Duckstation/src/core/gpu_sw.cpp

522 lines
17 KiB
C++
Raw Normal View History

2019-10-26 02:57:35 +00:00
#include "gpu_sw.h"
#include "YBaseLib/Log.h"
#include "YBaseLib/Timer.h"
#include "common/gl/texture.h"
#include "host_display.h"
2019-10-26 02:57:35 +00:00
#include "system.h"
#include <algorithm>
Log_SetChannel(GPU_SW);
GPU_SW::GPU_SW()
{
m_vram.fill(0);
m_vram_ptr = m_vram.data();
2019-10-26 02:57:35 +00:00
}
GPU_SW::~GPU_SW()
{
m_host_display->SetDisplayTexture(nullptr, 0, 0, 0, 0, 0, 0, 1.0f);
}
2019-10-26 02:57:35 +00:00
bool GPU_SW::Initialize(HostDisplay* host_display, System* system, DMA* dma, InterruptController* interrupt_controller,
Timers* timers)
2019-10-26 02:57:35 +00:00
{
if (!GPU::Initialize(host_display, system, dma, interrupt_controller, timers))
return false;
m_display_texture = host_display->CreateTexture(VRAM_WIDTH, VRAM_HEIGHT, nullptr, 0, true);
if (!m_display_texture)
2019-10-26 02:57:35 +00:00
return false;
return true;
}
void GPU_SW::Reset()
{
GPU::Reset();
m_vram.fill(0);
}
void GPU_SW::ReadVRAM(u32 x, u32 y, u32 width, u32 height)
2019-10-26 02:57:35 +00:00
{
// No need to do anything - pointer is already up to date.
2019-10-26 02:57:35 +00:00
}
void GPU_SW::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color)
2019-10-26 02:57:35 +00:00
{
const u16 color16 = RGBA8888ToRGBA5551(color);
2019-10-26 02:57:35 +00:00
for (u32 yoffs = 0; yoffs < height; yoffs++)
std::fill_n(GetPixelPtr(x, y + yoffs), width, color16);
2019-10-26 02:57:35 +00:00
}
void GPU_SW::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height)
{
// This doesn't have a fast path, but do we really need one? It's not common.
const u16 mask_and = m_GPUSTAT.GetMaskAND();
const u16 mask_or = m_GPUSTAT.GetMaskOR();
for (u32 row = 0; row < height; row++)
2019-10-26 02:57:35 +00:00
{
const u16* src_row_ptr = &m_vram_ptr[((src_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
u16* dst_row_ptr = &m_vram_ptr[((dst_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
for (u32 col = 0; col < width; col++)
{
const u16 src_pixel = src_row_ptr[(src_x + col) % VRAM_WIDTH];
u16* dst_pixel_ptr = &dst_row_ptr[(dst_x + col) % VRAM_WIDTH];
if ((*dst_pixel_ptr & mask_and) == mask_and)
*dst_pixel_ptr = src_pixel | mask_or;
}
2019-10-26 02:57:35 +00:00
}
}
void GPU_SW::CopyOut15Bit(const u16* src_ptr, u32 src_stride, u32* dst_ptr, u32 dst_stride, u32 width, u32 height)
{
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = src_ptr;
u32* dst_row_ptr = dst_ptr;
for (u32 col = 0; col < width; col++)
*(dst_row_ptr++) = RGBA5551ToRGBA8888(*(src_row_ptr++));
src_ptr += src_stride;
dst_ptr += dst_stride;
2019-10-26 02:57:35 +00:00
}
}
void GPU_SW::CopyOut24Bit(const u16* src_ptr, u32 src_stride, u32* dst_ptr, u32 dst_stride, u32 width, u32 height)
{
for (u32 row = 0; row < height; row++)
{
const u8* src_row_ptr = reinterpret_cast<const u8*>(src_ptr);
u32* dst_row_ptr = dst_ptr;
// Beware unaligned accesses.
