
|  |     const float w3off = exp(-9.0 * denom_inv); | ||
|  |     const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); | ||
|  |     const float texel2to3ratio = w3off/(w2off + w3off); | ||
|  |     //  Statically compute texel offsets from the fragment center to each | ||
|  |     //  bilinear sample in the bottom-right quadrant, including axis-aligned: | ||
|  |     const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio); | ||
|  |     const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); | ||
|  |     const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); | ||
|  |     const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: | ||
|  |     //  Statically compute Gaussian texel weights for the bottom-right quadrant. | ||
|  |     //  Read underscores as "and." | ||
|  |     const float w1abcd = 1.0; | ||
|  |     const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv); | ||
|  |     const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv); | ||
|  |     const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv); | ||
|  |     const float w1d4 =       exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); | ||
|  |     const float w2d3_3d2 =   exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); | ||
|  |     const float w2d4_3d4 =   exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv); | ||
|  |     const float w4d1 =       exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); | ||
|  |     const float w4d2_4d3 =   exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv); | ||
|  |     const float w4d4 =       exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv); | ||
|  |     //  Statically add texel weights in each sample to get sample weights. | ||
|  |     //  Split weights for shared texels between samples sharing them: | ||
|  |     const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4; | ||
|  |     const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4; | ||
|  |     const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4; | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float weight_sum_inv = | ||
|  |         1.0/(4.0 * (w1 + 2.0 * w2_3 + w4)); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES: | ||
|  |     //  Load all 16 samples using symmetry: | ||
|  |     const float2 mirror_x = float2(-1.0, 1.0); | ||
|  |     const float2 mirror_y = float2(1.0, -1.0); | ||
|  |     const float2 mirror_xy = float2(-1.0, -1.0); | ||
|  |     const float2 dxdy_mirror_x = dxdy * mirror_x; | ||
|  |     const float2 dxdy_mirror_y = dxdy * mirror_y; | ||
|  |     const float2 dxdy_mirror_xy = dxdy * mirror_xy; | ||
|  |     const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset, input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  SUM WEIGHTED SAMPLES: | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += w1 * (sample1a + sample1b + sample1c + sample1d); | ||
|  |     sum += w2_3 * (sample2a + sample2b + sample2c + sample2d); | ||
|  |     sum += w2_3 * (sample3a + sample3b + sample3c + sample3d); | ||
|  |     sum += w4 * (sample4a + sample4b + sample4c + sample4d); | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass 5x5 blur with 3x3 bilinear samples. | ||
|  |     //  Requires:   Same as tex2Dblur9() | ||
|  |     //  Returns:    A 5x5 Gaussian blurred mipmapped texture lookup composed of | ||
|  |     //              3x3 carefully selected bilinear samples. | ||
|  |     //  Description: | ||
|  |     //  First see the description for tex2Dblur9x9().  This blur uses the same | ||
|  |     //  concept and sample/texel locations except on a smaller scale.  Samples: | ||
|  |     //      2a 1U 2b | ||
|  |     //      1L 0C 1R | ||
|  |     //      2c 1D 2d | ||
|  |     //  Texels: | ||
|  |     //      2a4 2a3 1U2 2b3 2b4 | ||
|  |     //      2a2 2a1 1U1 2b1 2b2 | ||
|  |     //      1L2 1L1 0C1 1R1 1R2 | ||
|  |     //      2c2 2c1 1D1 2d1 2d2 | ||
|  |     //      2c4 2c3 1D2 2d3 2d4 | ||
|  | 
 | ||
|  |     //  COMPUTE TEXTURE COORDS: | ||
|  |     //  Statically compute bilinear sampling offsets (details in tex2Dblur9x9). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w1off = exp(-1.0 * denom_inv); | ||
|  |     const float w2off = exp(-4.0 * denom_inv); | ||
|  |     const float texel1to2ratio = w2off/(w1off + w2off); | ||
|  |     //  Statically compute texel offsets from the fragment center to each | ||
|  |     //  bilinear sample in the bottom-right quadrant, including x-axis-aligned: | ||
|  |     const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0); | ||
|  |     const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: | ||
|  |     //  Statically compute Gaussian texel weights for the bottom-right quadrant. | ||
|  |     //  Read underscores as "and." | ||
|  |     const float w1R1 = w1off; | ||
|  |     const float w1R2 = w2off; | ||
|  |     const float w2d1 =   exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv); | ||
|  |     const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv); | ||
|  |     const float w2d4 =   exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv); | ||
|  |     //  Statically add texel weights in each sample to get sample weights: | ||
|  |     const float w0 = 1.0; | ||
|  |     const float w1 = w1R1 + w1R2; | ||
|  |     const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4; | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2)); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES: | ||
|  |     //  Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry: | ||
|  |     const float2 mirror_x = float2(-1.0, 1.0); | ||
|  |     const float2 mirror_y = float2(1.0, -1.0); | ||
|  |     const float2 mirror_xy = float2(-1.0, -1.0); | ||
|  |     const float2 dxdy_mirror_x = dxdy * mirror_x; | ||
