mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			1241 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1241 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* Copyright (C) 2007-2008 Jean-Marc Valin
 | ||
|  |    Copyright (C) 2008      Thorvald Natvig | ||
|  | 
 | ||
|  |    File: resample.c | ||
|  |    Arbitrary resampling code | ||
|  | 
 | ||
|  |    Redistribution and use in source and binary forms, with or without | ||
|  |    modification, are permitted provided that the following conditions are | ||
|  |    met: | ||
|  | 
 | ||
|  |    1. Redistributions of source code must retain the above copyright notice, | ||
|  |    this list of conditions and the following disclaimer. | ||
|  | 
 | ||
|  |    2. Redistributions in binary form must reproduce the above copyright | ||
|  |    notice, this list of conditions and the following disclaimer in the | ||
|  |    documentation and/or other materials provided with the distribution. | ||
|  | 
 | ||
|  |    3. The name of the author may not be used to endorse or promote products | ||
|  |    derived from this software without specific prior written permission. | ||
|  | 
 | ||
|  |    THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR | ||
|  |    IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | ||
|  |    OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
|  |    DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, | ||
|  |    INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
|  |    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
|  |    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
|  |    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
|  |    STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | ||
|  |    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
|  |    POSSIBILITY OF SUCH DAMAGE. | ||
|  | */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |    The design goals of this code are: | ||
|  |       - Very fast algorithm | ||
|  |       - SIMD-friendly algorithm | ||
|  |       - Low memory requirement | ||
|  |       - Good *perceptual* quality (and not best SNR) | ||
|  | 
 | ||
|  |    Warning: This resampler is relatively new. Although I think I got rid of | ||
|  |    all the major bugs and I don't expect the API to change anymore, there | ||
|  |    may be something I've missed. So use with caution. | ||
|  | 
 | ||
|  |    This algorithm is based on this original resampling algorithm: | ||
|  |    Smith, Julius O. Digital Audio Resampling Home Page | ||
|  |    Center for Computer Research in Music and Acoustics (CCRMA), | ||
|  |    Stanford University, 2007. | ||
|  |    Web published at http://ccrma.stanford.edu/~jos/resample/.
 | ||
|  | 
 | ||
|  |    There is one main difference, though. This resampler uses cubic | ||
|  |    interpolation instead of linear interpolation in the above paper. This | ||
|  |    makes the table much smaller and makes it possible to compute that table | ||
|  |    on a per-stream basis. In turn, being able to tweak the table for each | ||
|  |    stream makes it possible to both reduce complexity on simple ratios | ||
|  |    (e.g. 2/3), and get rid of the rounding operations in the inner loop. | ||
|  |    The latter both reduces CPU time and makes the algorithm more SIMD-friendly. | ||
|  | */ | ||
|  | 
 | ||
|  | #ifdef HAVE_CONFIG_H
 | ||
|  | #include "config.h"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef OUTSIDE_SPEEX
 | ||
|  | #include <stdlib.h>
 | ||
|  | static void *speex_alloc (int size) {return calloc(size,1);} | ||
|  | static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);} | ||
|  | static void speex_free (void *ptr) {free(ptr);} | ||
|  | #include "speex_resampler.h"
 | ||
|  | #include "arch.h"
 | ||
|  | #else /* OUTSIDE_SPEEX */
 | ||
|  | 
 | ||
|  | #include "speex/speex_resampler.h"
 | ||
|  | #include "arch.h"
 | ||
|  | #include "os_support.h"
 | ||
|  | #endif /* OUTSIDE_SPEEX */
 | ||
|  | 
 | ||
|  | #include "stack_alloc.h"
 | ||
|  | #include <math.h>
 | ||
|  | #include <limits.h>
 | ||
|  | 
 | ||
|  | #ifndef M_PI
 | ||
|  | #define M_PI 3.14159265358979323846
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define IMAX(a,b) ((a) > (b) ? (a) : (b))
 | ||
|  | #define IMIN(a,b) ((a) < (b) ? (a) : (b))
 | ||
|  | 
 | ||
|  | #ifndef NULL
 | ||
|  | #define NULL 0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef UINT32_MAX
 | ||
|  | #define UINT32_MAX 4294967296U
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef _USE_SSE
 | ||
|  | #include "resample_sse.h"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef _USE_NEON
 | ||
|  | #include "resample_neon.h"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* Numer of elements to allocate on the stack */ | ||
|  | #ifdef VAR_ARRAYS
 | ||
|  | #define FIXED_STACK_ALLOC 8192
 | ||
|  | #else
 | ||
|  | #define FIXED_STACK_ALLOC 1024
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); | ||
|  | 
 | ||
|  | struct SpeexResamplerState_ { | ||
|  |    spx_uint32_t in_rate; | ||
|  |    spx_uint32_t out_rate; | ||
|  |    spx_uint32_t num_rate; | ||
|  |    spx_uint32_t den_rate; | ||
|  | 
 | ||
|  |    int    quality; | ||
|  |    spx_uint32_t nb_channels; | ||
|  |    spx_uint32_t filt_len; | ||
|  |    spx_uint32_t mem_alloc_size; | ||
|  |    spx_uint32_t buffer_size; | ||
|  |    int          int_advance; | ||
|  |    int          frac_advance; | ||
|  |    float  cutoff; | ||
|  |    spx_uint32_t oversample; | ||
|  |    int          initialised; | ||
|  |    int          started; | ||
|  | 
 | ||
|  |    /* These are per-channel */ | ||
|  |    spx_int32_t  *last_sample; | ||
|  |    spx_uint32_t *samp_frac_num; | ||
|  |    spx_uint32_t *magic_samples; | ||
|  | 
 | ||
|  |    spx_word16_t *mem; | ||
|  |    spx_word16_t *sinc_table; | ||
|  |    spx_uint32_t sinc_table_length; | ||
|  |    resampler_basic_func resampler_ptr; | ||
|  | 
 | ||
|  |    int    in_stride; | ||
|  |    int    out_stride; | ||
|  | } ; | ||
|  | 
 | ||
|  | static const double kaiser12_table[68] = { | ||
|  |    0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076, | ||
|  |    0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014, | ||
|  |    0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601, | ||