for (u32 col = 0; col < width; col++)
{
// This will fill the alpha channel with junk, but that's okay since we don't use it
std::memcpy(dst_row_ptr, src_row_ptr, sizeof(u32));
src_row_ptr += 3;
dst_row_ptr++;
}
src_ptr += src_stride;
dst_ptr += dst_stride;
2019-10-26 02:57:35 +00:00
}
}
void GPU_SW::UpdateDisplay()
{
// fill display texture
m_display_texture_buffer.resize(VRAM_WIDTH * VRAM_HEIGHT);
u32 display_width;
u32 display_height;
float display_aspect_ratio;
if (!m_system->GetSettings().debugging.show_vram)
{
// TODO: Handle interlacing
const u32 vram_offset_x = m_crtc_state.regs.X;
const u32 vram_offset_y = m_crtc_state.regs.Y;
display_width = std::min<u32>(m_crtc_state.display_width, VRAM_WIDTH - vram_offset_x);
display_height = std::min<u32>(m_crtc_state.display_height, VRAM_HEIGHT - vram_offset_y);
2019-10-26 02:57:35 +00:00
display_aspect_ratio = m_crtc_state.display_aspect_ratio;
if (m_GPUSTAT.display_disable)
{
m_host_display->SetDisplayTexture(nullptr, 0, 0, 0, 0, 0, 0, display_aspect_ratio);
return;
}
else if (m_GPUSTAT.display_area_color_depth_24)
2019-10-26 02:57:35 +00:00
{
CopyOut24Bit(m_vram.data() + vram_offset_y * VRAM_WIDTH + vram_offset_x, VRAM_WIDTH,
m_display_texture_buffer.data(), display_width, display_width, display_height);
}
else
{
CopyOut15Bit(m_vram.data() + vram_offset_y * VRAM_WIDTH + vram_offset_x, VRAM_WIDTH,
m_display_texture_buffer.data(), display_width, display_width, display_height);
}
}
else
{
display_width = VRAM_WIDTH;
display_height = VRAM_HEIGHT;
display_aspect_ratio = 1.0f;
CopyOut15Bit(m_vram.data(), VRAM_WIDTH, m_display_texture_buffer.data(), display_width, display_width,
display_height);
}
m_host_display->UpdateTexture(m_display_texture.get(), 0, 0, display_width, display_height,
m_display_texture_buffer.data(), display_width * sizeof(u32));
m_host_display->SetDisplayTexture(m_display_texture->GetHandle(), 0, 0, display_width, display_height, VRAM_WIDTH,
VRAM_HEIGHT, display_aspect_ratio);
2019-10-26 02:57:35 +00:00
}
void GPU_SW::DispatchRenderCommand(RenderCommand rc, u32 num_vertices, const u32* command_ptr)
{
switch (rc.primitive)
{
case Primitive::Polygon:
{
const u32 first_color = rc.color_for_first_vertex;
const bool shaded = rc.shading_enable;
const bool textured = rc.texture_enable;
if (textured)
{
if (shaded)
m_render_state.SetFromPolygonTexcoord(command_ptr[2], command_ptr[5]);
else
m_render_state.SetFromPolygonTexcoord(command_ptr[2], command_ptr[4]);
}
u32 buffer_pos = 1;
for (u32 i = 0; i < num_vertices; i++)
{
SWVertex& vert = m_vertex_buffer[i];
const u32 color_rgb = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color;
vert.color_r = Truncate8(color_rgb);
vert.color_g = Truncate8(color_rgb >> 8);
vert.color_b = Truncate8(color_rgb >> 16);
const VertexPosition vp{command_ptr[buffer_pos++]};
vert.x = vp.x;
vert.y = vp.y;
if (textured)
{
std::tie(vert.texcoord_x, vert.texcoord_y) = UnpackTexcoord(Truncate16(command_ptr[buffer_pos++]));
}
else
{
vert.texcoord_x = 0;
vert.texcoord_y = 0;
}
}
DrawTriangle(rc, &m_vertex_buffer[0], &m_vertex_buffer[1], &m_vertex_buffer[2]);
if (num_vertices > 3)
DrawTriangle(rc, &m_vertex_buffer[2], &m_vertex_buffer[1], &m_vertex_buffer[3]);
}
break;
case Primitive::Rectangle:
{
u32 buffer_pos = 1;
const auto [r, g, b] = UnpackColorRGB24(rc.color_for_first_vertex);