|  |     const float2 dxdy_mirror_y = dxdy * mirror_y; | ||
|  |     const float2 dxdy_mirror_xy = dxdy * mirror_xy; | ||
|  |     const float3 sample0C = tex2D_linearize(tex, tex_uv, input_gamma).rgb; | ||
|  |     const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx, input_gamma).rgb; | ||
|  |     const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx, input_gamma).rgb; | ||
|  |     const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset, input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  SUM WEIGHTED SAMPLES: | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     float3 sum = w0 * sample0C; | ||
|  |     sum += w1 * (sample1R + sample1D + sample1L + sample1U); | ||
|  |     sum += w2 * (sample2a + sample2b + sample2c + sample2d); | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass 3x3 blur with 5x5 bilinear samples. | ||
|  |     //  Requires:   Same as tex2Dblur9() | ||
|  |     //  Returns:    A 3x3 Gaussian blurred mipmapped texture lookup composed of | ||
|  |     //              2x2 carefully selected bilinear samples. | ||
|  |     //  Description: | ||
|  |     //  First see the descriptions for tex2Dblur9x9() and tex2Dblur7().  This | ||
|  |     //  blur mixes concepts from both.  The sample layout is as follows: | ||
|  |     //      0a 0b | ||
|  |     //      0c 0d | ||
|  |     //  The texel layout is as follows.  Note that samples 0a/0b and 0c/0d share | ||
|  |     //  a vertical column of texels, and samples 0a/0c and 0b/0d share a | ||
|  |     //  horizontal row of texels (all samples share the center texel): | ||
|  |     //      0a3  0ab2 0b3 | ||
|  |     //      0ac1 0*0  0bd1 | ||
|  |     //      0c3  0cd2 0d3 | ||
|  | 
 | ||
|  |     //  COMPUTE TEXTURE COORDS: | ||
|  |     //  Statically compute bilinear sampling offsets (details in tex2Dblur9x9). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0off = 1.0; | ||
|  |     const float w1off = exp(-1.0 * denom_inv); | ||
|  |     const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); | ||
|  |     //  Statically compute texel offsets from the fragment center to each | ||
|  |     //  bilinear sample in the bottom-right quadrant, including axis-aligned: | ||
|  |     const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES: | ||
|  |     //  Load all 4 samples using symmetry: | ||
|  |     const float2 mirror_x = float2(-1.0, 1.0); | ||
|  |     const float2 mirror_y = float2(1.0, -1.0); | ||
|  |     const float2 mirror_xy = float2(-1.0, -1.0); | ||
|  |     const float2 dxdy_mirror_x = dxdy * mirror_x; | ||
|  |     const float2 dxdy_mirror_y = dxdy * mirror_y; | ||
|  |     const float2 dxdy_mirror_xy = dxdy * mirror_xy; | ||
|  |     const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset, input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  SUM WEIGHTED SAMPLES: | ||
|  |     //  Weights for all samples are the same, so just average them: | ||
|  |     return 0.25 * (sample0a + sample0b + sample0c + sample0d); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////  LINEAR ONE-PASS BLURS WITH SHARED SAMPLES  ///////////////// | ||
|  | 
 | ||
|  | float3 tex2Dblur12x12shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass mipmapped blur with shared samples across a pixel quad. | ||
|  |     //  Requires:   1.) Same as tex2Dblur9() | ||
|  |     //              2.) ddx() and ddy() are present in the current Cg profile. | ||
|  |     //              3.) The GPU driver is using fine/high-quality derivatives. | ||
|  |     //              4.) quad_vector *correctly* describes the current fragment's | ||
|  |     //                  location in its pixel quad, by the conventions noted in | ||
|  |     //                  get_quad_vector[_naive]. | ||
|  |     //              5.) tex_uv.w = log2(video_size/output_size).y | ||
|  |     //              6.) tex2Dlod() is present in the current Cg profile. | ||
|  |     //  Optional:   Tune artifacts vs. excessive blurriness with the global | ||
|  |     //              float error_blurring. | ||
|  |     //  Returns:    A blurred texture lookup using a "virtual" 12x12 Gaussian | ||
|  |     //              blur (a 6x6 blur of carefully selected bilinear samples) | ||
|  |     //              of the given mip level.  There will be subtle inaccuracies, | ||
|  |     //              especially for small or high-frequency detailed sources. | ||
|  |     //  Description: | ||
|  |     //  Perform a 1-pass blur with shared texture lookups across a pixel quad. | ||
|  |     //  We'll get neighboring samples with high-quality ddx/ddy derivatives, as | ||
|  |     //  in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad | ||
|  |     //  Message Passing" by Eric Penner. | ||
|  |     // | ||
|  |     //  Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12 | ||
|  |     //  bilinear samples, where bilinear sampling positions are computed from | ||
|  |     //  the relative Gaussian weights of the 4 surrounding texels.  The catch is | ||
|  |     //  that the appropriate texel weights and sample coords differ for each | ||
|  |     //  fragment, but we're reusing most of the same samples across a quad of | ||
|  |     //  destination fragments.  (We do use unique coords for the four nearest | ||
|  |     //  samples at each fragment.)  Mixing bilinear filtering and sample-sharing | ||
|  |     //  therefore introduces some error into the weights, and this can get nasty | ||
|  |     //  when the source image is small or high-frequency.  Computing bilinear | ||
|  |     //  ratios based on weights at the sample field center results in sharpening | ||
|  |     //  and ringing artifacts, but we can move samples closer to halfway between | ||
|  |     //  texels to try blurring away the error (which can move features around by | ||