|  |    0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014, | ||
|  |    0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490, | ||
|  |    0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546, | ||
|  |    0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178, | ||
|  |    0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947, | ||
|  |    0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058, | ||
|  |    0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438, | ||
|  |    0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734, | ||
|  |    0.00001000, 0.00000000}; | ||
|  | /*
 | ||
|  | static const double kaiser12_table[36] = { | ||
|  |    0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741, | ||
|  |    0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762, | ||
|  |    0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274, | ||
|  |    0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466, | ||
|  |    0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291, | ||
|  |    0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000}; | ||
|  | */ | ||
|  | static const double kaiser10_table[36] = { | ||
|  |    0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446, | ||
|  |    0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347, | ||
|  |    0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962, | ||
|  |    0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451, | ||
|  |    0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739, | ||
|  |    0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000}; | ||
|  | 
 | ||
|  | static const double kaiser8_table[36] = { | ||
|  |    0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200, | ||
|  |    0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126, | ||
|  |    0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272, | ||
|  |    0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758, | ||
|  |    0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490, | ||
|  |    0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000}; | ||
|  | 
 | ||
|  | static const double kaiser6_table[36] = { | ||
|  |    0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003, | ||
|  |    0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565, | ||
|  |    0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561, | ||
|  |    0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058, | ||
|  |    0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600, | ||
|  |    0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000}; | ||
|  | 
 | ||
|  | struct FuncDef { | ||
|  |    const double *table; | ||
|  |    int oversample; | ||
|  | }; | ||
|  | 
 | ||
|  | static const struct FuncDef _KAISER12 = {kaiser12_table, 64}; | ||
|  | #define KAISER12 (&_KAISER12)
 | ||
|  | /*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
 | ||
|  | #define KAISER12 (&_KAISER12)*/
 | ||
|  | static const struct FuncDef _KAISER10 = {kaiser10_table, 32}; | ||
|  | #define KAISER10 (&_KAISER10)
 | ||
|  | static const struct FuncDef _KAISER8 = {kaiser8_table, 32}; | ||
|  | #define KAISER8 (&_KAISER8)
 | ||
|  | static const struct FuncDef _KAISER6 = {kaiser6_table, 32}; | ||
|  | #define KAISER6 (&_KAISER6)
 | ||
|  | 
 | ||
|  | struct QualityMapping { | ||
|  |    int base_length; | ||
|  |    int oversample; | ||
|  |    float downsample_bandwidth; | ||
|  |    float upsample_bandwidth; | ||
|  |    const struct FuncDef *window_func; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* This table maps conversion quality to internal parameters. There are two
 | ||
|  |    reasons that explain why the up-sampling bandwidth is larger than the | ||
|  |    down-sampling bandwidth: | ||
|  |    1) When up-sampling, we can assume that the spectrum is already attenuated | ||
|  |       close to the Nyquist rate (from an A/D or a previous resampling filter) | ||
|  |    2) Any aliasing that occurs very close to the Nyquist rate will be masked | ||
|  |       by the sinusoids/noise just below the Nyquist rate (guaranteed only for | ||
|  |       up-sampling). | ||
|  | */ | ||
|  | static const struct QualityMapping quality_map[11] = { | ||
|  |    {  8,  4, 0.830f, 0.860f, KAISER6 }, /* Q0 */ | ||
|  |    { 16,  4, 0.850f, 0.880f, KAISER6 }, /* Q1 */ | ||
|  |    { 32,  4, 0.882f, 0.910f, KAISER6 }, /* Q2 */  /* 82.3% cutoff ( ~60 dB stop) 6  */ | ||
|  |    { 48,  8, 0.895f, 0.917f, KAISER8 }, /* Q3 */  /* 84.9% cutoff ( ~80 dB stop) 8  */ | ||
|  |    { 64,  8, 0.921f, 0.940f, KAISER8 }, /* Q4 */  /* 88.7% cutoff ( ~80 dB stop) 8  */ | ||
|  |    { 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */  /* 89.1% cutoff (~100 dB stop) 10 */ | ||
|  |    { 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */  /* 91.5% cutoff (~100 dB stop) 10 */ | ||
|  |    {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */  /* 93.1% cutoff (~100 dB stop) 10 */ | ||
|  |    {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */  /* 94.5% cutoff (~100 dB stop) 10 */ | ||
|  |    {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */  /* 95.5% cutoff (~100 dB stop) 10 */ | ||
|  |    {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */ | ||
|  | }; | ||
|  | /*8,24,40,56,80,104,128,160,200,256,320*/ | ||
|  | static double compute_func(float x, const struct FuncDef *func) | ||
|  | { | ||
|  |    float y, frac; | ||
|  |    double interp[4]; | ||
|  |    int ind; | ||
|  |    y = x*func->oversample; | ||
|  |    ind = (int)floor(y); | ||
|  |    frac = (y-ind); | ||
|  |    /* CSE with handle the repeated powers */ | ||
|  |    interp[3] =  -0.1666666667*frac + 0.1666666667*(frac*frac*frac); | ||
|  |    interp[2] = frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac); | ||
|  |    /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/ | ||
|  |    interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac); | ||
|  |    /* Just to make sure we don't have rounding problems */ | ||
|  |    interp[1] = 1.f-interp[3]-interp[2]-interp[0]; | ||
|  | 
 | ||
|  |    /*sum = frac*accum[1] + (1-frac)*accum[2];*/ | ||
|  |    return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3]; | ||
|  | } | ||
|  | 
 | ||
|  | #if 0
 | ||
|  | #include <stdio.h>
 | ||
|  | int main(int argc, char **argv) | ||
|  | { | ||
|  |    int i; | ||