const VertexPosition vp{command_ptr[buffer_pos++]};
const u32 texcoord_and_palette = rc.texture_enable ? command_ptr[buffer_pos++] : 0;
const auto [texcoord_x, texcoord_y] = UnpackTexcoord(Truncate16(texcoord_and_palette));
m_render_state.SetFromPaletteAttribute(Truncate16(texcoord_and_palette >> 16));
s32 width;
s32 height;
switch (rc.rectangle_size)
{
case DrawRectangleSize::R1x1:
width = 1;
height = 1;
break;
case DrawRectangleSize::R8x8:
width = 8;
height = 8;
break;
case DrawRectangleSize::R16x16:
width = 16;
height = 16;
break;
default:
width = static_cast<s32>(command_ptr[buffer_pos] & UINT32_C(0xFFFF));
height = static_cast<s32>(command_ptr[buffer_pos] >> 16);
break;
}
DrawRectangle(rc, vp.x, vp.y, width, height, r, g, b, texcoord_x, texcoord_y);
}
break;
case Primitive::Line:
{
}
break;
default:
UnreachableCode();
break;
}
}
bool GPU_SW::IsClockwiseWinding(const SWVertex* v0, const SWVertex* v1, const SWVertex* v2)
{
const s32 abx = v1->x - v0->x;
const s32 aby = v1->y - v0->y;
const s32 acx = v2->x - v0->x;
const s32 acy = v2->y - v0->y;
return ((abx * acy) - (aby * acx) < 0);
}
static constexpr bool IsTopLeftEdge(s32 ex, s32 ey)
{
return (ey < 0 || (ey == 0 && ex < 0));
}
static constexpr u8 Interpolate(u8 v0, u8 v1, u8 v2, s32 w0, s32 w1, s32 w2, s32 ws)
{
const s32 v = w0 * static_cast<s32>(static_cast<u32>(v0)) + w1 * static_cast<s32>(static_cast<u32>(v1)) +
w2 * static_cast<s32>(static_cast<u32>(v2));
const s32 vd = v / ws;
return (vd < 0) ? 0 : ((vd > 0xFF) ? 0xFF : static_cast<u8>(vd));
}
void GPU_SW::DrawTriangle(RenderCommand rc, const SWVertex* v0, const SWVertex* v1, const SWVertex* v2)
{
#define orient2d(ax, ay, bx, by, cx, cy) ((bx - ax) * (cy - ay) - (by - ay) * (cx - ax))
// ensure the vertices follow a counter-clockwise order
if (IsClockwiseWinding(v0, v1, v2))
std::swap(v1, v2);
const s32 px0 = v0->x + m_drawing_offset.x;
const s32 py0 = v0->y + m_drawing_offset.y;
const s32 px1 = v1->x + m_drawing_offset.x;
const s32 py1 = v1->y + m_drawing_offset.y;
const s32 px2 = v2->x + m_drawing_offset.x;
const s32 py2 = v2->y + m_drawing_offset.y;
// Barycentric coordinates at minX/minY corner
const s32 ws = orient2d(px0, py0, px1, py1, px2, py2);
if (ws == 0)
return;
// compute bounding box of triangle
s32 min_x = std::min(px0, std::min(px1, px2));
s32 max_x = std::max(px0, std::max(px1, px2));
s32 min_y = std::min(py0, std::min(py1, py2));
s32 max_y = std::max(py0, std::max(py1, py2));
// reject triangles which cover the whole vram area
if ((max_x - min_x) > MAX_PRIMITIVE_WIDTH || (max_y - min_y) > MAX_PRIMITIVE_HEIGHT)
2019-10-26 02:57:35 +00:00
return;
// clip to drawing area
min_x = std::clamp(min_x, static_cast<s32>(m_drawing_area.left), static_cast<s32>(m_drawing_area.right));
max_x = std::clamp(max_x, static_cast<s32>(m_drawing_area.left), static_cast<s32>(m_drawing_area.right));
min_y = std::clamp(min_y, static_cast<s32>(m_drawing_area.top), static_cast<s32>(m_drawing_area.bottom));
max_y = std::clamp(max_y, static_cast<s32>(m_drawing_area.top), static_cast<s32>(m_drawing_area.bottom));
// compute per-pixel increments
const s32 a01 = py0 - py1, b01 = px1 - px0;
const s32 a12 = py1 - py2, b12 = px2 - px1;
const s32 a20 = py2 - py0, b20 = px0 - px2;
// top-left edge rule
const s32 w0_bias = 0 - s32(IsTopLeftEdge(b12, a12));
const s32 w1_bias = 0 - s32(IsTopLeftEdge(b20, a20));
