mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			1495 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1495 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* libFLAC - Free Lossless Audio Codec library
 | ||
|  |  * Copyright (C) 2000-2009  Josh Coalson | ||
|  |  * Copyright (C) 2011-2016  Xiph.Org Foundation | ||
|  |  * | ||
|  |  * Redistribution and use in source and binary forms, with or without | ||
|  |  * modification, are permitted provided that the following conditions | ||
|  |  * are met: | ||
|  |  * | ||
|  |  * - Redistributions of source code must retain the above copyright | ||
|  |  * notice, this list of conditions and the following disclaimer. | ||
|  |  * | ||
|  |  * - Redistributions in binary form must reproduce the above copyright | ||
|  |  * notice, this list of conditions and the following disclaimer in the | ||
|  |  * documentation and/or other materials provided with the distribution. | ||
|  |  * | ||
|  |  * - Neither the name of the Xiph.org Foundation nor the names of its | ||
|  |  * contributors may be used to endorse or promote products derived from | ||
|  |  * this software without specific prior written permission. | ||
|  |  * | ||
|  |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
|  |  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
|  |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
|  |  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR | ||
|  |  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
|  |  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
|  |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
|  |  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
|  |  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
|  |  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
|  |  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifdef HAVE_CONFIG_H
 | ||
|  | #  include <config.h>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include "private/cpu.h"
 | ||
|  | 
 | ||
|  | #ifndef FLAC__INTEGER_ONLY_LIBRARY
 | ||
|  | #ifndef FLAC__NO_ASM
 | ||
|  | #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
 | ||
|  | #include "private/lpc.h"
 | ||
|  | #ifdef FLAC__SSE4_1_SUPPORTED
 | ||
|  | 
 | ||
|  | #include "FLAC/assert.h"
 | ||
|  | #include "FLAC/format.h"
 | ||
|  | 
 | ||
|  | #include <smmintrin.h> /* SSE4.1 */
 | ||
|  | 
 | ||
|  | #if defined FLAC__CPU_IA32 /* unused for x64 */
 | ||
|  | 
 | ||
|  | #define RESIDUAL64_RESULT(xmmN)  residual[i] = data[i] - _mm_cvtsi128_si32(_mm_srl_epi64(xmmN, cnt))
 | ||
|  | #define RESIDUAL64_RESULT1(xmmN) residual[i] = data[i] - _mm_cvtsi128_si32(_mm_srli_epi64(xmmN, lp_quantization))
 | ||
|  | 
 | ||
|  | FLAC__SSE_TARGET("sse4.1") | ||
|  | void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]) | ||
|  | { | ||
|  | 	int i; | ||
|  | 	const __m128i cnt = _mm_cvtsi32_si128(lp_quantization); | ||
|  | 
 | ||
|  | 	FLAC__ASSERT(order > 0); | ||
|  | 	FLAC__ASSERT(order <= 32); | ||
|  | 	FLAC__ASSERT(lp_quantization <= 32); /* there's no _mm_sra_epi64() so we have to use _mm_srl_epi64() */ | ||
|  | 
 | ||
|  | 	if(order <= 12) { | ||
|  | 		if(order > 8) { /* order == 9, 10, 11, 12 */ | ||
|  | 			if(order > 10) { /* order == 11, 12 */ | ||
|  | 				if(order == 12) { | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));  // 0  0  q[1]  q[0]
 | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));  // 0  0  q[3]  q[2]
 | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));  // 0  0  q[5]  q[4]
 | ||
|  | 					xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));  // 0  0  q[7]  q[6]
 | ||
|  | 					xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));  // 0  0  q[9]  q[8]
 | ||
|  | 					xmm5 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+10)); // 0  0  q[11] q[10]
 | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); // 0  q[1]  0  q[0]
 | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); // 0  q[3]  0  q[2]
 | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); // 0  q[5]  0  q[4]
 | ||
|  | 					xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); // 0  q[7]  0  q[6]
 | ||
|  | 					xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0)); // 0  q[9]  0  q[8]
 | ||
|  | 					xmm5 = _mm_shuffle_epi32(xmm5, _MM_SHUFFLE(3,1,2,0)); // 0  q[11] 0  q[10]
 | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
 | ||
|  | 						//sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
 | ||
|  | 						xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-12));  // 0   0        d[i-11]  d[i-12]
 | ||
|  | 						xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); // 0  d[i-12]   0        d[i-11]
 | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm5); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
 | ||
|  | 						//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm4); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
 | ||
|  | 						//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm3); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm2); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT1(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 11 */ | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); | ||
|  | 					xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); | ||
|  | 					xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8)); | ||
|  | 					xmm5 = _mm_cvtsi32_si128(qlp_coeff[10]); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum  = qlp_coeff[10] * (FLAC__int64)data[i-11];
 | ||
|  | 						xmm7 = _mm_cvtsi32_si128(data[i-11]); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm5); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
 | ||
|  | 						//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm4); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
 | ||
|  | 						//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm3); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm2); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT1(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { /* order == 9, 10 */ | ||
|  | 				if(order == 10) { | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); | ||
|  | 					xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); | ||
|  | 					xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8)); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
 | ||
