mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
	
	
		
			1079 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1079 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | // Copyright (c) 2015-2016 The Khronos Group Inc.
 | ||
|  | //
 | ||
|  | // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
|  | // you may not use this file except in compliance with the License.
 | ||
|  | // You may obtain a copy of the License at
 | ||
|  | //
 | ||
|  | //     http://www.apache.org/licenses/LICENSE-2.0
 | ||
|  | //
 | ||
|  | // Unless required by applicable law or agreed to in writing, software
 | ||
|  | // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
|  | // See the License for the specific language governing permissions and
 | ||
|  | // limitations under the License.
 | ||
|  | 
 | ||
|  | #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
 | ||
|  | #define LIBSPIRV_UTIL_HEX_FLOAT_H_
 | ||
|  | 
 | ||
|  | #include <cassert>
 | ||
|  | #include <cctype>
 | ||
|  | #include <cmath>
 | ||
|  | #include <cstdint>
 | ||
|  | #include <iomanip>
 | ||
|  | #include <limits>
 | ||
|  | #include <sstream>
 | ||
|  | 
 | ||
|  | #if defined(_MSC_VER) && _MSC_VER < 1800
 | ||
|  | namespace std { | ||
|  | bool isnan(double f) | ||
|  | { | ||
|  |   return ::_isnan(f) != 0; | ||
|  | } | ||
|  | bool isinf(double f) | ||
|  | { | ||
|  |   return ::_finite(f) == 0; | ||
|  | } | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include "bitutils.h"
 | ||
|  | 
 | ||
|  | namespace spvutils { | ||
|  | 
 | ||
|  | class Float16 { | ||
|  |  public: | ||
|  |   Float16(uint16_t v) : val(v) {} | ||
|  |   Float16() {} | ||
|  |   static bool isNan(const Float16& val) { | ||
|  |     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); | ||
|  |   } | ||
|  |   // Returns true if the given value is any kind of infinity.
 | ||
|  |   static bool isInfinity(const Float16& val) { | ||
|  |     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); | ||
|  |   } | ||
|  |   Float16(const Float16& other) { val = other.val; } | ||
|  |   uint16_t get_value() const { return val; } | ||
|  | 
 | ||
|  |   // Returns the maximum normal value.
 | ||
|  |   static Float16 max() { return Float16(0x7bff); } | ||
|  |   // Returns the lowest normal value.
 | ||
|  |   static Float16 lowest() { return Float16(0xfbff); } | ||
|  | 
 | ||
|  |  private: | ||
|  |   uint16_t val; | ||
|  | }; | ||
|  | 
 | ||
|  | // To specialize this type, you must override uint_type to define
 | ||
|  | // an unsigned integer that can fit your floating point type.
 | ||
|  | // You must also add a isNan function that returns true if
 | ||
|  | // a value is Nan.
 | ||
|  | template <typename T> | ||
|  | struct FloatProxyTraits { | ||
|  |   typedef void uint_type; | ||
|  | }; | ||
|  | 
 | ||
|  | template <> | ||
|  | struct FloatProxyTraits<float> { | ||
|  |   typedef uint32_t uint_type; | ||
|  |   static bool isNan(float f) { return std::isnan(f); } | ||
|  |   // Returns true if the given value is any kind of infinity.
 | ||
|  |   static bool isInfinity(float f) { return std::isinf(f); } | ||
|  |   // Returns the maximum normal value.
 | ||
|  |   static float max() { return std::numeric_limits<float>::max(); } | ||
|  |   // Returns the lowest normal value.
 | ||
|  |   static float lowest() { return std::numeric_limits<float>::lowest(); } | ||
|  | }; | ||
|  | 
 | ||
|  | template <> | ||
|  | struct FloatProxyTraits<double> { | ||
|  |   typedef uint64_t uint_type; | ||
|  |   static bool isNan(double f) { return std::isnan(f); } | ||
|  |   // Returns true if the given value is any kind of infinity.
 | ||
|  |   static bool isInfinity(double f) { return std::isinf(f); } | ||
|  |   // Returns the maximum normal value.