|  |     //  a texel or so).  Tune this with the global float "error_blurring". | ||
|  |     // | ||
|  |     //  The pixel quad's sample field covers 12x12 texels, accessed through 6x6 | ||
|  |     //  bilinear (2x2 texel) taps.  Each fragment depends on a window of 10x10 | ||
|  |     //  texels (5x5 bilinear taps), and each fragment is responsible for loading | ||
|  |     //  a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps | ||
|  |     //  to use unique bilinear coords for sample0* for each fragment.  This | ||
|  |     //  diagram illustrates the relative locations of bilinear samples 1-9 for | ||
|  |     //  each quadrant a, b, c, d (note samples will not be equally spaced): | ||
|  |     //      8a 7a 6a 6b 7b 8b | ||
|  |     //      5a 4a 3a 3b 4b 5b | ||
|  |     //      2a 1a 0a 0b 1b 2b | ||
|  |     //      2c 1c 0c 0d 1d 2d | ||
|  |     //      5c 4c 3c 3d 4d 5d | ||
|  |     //      8c 7c 6c 6d 7d 8d | ||
|  |     //  The following diagram illustrates the underlying equally spaced texels, | ||
|  |     //  named after the sample that accesses them and subnamed by their location | ||
|  |     //  within their 2x2 texel block: | ||
|  |     //      8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3 | ||
|  |     //      8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1 | ||
|  |     //      5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3 | ||
|  |     //      5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1 | ||
|  |     //      2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3 | ||
|  |     //      2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1 | ||
|  |     //      2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1 | ||
|  |     //      2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3 | ||
|  |     //      5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1 | ||
|  |     //      5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3 | ||
|  |     //      8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1 | ||
|  |     //      8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3 | ||
|  |     //  With this symmetric arrangement, we don't have to know which absolute | ||
|  |     //  quadrant a sample lies in to assign kernel weights; it's enough to know | ||
|  |     //  the sample number and the relative quadrant of the sample (relative to | ||
|  |     //  the current quadrant): | ||
|  |     //      {current, adjacent x, adjacent y, diagonal} | ||
|  | 
 | ||
|  |     //  COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Statically compute sampling offsets within each 2x2 texel block, based | ||
|  |     //  on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3], | ||
|  |     //  and [4, 5] away from the fragment, and reuse them independently for both | ||
|  |     //  dimensions.  Use the sample field center as the estimated destination, | ||
|  |     //  but nudge the result closer to halfway between texels to blur error. | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0off   = 1.0; | ||
|  |     const float w0_5off = exp(-(0.5*0.5) * denom_inv); | ||
|  |     const float w1off   = exp(-(1.0*1.0) * denom_inv); | ||
|  |     const float w1_5off = exp(-(1.5*1.5) * denom_inv); | ||
|  |     const float w2off   = exp(-(2.0*2.0) * denom_inv); | ||
|  |     const float w2_5off = exp(-(2.5*2.5) * denom_inv); | ||
|  |     const float w3_5off = exp(-(3.5*3.5) * denom_inv); | ||
|  |     const float w4_5off = exp(-(4.5*4.5) * denom_inv); | ||
|  |     const float w5_5off = exp(-(5.5*5.5) * denom_inv); | ||
|  |     const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); | ||
|  |     const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); | ||
|  |     const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); | ||
|  |     //  We don't share sample0*, so use the nearest destination fragment: | ||
|  |     const float texel0to1ratio_nearest = w1off/(w0off + w1off); | ||
|  |     const float texel1to2ratio_nearest = w2off/(w1off + w2off); | ||
|  |     //  Statically compute texel offsets from the bottom-right fragment to each | ||
|  |     //  bilinear sample in the bottom-right quadrant: | ||
|  |     const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); | ||
|  |     const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio); | ||
|  |     const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); | ||
|  |     const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); | ||
|  |     const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio); | ||
|  |     const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio); | ||
|  |     const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio); | ||
|  |     const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS: | ||
|  |     //  Statically compute bilinear sample weights at each destination fragment | ||
|  |     //  based on the sum of their 4 underlying texel weights.  Assume a same- | ||
|  |     //  resolution blur, so each symmetrically named sample weight will compute | ||
|  |     //  the same at every fragment in the pixel quad: We can therefore compute | ||
|  |     //  texel weights based only on the bottom-right quadrant (fragment at 0d0). | ||
|  |     //  Too avoid too much boilerplate code, use a macro to get all 4 texel | ||
|  |     //  weights for a bilinear sample based on the offset of its top-left texel: | ||
|  |     #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ | ||
|  |         (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) | ||
|  |     const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0); | ||
|  |     const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0); | ||
|  |     const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0); | ||