const s32 w2_bias = 0 - s32(IsTopLeftEdge(b01, a01));
// compute base barycentric coordinates
s32 w0 = orient2d(px1, py1, px2, py2, min_x, min_y);
s32 w1 = orient2d(px2, py2, px0, py0, min_x, min_y);
s32 w2 = orient2d(px0, py0, px1, py1, min_x, min_y);
// *exclusive* of max coordinate in PSX
for (s32 y = min_y; y <= max_y; y++)
{
s32 row_w0 = w0;
s32 row_w1 = w1;
s32 row_w2 = w2;
for (s32 x = min_x; x <= max_x; x++)
{
if (((row_w0 + w0_bias) | (row_w1 + w1_bias) | (row_w2 + w2_bias)) >= 0)
{
const s32 b0 = row_w0;
const s32 b1 = row_w1;
const s32 b2 = row_w2;
const u8 r =
rc.shading_enable ? Interpolate(v0->color_r, v1->color_r, v2->color_r, b0, b1, b2, ws) : v0->color_r;
const u8 g =
rc.shading_enable ? Interpolate(v0->color_g, v1->color_g, v2->color_g, b0, b1, b2, ws) : v0->color_g;
const u8 b =
rc.shading_enable ? Interpolate(v0->color_b, v1->color_b, v2->color_b, b0, b1, b2, ws) : v0->color_b;
const u8 texcoord_x = Interpolate(v0->texcoord_x, v1->texcoord_x, v2->texcoord_x, b0, b1, b2, ws);
const u8 texcoord_y = Interpolate(v0->texcoord_y, v1->texcoord_y, v2->texcoord_y, b0, b1, b2, ws);
ShadePixel(rc, static_cast<u32>(x), static_cast<u32>(y), r, g, b, texcoord_x, texcoord_y,
rc.IsDitheringEnabled() && m_GPUSTAT.dither_enable);
2019-10-26 02:57:35 +00:00
}
row_w0 += a12;
row_w1 += a20;
row_w2 += a01;
}
w0 += b12;
w1 += b20;
w2 += b01;
}
#undef orient2d
}
void GPU_SW::DrawRectangle(RenderCommand rc, s32 origin_x, s32 origin_y, u32 width, u32 height, u8 r, u8 g, u8 b,
u8 origin_texcoord_x, u8 origin_texcoord_y)
{
origin_x += m_drawing_offset.x;
origin_y += m_drawing_offset.y;
for (u32 offset_y = 0; offset_y < height; offset_y++)
{
const s32 y = origin_y + static_cast<s32>(offset_y);
if (y < static_cast<s32>(m_drawing_area.top) || y > static_cast<s32>(m_drawing_area.bottom))
continue;
const u8 texcoord_y = Truncate8(ZeroExtend32(origin_texcoord_y) + offset_y);
for (u32 offset_x = 0; offset_x < width; offset_x++)
{
const s32 x = origin_x + static_cast<s32>(offset_x);
if (x < static_cast<s32>(m_drawing_area.left) || x > static_cast<s32>(m_drawing_area.right))
continue;
const u8 texcoord_x = Truncate8(ZeroExtend32(origin_texcoord_x) + offset_x);
ShadePixel(rc, static_cast<u32>(x), static_cast<u32>(y), r, g, b, texcoord_x, texcoord_y, false);
2019-10-26 02:57:35 +00:00
}
}
}
void GPU_SW::ShadePixel(RenderCommand rc, u32 x, u32 y, u8 color_r, u8 color_g, u8 color_b, u8 texcoord_x,
u8 texcoord_y, bool dithering)
2019-10-26 02:57:35 +00:00
{
VRAMPixel color;
bool transparent = true;
if (rc.texture_enable)
{
// Apply texture window
// TODO: Precompute the second half
texcoord_x = (texcoord_x & ~(m_render_state.texture_window_mask_x * 8u)) |
((m_render_state.texture_window_offset_x & m_render_state.texture_window_mask_x) * 8u);
texcoord_y = (texcoord_y & ~(m_render_state.texture_window_mask_y * 8u)) |
((m_render_state.texture_window_offset_y & m_render_state.texture_window_mask_y) * 8u);
VRAMPixel texture_color;
switch (m_render_state.texture_mode)
2019-10-26 02:57:35 +00:00
{
2019-11-01 11:47:45 +00:00
case GPU::TextureMode::Palette4Bit:
2019-10-26 02:57:35 +00:00
{
const u16 palette_value =
GetPixel(std::min<u32>(m_render_state.texture_page_x + ZeroExtend32(texcoord_x / 4), VRAM_WIDTH - 1),
std::min<u32>(m_render_state.texture_page_y + ZeroExtend32(texcoord_y), VRAM_HEIGHT - 1));
