mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			297 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			297 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | ////////////////////////////////////////////////////////////////////////////////
 | ||
|  | /// 
 | ||
|  | /// Linear interpolation algorithm.
 | ||
|  | ///
 | ||
|  | /// Author        : Copyright (c) Olli Parviainen
 | ||
|  | /// Author e-mail : oparviai 'at' iki.fi
 | ||
|  | /// SoundTouch WWW: http://www.surina.net/soundtouch
 | ||
|  | ///
 | ||
|  | ////////////////////////////////////////////////////////////////////////////////
 | ||
|  | //
 | ||
|  | // License :
 | ||
|  | //
 | ||
|  | //  SoundTouch audio processing library
 | ||
|  | //  Copyright (c) Olli Parviainen
 | ||
|  | //
 | ||
|  | //  This library is free software; you can redistribute it and/or
 | ||
|  | //  modify it under the terms of the GNU Lesser General Public
 | ||
|  | //  License as published by the Free Software Foundation; either
 | ||
|  | //  version 2.1 of the License, or (at your option) any later version.
 | ||
|  | //
 | ||
|  | //  This library is distributed in the hope that it will be useful,
 | ||
|  | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|  | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|  | //  Lesser General Public License for more details.
 | ||
|  | //
 | ||
|  | //  You should have received a copy of the GNU Lesser General Public
 | ||
|  | //  License along with this library; if not, write to the Free Software
 | ||
|  | //  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | ||
|  | //
 | ||
|  | ////////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | #include <assert.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | #include "InterpolateLinear.h"
 | ||
|  | 
 | ||
|  | using namespace soundtouch; | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | //
 | ||
|  | // InterpolateLinearInteger - integer arithmetic implementation
 | ||
|  | // 
 | ||
|  | 
 | ||
|  | /// fixed-point interpolation routine precision
 | ||
|  | #define SCALE    65536
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // Constructor
 | ||
|  | InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase() | ||
|  | { | ||
|  |     // Notice: use local function calling syntax for sake of clarity, 
 | ||
|  |     // to indicate the fact that C++ constructor can't call virtual functions.
 | ||
|  |     resetRegisters(); | ||
|  |     setRate(1.0f); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void InterpolateLinearInteger::resetRegisters() | ||
|  | { | ||
|  |     iFract = 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Transposes the sample rate of the given samples using linear interpolation. 
 | ||
|  | // 'Mono' version of the routine. Returns the number of samples returned in 
 | ||
|  | // the "dest" buffer
 | ||
|  | int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) | ||
|  | { | ||
|  |     int i; | ||
|  |     int srcSampleEnd = srcSamples - 1; | ||
|  |     int srcCount = 0; | ||
|  | 
 | ||
|  |     i = 0; | ||
|  |     while (srcCount < srcSampleEnd) | ||
|  |     { | ||
|  |         LONG_SAMPLETYPE temp; | ||
|  |      | ||
|  |         assert(iFract < SCALE); | ||
|  | 
 | ||
|  |         temp = (SCALE - iFract) * src[0] + iFract * src[1]; | ||
|  |         dest[i] = (SAMPLETYPE)(temp / SCALE); | ||
|  |         i++; | ||
|  | 
 | ||
|  |         iFract += iRate; | ||
|  | 
 | ||
|  |         int iWhole = iFract / SCALE; | ||
|  |         iFract -= iWhole * SCALE; | ||
|  |         srcCount += iWhole; | ||
|  |         src += iWhole; | ||
|  |     } | ||
|  |     srcSamples = srcCount; | ||
|  | 
 | ||
|  |     return i; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Transposes the sample rate of the given samples using linear interpolation. 
 | ||
|  | // 'Stereo' version of the routine. Returns the number of samples returned in 
 | ||
|  | // the "dest" buffer
 | ||
|  | int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) | ||
|  | { | ||
|  |     int i; | ||
|  |     int srcSampleEnd = srcSamples - 1; | ||
|  |     int srcCount = 0; | ||
|  | 
 | ||
|  |     i = 0; | ||
|  |     while (srcCount < srcSampleEnd) | ||
|  |     { | ||
|  |         LONG_SAMPLETYPE temp0; | ||
|  |         LONG_SAMPLETYPE temp1; | ||
|  |      | ||
|  |         assert(iFract < SCALE); | ||
|  | 
 | ||
|  |         temp0 = (SCALE - iFract) * src[0] + iFract * src[2]; | ||
|  |         temp1 = (SCALE - iFract) * src[1] + iFract * src[3]; | ||
|  |         dest[0] = (SAMPLETYPE)(temp0 / SCALE); | ||
|  |         dest[1] = (SAMPLETYPE)(temp1 / SCALE); | ||
|  |         dest += 2; | ||
|  |         i++; | ||
|  | 
 | ||
|  |         iFract += iRate; | ||
|  | 
 | ||
|  |         int iWhole = iFract / SCALE; | ||
|  |         iFract -= iWhole * SCALE; | ||
|  |         srcCount += iWhole; | ||
|  |         src += 2*iWhole; | ||
|  |     } | ||
|  |     srcSamples = srcCount; | ||
|  | 
 | ||
|  |     return i; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) | ||
|  | { | ||
|  |     int i; | ||
|  |     int srcSampleEnd = srcSamples - 1; | ||
|  |     int srcCount = 0; | ||
|  | 
 | ||
|  |     i = 0; | ||
|  |     while (srcCount < srcSampleEnd) | ||
|  |     { | ||
|  |         LONG_SAMPLETYPE temp, vol1; | ||
|  |      | ||
|  |         assert(iFract < SCALE); | ||
|  |         vol1 = (LONG_SAMPLETYPE)(SCALE - iFract); | ||
|  |         for (int c = 0; c < numChannels; c ++) | ||
|  |         { | ||
|  |             temp = vol1 * src[c] + iFract * src[c + numChannels]; | ||
|  |             dest[0] = (SAMPLETYPE)(temp / SCALE); | ||
|  |             dest ++; | ||
|  |         } | ||
|  |         i++; | ||
|  | 
 | ||
|  |         iFract += iRate; | ||
|  | 
 | ||
|  |         int iWhole = iFract / SCALE; | ||
|  |         iFract -= iWhole * SCALE; | ||
|  |         srcCount += iWhole; | ||
|  |         src += iWhole * numChannels; | ||
|  |     } | ||
|  |     srcSamples = srcCount; | ||
|  | 
 | ||
|  |     return i; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Sets new target iRate. Normal iRate = 1.0, smaller values represent slower 
 | ||
|  | // iRate, larger faster iRates.