 | ||
|  |   static double max() { return std::numeric_limits<double>::max(); } | ||
|  |   // Returns the lowest normal value.
 | ||
|  |   static double lowest() { return std::numeric_limits<double>::lowest(); } | ||
|  | }; | ||
|  | 
 | ||
|  | template <> | ||
|  | struct FloatProxyTraits<Float16> { | ||
|  |   typedef uint16_t uint_type; | ||
|  |   static bool isNan(Float16 f) { return Float16::isNan(f); } | ||
|  |   // Returns true if the given value is any kind of infinity.
 | ||
|  |   static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } | ||
|  |   // Returns the maximum normal value.
 | ||
|  |   static Float16 max() { return Float16::max(); } | ||
|  |   // Returns the lowest normal value.
 | ||
|  |   static Float16 lowest() { return Float16::lowest(); } | ||
|  | }; | ||
|  | 
 | ||
|  | // Since copying a floating point number (especially if it is NaN)
 | ||
|  | // does not guarantee that bits are preserved, this class lets us
 | ||
|  | // store the type and use it as a float when necessary.
 | ||
|  | template <typename T> | ||
|  | class FloatProxy { | ||
|  |  public: | ||
|  |   typedef typename FloatProxyTraits<T>::uint_type uint_type; | ||
|  | 
 | ||
|  |   // Since this is to act similar to the normal floats,
 | ||
|  |   // do not initialize the data by default.
 | ||
|  |   FloatProxy() {} | ||
|  | 
 | ||
|  |   // Intentionally non-explicit. This is a proxy type so
 | ||
|  |   // implicit conversions allow us to use it more transparently.
 | ||
|  |   FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); } | ||
|  | 
 | ||
|  |   // Intentionally non-explicit. This is a proxy type so
 | ||
|  |   // implicit conversions allow us to use it more transparently.
 | ||
|  |   FloatProxy(uint_type val) { data_ = val; } | ||
|  | 
 | ||
|  |   // This is helpful to have and is guaranteed not to stomp bits.
 | ||
|  |   FloatProxy<T> operator-() const { | ||
|  |     return static_cast<uint_type>(data_ ^ | ||
|  |                                   (uint_type(0x1) << (sizeof(T) * 8 - 1))); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the data as a floating point value.
 | ||
|  |   T getAsFloat() const { return BitwiseCast<T>(data_); } | ||
|  | 
 | ||
|  |   // Returns the raw data.
 | ||
|  |   uint_type data() const { return data_; } | ||
|  | 
 | ||
|  |   // Returns true if the value represents any type of NaN.
 | ||
|  |   bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } | ||
|  |   // Returns true if the value represents any type of infinity.
 | ||
|  |   bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } | ||
|  | 
 | ||
|  |   // Returns the maximum normal value.
 | ||
|  |   static FloatProxy<T> max() { | ||
|  |     return FloatProxy<T>(FloatProxyTraits<T>::max()); | ||
|  |   } | ||
|  |   // Returns the lowest normal value.
 | ||
|  |   static FloatProxy<T> lowest() { | ||
|  |     return FloatProxy<T>(FloatProxyTraits<T>::lowest()); | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   uint_type data_; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { | ||
|  |   return first.data() == second.data(); | ||
|  | } | ||
|  | 
 | ||
|  | // Reads a FloatProxy value as a normal float from a stream.
 | ||
|  | template <typename T> | ||
|  | std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { | ||
|  |   T float_val; | ||
|  |   is >> float_val; | ||
|  |   value = FloatProxy<T>(float_val); | ||
|  |   return is; | ||
|  | } | ||
|  | 
 | ||
|  | // This is an example traits. It is not meant to be used in practice, but will
 | ||
|  | // be the default for any non-specialized type.
 | ||
|  | template <typename T> | ||
|  | struct HexFloatTraits { | ||
|  |   // Integer type that can store this hex-float.
 | ||
|  |   typedef void uint_type; | ||
|  |   // Signed integer type that can store this hex-float.
 | ||
|  |   typedef void int_type; | ||
|  |   // The numerical type that this HexFloat represents.
 | ||
|  |   typedef void underlying_type; | ||
|  |   // The type needed to construct the underlying type.