const u16 palette_index = (palette_value >> ((texcoord_x % 4) * 4)) & 0x0Fu;
texture_color.bits =
GetPixel(std::min<u32>(m_render_state.texture_palette_x + ZeroExtend32(palette_index), VRAM_WIDTH - 1),
m_render_state.texture_palette_y);
}
break;
2019-11-01 11:47:45 +00:00
case GPU::TextureMode::Palette8Bit:
2019-10-26 02:57:35 +00:00
{
const u16 palette_value =
GetPixel(std::min<u32>(m_render_state.texture_page_x + ZeroExtend32(texcoord_x / 2), VRAM_WIDTH - 1),
std::min<u32>(m_render_state.texture_page_y + ZeroExtend32(texcoord_y), VRAM_HEIGHT - 1));
const u16 palette_index = (palette_value >> ((texcoord_x % 2) * 8)) & 0xFFu;
texture_color.bits =
GetPixel(std::min<u32>(m_render_state.texture_palette_x + ZeroExtend32(palette_index), VRAM_WIDTH - 1),
m_render_state.texture_palette_y);
}
break;
default:
{
texture_color.bits =
GetPixel(std::min<u32>(m_render_state.texture_page_x + ZeroExtend32(texcoord_x), VRAM_WIDTH - 1),
std::min<u32>(m_render_state.texture_page_y + ZeroExtend32(texcoord_y), VRAM_HEIGHT - 1));
}
break;
}
if (texture_color.bits == 0)
return;
transparent = texture_color.c;
2019-11-01 11:47:45 +00:00
if (rc.raw_texture_enable)
2019-10-26 02:57:35 +00:00
{
color.bits = texture_color.bits;
}
else
{
const u8 r = Truncate8(std::min<u16>((ZeroExtend16(texture_color.GetR8()) * ZeroExtend16(color_r)) >> 7, 0xFF));
const u8 g = Truncate8(std::min<u16>((ZeroExtend16(texture_color.GetG8()) * ZeroExtend16(color_g)) >> 7, 0xFF));
const u8 b = Truncate8(std::min<u16>((ZeroExtend16(texture_color.GetB8()) * ZeroExtend16(color_b)) >> 7, 0xFF));
if (dithering)
color.SetRGB24Dithered(x, y, r, g, b);
else
color.SetRGB24(r, g, b);
2019-10-26 02:57:35 +00:00
}
}
else
{
if (dithering)
color.SetRGB24Dithered(x, y, color_r, color_g, color_b);
else
color.SetRGB24(color_r, color_g, color_b);
2019-10-26 02:57:35 +00:00
}
if (rc.transparency_enable && transparent)
{
const VRAMPixel bg_color{GetPixel(static_cast<u32>(x), static_cast<u32>(y))};
#define BLEND_AVERAGE(bg, fg) Truncate8(std::min<u32>((ZeroExtend32(bg) / 2) + (ZeroExtend32(fg) / 2), 0x1F))
#define BLEND_ADD(bg, fg) Truncate8(std::min<u32>(ZeroExtend32(bg) + ZeroExtend32(fg), 0x1F))
#define BLEND_SUBTRACT(bg, fg) Truncate8((bg > fg) ? ((bg) - (fg)) : 0)
#define BLEND_QUARTER(bg, fg) Truncate8(std::min<u32>(ZeroExtend32(bg) + ZeroExtend32(fg / 4), 0x1F))
#define BLEND_RGB(func) \
color.Set(func(bg_color.r.GetValue(), color.r.GetValue()), func(bg_color.g.GetValue(), color.g.GetValue()), \
func(bg_color.b.GetValue(), color.b.GetValue()), color.c.GetValue())
switch (m_render_state.transparency_mode)
{
case GPU::TransparencyMode::HalfBackgroundPlusHalfForeground:
BLEND_RGB(BLEND_AVERAGE);
break;
case GPU::TransparencyMode::BackgroundPlusForeground:
BLEND_RGB(BLEND_ADD);
break;
case GPU::TransparencyMode::BackgroundMinusForeground:
BLEND_RGB(BLEND_SUBTRACT);
break;
case GPU::TransparencyMode::BackgroundPlusQuarterForeground:
BLEND_RGB(BLEND_QUARTER);
break;
default:
break;
}
#undef BLEND_RGB
#undef BLEND_QUARTER
#undef BLEND_SUBTRACT
#undef BLEND_ADD
#undef BLEND_AVERAGE
}
const u16 mask_and = m_GPUSTAT.GetMaskAND();
if ((color.bits & mask_and) != mask_and)
return;
SetPixel(static_cast<u32>(x), static_cast<u32>(y), color.bits | m_GPUSTAT.GetMaskOR());
2019-10-26 02:57:35 +00:00
}
std::unique_ptr<GPU> GPU::CreateSoftwareRenderer()
{
return std::make_unique<GPU_SW>();
}