|  | 						//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
 | ||
|  | 						xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-10)); | ||
|  | 						xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm4); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
 | ||
|  | 						//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm3); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm2); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 9 */ | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); | ||
|  | 					xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); | ||
|  | 					xmm4 = _mm_cvtsi32_si128(qlp_coeff[8]); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum  = qlp_coeff[8] * (FLAC__int64)data[i-9];
 | ||
|  | 						xmm7 = _mm_cvtsi32_si128(data[i-9]); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm4); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
 | ||
|  | 						//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm3); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm2); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else if(order > 4) { /* order == 5, 6, 7, 8 */ | ||
|  | 			if(order > 6) { /* order == 7, 8 */ | ||
|  | 				if(order == 8) { | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); | ||
|  | 					xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
 | ||
|  | 						//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
 | ||
|  | 						xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-8)); | ||
|  | 						xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm3); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm2); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 7 */ | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); | ||
|  | 					xmm3 = _mm_cvtsi32_si128(qlp_coeff[6]); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum  = qlp_coeff[6] * (FLAC__int64)data[i-7];
 | ||
|  | 						xmm7 = _mm_cvtsi32_si128(data[i-7]); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm3); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm2); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { /* order == 5, 6 */ | ||
|  | 				if(order == 6) { | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
 | ||
|  | 						//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-6)); | ||
|  | 						xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm2); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 5 */ | ||
|  | 					__m128i xmm0, xmm1, xmm2, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 					xmm2 = _mm_cvtsi32_si128(qlp_coeff[4]); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum  = qlp_coeff[4] * (FLAC__int64)data[i-5];
 | ||
|  | 						xmm7 = _mm_cvtsi32_si128(data[i-5]); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm2); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm1); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { /* order == 1, 2, 3, 4 */ | ||
|  | 			if(order > 2) { /* order == 3, 4 */ | ||
|  | 				if(order == 4) { | ||
|  | 					__m128i xmm0, xmm1, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 					xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
 | ||
|  | 						//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-4)); | ||
|  | 						xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm1); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 3 */ | ||
|  | 					__m128i xmm0, xmm1, xmm6, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm1 = _mm_cvtsi32_si128(qlp_coeff[2]); | ||
|  | 
 | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum  = qlp_coeff[2] * (FLAC__int64)data[i-3];
 | ||
|  | 						xmm7 = _mm_cvtsi32_si128(data[i-3]); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm1); | ||
|  | 
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm6 = _mm_mul_epi32(xmm6, xmm0); | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, xmm6); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { /* order == 1, 2 */ | ||
|  | 				if(order == 2) { | ||
|  | 					__m128i xmm0, xmm7; | ||
|  | 					xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); | ||
|  | 					xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = 0;
 | ||
|  | 						//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
 | ||
|  | 						//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-2)); | ||
|  | 						xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm0); | ||
|  | 
 | ||
|  | 						xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8)); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 1 */ | ||
|  | 					__m128i xmm0, xmm7; | ||
|  | 					xmm0 = _mm_cvtsi32_si128(qlp_coeff[0]); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len; i++) { | ||
|  | 						//sum = qlp_coeff[0] * (FLAC__int64)data[i-1];
 | ||
|  | 						xmm7 = _mm_cvtsi32_si128(data[i-1]); | ||
|  | 						xmm7 = _mm_mul_epi32(xmm7, xmm0); | ||
|  | 						RESIDUAL64_RESULT(xmm7); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else { /* order > 12 */ | ||
|  | 		FLAC__int64 sum; | ||
|  | 		for(i = 0; i < (int)data_len; i++) { | ||
|  | 			sum = 0; | ||
|  | 			switch(order) { | ||
|  | 				case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; /* Falls through. */ | ||
|  | 				case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; /* Falls through. */ | ||
|  | 				case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; /* Falls through. */ | ||
|  | 				case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; /* Falls through. */ | ||
|  | 				case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; /* Falls through. */ | ||
|  | 				case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; /* Falls through. */ | ||
|  | 				case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; /* Falls through. */ | ||
|  | 				case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; /* Falls through. */ | ||
|  | 				case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; /* Falls through. */ | ||
|  | 				case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; /* Falls through. */ | ||
|  | 				case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; /* Falls through. */ | ||
|  | 				case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; /* Falls through. */ | ||
|  | 				case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; /* Falls through. */ | ||
|  | 				case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; /* Falls through. */ | ||