|  |     const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0); | ||
|  |     const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0); | ||
|  |     const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0); | ||
|  |     const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0); | ||
|  |     const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); | ||
|  |     const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); | ||
|  |     const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); | ||
|  |     const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); | ||
|  |     const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); | ||
|  |     const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0); | ||
|  |     const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); | ||
|  |     const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); | ||
|  |     const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); | ||
|  |     const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); | ||
|  |     const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); | ||
|  |     const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0); | ||
|  |     const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); | ||
|  |     const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); | ||
|  |     const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); | ||
|  |     const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); | ||
|  |     const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); | ||
|  |     const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0); | ||
|  |     const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); | ||
|  |     const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); | ||
|  |     const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); | ||
|  |     const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); | ||
|  |     const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); | ||
|  |     const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0); | ||
|  |     const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); | ||
|  |     const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); | ||
|  |     const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); | ||
|  |     const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); | ||
|  |     const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); | ||
|  |     #undef GET_TEXEL_QUAD_WEIGHTS | ||
|  |     //  Statically pack weights for runtime: | ||
|  |     const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); | ||
|  |     const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); | ||
|  |     const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag); | ||
|  |     const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); | ||
|  |     const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag); | ||
|  |     const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag); | ||
|  |     const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag); | ||
|  |     const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag); | ||
|  |     const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag); | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8; | ||
|  |     const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; | ||
|  |     const float weight_sum = weight_sum2.x + weight_sum2.y; | ||
|  |     const float weight_sum_inv = 1.0/(weight_sum); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Get a uv vector from texel 0q0 of this quadrant to texel 0q3: | ||
|  |     const float2 dxdy_curr = dxdy * quad_vector.xy; | ||
|  |     //  Load bilinear samples for the current quadrant (for this fragment): | ||
|  |     const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset), input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: | ||
|  |     //  Fetch the samples from other fragments in the 2x2 quad: | ||
|  |     float3 sample1adjx, sample1adjy, sample1diag; | ||
|  |     float3 sample2adjx, sample2adjy, sample2diag; | ||
|  |     float3 sample3adjx, sample3adjy, sample3diag; | ||
|  |     float3 sample4adjx, sample4adjy, sample4diag; | ||
|  |     float3 sample5adjx, sample5adjy, sample5diag; | ||
|  |     float3 sample6adjx, sample6adjy, sample6diag; | ||
|  |     float3 sample7adjx, sample7adjy, sample7diag; | ||
|  |     float3 sample8adjx, sample8adjy, sample8diag; | ||
|  |     quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); | ||
|  |     quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); | ||
|  |     quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); | ||
|  |     quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); | ||
|  |     quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); | ||
|  |     quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); | ||
|  |     quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); | ||
|  |     quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag); | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     //  Fill each row of a matrix with an rgb sample and pre-multiply by the | ||
|  |     //  weights to obtain a weighted result: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); | ||
|  |     sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); | ||
|  |     sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag)); | ||
|  |     sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); | ||
|  |     sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag)); | ||
|  |     sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag)); | ||
|  |     sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag)); | ||
|  |     sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag)); | ||