 | ||
|  |   typedef void native_type; | ||
|  |   // The number of bits that are actually relevant in the uint_type.
 | ||
|  |   // This allows us to deal with, for example, 24-bit values in a 32-bit
 | ||
|  |   // integer.
 | ||
|  |   static const uint32_t num_used_bits = 0; | ||
|  |   // Number of bits that represent the exponent.
 | ||
|  |   static const uint32_t num_exponent_bits = 0; | ||
|  |   // Number of bits that represent the fractional part.
 | ||
|  |   static const uint32_t num_fraction_bits = 0; | ||
|  |   // The bias of the exponent. (How much we need to subtract from the stored
 | ||
|  |   // value to get the correct value.)
 | ||
|  |   static const uint32_t exponent_bias = 0; | ||
|  | }; | ||
|  | 
 | ||
|  | // Traits for IEEE float.
 | ||
|  | // 1 sign bit, 8 exponent bits, 23 fractional bits.
 | ||
|  | template <> | ||
|  | struct HexFloatTraits<FloatProxy<float>> { | ||
|  |   typedef uint32_t uint_type; | ||
|  |   typedef int32_t int_type; | ||
|  |   typedef FloatProxy<float> underlying_type; | ||
|  |   typedef float native_type; | ||
|  |   static const uint_type num_used_bits = 32; | ||
|  |   static const uint_type num_exponent_bits = 8; | ||
|  |   static const uint_type num_fraction_bits = 23; | ||
|  |   static const uint_type exponent_bias = 127; | ||
|  | }; | ||
|  | 
 | ||
|  | // Traits for IEEE double.
 | ||
|  | // 1 sign bit, 11 exponent bits, 52 fractional bits.
 | ||
|  | template <> | ||
|  | struct HexFloatTraits<FloatProxy<double>> { | ||
|  |   typedef uint64_t uint_type; | ||
|  |   typedef int64_t int_type; | ||
|  |   typedef FloatProxy<double> underlying_type; | ||
|  |   typedef double native_type; | ||
|  |   static const uint_type num_used_bits = 64; | ||
|  |   static const uint_type num_exponent_bits = 11; | ||
|  |   static const uint_type num_fraction_bits = 52; | ||
|  |   static const uint_type exponent_bias = 1023; | ||
|  | }; | ||
|  | 
 | ||
|  | // Traits for IEEE half.
 | ||
|  | // 1 sign bit, 5 exponent bits, 10 fractional bits.
 | ||
|  | template <> | ||
|  | struct HexFloatTraits<FloatProxy<Float16>> { | ||
|  |   typedef uint16_t uint_type; | ||
|  |   typedef int16_t int_type; | ||
|  |   typedef uint16_t underlying_type; | ||
|  |   typedef uint16_t native_type; | ||
|  |   static const uint_type num_used_bits = 16; | ||
|  |   static const uint_type num_exponent_bits = 5; | ||
|  |   static const uint_type num_fraction_bits = 10; | ||
|  |   static const uint_type exponent_bias = 15; | ||
|  | }; | ||
|  | 
 | ||
|  | enum round_direction { | ||
|  |   kRoundToZero, | ||
|  |   kRoundToNearestEven, | ||
|  |   kRoundToPositiveInfinity, | ||
|  |   kRoundToNegativeInfinity | ||
|  | }; | ||
|  | 
 | ||
|  | // Template class that houses a floating pointer number.
 | ||
|  | // It exposes a number of constants based on the provided traits to
 | ||
|  | // assist in interpreting the bits of the value.
 | ||
|  | template <typename T, typename Traits = HexFloatTraits<T>> | ||
|  | class HexFloat { | ||
|  |  public: | ||
|  |   typedef typename Traits::uint_type uint_type; | ||
|  |   typedef typename Traits::int_type int_type; | ||
|  |   typedef typename Traits::underlying_type underlying_type; | ||
|  |   typedef typename Traits::native_type native_type; | ||
|  | 
 | ||
|  |   explicit HexFloat(T f) : value_(f) {} | ||
|  | 
 | ||
|  |   T value() const { return value_; } | ||
|  |   void set_value(T f) { value_ = f; } | ||
|  | 
 | ||
|  |   // These are all written like this because it is convenient to have
 | ||
|  |   // compile-time constants for all of these values.