|  | 				case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; /* Falls through. */ | ||
|  | 				case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; /* Falls through. */ | ||
|  | 				case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; /* Falls through. */ | ||
|  | 				case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; /* Falls through. */ | ||
|  | 				case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; /* Falls through. */ | ||
|  | 				case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13]; | ||
|  | 				         sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; | ||
|  | 				         sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; | ||
|  | 				         sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10]; | ||
|  | 				         sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9]; | ||
|  | 				         sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8]; | ||
|  | 				         sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7]; | ||
|  | 				         sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6]; | ||
|  | 				         sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5]; | ||
|  | 				         sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4]; | ||
|  | 				         sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3]; | ||
|  | 				         sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2]; | ||
|  | 				         sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1]; | ||
|  | 			} | ||
|  | 			residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | FLAC__SSE_TARGET("sse4.1") | ||
|  | void FLAC__lpc_restore_signal_wide_intrin_sse41(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]) | ||
|  | { | ||
|  | 	int i; | ||
|  | 	const __m128i cnt = _mm_cvtsi32_si128(lp_quantization); | ||
|  | 
 | ||
|  | 	if (!data_len) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	FLAC__ASSERT(order > 0); | ||
|  | 	FLAC__ASSERT(order <= 32); | ||
|  | 	FLAC__ASSERT(lp_quantization <= 32); /* there's no _mm_sra_epi64() so we have to use _mm_srl_epi64() */ | ||
|  | 
 | ||
|  | 	if(order <= 12) { | ||
|  | 		if(order > 8) { /* order == 9, 10, 11, 12 */ | ||
|  | 			if(order > 10) { /* order == 11, 12 */ | ||
|  | 				__m128i qlp[6], dat[6]; | ||
|  | 				__m128i summ, temp; | ||
|  | 				qlp[0] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+0)));		// 0  q[1]  0  q[0]
 | ||
|  | 				qlp[1] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+2)));		// 0  q[3]  0  q[2]
 | ||
|  | 				qlp[2] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+4)));		// 0  q[5]  0  q[4]
 | ||
|  | 				qlp[3] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+6)));		// 0  q[7]  0  q[6]
 | ||
|  | 				qlp[4] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+8)));		// 0  q[9]  0  q[8]
 | ||
|  | 				if (order == 12) | ||
|  | 					qlp[5] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+10)));	// 0  q[11] 0  q[10]
 | ||
|  | 				else | ||
|  | 					qlp[5] = _mm_cvtepu32_epi64(_mm_cvtsi32_si128(qlp_coeff[10]));					// 0    0   0  q[10]
 | ||
|  | 
 | ||
|  | 				dat[5] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-12)), _MM_SHUFFLE(2,0,3,1));	// 0  d[i-12] 0  d[i-11]
 | ||
|  | 				dat[4] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-10)), _MM_SHUFFLE(2,0,3,1));	// 0  d[i-10] 0  d[i-9]
 | ||
|  | 				dat[3] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-8 )), _MM_SHUFFLE(2,0,3,1));	// 0  d[i-8]  0  d[i-7]
 | ||
|  | 				dat[2] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-6 )), _MM_SHUFFLE(2,0,3,1));	// 0  d[i-6]  0  d[i-5]
 | ||
|  | 				dat[1] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-4 )), _MM_SHUFFLE(2,0,3,1));	// 0  d[i-4]  0  d[i-3]
 | ||
|  | 				dat[0] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-2 )), _MM_SHUFFLE(2,0,3,1));	// 0  d[i-2]  0  d[i-1]
 | ||
|  | 
 | ||
|  | 				summ =                     _mm_mul_epi32(dat[5], qlp[5]) ; | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[4], qlp[4])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[3], qlp[3])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[2], qlp[2])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8));	// ?_64  sum_64
 | ||
|  | 				summ = _mm_srl_epi64(summ, cnt);						// ?_64  (sum >> lp_quantization)_64  ==  ?_32  ?_32  ?_32  (sum >> lp_quantization)_32
 | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ);	// ?  ?  ?  d[i]
 | ||
|  | 				data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				for(i = 1; i < (int)data_len; i++) { | ||
|  | 					temp = _mm_slli_si128(temp, 8); | ||
|  | 					dat[5] = _mm_alignr_epi8(dat[5], dat[4], 8);	//  ?  d[i-11] ?  d[i-10]
 | ||
|  | 					dat[4] = _mm_alignr_epi8(dat[4], dat[3], 8);	//  ?  d[i-9]  ?  d[i-8]
 | ||
|  | 					dat[3] = _mm_alignr_epi8(dat[3], dat[2], 8);	//  ?  d[i-7]  ?  d[i-6]
 | ||
|  | 					dat[2] = _mm_alignr_epi8(dat[2], dat[1], 8);	//  ?  d[i-5]  ?  d[i-4]
 | ||
|  | 					dat[1] = _mm_alignr_epi8(dat[1], dat[0], 8);	//  ?  d[i-3]  ?  d[i-2]
 | ||
|  | 					dat[0] = _mm_alignr_epi8(dat[0],   temp, 8);	//  ?  d[i-1]  ?  d[i  ]
 | ||
|  | 
 | ||
|  | 					summ =                     _mm_mul_epi32(dat[5], qlp[5]) ; | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[4], qlp[4])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[3], qlp[3])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[2], qlp[2])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 					summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8));	// ?_64  sum_64
 | ||
|  | 					summ = _mm_srl_epi64(summ, cnt);						// ?_64  (sum >> lp_quantization)_64  ==  ?_32  ?_32  ?_32  (sum >> lp_quantization)_32
 | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ);	// ?  ?  ?  d[i]
 | ||
|  | 					data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { /* order == 9, 10 */ | ||
|  | 				__m128i qlp[5], dat[5]; | ||
|  | 				__m128i summ, temp; | ||
|  | 				qlp[0] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+0))); | ||
|  | 				qlp[1] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+2))); | ||
|  | 				qlp[2] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+4))); | ||
|  | 				qlp[3] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+6))); | ||
|  | 				if (order == 10) | ||
|  | 					qlp[4] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+8))); | ||