|  |     sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag)); | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur10x10shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass mipmapped blur with shared samples across a pixel quad. | ||
|  |     //  Requires:   Same as tex2Dblur12x12shared() | ||
|  |     //  Returns:    A blurred texture lookup using a "virtual" 10x10 Gaussian | ||
|  |     //              blur (a 5x5 blur of carefully selected bilinear samples) | ||
|  |     //              of the given mip level.  There will be subtle inaccuracies, | ||
|  |     //              especially for small or high-frequency detailed sources. | ||
|  |     //  Description: | ||
|  |     //  First see the description for tex2Dblur12x12shared().  This | ||
|  |     //  function shares the same concept and sample placement, but each fragment | ||
|  |     //  only uses 25 of the 36 samples taken across the pixel quad (to cover a | ||
|  |     //  5x5 sample area, or 10x10 texel area), and it uses a lower standard | ||
|  |     //  deviation to compensate.  Thanks to symmetry, the 11 omitted samples | ||
|  |     //  are always the "same:" | ||
|  |     //      8adjx, 2adjx, 5adjx, | ||
|  |     //      6adjy, 7adjy, 8adjy, | ||
|  |     //      2diag, 5diag, 6diag, 7diag, 8diag | ||
|  | 
 | ||
|  |     //  COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0off   = 1.0; | ||
|  |     const float w0_5off = exp(-(0.5*0.5) * denom_inv); | ||
|  |     const float w1off   = exp(-(1.0*1.0) * denom_inv); | ||
|  |     const float w1_5off = exp(-(1.5*1.5) * denom_inv); | ||
|  |     const float w2off   = exp(-(2.0*2.0) * denom_inv); | ||
|  |     const float w2_5off = exp(-(2.5*2.5) * denom_inv); | ||
|  |     const float w3_5off = exp(-(3.5*3.5) * denom_inv); | ||
|  |     const float w4_5off = exp(-(4.5*4.5) * denom_inv); | ||
|  |     const float w5_5off = exp(-(5.5*5.5) * denom_inv); | ||
|  |     const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); | ||
|  |     const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); | ||
|  |     const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); | ||
|  |     //  We don't share sample0*, so use the nearest destination fragment: | ||
|  |     const float texel0to1ratio_nearest = w1off/(w0off + w1off); | ||
|  |     const float texel1to2ratio_nearest = w2off/(w1off + w2off); | ||
|  |     //  Statically compute texel offsets from the bottom-right fragment to each | ||
|  |     //  bilinear sample in the bottom-right quadrant: | ||
|  |     const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); | ||
|  |     const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio); | ||
|  |     const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); | ||
|  |     const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); | ||
|  |     const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio); | ||
|  |     const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio); | ||
|  |     const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio); | ||
|  |     const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS: | ||
|  |     //  Statically compute bilinear sample weights at each destination fragment | ||
|  |     //  from the sum of their 4 texel weights (details in tex2Dblur12x12shared). | ||
|  |     #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ | ||
|  |         (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) | ||
|  |     //  We only need 25 of the 36 sample weights.  Skip the following weights: | ||
|  |     //      8adjx, 2adjx, 5adjx, | ||
|  |     //      6adjy, 7adjy, 8adjy, | ||
|  |     //      2diag, 5diag, 6diag, 7diag, 8diag | ||
|  |     const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); | ||
|  |     const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); | ||
|  |     const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); | ||
|  |     const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); | ||
|  |     const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); | ||
|  |     const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); | ||
|  |     const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); | ||
|  |     const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); | ||
|  |     const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); | ||
|  |     const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); | ||
|  |     const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); | ||
|  |     const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); | ||
|  |     const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); | ||
|  |     const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); | ||
|  |     const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); | ||
|  |     const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); | ||
|  |     const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); | ||
|  |     const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); | ||
|  |     const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); | ||
|  |     const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); | ||
|  |     const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); | ||
|  |     const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); | ||
|  |     const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); | ||
|  |     const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); | ||
|  |     const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); | ||
|  |     #undef GET_TEXEL_QUAD_WEIGHTS | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + | ||
|  |         w4curr + w5curr + w6curr + w7curr + w8curr + | ||
|  |         w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx + | ||