|  |    for (i=0;i<256;i++) | ||
|  |    { | ||
|  |       printf ("%f\n", compute_func(i/256., KAISER12)); | ||
|  |    } | ||
|  |    return 0; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FIXED_POINT
 | ||
|  | /* The slow way of computing a sinc for the table. Should improve that some day */ | ||
|  | static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func) | ||
|  | { | ||
|  |    /*fprintf (stderr, "%f ", x);*/ | ||
|  |    float xx = x * cutoff; | ||
|  |    if (fabs(x)<1e-6f) | ||
|  |       return WORD2INT(32768.*cutoff); | ||
|  |    else if (fabs(x) > .5f*N) | ||
|  |       return 0; | ||
|  |    /*FIXME: Can it really be any slower than this? */ | ||
|  |    return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func)); | ||
|  | } | ||
|  | #else
 | ||
|  | /* The slow way of computing a sinc for the table. Should improve that some day */ | ||
|  | static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func) | ||
|  | { | ||
|  |    /*fprintf (stderr, "%f ", x);*/ | ||
|  |    float xx = x * cutoff; | ||
|  |    if (fabs(x)<1e-6) | ||
|  |       return cutoff; | ||
|  |    else if (fabs(x) > .5*N) | ||
|  |       return 0; | ||
|  |    /*FIXME: Can it really be any slower than this? */ | ||
|  |    return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FIXED_POINT
 | ||
|  | static void cubic_coef(spx_word16_t x, spx_word16_t interp[4]) | ||
|  | { | ||
|  |    /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
 | ||
|  |    but I know it's MMSE-optimal on a sinc */ | ||
|  |    spx_word16_t x2, x3; | ||
|  |    x2 = MULT16_16_P15(x, x); | ||
|  |    x3 = MULT16_16_P15(x, x2); | ||
|  |    interp[0] = PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(QCONST16(0.16667f, 15),x3),15); | ||
|  |    interp[1] = EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32(x3)),1)); | ||
|  |    interp[3] = PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(QCONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15); | ||
|  |    /* Just to make sure we don't have rounding problems */ | ||
|  |    interp[2] = Q15_ONE-interp[0]-interp[1]-interp[3]; | ||
|  |    if (interp[2]<32767) | ||
|  |       interp[2]+=1; | ||
|  | } | ||
|  | #else
 | ||
|  | static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4]) | ||
|  | { | ||
|  |    /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
 | ||
|  |    but I know it's MMSE-optimal on a sinc */ | ||
|  |    interp[0] =  -0.16667f*frac + 0.16667f*frac*frac*frac; | ||
|  |    interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac; | ||
|  |    /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/ | ||
|  |    interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac; | ||
|  |    /* Just to make sure we don't have rounding problems */ | ||
|  |    interp[2] = 1.-interp[0]-interp[1]-interp[3]; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    const int N = st->filt_len; | ||
|  |    int out_sample = 0; | ||
|  |    int last_sample = st->last_sample[channel_index]; | ||
|  |    spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; | ||
|  |    const spx_word16_t *sinc_table = st->sinc_table; | ||
|  |    const int out_stride = st->out_stride; | ||
|  |    const int int_advance = st->int_advance; | ||
|  |    const int frac_advance = st->frac_advance; | ||
|  |    const spx_uint32_t den_rate = st->den_rate; | ||
|  |    spx_word32_t sum; | ||
|  | 
 | ||
|  |    while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) | ||
|  |    { | ||
|  |       const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; | ||
|  |       const spx_word16_t *iptr = & in[last_sample]; | ||
|  | 
 | ||
|  | #ifndef OVERRIDE_INNER_PRODUCT_SINGLE
 | ||
|  |       int j; | ||
|  |       sum = 0; | ||
|  |       for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]); | ||
|  | 
 | ||
|  | /*    This code is slower on most DSPs which have only 2 accumulators.
 | ||
|  |       Plus this this forces truncation to 32 bits and you lose the HW guard bits. | ||
|  |       I think we can trust the compiler and let it vectorize and/or unroll itself. | ||
|  |       spx_word32_t accum[4] = {0,0,0,0}; | ||
|  |       for(j=0;j<N;j+=4) { | ||
|  |         accum[0] += MULT16_16(sinct[j], iptr[j]); | ||
|  |         accum[1] += MULT16_16(sinct[j+1], iptr[j+1]); | ||
|  |         accum[2] += MULT16_16(sinct[j+2], iptr[j+2]); | ||
|  |         accum[3] += MULT16_16(sinct[j+3], iptr[j+3]); | ||
|  |       } | ||
|  |       sum = accum[0] + accum[1] + accum[2] + accum[3]; | ||
|  | */ | ||
|  |       sum = SATURATE32PSHR(sum, 15, 32767); | ||
|  | #else
 | ||
|  |       sum = inner_product_single(sinct, iptr, N); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |       out[out_stride * out_sample++] = sum; | ||
|  |       last_sample += int_advance; | ||
|  |       samp_frac_num += frac_advance; | ||
|  |       if (samp_frac_num >= den_rate) | ||
|  |       { | ||
|  |          samp_frac_num -= den_rate; | ||
|  |          last_sample++; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    st->last_sample[channel_index] = last_sample; | ||
|  |    st->samp_frac_num[channel_index] = samp_frac_num; | ||
|  |    return out_sample; | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FIXED_POINT
 | ||
|  | #else
 | ||
|  | /* This is the same as the previous function, except with a double-precision accumulator */ | ||
|  | static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    const int N = st->filt_len; | ||
|  |    int out_sample = 0; | ||
|  |    int last_sample = st->last_sample[channel_index]; | ||
|  |    spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; | ||
|  |    const spx_word16_t *sinc_table = st->sinc_table; | ||
|  |    const int out_stride = st->out_stride; | ||
|  |    const int int_advance = st->int_advance; | ||
|  |    const int frac_advance = st->frac_advance; | ||
|  |    const spx_uint32_t den_rate = st->den_rate; | ||
|  |    double sum; | ||
|  | 
 | ||
|  |    while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) | ||
|  |    { | ||
|  |       const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; | ||
|  |       const spx_word16_t *iptr = & in[last_sample]; | ||
|  | 
 | ||
|  | #ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
 | ||
|  |       int j; | ||
|  |       double accum[4] = {0,0,0,0}; | ||