|  | 				else | ||
|  | 					qlp[4] = _mm_cvtepu32_epi64(_mm_cvtsi32_si128(qlp_coeff[8])); | ||
|  | 
 | ||
|  | 				dat[4] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-10)), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[3] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-8 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[2] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-6 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[1] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-4 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[0] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-2 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 
 | ||
|  | 				summ =                     _mm_mul_epi32(dat[4], qlp[4]) ; | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[3], qlp[3])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[2], qlp[2])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 				summ = _mm_srl_epi64(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ); | ||
|  | 				data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				for(i = 1; i < (int)data_len; i++) { | ||
|  | 					temp = _mm_slli_si128(temp, 8); | ||
|  | 					dat[4] = _mm_alignr_epi8(dat[4], dat[3], 8); | ||
|  | 					dat[3] = _mm_alignr_epi8(dat[3], dat[2], 8); | ||
|  | 					dat[2] = _mm_alignr_epi8(dat[2], dat[1], 8); | ||
|  | 					dat[1] = _mm_alignr_epi8(dat[1], dat[0], 8); | ||
|  | 					dat[0] = _mm_alignr_epi8(dat[0],   temp, 8); | ||
|  | 
 | ||
|  | 					summ =                     _mm_mul_epi32(dat[4], qlp[4]) ; | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[3], qlp[3])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[2], qlp[2])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 					summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 					summ = _mm_srl_epi64(summ, cnt); | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 					data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else if(order > 4) { /* order == 5, 6, 7, 8 */ | ||
|  | 			if(order > 6) { /* order == 7, 8 */ | ||
|  | 				__m128i qlp[4], dat[4]; | ||
|  | 				__m128i summ, temp; | ||
|  | 				qlp[0] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+0))); | ||
|  | 				qlp[1] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+2))); | ||
|  | 				qlp[2] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+4))); | ||
|  | 				if (order == 8) | ||
|  | 					qlp[3] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+6))); | ||
|  | 				else | ||
|  | 					qlp[3] = _mm_cvtepu32_epi64(_mm_cvtsi32_si128(qlp_coeff[6])); | ||
|  | 
 | ||
|  | 				dat[3] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-8 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[2] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-6 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[1] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-4 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[0] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-2 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 
 | ||
|  | 				summ =                     _mm_mul_epi32(dat[3], qlp[3]) ; | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[2], qlp[2])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 				summ = _mm_srl_epi64(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ); | ||
|  | 				data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				for(i = 1; i < (int)data_len; i++) { | ||
|  | 					temp = _mm_slli_si128(temp, 8); | ||
|  | 					dat[3] = _mm_alignr_epi8(dat[3], dat[2], 8); | ||
|  | 					dat[2] = _mm_alignr_epi8(dat[2], dat[1], 8); | ||
|  | 					dat[1] = _mm_alignr_epi8(dat[1], dat[0], 8); | ||
|  | 					dat[0] = _mm_alignr_epi8(dat[0],   temp, 8); | ||
|  | 
 | ||
|  | 					summ =                     _mm_mul_epi32(dat[3], qlp[3]) ; | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[2], qlp[2])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 					summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 					summ = _mm_srl_epi64(summ, cnt); | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 					data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { /* order == 5, 6 */ | ||
|  | 				__m128i qlp[3], dat[3]; | ||
|  | 				__m128i summ, temp; | ||
|  | 				qlp[0] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+0))); | ||
|  | 				qlp[1] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+2))); | ||
|  | 				if (order == 6) | ||
|  | 					qlp[2] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+4))); | ||
|  | 				else | ||
|  | 					qlp[2] = _mm_cvtepu32_epi64(_mm_cvtsi32_si128(qlp_coeff[4])); | ||
|  | 
 | ||
|  | 				dat[2] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-6 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[1] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-4 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[0] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-2 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 
 | ||
|  | 				summ =                     _mm_mul_epi32(dat[2], qlp[2]) ; | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 				summ = _mm_srl_epi64(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ); | ||
|  | 				data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				for(i = 1; i < (int)data_len; i++) { | ||
|  | 					temp = _mm_slli_si128(temp, 8); | ||
|  | 					dat[2] = _mm_alignr_epi8(dat[2], dat[1], 8); | ||
|  | 					dat[1] = _mm_alignr_epi8(dat[1], dat[0], 8); | ||
|  | 					dat[0] = _mm_alignr_epi8(dat[0],   temp, 8); | ||
|  | 
 | ||
|  | 					summ =                     _mm_mul_epi32(dat[2], qlp[2]) ; | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[1], qlp[1])); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 					summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 					summ = _mm_srl_epi64(summ, cnt); | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 					data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { /* order == 1, 2, 3, 4 */ | ||
|  | 			if(order > 2) { /* order == 3, 4 */ | ||
|  | 				__m128i qlp[2], dat[2]; | ||
|  | 				__m128i summ, temp; | ||
|  | 				qlp[0] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+0))); | ||
|  | 				if (order == 4) | ||
|  | 					qlp[1] = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff+2))); | ||
|  | 				else | ||
|  | 					qlp[1] = _mm_cvtepu32_epi64(_mm_cvtsi32_si128(qlp_coeff[2])); | ||