|  |         w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy + | ||
|  |         w0diag + w1diag + w3diag + w4diag); | ||
|  |     //  Statically pack most weights for runtime.  Note the mixed packing: | ||
|  |     const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); | ||
|  |     const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); | ||
|  |     const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); | ||
|  |     const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag); | ||
|  |     const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy); | ||
|  |     const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Get a uv vector from texel 0q0 of this quadrant to texel 0q3: | ||
|  |     const float2 dxdy_curr = dxdy * quad_vector.xy; | ||
|  |     //  Load bilinear samples for the current quadrant (for this fragment): | ||
|  |     const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset), input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: | ||
|  |     //  Fetch the samples from other fragments in the 2x2 quad in order of need: | ||
|  |     float3 sample1adjx, sample1adjy, sample1diag; | ||
|  |     float3 sample2adjx, sample2adjy, sample2diag; | ||
|  |     float3 sample3adjx, sample3adjy, sample3diag; | ||
|  |     float3 sample4adjx, sample4adjy, sample4diag; | ||
|  |     float3 sample5adjx, sample5adjy, sample5diag; | ||
|  |     float3 sample6adjx, sample6adjy, sample6diag; | ||
|  |     float3 sample7adjx, sample7adjy, sample7diag; | ||
|  |     quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); | ||
|  |     quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); | ||
|  |     quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); | ||
|  |     quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); | ||
|  |     quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); | ||
|  |     quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); | ||
|  |     quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     //  Fill each row of a matrix with an rgb sample and pre-multiply by the | ||
|  |     //  weights to obtain a weighted result.  First do the simple ones: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); | ||
|  |     sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); | ||
|  |     sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); | ||
|  |     sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag)); | ||
|  |     //  Now do the mixed-sample ones: | ||
|  |     sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy)); | ||
|  |     sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx)); | ||
|  |     sum += w8curr * sample8curr; | ||
|  |     //  Normalize the sum (so the weights add to 1.0) and return: | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur8x8shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass mipmapped blur with shared samples across a pixel quad. | ||
|  |     //  Requires:   Same as tex2Dblur12x12shared() | ||
|  |     //  Returns:    A blurred texture lookup using a "virtual" 8x8 Gaussian | ||
|  |     //              blur (a 4x4 blur of carefully selected bilinear samples) | ||
|  |     //              of the given mip level.  There will be subtle inaccuracies, | ||
|  |     //              especially for small or high-frequency detailed sources. | ||
|  |     //  Description: | ||
|  |     //  First see the description for tex2Dblur12x12shared().  This function | ||
|  |     //  shares the same concept and a similar sample placement, except each | ||
|  |     //  quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3 | ||
|  |     //  respectively.  There could be a total of 16 samples, 4 of which each | ||
|  |     //  fragment is responsible for, but each fragment loads 0a/0b/0c/0d with | ||
|  |     //  its own offset to reduce shared sample artifacts, bringing the sample | ||
|  |     //  count for each fragment to 7.  Sample placement: | ||
|  |     //      3a 2a 2b 3b | ||
|  |     //      1a 0a 0b 1b | ||
|  |     //      1c 0c 0d 1d | ||
|  |     //      3c 2c 2d 3d | ||
|  |     //  Texel placement: | ||
|  |     //      3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3 | ||
|  |     //      3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1 | ||
|  |     //      1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 | ||
|  |     //      1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 | ||
|  |     //      1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 | ||
|  |     //      1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 | ||
|  |     //      3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1 | ||
|  |     //      3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3 | ||
|  |      | ||
|  |     //  COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0off   = 1.0; | ||
|  |     const float w0_5off = exp(-(0.5*0.5) * denom_inv); | ||
|  |     const float w1off   = exp(-(1.0*1.0) * denom_inv); | ||
|  |     const float w1_5off = exp(-(1.5*1.5) * denom_inv); | ||
|  |     const float w2off   = exp(-(2.0*2.0) * denom_inv); | ||
|  |     const float w2_5off = exp(-(2.5*2.5) * denom_inv); | ||
|  |     const float w3_5off = exp(-(3.5*3.5) * denom_inv); | ||
|  |     const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); | ||
|  |     const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); | ||
|  |     //  We don't share sample0*, so use the nearest destination fragment: | ||
|  |     const float texel0to1ratio_nearest = w1off/(w0off + w1off); | ||
|  |     const float texel1to2ratio_nearest = w2off/(w1off + w2off); | ||
|  |     //  Statically compute texel offsets from the bottom-right fragment to each | ||
|  |     //  bilinear sample in the bottom-right quadrant: | ||
|  |     const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); | ||