|  | 
 | ||
|  |       for(j=0;j<N;j+=4) { | ||
|  |         accum[0] += sinct[j]*iptr[j]; | ||
|  |         accum[1] += sinct[j+1]*iptr[j+1]; | ||
|  |         accum[2] += sinct[j+2]*iptr[j+2]; | ||
|  |         accum[3] += sinct[j+3]*iptr[j+3]; | ||
|  |       } | ||
|  |       sum = accum[0] + accum[1] + accum[2] + accum[3]; | ||
|  | #else
 | ||
|  |       sum = inner_product_double(sinct, iptr, N); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |       out[out_stride * out_sample++] = PSHR32(sum, 15); | ||
|  |       last_sample += int_advance; | ||
|  |       samp_frac_num += frac_advance; | ||
|  |       if (samp_frac_num >= den_rate) | ||
|  |       { | ||
|  |          samp_frac_num -= den_rate; | ||
|  |          last_sample++; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    st->last_sample[channel_index] = last_sample; | ||
|  |    st->samp_frac_num[channel_index] = samp_frac_num; | ||
|  |    return out_sample; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    const int N = st->filt_len; | ||
|  |    int out_sample = 0; | ||
|  |    int last_sample = st->last_sample[channel_index]; | ||
|  |    spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; | ||
|  |    const int out_stride = st->out_stride; | ||
|  |    const int int_advance = st->int_advance; | ||
|  |    const int frac_advance = st->frac_advance; | ||
|  |    const spx_uint32_t den_rate = st->den_rate; | ||
|  |    spx_word32_t sum; | ||
|  | 
 | ||
|  |    while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) | ||
|  |    { | ||
|  |       const spx_word16_t *iptr = & in[last_sample]; | ||
|  | 
 | ||
|  |       const int offset = samp_frac_num*st->oversample/st->den_rate; | ||
|  | #ifdef FIXED_POINT
 | ||
|  |       const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); | ||
|  | #else
 | ||
|  |       const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; | ||
|  | #endif
 | ||
|  |       spx_word16_t interp[4]; | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
 | ||
|  |       int j; | ||
|  |       spx_word32_t accum[4] = {0,0,0,0}; | ||
|  | 
 | ||
|  |       for(j=0;j<N;j++) { | ||
|  |         const spx_word16_t curr_in=iptr[j]; | ||
|  |         accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]); | ||
|  |         accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); | ||
|  |         accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); | ||
|  |         accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); | ||
|  |       } | ||
|  | 
 | ||
|  |       cubic_coef(frac, interp); | ||
|  |       sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1)); | ||
|  |       sum = SATURATE32PSHR(sum, 15, 32767); | ||
|  | #else
 | ||
|  |       cubic_coef(frac, interp); | ||
|  |       sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |       out[out_stride * out_sample++] = sum; | ||
|  |       last_sample += int_advance; | ||
|  |       samp_frac_num += frac_advance; | ||
|  |       if (samp_frac_num >= den_rate) | ||
|  |       { | ||
|  |          samp_frac_num -= den_rate; | ||
|  |          last_sample++; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    st->last_sample[channel_index] = last_sample; | ||
|  |    st->samp_frac_num[channel_index] = samp_frac_num; | ||
|  |    return out_sample; | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FIXED_POINT
 | ||
|  | #else
 | ||
|  | /* This is the same as the previous function, except with a double-precision accumulator */ | ||
|  | static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    const int N = st->filt_len; | ||
|  |    int out_sample = 0; | ||
|  |    int last_sample = st->last_sample[channel_index]; | ||
|  |    spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; | ||
|  |    const int out_stride = st->out_stride; | ||
|  |    const int int_advance = st->int_advance; | ||
|  |    const int frac_advance = st->frac_advance; | ||
|  |    const spx_uint32_t den_rate = st->den_rate; | ||
|  |    spx_word32_t sum; | ||
|  | 
 | ||
|  |    while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) | ||
|  |    { | ||
|  |       const spx_word16_t *iptr = & in[last_sample]; | ||
|  | 
 | ||
|  |       const int offset = samp_frac_num*st->oversample/st->den_rate; | ||
|  | #ifdef FIXED_POINT
 | ||
|  |       const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); | ||
|  | #else
 | ||
|  |       const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; | ||
|  | #endif
 | ||
|  |       spx_word16_t interp[4]; | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
 | ||
|  |       int j; | ||
|  |       double accum[4] = {0,0,0,0}; | ||
|  | 
 | ||
|  |       for(j=0;j<N;j++) { | ||
|  |         const double curr_in=iptr[j]; | ||
|  |         accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]); | ||
|  |         accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); | ||
|  |         accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); | ||
|  |         accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); | ||
|  |       } | ||
|  | 
 | ||
|  |       cubic_coef(frac, interp); | ||
|  |       sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]); | ||
|  | #else
 | ||
|  |       cubic_coef(frac, interp); | ||
|  |       sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |       out[out_stride * out_sample++] = PSHR32(sum,15); | ||
|  |       last_sample += int_advance; | ||
|  |       samp_frac_num += frac_advance; | ||
|  |       if (samp_frac_num >= den_rate) | ||
|  |       { | ||
|  |          samp_frac_num -= den_rate; | ||
|  |          last_sample++; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    st->last_sample[channel_index] = last_sample; | ||
|  |    st->samp_frac_num[channel_index] = samp_frac_num; | ||
|  |    return out_sample; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* This resampler is used to produce zero output in situations where memory
 | ||
|  |    for the filter could not be allocated.  The expected numbers of input and | ||
|  |    output samples are still processed so that callers failing to check error | ||
|  |    codes are not surprised, possibly getting into infinite loops. */ | ||
|  | static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    int out_sample = 0; | ||
|  |    int last_sample = st->last_sample[channel_index]; | ||