 | ||
|  | 
 | ||
|  |   // Pass-through values to save typing.
 | ||
|  |   static const uint32_t num_used_bits = Traits::num_used_bits; | ||
|  |   static const uint32_t exponent_bias = Traits::exponent_bias; | ||
|  |   static const uint32_t num_exponent_bits = Traits::num_exponent_bits; | ||
|  |   static const uint32_t num_fraction_bits = Traits::num_fraction_bits; | ||
|  | 
 | ||
|  |   // Number of bits to shift left to set the highest relevant bit.
 | ||
|  |   static const uint32_t top_bit_left_shift = num_used_bits - 1; | ||
|  |   // How many nibbles (hex characters) the fractional part takes up.
 | ||
|  |   static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; | ||
|  |   // If the fractional part does not fit evenly into a hex character (4-bits)
 | ||
|  |   // then we have to left-shift to get rid of leading 0s. This is the amount
 | ||
|  |   // we have to shift (might be 0).
 | ||
|  |   static const uint32_t num_overflow_bits = | ||
|  |       fraction_nibbles * 4 - num_fraction_bits; | ||
|  | 
 | ||
|  |   // The representation of the fraction, not the actual bits. This
 | ||
|  |   // includes the leading bit that is usually implicit.
 | ||
|  |   static const uint_type fraction_represent_mask = | ||
|  |       spvutils::SetBits<uint_type, 0, | ||
|  |                         num_fraction_bits + num_overflow_bits>::get; | ||
|  | 
 | ||
|  |   // The topmost bit in the nibble-aligned fraction.
 | ||
|  |   static const uint_type fraction_top_bit = | ||
|  |       uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); | ||
|  | 
 | ||
|  |   // The least significant bit in the exponent, which is also the bit
 | ||
|  |   // immediately to the left of the significand.
 | ||
|  |   static const uint_type first_exponent_bit = uint_type(1) | ||
|  |                                               << (num_fraction_bits); | ||
|  | 
 | ||
|  |   // The mask for the encoded fraction. It does not include the
 | ||
|  |   // implicit bit.
 | ||
|  |   static const uint_type fraction_encode_mask = | ||
|  |       spvutils::SetBits<uint_type, 0, num_fraction_bits>::get; | ||
|  | 
 | ||
|  |   // The bit that is used as a sign.
 | ||
|  |   static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; | ||
|  | 
 | ||
|  |   // The bits that represent the exponent.
 | ||
|  |   static const uint_type exponent_mask = | ||
|  |       spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; | ||
|  | 
 | ||
|  |   // How far left the exponent is shifted.
 | ||
|  |   static const uint32_t exponent_left_shift = num_fraction_bits; | ||
|  | 
 | ||
|  |   // How far from the right edge the fraction is shifted.
 | ||
|  |   static const uint32_t fraction_right_shift = | ||
|  |       static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; | ||
|  | 
 | ||
|  |   // The maximum representable unbiased exponent.
 | ||
|  |   static const int_type max_exponent = | ||
|  |       (exponent_mask >> num_fraction_bits) - exponent_bias; | ||
|  |   // The minimum representable exponent for normalized numbers.
 | ||
|  |   static const int_type min_exponent = -static_cast<int_type>(exponent_bias); | ||
|  | 
 | ||
|  |   // Returns the bits associated with the value.
 | ||
|  |   uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); } | ||
|  | 
 | ||
|  |   // Returns the bits associated with the value, without the leading sign bit.
 | ||
|  |   uint_type getUnsignedBits() const { | ||
|  |     return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) & | ||
|  |                                   ~sign_mask); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the bits associated with the exponent, shifted to start at the
 | ||
|  |   // lsb of the type.
 | ||
|  |   const uint_type getExponentBits() const { | ||
|  |     return static_cast<uint_type>((getBits() & exponent_mask) >> | ||
|  |                                   num_fraction_bits); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the exponent in unbiased form. This is the exponent in the
 | ||
|  |   // human-friendly form.