|  |     const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); | ||
|  |     const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS: | ||
|  |     //  Statically compute bilinear sample weights at each destination fragment | ||
|  |     //  from the sum of their 4 texel weights (details in tex2Dblur12x12shared). | ||
|  |     #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ | ||
|  |         (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) | ||
|  |     const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); | ||
|  |     const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); | ||
|  |     const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); | ||
|  |     const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); | ||
|  |     const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); | ||
|  |     const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); | ||
|  |     const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); | ||
|  |     const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); | ||
|  |     const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); | ||
|  |     const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); | ||
|  |     const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); | ||
|  |     const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); | ||
|  |     const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); | ||
|  |     const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); | ||
|  |     const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); | ||
|  |     const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); | ||
|  |     #undef GET_TEXEL_QUAD_WEIGHTS | ||
|  |     //  Statically pack weights for runtime: | ||
|  |     const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); | ||
|  |     const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag); | ||
|  |     const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag); | ||
|  |     const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag); | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float4 weight_sum4 = w0 + w1 + w2 + w3; | ||
|  |     const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; | ||
|  |     const float weight_sum = weight_sum2.x + weight_sum2.y; | ||
|  |     const float weight_sum_inv = 1.0/(weight_sum); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Get a uv vector from texel 0q0 of this quadrant to texel 0q3: | ||
|  |     const float2 dxdy_curr = dxdy * quad_vector.xy; | ||
|  |     //  Load bilinear samples for the current quadrant (for this fragment): | ||
|  |     const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset), input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: | ||
|  |     //  Fetch the samples from other fragments in the 2x2 quad: | ||
|  |     float3 sample1adjx, sample1adjy, sample1diag; | ||
|  |     float3 sample2adjx, sample2adjy, sample2diag; | ||
|  |     float3 sample3adjx, sample3adjy, sample3diag; | ||
|  |     quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); | ||
|  |     quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); | ||
|  |     quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     //  Fill each row of a matrix with an rgb sample and pre-multiply by the | ||
|  |     //  weights to obtain a weighted result: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); | ||
|  |     sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag)); | ||
|  |     sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag)); | ||
|  |     sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag)); | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | float3 tex2Dblur6x6shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float sigma, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     //  Perform a 1-pass mipmapped blur with shared samples across a pixel quad. | ||
|  |     //  Requires:   Same as tex2Dblur12x12shared() | ||
|  |     //  Returns:    A blurred texture lookup using a "virtual" 6x6 Gaussian | ||
|  |     //              blur (a 3x3 blur of carefully selected bilinear samples) | ||
|  |     //              of the given mip level.  There will be some inaccuracies,subtle inaccuracies, | ||
|  |     //              especially for small or high-frequency detailed sources. | ||
|  |     //  Description: | ||
|  |     //  First see the description for tex2Dblur8x8shared().  This | ||
|  |     //  function shares the same concept and sample placement, but each fragment | ||
|  |     //  only uses 9 of the 16 samples taken across the pixel quad (to cover a | ||
|  |     //  3x3 sample area, or 6x6 texel area), and it uses a lower standard | ||
|  |     //  deviation to compensate.  Thanks to symmetry, the 7 omitted samples | ||
|  |     //  are always the "same:" | ||
|  |     //      1adjx, 3adjx | ||
|  |     //      2adjy, 3adjy | ||
|  |     //      1diag, 2diag, 3diag | ||
|  | 
 | ||
|  |     //  COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). | ||
|  |     const float denom_inv = 0.5/(sigma*sigma); | ||
|  |     const float w0off   = 1.0; | ||
|  |     const float w0_5off = exp(-(0.5*0.5) * denom_inv); | ||
|  |     const float w1off   = exp(-(1.0*1.0) * denom_inv); | ||
|  |     const float w1_5off = exp(-(1.5*1.5) * denom_inv); | ||
|  |     const float w2off   = exp(-(2.0*2.0) * denom_inv); | ||
|  |     const float w2_5off = exp(-(2.5*2.5) * denom_inv); | ||
|  |     const float w3_5off = exp(-(3.5*3.5) * denom_inv); | ||
|  |     const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); | ||
|  |     const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); | ||
|  |     //  We don't share sample0*, so use the nearest destination fragment: | ||