|  |    spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; | ||
|  |    const int out_stride = st->out_stride; | ||
|  |    const int int_advance = st->int_advance; | ||
|  |    const int frac_advance = st->frac_advance; | ||
|  |    const spx_uint32_t den_rate = st->den_rate; | ||
|  | 
 | ||
|  |    while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) | ||
|  |    { | ||
|  |       out[out_stride * out_sample++] = 0; | ||
|  |       last_sample += int_advance; | ||
|  |       samp_frac_num += frac_advance; | ||
|  |       if (samp_frac_num >= den_rate) | ||
|  |       { | ||
|  |          samp_frac_num -= den_rate; | ||
|  |          last_sample++; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    st->last_sample[channel_index] = last_sample; | ||
|  |    st->samp_frac_num[channel_index] = samp_frac_num; | ||
|  |    return out_sample; | ||
|  | } | ||
|  | 
 | ||
|  | static int _muldiv(spx_uint32_t *result, spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div) | ||
|  | { | ||
|  |    speex_assert(result); | ||
|  |    spx_uint32_t major = value / div; | ||
|  |    spx_uint32_t remainder = value % div; | ||
|  |    /* TODO: Could use 64 bits operation to check for overflow. But only guaranteed in C99+ */ | ||
|  |    if (remainder > UINT32_MAX / mul || major > UINT32_MAX / mul | ||
|  |        || major * mul > UINT32_MAX - remainder * mul / div) | ||
|  |       return RESAMPLER_ERR_OVERFLOW; | ||
|  |    *result = remainder * mul / div + major * mul; | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | static int update_filter(SpeexResamplerState *st) | ||
|  | { | ||
|  |    spx_uint32_t old_length = st->filt_len; | ||
|  |    spx_uint32_t old_alloc_size = st->mem_alloc_size; | ||
|  |    int use_direct; | ||
|  |    spx_uint32_t min_sinc_table_length; | ||
|  |    spx_uint32_t min_alloc_size; | ||
|  | 
 | ||
|  |    st->int_advance = st->num_rate/st->den_rate; | ||
|  |    st->frac_advance = st->num_rate%st->den_rate; | ||
|  |    st->oversample = quality_map[st->quality].oversample; | ||
|  |    st->filt_len = quality_map[st->quality].base_length; | ||
|  | 
 | ||
|  |    if (st->num_rate > st->den_rate) | ||
|  |    { | ||
|  |       /* down-sampling */ | ||
|  |       st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate; | ||
|  |       if (_muldiv(&st->filt_len,st->filt_len,st->num_rate,st->den_rate) != RESAMPLER_ERR_SUCCESS) | ||
|  |          goto fail; | ||
|  |       /* Round up to make sure we have a multiple of 8 for SSE */ | ||
|  |       st->filt_len = ((st->filt_len-1)&(~0x7))+8; | ||
|  |       if (2*st->den_rate < st->num_rate) | ||
|  |          st->oversample >>= 1; | ||
|  |       if (4*st->den_rate < st->num_rate) | ||
|  |          st->oversample >>= 1; | ||
|  |       if (8*st->den_rate < st->num_rate) | ||
|  |          st->oversample >>= 1; | ||
|  |       if (16*st->den_rate < st->num_rate) | ||
|  |          st->oversample >>= 1; | ||
|  |       if (st->oversample < 1) | ||
|  |          st->oversample = 1; | ||
|  |    } else { | ||
|  |       /* up-sampling */ | ||
|  |       st->cutoff = quality_map[st->quality].upsample_bandwidth; | ||
|  |    } | ||
|  | 
 | ||
|  |    /* Choose the resampling type that requires the least amount of memory */ | ||
|  | #ifdef RESAMPLE_FULL_SINC_TABLE
 | ||
|  |    use_direct = 1; | ||
|  |    if (INT_MAX/sizeof(spx_word16_t)/st->den_rate < st->filt_len) | ||
|  |       goto fail; | ||
|  | #else
 | ||
|  |    use_direct = st->filt_len*st->den_rate <= st->filt_len*st->oversample+8 | ||
|  |                 && INT_MAX/sizeof(spx_word16_t)/st->den_rate >= st->filt_len; | ||
|  | #endif
 | ||
|  |    if (use_direct) | ||
|  |    { | ||
|  |       min_sinc_table_length = st->filt_len*st->den_rate; | ||
|  |    } else { | ||
|  |       if ((INT_MAX/sizeof(spx_word16_t)-8)/st->oversample < st->filt_len) | ||
|  |          goto fail; | ||
|  | 
 | ||
|  |       min_sinc_table_length = st->filt_len*st->oversample+8; | ||
|  |    } | ||
|  |    if (st->sinc_table_length < min_sinc_table_length) | ||
|  |    { | ||
|  |       spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t)); | ||
|  |       if (!sinc_table) | ||
|  |          goto fail; | ||
|  | 
 | ||
|  |       st->sinc_table = sinc_table; | ||
|  |       st->sinc_table_length = min_sinc_table_length; | ||
|  |    } | ||
|  |    if (use_direct) | ||
|  |    { | ||
|  |       spx_uint32_t i; | ||
|  |       for (i=0;i<st->den_rate;i++) | ||
|  |       { | ||
|  |          spx_int32_t j; | ||
|  |          for (j=0;j<st->filt_len;j++) | ||
|  |          { | ||
|  |             st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-(spx_int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_map[st->quality].window_func); | ||
|  |          } | ||
|  |       } | ||
|  | #ifdef FIXED_POINT
 | ||
|  |       st->resampler_ptr = resampler_basic_direct_single; | ||
|  | #else
 | ||
|  |       if (st->quality>8) | ||
|  |          st->resampler_ptr = resampler_basic_direct_double; | ||
|  |       else | ||
|  |          st->resampler_ptr = resampler_basic_direct_single; | ||
|  | #endif
 | ||
|  |       /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/ | ||
|  |    } else { | ||
|  |       spx_int32_t i; | ||
|  |       for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++) | ||
|  |          st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func); | ||
|  | #ifdef FIXED_POINT
 | ||
|  |       st->resampler_ptr = resampler_basic_interpolate_single; | ||
|  | #else
 | ||
|  |       if (st->quality>8) | ||
|  |          st->resampler_ptr = resampler_basic_interpolate_double; | ||
|  |       else | ||
|  |          st->resampler_ptr = resampler_basic_interpolate_single; | ||
|  | #endif
 | ||
|  |       /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/ | ||
|  |    } | ||
|  | 
 | ||
|  |    /* Here's the place where we update the filter memory to take into account
 | ||
|  |       the change in filter length. It's probably the messiest part of the code | ||
|  |       due to handling of lots of corner cases. */ | ||
|  | 
 | ||
|  |    /* Adding buffer_size to filt_len won't overflow here because filt_len
 | ||
|  |       could be multiplied by sizeof(spx_word16_t) above. */ | ||
|  |    min_alloc_size = st->filt_len-1 + st->buffer_size; | ||