|  | 
 | ||
|  | 				dat[1] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-4 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 				dat[0] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-2 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 
 | ||
|  | 				summ =                     _mm_mul_epi32(dat[1], qlp[1]) ; | ||
|  | 				summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 				summ = _mm_srl_epi64(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ); | ||
|  | 				data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				for(i = 1; i < (int)data_len; i++) { | ||
|  | 					temp = _mm_slli_si128(temp, 8); | ||
|  | 					dat[1] = _mm_alignr_epi8(dat[1], dat[0], 8); | ||
|  | 					dat[0] = _mm_alignr_epi8(dat[0],   temp, 8); | ||
|  | 
 | ||
|  | 					summ =                     _mm_mul_epi32(dat[1], qlp[1]) ; | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 					summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 					summ = _mm_srl_epi64(summ, cnt); | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 					data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { /* order == 1, 2 */ | ||
|  | 				if(order == 2) { | ||
|  | 					__m128i qlp0, dat0; | ||
|  | 					__m128i summ, temp; | ||
|  | 					qlp0 = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(qlp_coeff))); | ||
|  | 
 | ||
|  | 					dat0 = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(data-2 )), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 
 | ||
|  | 					summ = _mm_mul_epi32(dat0, qlp0); | ||
|  | 
 | ||
|  | 					summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 					summ = _mm_srl_epi64(summ, cnt); | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ); | ||
|  | 					data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 					for(i = 1; i < (int)data_len; i++) { | ||
|  | 						dat0 = _mm_alignr_epi8(dat0, _mm_slli_si128(temp, 8), 8); | ||
|  | 
 | ||
|  | 						summ = _mm_mul_epi32(dat0, qlp0); | ||
|  | 
 | ||
|  | 						summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 						summ = _mm_srl_epi64(summ, cnt); | ||
|  | 						temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 						data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 1 */ | ||
|  | 					__m128i qlp0; | ||
|  | 					__m128i summ, temp; | ||
|  | 					qlp0 = _mm_cvtsi32_si128(qlp_coeff[0]); | ||
|  | 					temp = _mm_cvtsi32_si128(data[-1]); | ||
|  | 
 | ||
|  | 					summ = _mm_mul_epi32(temp, qlp0); | ||
|  | 					summ = _mm_srl_epi64(summ, cnt); | ||
|  | 					temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[0]), summ); | ||
|  | 					data[0] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 					for(i = 1; i < (int)data_len; i++) { | ||
|  | 						summ = _mm_mul_epi32(temp, qlp0); | ||
|  | 						summ = _mm_srl_epi64(summ, cnt); | ||
|  | 						temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 						data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else { /* order > 12 */ | ||
|  | 		__m128i qlp[16]; | ||
|  | 
 | ||
|  | 		for(i = 0; i < (int)order/2; i++) | ||
|  | 			qlp[i] = _mm_shuffle_epi32(_mm_loadl_epi64((const __m128i*)(qlp_coeff+i*2)), _MM_SHUFFLE(2,0,3,1));	// 0  q[2*i]  0  q[2*i+1]
 | ||
|  | 		if(order & 1) | ||
|  | 			qlp[i] = _mm_shuffle_epi32(_mm_cvtsi32_si128(qlp_coeff[i*2]), _MM_SHUFFLE(2,0,3,1)); | ||
|  | 
 | ||
|  | 		for(i = 0; i < (int)data_len; i++) { | ||
|  | 			__m128i summ = _mm_setzero_si128(), dat; | ||
|  | 			FLAC__int32 * const datai = &data[i]; | ||
|  | 
 | ||
|  | 			switch((order+1) / 2) { | ||
|  | 				case 16: /* order == 31, 32 */ | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-32))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[15]));                /* Falls through. */ | ||
|  | 				case 15: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-30))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[14]));                /* Falls through. */ | ||
|  | 				case 14: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-28))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[13]));                /* Falls through. */ | ||
|  | 				case 13: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-26))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[12]));                /* Falls through. */ | ||
|  | 				case 12: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-24))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[11]));                /* Falls through. */ | ||
|  | 				case 11: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-22))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[10]));                /* Falls through. */ | ||
|  | 				case 10: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-20))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[9]));                 /* Falls through. */ | ||
|  | 				case  9: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-18))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[8]));                 /* Falls through. */ | ||
|  | 				case  8: | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-16))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[7]));                 /* Falls through. */ | ||
|  | 				case  7: /* order == 13, 14 */ | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-14))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[6])); | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-12))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[5])); | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-10))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[4])); | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-8))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[3])); | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-6))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[2])); | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-4))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[1])); | ||
|  | 					dat = _mm_cvtepu32_epi64(_mm_loadl_epi64((const __m128i*)(datai-2))); | ||
|  | 					summ = _mm_add_epi64(summ, _mm_mul_epi32(dat, qlp[0])); | ||
|  | 			} | ||
|  | 			summ = _mm_add_epi64(summ, _mm_srli_si128(summ, 8)); | ||
|  | 			summ = _mm_srl_epi64(summ, cnt); | ||
|  | 			summ = _mm_add_epi32(summ, _mm_cvtsi32_si128(residual[i])); | ||
|  | 			data[i] = _mm_cvtsi128_si32(summ); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | FLAC__SSE_TARGET("sse4.1") | ||