 | ||
|  | void InterpolateLinearInteger::setRate(double newRate) | ||
|  | { | ||
|  |     iRate = (int)(newRate * SCALE + 0.5); | ||
|  |     TransposerBase::setRate(newRate); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | //
 | ||
|  | // InterpolateLinearFloat - floating point arithmetic implementation
 | ||
|  | // 
 | ||
|  | //////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // Constructor
 | ||
|  | InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase() | ||
|  | { | ||
|  |     // Notice: use local function calling syntax for sake of clarity, 
 | ||
|  |     // to indicate the fact that C++ constructor can't call virtual functions.
 | ||
|  |     resetRegisters(); | ||
|  |     setRate(1.0); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void InterpolateLinearFloat::resetRegisters() | ||
|  | { | ||
|  |     fract = 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Transposes the sample rate of the given samples using linear interpolation. 
 | ||
|  | // 'Mono' version of the routine. Returns the number of samples returned in 
 | ||
|  | // the "dest" buffer
 | ||
|  | int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) | ||
|  | { | ||
|  |     int i; | ||
|  |     int srcSampleEnd = srcSamples - 1; | ||
|  |     int srcCount = 0; | ||
|  | 
 | ||
|  |     i = 0; | ||
|  |     while (srcCount < srcSampleEnd) | ||
|  |     { | ||
|  |         double out; | ||
|  |         assert(fract < 1.0); | ||
|  | 
 | ||
|  |         out = (1.0 - fract) * src[0] + fract * src[1]; | ||
|  |         dest[i] = (SAMPLETYPE)out; | ||
|  |         i ++; | ||
|  | 
 | ||
|  |         // update position fraction
 | ||
|  |         fract += rate; | ||
|  |         // update whole positions
 | ||
|  |         int whole = (int)fract; | ||
|  |         fract -= whole; | ||
|  |         src += whole; | ||
|  |         srcCount += whole; | ||
|  |     } | ||
|  |     srcSamples = srcCount; | ||
|  |     return i; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Transposes the sample rate of the given samples using linear interpolation. 
 | ||
|  | // 'Mono' version of the routine. Returns the number of samples returned in 
 | ||
|  | // the "dest" buffer
 | ||
|  | int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) | ||
|  | { | ||
|  |     int i; | ||
|  |     int srcSampleEnd = srcSamples - 1; | ||
|  |     int srcCount = 0; | ||
|  | 
 | ||
|  |     i = 0; | ||
|  |     while (srcCount < srcSampleEnd) | ||
|  |     { | ||
|  |         double out0, out1; | ||
|  |         assert(fract < 1.0); | ||
|  | 
 | ||
|  |         out0 = (1.0 - fract) * src[0] + fract * src[2]; | ||
|  |         out1 = (1.0 - fract) * src[1] + fract * src[3]; | ||
|  |         dest[2*i]   = (SAMPLETYPE)out0; | ||
|  |         dest[2*i+1] = (SAMPLETYPE)out1; | ||
|  |         i ++; | ||
|  | 
 | ||
|  |         // update position fraction
 | ||
|  |         fract += rate; | ||
|  |         // update whole positions
 | ||
|  |         int whole = (int)fract; | ||
|  |         fract -= whole; | ||
|  |         src += 2*whole; | ||
|  |         srcCount += whole; | ||
|  |     } | ||
|  |     srcSamples = srcCount; | ||
|  |     return i; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) | ||
|  | { | ||
|  |     int i; | ||
|  |     int srcSampleEnd = srcSamples - 1; | ||
|  |     int srcCount = 0; | ||
|  | 
 | ||
|  |     i = 0; | ||
|  |     while (srcCount < srcSampleEnd) | ||
|  |     { | ||
|  |         float temp, vol1, fract_float; | ||
|  |      | ||
|  |         vol1 = (float)(1.0 - fract); | ||
|  | 		fract_float = (float)fract; | ||
|  |         for (int c = 0; c < numChannels; c ++) | ||
|  |         { | ||
|  | 			temp = vol1 * src[c] + fract_float * src[c + numChannels]; | ||
|  |             *dest = (SAMPLETYPE)temp; | ||
|  |             dest ++; | ||
|  |         } | ||
|  |         i++; | ||
|  | 
 | ||
|  |         fract += rate; | ||
|  | 
 | ||
|  |         int iWhole = (int)fract; | ||
|  |         fract -= iWhole; | ||
|  |         srcCount += iWhole; | ||
|  |         src += iWhole * numChannels; | ||
|  |     } | ||
|  |     srcSamples = srcCount; | ||
|  | 
 | ||
|  |     return i; | ||
|  | } |