 | ||
|  |   const int_type getUnbiasedExponent() const { | ||
|  |     return static_cast<int_type>(getExponentBits() - exponent_bias); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns just the significand bits from the value.
 | ||
|  |   const uint_type getSignificandBits() const { | ||
|  |     return getBits() & fraction_encode_mask; | ||
|  |   } | ||
|  | 
 | ||
|  |   // If the number was normalized, returns the unbiased exponent.
 | ||
|  |   // If the number was denormal, normalize the exponent first.
 | ||
|  |   const int_type getUnbiasedNormalizedExponent() const { | ||
|  |     if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
 | ||
|  |       return 0; | ||
|  |     } | ||
|  |     int_type exp = getUnbiasedExponent(); | ||
|  |     if (exp == min_exponent) {  // We are in denorm land.
 | ||
|  |       uint_type significand_bits = getSignificandBits(); | ||
|  |       while ((significand_bits & (first_exponent_bit >> 1)) == 0) { | ||
|  |         significand_bits = static_cast<uint_type>(significand_bits << 1); | ||
|  |         exp = static_cast<int_type>(exp - 1); | ||
|  |       } | ||
|  |       significand_bits &= fraction_encode_mask; | ||
|  |     } | ||
|  |     return exp; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the signficand after it has been normalized.
 | ||
|  |   const uint_type getNormalizedSignificand() const { | ||
|  |     int_type unbiased_exponent = getUnbiasedNormalizedExponent(); | ||
|  |     uint_type significand = getSignificandBits(); | ||
|  |     for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { | ||
|  |       significand = static_cast<uint_type>(significand << 1); | ||
|  |     } | ||
|  |     significand &= fraction_encode_mask; | ||
|  |     return significand; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns true if this number represents a negative value.
 | ||
|  |   bool isNegative() const { return (getBits() & sign_mask) != 0; } | ||
|  | 
 | ||
|  |   // Sets this HexFloat from the individual components.
 | ||
|  |   // Note this assumes EVERY significand is normalized, and has an implicit
 | ||
|  |   // leading one. This means that the only way that this method will set 0,
 | ||
|  |   // is if you set a number so denormalized that it underflows.
 | ||
|  |   // Do not use this method with raw bits extracted from a subnormal number,
 | ||
|  |   // since subnormals do not have an implicit leading 1 in the significand.
 | ||
|  |   // The significand is also expected to be in the
 | ||
|  |   // lowest-most num_fraction_bits of the uint_type.
 | ||
|  |   // The exponent is expected to be unbiased, meaning an exponent of
 | ||
|  |   // 0 actually means 0.
 | ||
|  |   // If underflow_round_up is set, then on underflow, if a number is non-0
 | ||
|  |   // and would underflow, we round up to the smallest denorm.
 | ||
|  |   void setFromSignUnbiasedExponentAndNormalizedSignificand( | ||
|  |       bool negative, int_type exponent, uint_type significand, | ||
|  |       bool round_denorm_up) { | ||
|  |     bool significand_is_zero = significand == 0; | ||
|  | 
 | ||
|  |     if (exponent <= min_exponent) { | ||
|  |       // If this was denormalized, then we have to shift the bit on, meaning
 | ||
|  |       // the significand is not zero.
 | ||
|  |       significand_is_zero = false; | ||
|  |       significand |= first_exponent_bit; | ||
|  |       significand = static_cast<uint_type>(significand >> 1); | ||
|  |     } | ||
|  | 
 | ||
|  |     while (exponent < min_exponent) { | ||
|  |       significand = static_cast<uint_type>(significand >> 1); | ||
|  |       ++exponent; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (exponent == min_exponent) { | ||
|  |       if (significand == 0 && !significand_is_zero && round_denorm_up) { | ||
|  |         significand = static_cast<uint_type>(0x1); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     uint_type new_value = 0; | ||
|  |     if (negative) { | ||
|  |       new_value = static_cast<uint_type>(new_value | sign_mask); | ||
|  |     } | ||
|  |     exponent = static_cast<int_type>(exponent + exponent_bias); | ||
|  |     assert(exponent >= 0); | ||
|  | 
 | ||
|  |     // put it all together
 | ||
|  |     exponent = static_cast<uint_type>((exponent << exponent_left_shift) & | ||
|  |                                       exponent_mask); | ||
|  |     significand = static_cast<uint_type>(significand & fraction_encode_mask); | ||
|  |     new_value = static_cast<uint_type>(new_value | (exponent | significand)); | ||
|  |     value_ = BitwiseCast<T>(new_value); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Increments the significand of this number by the given amount.