|  | void FLAC__lpc_restore_signal_intrin_sse41(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]) | ||
|  | { | ||
|  | 	if(order < 8) { | ||
|  | 		FLAC__lpc_restore_signal(residual, data_len, qlp_coeff, order, lp_quantization, data); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	FLAC__ASSERT(order >= 8); | ||
|  | 	FLAC__ASSERT(order <= 32); | ||
|  | 
 | ||
|  | 	if(order <= 12) { | ||
|  | 		int i; | ||
|  | 		const __m128i cnt = _mm_cvtsi32_si128(lp_quantization); | ||
|  | 
 | ||
|  | 		if(order > 8) /* order == 9, 10, 11, 12 */ | ||
|  | 		{ | ||
|  | 			__m128i qlp[3], dat[3]; | ||
|  | 			__m128i summ, temp; | ||
|  | 
 | ||
|  | 			qlp[0] = _mm_loadu_si128((const __m128i*)(qlp_coeff + 0));	// q[3]  q[2]  q[1]  q[0]
 | ||
|  | 			qlp[1] = _mm_loadu_si128((const __m128i*)(qlp_coeff + 4));	// q[7]  q[6]  q[5]  q[4]
 | ||
|  | 			qlp[2] = _mm_loadu_si128((const __m128i*)(qlp_coeff + 8));	// q[11] q[10] q[9]  q[8]
 | ||
|  | 			switch (order) | ||
|  | 			{ | ||
|  | 			case 9: | ||
|  | 				qlp[2] = _mm_slli_si128(qlp[2], 12); qlp[2] = _mm_srli_si128(qlp[2], 12); break;	//   0     0     0   q[8]
 | ||
|  | 			case 10: | ||
|  | 				qlp[2] = _mm_slli_si128(qlp[2], 8); qlp[2] = _mm_srli_si128(qlp[2], 8); break;	//   0     0   q[9]  q[8]
 | ||
|  | 			case 11: | ||
|  | 				qlp[2] = _mm_slli_si128(qlp[2], 4); qlp[2] = _mm_srli_si128(qlp[2], 4); break;	//   0   q[10] q[9]  q[8]
 | ||
|  | 			} | ||
|  | 
 | ||
|  | 			dat[2] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data - 12)), _MM_SHUFFLE(0, 1, 2, 3));	// d[i-12] d[i-11] d[i-10] d[i-9]
 | ||
|  | 			dat[1] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data - 8)), _MM_SHUFFLE(0, 1, 2, 3));	// d[i-8]  d[i-7]  d[i-6]  d[i-5]
 | ||
|  | 			dat[0] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data - 4)), _MM_SHUFFLE(0, 1, 2, 3));	// d[i-4]  d[i-3]  d[i-2]  d[i-1]
 | ||
|  | 
 | ||
|  | 			for (i = 0;;) { | ||
|  | 				summ = _mm_mullo_epi32(dat[2], qlp[2]); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_mullo_epi32(dat[1], qlp[1])); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_mullo_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shuffle_epi32(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shufflelo_epi16(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 
 | ||
|  | 				summ = _mm_sra_epi32(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 				data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				if(++i >= (int)data_len) break; | ||
|  | 
 | ||
|  | 				temp = _mm_slli_si128(temp, 12); | ||
|  | 				dat[2] = _mm_alignr_epi8(dat[2], dat[1], 12); | ||
|  | 				dat[1] = _mm_alignr_epi8(dat[1], dat[0], 12); | ||
|  | 				dat[0] = _mm_alignr_epi8(dat[0], temp, 12); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else /* order == 8 */ | ||
|  | 		{ | ||
|  | 			__m128i qlp[2], dat[2]; | ||
|  | 			__m128i summ, temp; | ||
|  | 
 | ||
|  | 			qlp[0] = _mm_loadu_si128((const __m128i*)(qlp_coeff + 0)); | ||
|  | 			qlp[1] = _mm_loadu_si128((const __m128i*)(qlp_coeff + 4)); | ||
|  | 
 | ||
|  | 			dat[1] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data - 8)), _MM_SHUFFLE(0, 1, 2, 3)); | ||
|  | 			dat[0] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data - 4)), _MM_SHUFFLE(0, 1, 2, 3)); | ||
|  | 
 | ||
|  | 			for (i = 0;;) { | ||
|  | 				summ = _mm_add_epi32(_mm_mullo_epi32(dat[1], qlp[1]), _mm_mullo_epi32(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shuffle_epi32(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shufflelo_epi16(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 
 | ||
|  | 				summ = _mm_sra_epi32(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 				data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				if(++i >= (int)data_len) break; | ||
|  | 
 | ||
|  | 				temp = _mm_slli_si128(temp, 12); | ||
|  | 				dat[1] = _mm_alignr_epi8(dat[1], dat[0], 12); | ||
|  | 				dat[0] = _mm_alignr_epi8(dat[0], temp, 12); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else { /* order > 12 */ | ||
|  | #ifdef FLAC__HAS_NASM
 | ||
|  | 		FLAC__lpc_restore_signal_asm_ia32(residual, data_len, qlp_coeff, order, lp_quantization, data); | ||
|  | #else
 | ||
|  | 		FLAC__lpc_restore_signal(residual, data_len, qlp_coeff, order, lp_quantization, data); | ||
|  | #endif
 | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | FLAC__SSE_TARGET("ssse3") | ||
|  | void FLAC__lpc_restore_signal_16_intrin_sse41(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]) | ||
|  | { | ||
|  | 	if(order < 8) { | ||
|  | 		FLAC__lpc_restore_signal(residual, data_len, qlp_coeff, order, lp_quantization, data); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	FLAC__ASSERT(order >= 8); | ||
|  | 	FLAC__ASSERT(order <= 32); | ||
|  | 
 | ||
|  | 	if(order <= 12) { | ||
|  | 		int i; | ||
|  | 		const __m128i cnt = _mm_cvtsi32_si128(lp_quantization); | ||
|  | 
 | ||
|  | 		if(order > 8) /* order == 9, 10, 11, 12 */ | ||
|  | 		{ | ||
|  | 			__m128i qlp[2], dat[2]; | ||
|  | 			__m128i summ, temp; | ||
|  | 
 | ||
|  | 			qlp[0] = _mm_loadu_si128((const __m128i*)(qlp_coeff+0));	// q[3]  q[2]  q[1]  q[0]
 | ||
|  | 			temp   = _mm_loadu_si128((const __m128i*)(qlp_coeff+4));	// q[7]  q[6]  q[5]  q[4]
 | ||
|  | 			qlp[1] = _mm_loadu_si128((const __m128i*)(qlp_coeff+8));	// q[11] q[10] q[9]  q[8]
 | ||
|  | 			switch(order) | ||
|  | 			{ | ||
|  | 			case 9: | ||
|  | 				qlp[1] = _mm_slli_si128(qlp[1], 12); qlp[1] = _mm_srli_si128(qlp[1], 12); break;	//   0     0     0   q[8]
 | ||
|  | 			case 10: | ||
|  | 				qlp[1] = _mm_slli_si128(qlp[1],  8); qlp[1] = _mm_srli_si128(qlp[1],  8); break;	//   0     0   q[9]  q[8]
 | ||
|  | 			case 11: | ||
|  | 				qlp[1] = _mm_slli_si128(qlp[1],  4); qlp[1] = _mm_srli_si128(qlp[1],  4); break;	//   0   q[10] q[9]  q[8]
 | ||
|  | 			} | ||
|  | 			qlp[0] = _mm_packs_epi32(qlp[0], temp);					// q[7]  q[6]  q[5]  q[4]  q[3]  q[2]  q[1]  q[0]
 | ||
|  | 			qlp[1] = _mm_packs_epi32(qlp[1], _mm_setzero_si128());	//   0     0     0     0   q[11] q[10] q[9]  q[8]
 | ||
|  | 
 | ||
|  | 			dat[1] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data-12)), _MM_SHUFFLE(0,1,2,3));	// d[i-12] d[i-11] d[i-10] d[i-9]
 | ||
|  | 			temp   = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data-8)),  _MM_SHUFFLE(0,1,2,3));	// d[i-8]  d[i-7]  d[i-6]  d[i-5]
 | ||