|  |    if (min_alloc_size > st->mem_alloc_size) | ||
|  |    { | ||
|  |       spx_word16_t *mem; | ||
|  |       if (INT_MAX/sizeof(spx_word16_t)/st->nb_channels < min_alloc_size) | ||
|  |           goto fail; | ||
|  |       else if (!(mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(*mem)))) | ||
|  |           goto fail; | ||
|  | 
 | ||
|  |       st->mem = mem; | ||
|  |       st->mem_alloc_size = min_alloc_size; | ||
|  |    } | ||
|  |    if (!st->started) | ||
|  |    { | ||
|  |       spx_uint32_t i; | ||
|  |       for (i=0;i<st->nb_channels*st->mem_alloc_size;i++) | ||
|  |          st->mem[i] = 0; | ||
|  |       /*speex_warning("reinit filter");*/ | ||
|  |    } else if (st->filt_len > old_length) | ||
|  |    { | ||
|  |       spx_uint32_t i; | ||
|  |       /* Increase the filter length */ | ||
|  |       /*speex_warning("increase filter size");*/ | ||
|  |       for (i=st->nb_channels;i--;) | ||
|  |       { | ||
|  |          spx_uint32_t j; | ||
|  |          spx_uint32_t olen = old_length; | ||
|  |          /*if (st->magic_samples[i])*/ | ||
|  |          { | ||
|  |             /* Try and remove the magic samples as if nothing had happened */ | ||
|  | 
 | ||
|  |             /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */ | ||
|  |             olen = old_length + 2*st->magic_samples[i]; | ||
|  |             for (j=old_length-1+st->magic_samples[i];j--;) | ||
|  |                st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j]; | ||
|  |             for (j=0;j<st->magic_samples[i];j++) | ||
|  |                st->mem[i*st->mem_alloc_size+j] = 0; | ||
|  |             st->magic_samples[i] = 0; | ||
|  |          } | ||
|  |          if (st->filt_len > olen) | ||
|  |          { | ||
|  |             /* If the new filter length is still bigger than the "augmented" length */ | ||
|  |             /* Copy data going backward */ | ||
|  |             for (j=0;j<olen-1;j++) | ||
|  |                st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = st->mem[i*st->mem_alloc_size+(olen-2-j)]; | ||
|  |             /* Then put zeros for lack of anything better */ | ||
|  |             for (;j<st->filt_len-1;j++) | ||
|  |                st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = 0; | ||
|  |             /* Adjust last_sample */ | ||
|  |             st->last_sample[i] += (st->filt_len - olen)/2; | ||
|  |          } else { | ||
|  |             /* Put back some of the magic! */ | ||
|  |             st->magic_samples[i] = (olen - st->filt_len)/2; | ||
|  |             for (j=0;j<st->filt_len-1+st->magic_samples[i];j++) | ||
|  |                st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]]; | ||
|  |          } | ||
|  |       } | ||
|  |    } else if (st->filt_len < old_length) | ||
|  |    { | ||
|  |       spx_uint32_t i; | ||
|  |       /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
 | ||
|  |          samples so they can be used directly as input the next time(s) */ | ||
|  |       for (i=0;i<st->nb_channels;i++) | ||
|  |       { | ||
|  |          spx_uint32_t j; | ||
|  |          spx_uint32_t old_magic = st->magic_samples[i]; | ||
|  |          st->magic_samples[i] = (old_length - st->filt_len)/2; | ||
|  |          /* We must copy some of the memory that's no longer used */ | ||
|  |          /* Copy data going backward */ | ||
|  |          for (j=0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++) | ||
|  |             st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]]; | ||
|  |          st->magic_samples[i] += old_magic; | ||
|  |       } | ||
|  |    } | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | 
 | ||
|  | fail: | ||
|  |    st->resampler_ptr = resampler_basic_zero; | ||
|  |    /* st->mem may still contain consumed input samples for the filter.
 | ||
|  |       Restore filt_len so that filt_len - 1 still points to the position after | ||
|  |       the last of these samples. */ | ||
|  |    st->filt_len = old_length; | ||
|  |    return RESAMPLER_ERR_ALLOC_FAILED; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) | ||
|  | { | ||
|  |    return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err); | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) | ||
|  | { | ||
|  |    SpeexResamplerState *st; | ||
|  |    int filter_err; | ||
|  | 
 | ||
|  |    if (nb_channels == 0 || ratio_num == 0 || ratio_den == 0 || quality > 10 || quality < 0) | ||
|  |    { | ||
|  |       if (err) | ||
|  |          *err = RESAMPLER_ERR_INVALID_ARG; | ||
|  |       return NULL; | ||
|  |    } | ||
|  |    st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState)); | ||
|  |    if (!st) | ||
|  |    { | ||
|  |       if (err) | ||
|  |          *err = RESAMPLER_ERR_ALLOC_FAILED; | ||
|  |       return NULL; | ||
|  |    } | ||
|  |    st->initialised = 0; | ||
|  |    st->started = 0; | ||
|  |    st->in_rate = 0; | ||
|  |    st->out_rate = 0; | ||
|  |    st->num_rate = 0; | ||
|  |    st->den_rate = 0; | ||
|  |    st->quality = -1; | ||
|  |    st->sinc_table_length = 0; | ||
|  |    st->mem_alloc_size = 0; | ||
|  |    st->filt_len = 0; | ||
|  |    st->mem = 0; | ||
|  |    st->resampler_ptr = 0; | ||
|  | 
 | ||
|  |    st->cutoff = 1.f; | ||
|  |    st->nb_channels = nb_channels; | ||
|  |    st->in_stride = 1; | ||
|  |    st->out_stride = 1; | ||
|  | 
 | ||
|  |    st->buffer_size = 160; | ||
|  | 
 | ||
|  |    /* Per channel data */ | ||
|  |    if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t)))) | ||
|  |       goto fail; | ||
|  |    if (!(st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t)))) | ||
|  |       goto fail; | ||
|  |    if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t)))) | ||
|  |       goto fail; | ||
|  | 
 | ||
|  |    speex_resampler_set_quality(st, quality); | ||
|  |    speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate); | ||
|  | 
 | ||
|  |    filter_err = update_filter(st); | ||
|  |    if (filter_err == RESAMPLER_ERR_SUCCESS) | ||
|  |    { | ||
|  |       st->initialised = 1; | ||
|  |    } else { | ||
|  |       speex_resampler_destroy(st); | ||
|  |       st = NULL; | ||
|  |    } | ||
|  |    if (err) | ||
|  |       *err = filter_err; | ||
|  | 
 | ||
|  |    return st; | ||
|  | 
 | ||
|  | fail: | ||
|  |    if (err) | ||