 | ||
|  |   // If this would spill the significand into the implicit bit,
 | ||
|  |   // carry is set to true and the significand is shifted to fit into
 | ||
|  |   // the correct location, otherwise carry is set to false.
 | ||
|  |   // All significands and to_increment are assumed to be within the bounds
 | ||
|  |   // for a valid significand.
 | ||
|  |   static uint_type incrementSignificand(uint_type significand, | ||
|  |                                         uint_type to_increment, bool* carry) { | ||
|  |     significand = static_cast<uint_type>(significand + to_increment); | ||
|  |     *carry = false; | ||
|  |     if (significand & first_exponent_bit) { | ||
|  |       *carry = true; | ||
|  |       // The implicit 1-bit will have carried, so we should zero-out the
 | ||
|  |       // top bit and shift back.
 | ||
|  |       significand = static_cast<uint_type>(significand & ~first_exponent_bit); | ||
|  |       significand = static_cast<uint_type>(significand >> 1); | ||
|  |     } | ||
|  |     return significand; | ||
|  |   } | ||
|  | 
 | ||
|  |   // These exist because MSVC throws warnings on negative right-shifts
 | ||
|  |   // even if they are not going to be executed. Eg:
 | ||
|  |   // constant_number < 0? 0: constant_number
 | ||
|  |   // These convert the negative left-shifts into right shifts.
 | ||
|  | 
 | ||
|  |   template <typename int_type> | ||
|  |   uint_type negatable_left_shift(int_type N, uint_type val) | ||
|  |   { | ||
|  |     if(N >= 0) | ||
|  |       return val << N; | ||
|  | 
 | ||
|  |     return val >> -N; | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename int_type> | ||
|  |   uint_type negatable_right_shift(int_type N, uint_type val) | ||
|  |   { | ||
|  |     if(N >= 0) | ||
|  |       return val >> N; | ||
|  | 
 | ||
|  |     return val << -N; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns the significand, rounded to fit in a significand in
 | ||
|  |   // other_T. This is shifted so that the most significant
 | ||
|  |   // bit of the rounded number lines up with the most significant bit
 | ||
|  |   // of the returned significand.
 | ||
|  |   template <typename other_T> | ||
|  |   typename other_T::uint_type getRoundedNormalizedSignificand( | ||
|  |       round_direction dir, bool* carry_bit) { | ||
|  |     typedef typename other_T::uint_type other_uint_type; | ||
|  |     static const int_type num_throwaway_bits = | ||
|  |         static_cast<int_type>(num_fraction_bits) - | ||
|  |         static_cast<int_type>(other_T::num_fraction_bits); | ||
|  | 
 | ||
|  |     static const uint_type last_significant_bit = | ||
|  |         (num_throwaway_bits < 0) | ||
|  |             ? 0 | ||
|  |             : negatable_left_shift(num_throwaway_bits, 1u); | ||
|  |     static const uint_type first_rounded_bit = | ||
|  |         (num_throwaway_bits < 1) | ||
|  |             ? 0 | ||
|  |             : negatable_left_shift(num_throwaway_bits - 1, 1u); | ||
|  | 
 | ||
|  |     static const uint_type throwaway_mask_bits = | ||
|  |         num_throwaway_bits > 0 ? num_throwaway_bits : 0; | ||
|  |     static const uint_type throwaway_mask = | ||
|  |         spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get; | ||
|  | 
 | ||
|  |     *carry_bit = false; | ||
|  |     other_uint_type out_val = 0; | ||
|  |     uint_type significand = getNormalizedSignificand(); | ||
|  |     // If we are up-casting, then we just have to shift to the right location.