|  | 			dat[0] = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data-4)),  _MM_SHUFFLE(0,1,2,3));	// d[i-4]  d[i-3]  d[i-2]  d[i-1]
 | ||
|  | 
 | ||
|  | 			dat[1] = _mm_packs_epi32(dat[1], _mm_setzero_si128());		//   0       0       0       0     d[i-12] d[i-11] d[i-10] d[i-9]
 | ||
|  | 			dat[0] = _mm_packs_epi32(dat[0], temp);						// d[i-8]  d[i-7]  d[i-6]  d[i-5]  d[i-4]  d[i-3]  d[i-2]  d[i-1]
 | ||
|  | 
 | ||
|  | 			for(i = 0;;) { | ||
|  | 				summ = _mm_madd_epi16(dat[1], qlp[1]); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_madd_epi16(dat[0], qlp[0])); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shuffle_epi32(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shufflelo_epi16(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 
 | ||
|  | 				summ = _mm_sra_epi32(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 				data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				if(++i >= (int)data_len) break; | ||
|  | 
 | ||
|  | 				temp = _mm_slli_si128(temp, 14); | ||
|  | 				dat[1] = _mm_alignr_epi8(dat[1], dat[0], 14);	//   0       0       0     d[i-12] d[i-11] d[i-10] d[i-9]  d[i-8]
 | ||
|  | 				dat[0] = _mm_alignr_epi8(dat[0],   temp, 14);	// d[i-7]  d[i-6]  d[i-5]  d[i-4]  d[i-3]  d[i-2]  d[i-1]  d[i]
 | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else /* order == 8 */ | ||
|  | 		{ | ||
|  | 			__m128i qlp0, dat0; | ||
|  | 			__m128i summ, temp; | ||
|  | 
 | ||
|  | 			qlp0 = _mm_loadu_si128((const __m128i*)(qlp_coeff+0));	// q[3]  q[2]  q[1]  q[0]
 | ||
|  | 			temp = _mm_loadu_si128((const __m128i*)(qlp_coeff+4));	// q[7]  q[6]  q[5]  q[4]
 | ||
|  | 			qlp0 = _mm_packs_epi32(qlp0, temp);						// q[7]  q[6]  q[5]  q[4]  q[3]  q[2]  q[1]  q[0]
 | ||
|  | 
 | ||
|  | 			temp = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data-8)), _MM_SHUFFLE(0,1,2,3)); | ||
|  | 			dat0 = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i*)(data-4)), _MM_SHUFFLE(0,1,2,3)); | ||
|  | 			dat0 = _mm_packs_epi32(dat0, temp);						// d[i-8]  d[i-7]  d[i-6]  d[i-5]  d[i-4]  d[i-3]  d[i-2]  d[i-1]
 | ||
|  | 
 | ||
|  | 			for(i = 0;;) { | ||
|  | 				summ = _mm_madd_epi16(dat0, qlp0); | ||
|  | 
 | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shuffle_epi32(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 				summ = _mm_add_epi32(summ, _mm_shufflelo_epi16(summ, _MM_SHUFFLE(1,0,3,2))); | ||
|  | 
 | ||
|  | 				summ = _mm_sra_epi32(summ, cnt); | ||
|  | 				temp = _mm_add_epi32(_mm_cvtsi32_si128(residual[i]), summ); | ||
|  | 				data[i] = _mm_cvtsi128_si32(temp); | ||
|  | 
 | ||
|  | 				if(++i >= (int)data_len) break; | ||
|  | 
 | ||
|  | 				temp = _mm_slli_si128(temp, 14); | ||
|  | 				dat0 = _mm_alignr_epi8(dat0, temp, 14);	// d[i-7]  d[i-6]  d[i-5]  d[i-4]  d[i-3]  d[i-2]  d[i-1]  d[i]
 | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else { /* order > 12 */ | ||
|  | #ifdef FLAC__HAS_NASM
 | ||
|  | 		FLAC__lpc_restore_signal_asm_ia32_mmx(residual, data_len, qlp_coeff, order, lp_quantization, data); | ||
|  | #else
 | ||
|  | 		FLAC__lpc_restore_signal(residual, data_len, qlp_coeff, order, lp_quantization, data); | ||
|  | #endif
 | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* defined FLAC__CPU_IA32 */
 | ||
|  | 
 | ||
|  | FLAC__SSE_TARGET("sse4.1") | ||
|  | void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]) | ||
|  | { | ||
|  | 	int i; | ||
|  | 	FLAC__int32 sum; | ||
|  | 	const __m128i cnt = _mm_cvtsi32_si128(lp_quantization); | ||
|  | 
 | ||
|  | 	FLAC__ASSERT(order > 0); | ||
|  | 	FLAC__ASSERT(order <= 32); | ||
|  | 
 | ||
|  | 	if(order <= 12) { | ||
|  | 		if(order > 8) { | ||
|  | 			if(order > 10) { | ||
|  | 				if(order == 12) { | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q6 = _mm_cvtsi32_si128(qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q7 = _mm_cvtsi32_si128(qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q8 = _mm_cvtsi32_si128(qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q9 = _mm_cvtsi32_si128(qlp_coeff[9]); q9 = _mm_shuffle_epi32(q9, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q10 = _mm_cvtsi32_si128(qlp_coeff[10]); q10 = _mm_shuffle_epi32(q10, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q11 = _mm_cvtsi32_si128(qlp_coeff[11]); q11 = _mm_shuffle_epi32(q11, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q11, _mm_loadu_si128((const __m128i*)(data+i-12))); | ||
|  | 						mull = _mm_mullo_epi32(q10, _mm_loadu_si128((const __m128i*)(data+i-11))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q9, _mm_loadu_si128((const __m128i*)(data+i-10))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 11 */ | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q6 = _mm_cvtsi32_si128(qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q7 = _mm_cvtsi32_si128(qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q8 = _mm_cvtsi32_si128(qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q9 = _mm_cvtsi32_si128(qlp_coeff[9]); q9 = _mm_shuffle_epi32(q9, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q10 = _mm_cvtsi32_si128(qlp_coeff[10]); q10 = _mm_shuffle_epi32(q10, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q10, _mm_loadu_si128((const __m128i*)(data+i-11))); | ||
|  | 						mull = _mm_mullo_epi32(q9, _mm_loadu_si128((const __m128i*)(data+i-10))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { | ||
|  | 				if(order == 10) { | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8, q9; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q6 = _mm_cvtsi32_si128(qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q7 = _mm_cvtsi32_si128(qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q8 = _mm_cvtsi32_si128(qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q9 = _mm_cvtsi32_si128(qlp_coeff[9]); q9 = _mm_shuffle_epi32(q9, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q9, _mm_loadu_si128((const __m128i*)(data+i-10))); | ||
|  | 						mull = _mm_mullo_epi32(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 9 */ | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q6 = _mm_cvtsi32_si128(qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q7 = _mm_cvtsi32_si128(qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q8 = _mm_cvtsi32_si128(qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); | ||
|  | 						mull = _mm_mullo_epi32(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else if(order > 4) { | ||