|  |       *err = RESAMPLER_ERR_ALLOC_FAILED; | ||
|  |    speex_resampler_destroy(st); | ||
|  |    return NULL; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_destroy(SpeexResamplerState *st) | ||
|  | { | ||
|  |    speex_free(st->mem); | ||
|  |    speex_free(st->sinc_table); | ||
|  |    speex_free(st->last_sample); | ||
|  |    speex_free(st->magic_samples); | ||
|  |    speex_free(st->samp_frac_num); | ||
|  |    speex_free(st); | ||
|  | } | ||
|  | 
 | ||
|  | static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    int j=0; | ||
|  |    const int N = st->filt_len; | ||
|  |    int out_sample = 0; | ||
|  |    spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; | ||
|  |    spx_uint32_t ilen; | ||
|  | 
 | ||
|  |    st->started = 1; | ||
|  | 
 | ||
|  |    /* Call the right resampler through the function ptr */ | ||
|  |    out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len); | ||
|  | 
 | ||
|  |    if (st->last_sample[channel_index] < (spx_int32_t)*in_len) | ||
|  |       *in_len = st->last_sample[channel_index]; | ||
|  |    *out_len = out_sample; | ||
|  |    st->last_sample[channel_index] -= *in_len; | ||
|  | 
 | ||
|  |    ilen = *in_len; | ||
|  | 
 | ||
|  |    for(j=0;j<N-1;++j) | ||
|  |      mem[j] = mem[j+ilen]; | ||
|  | 
 | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) { | ||
|  |    spx_uint32_t tmp_in_len = st->magic_samples[channel_index]; | ||
|  |    spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; | ||
|  |    const int N = st->filt_len; | ||
|  | 
 | ||
|  |    speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len); | ||
|  | 
 | ||
|  |    st->magic_samples[channel_index] -= tmp_in_len; | ||
|  | 
 | ||
|  |    /* If we couldn't process all "magic" input samples, save the rest for next time */ | ||
|  |    if (st->magic_samples[channel_index]) | ||
|  |    { | ||
|  |       spx_uint32_t i; | ||
|  |       for (i=0;i<st->magic_samples[channel_index];i++) | ||
|  |          mem[N-1+i]=mem[N-1+i+tmp_in_len]; | ||
|  |    } | ||
|  |    *out += out_len*st->out_stride; | ||
|  |    return out_len; | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FIXED_POINT
 | ||
|  | EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) | ||
|  | #else
 | ||
|  | EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) | ||
|  | #endif
 | ||
|  | { | ||
|  |    int j; | ||
|  |    spx_uint32_t ilen = *in_len; | ||
|  |    spx_uint32_t olen = *out_len; | ||
|  |    spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; | ||
|  |    const int filt_offs = st->filt_len - 1; | ||
|  |    const spx_uint32_t xlen = st->mem_alloc_size - filt_offs; | ||
|  |    const int istride = st->in_stride; | ||
|  | 
 | ||
|  |    if (st->magic_samples[channel_index]) | ||
|  |       olen -= speex_resampler_magic(st, channel_index, &out, olen); | ||
|  |    if (! st->magic_samples[channel_index]) { | ||
|  |       while (ilen && olen) { | ||
|  |         spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; | ||
|  |         spx_uint32_t ochunk = olen; | ||
|  | 
 | ||
|  |         if (in) { | ||
|  |            for(j=0;j<ichunk;++j) | ||
|  |               x[j+filt_offs]=in[j*istride]; | ||
|  |         } else { | ||
|  |           for(j=0;j<ichunk;++j) | ||
|  |             x[j+filt_offs]=0; | ||
|  |         } | ||
|  |         speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk); | ||
|  |         ilen -= ichunk; | ||
|  |         olen -= ochunk; | ||
|  |         out += ochunk * st->out_stride; | ||
|  |         if (in) | ||
|  |            in += ichunk * istride; | ||
|  |       } | ||
|  |    } | ||
|  |    *in_len -= ilen; | ||
|  |    *out_len -= olen; | ||
|  |    return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FIXED_POINT
 | ||
|  | EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) | ||
|  | #else
 | ||
|  | EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) | ||
|  | #endif
 | ||
|  | { | ||
|  |    int j; | ||
|  |    const int istride_save = st->in_stride; | ||
|  |    const int ostride_save = st->out_stride; | ||
|  |    spx_uint32_t ilen = *in_len; | ||
|  |    spx_uint32_t olen = *out_len; | ||
|  |    spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; | ||
|  |    const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1); | ||
|  | #ifdef VAR_ARRAYS
 | ||
|  |    const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC; | ||
|  |    VARDECL(spx_word16_t *ystack); | ||
|  |    ALLOC(ystack, ylen, spx_word16_t); | ||
|  | #else
 | ||
|  |    const unsigned int ylen = FIXED_STACK_ALLOC; | ||
|  |    spx_word16_t ystack[FIXED_STACK_ALLOC]; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |    st->out_stride = 1; | ||
|  | 
 | ||
|  |    while (ilen && olen) { | ||
|  |      spx_word16_t *y = ystack; | ||
|  |      spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; | ||
|  |      spx_uint32_t ochunk = (olen > ylen) ? ylen : olen; | ||
|  |      spx_uint32_t omagic = 0; | ||
|  | 
 | ||
|  |      if (st->magic_samples[channel_index]) { | ||
|  |        omagic = speex_resampler_magic(st, channel_index, &y, ochunk); | ||
|  |        ochunk -= omagic; | ||
|  |        olen -= omagic; | ||
|  |      } | ||
|  |      if (! st->magic_samples[channel_index]) { | ||
|  |        if (in) { | ||
|  |          for(j=0;j<ichunk;++j) | ||
|  | #ifdef FIXED_POINT
 | ||
|  |            x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]); | ||
|  | #else
 | ||
|  |            x[j+st->filt_len-1]=in[j*istride_save]; | ||
|  | #endif
 | ||
|  |        } else { | ||
|  |          for(j=0;j<ichunk;++j) | ||
|  |            x[j+st->filt_len-1]=0; | ||
|  |        } | ||
|  | 
 | ||
|  |        speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk); | ||
|  |      } else { | ||
|  |        ichunk = 0; | ||
|  |        ochunk = 0; | ||
|  |      } | ||
|  | 
 | ||
|  |      for (j=0;j<ochunk+omagic;++j) | ||
|  | #ifdef FIXED_POINT
 | ||
|  |         out[j*ostride_save] = ystack[j]; | ||
|  | #else
 | ||
|  |         out[j*ostride_save] = WORD2INT(ystack[j]); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |      ilen -= ichunk; | ||
|  |      olen -= ochunk; | ||
|  |      out += (ochunk+omagic) * ostride_save; | ||
|  |      if (in) | ||
|  |        in += ichunk * istride_save; | ||
|  |    } | ||
|  |    st->out_stride = ostride_save; | ||