 | ||
|  |     if (num_throwaway_bits <= 0) { | ||
|  |       out_val = static_cast<other_uint_type>(significand); | ||
|  |       uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); | ||
|  |       out_val = static_cast<other_uint_type>(out_val << shift_amount); | ||
|  |       return out_val; | ||
|  |     } | ||
|  | 
 | ||
|  |     // If every non-representable bit is 0, then we don't have any casting to
 | ||
|  |     // do.
 | ||
|  |     if ((significand & throwaway_mask) == 0) { | ||
|  |       return static_cast<other_uint_type>( | ||
|  |           negatable_right_shift(num_throwaway_bits, significand)); | ||
|  |     } | ||
|  | 
 | ||
|  |     bool round_away_from_zero = false; | ||
|  |     // We actually have to narrow the significand here, so we have to follow the
 | ||
|  |     // rounding rules.
 | ||
|  |     switch (dir) { | ||
|  |       case kRoundToZero: | ||
|  |         break; | ||
|  |       case kRoundToPositiveInfinity: | ||
|  |         round_away_from_zero = !isNegative(); | ||
|  |         break; | ||
|  |       case kRoundToNegativeInfinity: | ||
|  |         round_away_from_zero = isNegative(); | ||
|  |         break; | ||
|  |       case kRoundToNearestEven: | ||
|  |         // Have to round down, round bit is 0
 | ||
|  |         if ((first_rounded_bit & significand) == 0) { | ||
|  |           break; | ||
|  |         } | ||
|  |         if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { | ||
|  |           // If any subsequent bit of the rounded portion is non-0 then we round
 | ||
|  |           // up.
 | ||
|  |           round_away_from_zero = true; | ||
|  |           break; | ||
|  |         } | ||
|  |         // We are exactly half-way between 2 numbers, pick even.
 | ||
|  |         if ((significand & last_significant_bit) != 0) { | ||
|  |           // 1 for our last bit, round up.
 | ||
|  |           round_away_from_zero = true; | ||
|  |           break; | ||
|  |         } | ||
|  |         break; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (round_away_from_zero) { | ||
|  |       return static_cast<other_uint_type>( | ||
|  |           negatable_right_shift(num_throwaway_bits, incrementSignificand( | ||
|  |               significand, last_significant_bit, carry_bit))); | ||
|  |     } else { | ||
|  |       return static_cast<other_uint_type>( | ||
|  |           negatable_right_shift(num_throwaway_bits, significand)); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // Casts this value to another HexFloat. If the cast is widening,
 | ||
|  |   // then round_dir is ignored. If the cast is narrowing, then
 | ||
|  |   // the result is rounded in the direction specified.
 | ||
|  |   // This number will retain Nan and Inf values.
 | ||
|  |   // It will also saturate to Inf if the number overflows, and
 | ||
|  |   // underflow to (0 or min depending on rounding) if the number underflows.
 | ||
|  |   template <typename other_T> | ||
|  |   void castTo(other_T& other, round_direction round_dir) { | ||
|  |     other = other_T(static_cast<typename other_T::native_type>(0)); | ||
|  |     bool negate = isNegative(); | ||
|  |     if (getUnsignedBits() == 0) { | ||
|  |       if (negate) { | ||
|  |         other.set_value(-other.value()); | ||
|  |       } | ||
|  |       return; | ||
|  |     } | ||
|  |     uint_type significand = getSignificandBits(); | ||
|  |     bool carried = false; | ||
|  |     typename other_T::uint_type rounded_significand = | ||
|  |         getRoundedNormalizedSignificand<other_T>(round_dir, &carried); | ||
|  | 
 | ||
|  |     int_type exponent = getUnbiasedExponent(); | ||
|  |     if (exponent == min_exponent) { | ||
|  |       // If we are denormal, normalize the exponent, so that we can encode
 | ||
|  |       // easily.