|  | 			if(order > 6) { | ||
|  | 				if(order == 8) { | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5, q6, q7; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q6 = _mm_cvtsi32_si128(qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q7 = _mm_cvtsi32_si128(qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); | ||
|  | 						mull = _mm_mullo_epi32(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 7 */ | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5, q6; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q6 = _mm_cvtsi32_si128(qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); | ||
|  | 						mull = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { | ||
|  | 				if(order == 6) { | ||
|  | 					__m128i q0, q1, q2, q3, q4, q5; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q5 = _mm_cvtsi32_si128(qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); | ||
|  | 						mull = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 5 */ | ||
|  | 					__m128i q0, q1, q2, q3, q4; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q4 = _mm_cvtsi32_si128(qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); | ||
|  | 						mull = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			if(order > 2) { | ||
|  | 				if(order == 4) { | ||
|  | 					__m128i q0, q1, q2, q3; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q3 = _mm_cvtsi32_si128(qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); | ||
|  | 						mull = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 3 */ | ||
|  | 					__m128i q0, q1, q2; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q2 = _mm_cvtsi32_si128(qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); | ||
|  | 						mull = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 			else { | ||
|  | 				if(order == 2) { | ||
|  | 					__m128i q0, q1; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 					q1 = _mm_cvtsi32_si128(qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ, mull; | ||
|  | 						summ = _mm_mullo_epi32(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); | ||
|  | 						mull = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				else { /* order == 1 */ | ||
|  | 					__m128i q0; | ||
|  | 					q0 = _mm_cvtsi32_si128(qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0)); | ||
|  | 
 | ||
|  | 					for(i = 0; i < (int)data_len-3; i+=4) { | ||
|  | 						__m128i summ; | ||
|  | 						summ = _mm_mullo_epi32(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); | ||
|  | 						summ = _mm_sra_epi32(summ, cnt); | ||
|  | 						_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		for(; i < (int)data_len; i++) { | ||
|  | 			sum = 0; | ||
|  | 			switch(order) { | ||
|  | 				case 12: sum += qlp_coeff[11] * data[i-12]; /* Falls through. */ | ||
|  | 				case 11: sum += qlp_coeff[10] * data[i-11]; /* Falls through. */ | ||
|  | 				case 10: sum += qlp_coeff[ 9] * data[i-10]; /* Falls through. */ | ||
|  | 				case 9:  sum += qlp_coeff[ 8] * data[i- 9]; /* Falls through. */ | ||
|  | 				case 8:  sum += qlp_coeff[ 7] * data[i- 8]; /* Falls through. */ | ||
|  | 				case 7:  sum += qlp_coeff[ 6] * data[i- 7]; /* Falls through. */ | ||
|  | 				case 6:  sum += qlp_coeff[ 5] * data[i- 6]; /* Falls through. */ | ||
|  | 				case 5:  sum += qlp_coeff[ 4] * data[i- 5]; /* Falls through. */ | ||
|  | 				case 4:  sum += qlp_coeff[ 3] * data[i- 4]; /* Falls through. */ | ||
|  | 				case 3:  sum += qlp_coeff[ 2] * data[i- 3]; /* Falls through. */ | ||
|  | 				case 2:  sum += qlp_coeff[ 1] * data[i- 2]; /* Falls through. */ | ||
|  | 				case 1:  sum += qlp_coeff[ 0] * data[i- 1]; | ||
|  | 			} | ||
|  | 			residual[i] = data[i] - (sum >> lp_quantization); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else { /* order > 12 */ | ||
|  | 		for(i = 0; i < (int)data_len; i++) { | ||
|  | 			sum = 0; | ||
|  | 			switch(order) { | ||
|  | 				case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */ | ||
|  | 				case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */ | ||
|  | 				case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */ | ||
|  | 				case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */ | ||
|  | 				case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */ | ||
|  | 				case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */ | ||
|  | 				case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */ | ||
|  | 				case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */ | ||
|  | 				case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */ | ||
|  | 				case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */ | ||
|  | 				case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */ | ||
|  | 				case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */ | ||
|  | 				case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */ | ||
|  | 				case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */ | ||
|  | 				case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */ | ||
|  | 				case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */ | ||
|  | 				case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */ | ||
|  | 				case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */ | ||
|  | 				case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */ | ||
|  | 				case 13: sum += qlp_coeff[12] * data[i-13]; | ||
|  | 				         sum += qlp_coeff[11] * data[i-12]; | ||
|  | 				         sum += qlp_coeff[10] * data[i-11]; | ||
|  | 				         sum += qlp_coeff[ 9] * data[i-10]; | ||
|  | 				         sum += qlp_coeff[ 8] * data[i- 9]; | ||
|  | 				         sum += qlp_coeff[ 7] * data[i- 8]; | ||
|  | 				         sum += qlp_coeff[ 6] * data[i- 7]; | ||
|  | 				         sum += qlp_coeff[ 5] * data[i- 6]; | ||
|  | 				         sum += qlp_coeff[ 4] * data[i- 5]; | ||
|  | 				         sum += qlp_coeff[ 3] * data[i- 4]; | ||
|  | 				         sum += qlp_coeff[ 2] * data[i- 3]; | ||
|  | 				         sum += qlp_coeff[ 1] * data[i- 2]; | ||
|  | 				         sum += qlp_coeff[ 0] * data[i- 1]; | ||
|  | 			} | ||
|  | 			residual[i] = data[i] - (sum >> lp_quantization); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* FLAC__SSE4_1_SUPPORTED */
 | ||
|  | #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
 | ||
|  | #endif /* FLAC__NO_ASM */
 | ||
|  | #endif /* FLAC__INTEGER_ONLY_LIBRARY */
 |