|  |     const float texel0to1ratio_nearest = w1off/(w0off + w1off); | ||
|  |     const float texel1to2ratio_nearest = w2off/(w1off + w2off); | ||
|  |     //  Statically compute texel offsets from the bottom-right fragment to each | ||
|  |     //  bilinear sample in the bottom-right quadrant: | ||
|  |     const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest); | ||
|  |     const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); | ||
|  |     const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio); | ||
|  |     const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio); | ||
|  |     const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio); | ||
|  | 
 | ||
|  |     //  CALCULATE KERNEL WEIGHTS: | ||
|  |     //  Statically compute bilinear sample weights at each destination fragment | ||
|  |     //  from the sum of their 4 texel weights (details in tex2Dblur12x12shared). | ||
|  |     #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ | ||
|  |         (exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \ | ||
|  |         exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv)) | ||
|  |     //  We only need 9 of the 16 sample weights.  Skip the following weights: | ||
|  |     //      1adjx, 3adjx | ||
|  |     //      2adjy, 3adjy | ||
|  |     //      1diag, 2diag, 3diag | ||
|  |     const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); | ||
|  |     const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); | ||
|  |     const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); | ||
|  |     const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); | ||
|  |     const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); | ||
|  |     const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); | ||
|  |     const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); | ||
|  |     const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); | ||
|  |     const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); | ||
|  |     #undef GET_TEXEL_QUAD_WEIGHTS | ||
|  |     //  Get the weight sum inverse (normalization factor): | ||
|  |     const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + | ||
|  |         w0adjx + w2adjx + w0adjy + w1adjy + w0diag); | ||
|  |     //  Statically pack some weights for runtime: | ||
|  |     const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag); | ||
|  | 
 | ||
|  |     //  LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: | ||
|  |     //  Get a uv vector from texel 0q0 of this quadrant to texel 0q3: | ||
|  |     const float2 dxdy_curr = dxdy * quad_vector.xy; | ||
|  |     //  Load bilinear samples for the current quadrant (for this fragment): | ||
|  |     const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset, input_gamma).rgb; | ||
|  |     const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset), input_gamma).rgb; | ||
|  |     const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset), input_gamma).rgb; | ||
|  | 
 | ||
|  |     //  GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: | ||
|  |     //  Fetch the samples from other fragments in the 2x2 quad: | ||
|  |     float3 sample1adjx, sample1adjy, sample1diag; | ||
|  |     float3 sample2adjx, sample2adjy, sample2diag; | ||
|  |     quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); | ||
|  |     quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); | ||
|  |     //  Statically normalize weights (so total = 1.0), and sum weighted samples. | ||
|  |     //  Fill each row of a matrix with an rgb sample and pre-multiply by the | ||
|  |     //  weights to obtain a weighted result for sample1*, and handle the rest | ||
|  |     //  of the weights more directly/verbosely: | ||
|  |     float3 sum = float3(0.0,0.0,0.0); | ||
|  |     sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag)); | ||
|  |     sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr + | ||
|  |             w2adjx * sample2adjx + w3curr * sample3curr; | ||
|  |     return sum * weight_sum_inv; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | ///////////////////////  MAX OPTIMAL SIGMA BLUR WRAPPERS  ////////////////////// | ||
|  | 
 | ||
|  | //  The following blurs are static wrappers around the dynamic blurs above. | ||
|  | //  HOPEFULLY, the compiler will be smart enough to do constant-folding. | ||
|  | 
 | ||
|  | //  Resizable separable blurs: | ||
|  | float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev, input_gamma); | ||
|  | } | ||
|  | //  Fast separable blurs: | ||
|  | float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev, input_gamma); | ||
|  | } | ||
|  | //  Huge, "fast" separable blurs: | ||
|  | float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev, input_gamma); | ||
|  | } | ||
|  | //  Resizable one-pass blurs: | ||
|  | float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev, input_gamma); | ||
|  | } | ||
|  | //  "Fast" one-pass blurs: | ||
|  | float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv, | ||
|  |     const float2 dxdy, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev, input_gamma); | ||
|  | } | ||
|  | //  "Fast" shared-sample one-pass blurs: | ||
|  | float3 tex2Dblur12x12shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur10x10shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur8x8shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev, input_gamma); | ||
|  | } | ||
|  | float3 tex2Dblur6x6shared(const sampler2D tex, | ||
|  |     const float4 tex_uv, const float2 dxdy, const float4 quad_vector, | ||
|  |     const float input_gamma) | ||
|  | { | ||
|  |     return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev, input_gamma); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif  //  _BLUR_FUNCTIONS_H |