|  |    *in_len -= ilen; | ||
|  |    *out_len -= olen; | ||
|  | 
 | ||
|  |    return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    spx_uint32_t i; | ||
|  |    int istride_save, ostride_save; | ||
|  |    spx_uint32_t bak_out_len = *out_len; | ||
|  |    spx_uint32_t bak_in_len = *in_len; | ||
|  |    istride_save = st->in_stride; | ||
|  |    ostride_save = st->out_stride; | ||
|  |    st->in_stride = st->out_stride = st->nb_channels; | ||
|  |    for (i=0;i<st->nb_channels;i++) | ||
|  |    { | ||
|  |       *out_len = bak_out_len; | ||
|  |       *in_len = bak_in_len; | ||
|  |       if (in != NULL) | ||
|  |          speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len); | ||
|  |       else | ||
|  |          speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len); | ||
|  |    } | ||
|  |    st->in_stride = istride_save; | ||
|  |    st->out_stride = ostride_save; | ||
|  |    return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) | ||
|  | { | ||
|  |    spx_uint32_t i; | ||
|  |    int istride_save, ostride_save; | ||
|  |    spx_uint32_t bak_out_len = *out_len; | ||
|  |    spx_uint32_t bak_in_len = *in_len; | ||
|  |    istride_save = st->in_stride; | ||
|  |    ostride_save = st->out_stride; | ||
|  |    st->in_stride = st->out_stride = st->nb_channels; | ||
|  |    for (i=0;i<st->nb_channels;i++) | ||
|  |    { | ||
|  |       *out_len = bak_out_len; | ||
|  |       *in_len = bak_in_len; | ||
|  |       if (in != NULL) | ||
|  |          speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len); | ||
|  |       else | ||
|  |          speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len); | ||
|  |    } | ||
|  |    st->in_stride = istride_save; | ||
|  |    st->out_stride = ostride_save; | ||
|  |    return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate) | ||
|  | { | ||
|  |    return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate); | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate) | ||
|  | { | ||
|  |    *in_rate = st->in_rate; | ||
|  |    *out_rate = st->out_rate; | ||
|  | } | ||
|  | 
 | ||
|  | static inline spx_uint32_t _gcd(spx_uint32_t a, spx_uint32_t b) | ||
|  | { | ||
|  |    while (b != 0) | ||
|  |    { | ||
|  |       spx_uint32_t temp = a; | ||
|  | 
 | ||
|  |       a = b; | ||
|  |       b = temp % b; | ||
|  |    } | ||
|  |    return a; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate) | ||
|  | { | ||
|  |    spx_uint32_t fact; | ||
|  |    spx_uint32_t old_den; | ||
|  |    spx_uint32_t i; | ||
|  | 
 | ||
|  |    if (ratio_num == 0 || ratio_den == 0) | ||
|  |       return RESAMPLER_ERR_INVALID_ARG; | ||
|  | 
 | ||
|  |    if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den) | ||
|  |       return RESAMPLER_ERR_SUCCESS; | ||
|  | 
 | ||
|  |    old_den = st->den_rate; | ||
|  |    st->in_rate = in_rate; | ||
|  |    st->out_rate = out_rate; | ||
|  |    st->num_rate = ratio_num; | ||
|  |    st->den_rate = ratio_den; | ||
|  | 
 | ||
|  |    fact = _gcd (st->num_rate, st->den_rate); | ||
|  | 
 | ||
|  |    st->num_rate /= fact; | ||
|  |    st->den_rate /= fact; | ||
|  | 
 | ||
|  |    if (old_den > 0) | ||
|  |    { | ||
|  |       for (i=0;i<st->nb_channels;i++) | ||
|  |       { | ||
|  |          if (_muldiv(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS) | ||
|  |             return RESAMPLER_ERR_OVERFLOW; | ||
|  |          /* Safety net */ | ||
|  |          if (st->samp_frac_num[i] >= st->den_rate) | ||
|  |             st->samp_frac_num[i] = st->den_rate-1; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    if (st->initialised) | ||
|  |       return update_filter(st); | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den) | ||
|  | { | ||
|  |    *ratio_num = st->num_rate; | ||
|  |    *ratio_den = st->den_rate; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality) | ||
|  | { | ||
|  |    if (quality > 10 || quality < 0) | ||
|  |       return RESAMPLER_ERR_INVALID_ARG; | ||
|  |    if (st->quality == quality) | ||
|  |       return RESAMPLER_ERR_SUCCESS; | ||
|  |    st->quality = quality; | ||
|  |    if (st->initialised) | ||
|  |       return update_filter(st); | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality) | ||
|  | { | ||
|  |    *quality = st->quality; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride) | ||
|  | { | ||
|  |    st->in_stride = stride; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride) | ||
|  | { | ||
|  |    *stride = st->in_stride; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride) | ||
|  | { | ||
|  |    st->out_stride = stride; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride) | ||
|  | { | ||
|  |    *stride = st->out_stride; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st) | ||
|  | { | ||
|  |   return st->filt_len / 2; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st) | ||
|  | { | ||
|  |   return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st) | ||
|  | { | ||
|  |    spx_uint32_t i; | ||
|  |    for (i=0;i<st->nb_channels;i++) | ||
|  |       st->last_sample[i] = st->filt_len/2; | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st) | ||
|  | { | ||
|  |    spx_uint32_t i; | ||
|  |    for (i=0;i<st->nb_channels;i++) | ||
|  |    { | ||
|  |       st->last_sample[i] = 0; | ||
|  |       st->magic_samples[i] = 0; | ||
|  |       st->samp_frac_num[i] = 0; | ||
|  |    } | ||
|  |    for (i=0;i<st->nb_channels*(st->filt_len-1);i++) | ||
|  |       st->mem[i] = 0; | ||
|  |    return RESAMPLER_ERR_SUCCESS; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT const char *speex_resampler_strerror(int err) | ||
|  | { | ||
|  |    switch (err) | ||
|  |    { | ||
|  |       case RESAMPLER_ERR_SUCCESS: | ||
|  |          return "Success."; | ||
|  |       case RESAMPLER_ERR_ALLOC_FAILED: | ||
|  |          return "Memory allocation failed."; | ||
|  |       case RESAMPLER_ERR_BAD_STATE: | ||
|  |          return "Bad resampler state."; | ||
|  |       case RESAMPLER_ERR_INVALID_ARG: | ||
|  |          return "Invalid argument."; | ||
|  |       case RESAMPLER_ERR_PTR_OVERLAP: | ||
|  |          return "Input and output buffers overlap."; | ||
|  |       default: | ||
|  |          return "Unknown error. Bad error code or strange version mismatch."; | ||
|  |    } | ||
|  | } |