 | ||
|  |       exponent = static_cast<int_type>(exponent + 1); | ||
|  |       for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; | ||
|  |            check_bit = static_cast<uint_type>(check_bit >> 1)) { | ||
|  |         exponent = static_cast<int_type>(exponent - 1); | ||
|  |         if (check_bit & significand) break; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     bool is_nan = | ||
|  |         (getBits() & exponent_mask) == exponent_mask && significand != 0; | ||
|  |     bool is_inf = | ||
|  |         !is_nan && | ||
|  |         ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || | ||
|  |          (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); | ||
|  | 
 | ||
|  |     // If we are Nan or Inf we should pass that through.
 | ||
|  |     if (is_inf) { | ||
|  |       other.set_value(BitwiseCast<typename other_T::underlying_type>( | ||
|  |           static_cast<typename other_T::uint_type>( | ||
|  |               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); | ||
|  |       return; | ||
|  |     } | ||
|  |     if (is_nan) { | ||
|  |       typename other_T::uint_type shifted_significand; | ||
|  |       shifted_significand = static_cast<typename other_T::uint_type>( | ||
|  |           negatable_left_shift( | ||
|  |               static_cast<int_type>(other_T::num_fraction_bits) - | ||
|  |               static_cast<int_type>(num_fraction_bits), significand)); | ||
|  | 
 | ||
|  |       // We are some sort of Nan. We try to keep the bit-pattern of the Nan
 | ||
|  |       // as close as possible. If we had to shift off bits so we are 0, then we
 | ||
|  |       // just set the last bit.
 | ||
|  |       other.set_value(BitwiseCast<typename other_T::underlying_type>( | ||
|  |           static_cast<typename other_T::uint_type>( | ||
|  |               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | | ||
|  |               (shifted_significand == 0 ? 0x1 : shifted_significand)))); | ||
|  |       return; | ||
|  |     } | ||
|  | 
 | ||
|  |     bool round_underflow_up = | ||
|  |         isNegative() ? round_dir == kRoundToNegativeInfinity | ||
|  |                      : round_dir == kRoundToPositiveInfinity; | ||
|  |     typedef typename other_T::int_type other_int_type; | ||
|  |     // setFromSignUnbiasedExponentAndNormalizedSignificand will
 | ||
|  |     // zero out any underflowing value (but retain the sign).
 | ||
|  |     other.setFromSignUnbiasedExponentAndNormalizedSignificand( | ||
|  |         negate, static_cast<other_int_type>(exponent), rounded_significand, | ||
|  |         round_underflow_up); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |  private: | ||
|  |   T value_; | ||
|  | 
 | ||
|  |   static_assert(num_used_bits == | ||
|  |                     Traits::num_exponent_bits + Traits::num_fraction_bits + 1, | ||
|  |                 "The number of bits do not fit"); | ||
|  |   static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match"); | ||
|  | }; | ||
|  | 
 | ||
|  | // Returns 4 bits represented by the hex character.
 | ||
|  | inline uint8_t get_nibble_from_character(int character) { | ||
|  |   const char* dec = "0123456789"; | ||
|  |   const char* lower = "abcdef"; | ||
|  |   const char* upper = "ABCDEF"; | ||
|  |   const char* p = nullptr; | ||
|  |   if ((p = strchr(dec, character))) { | ||
|  |     return static_cast<uint8_t>(p - dec); | ||
|  |   } else if ((p = strchr(lower, character))) { | ||
|  |     return static_cast<uint8_t>(p - lower + 0xa); | ||
|  |   } else if ((p = strchr(upper, character))) { | ||
|  |     return static_cast<uint8_t>(p - upper + 0xa); | ||
|  |   } | ||
|  | 
 | ||
|  |   assert(false && "This was called with a non-hex character"); | ||
|  |   return 0; | ||
|  | } | ||
|  | 
 | ||
|  | // Outputs the given HexFloat to the stream.
 | ||
|  | template <typename T, typename Traits> | ||
|  | std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { | ||
|  |   typedef HexFloat<T, Traits> HF; | ||
|  |   typedef typename HF::uint_type uint_type; | ||
|  |   typedef typename HF::int_type int_type; | ||
|  | 
 | ||
|  |   static_assert(HF::num_used_bits != 0, | ||
|  |                 "num_used_bits must be non-zero for a valid float"); | ||
|  |   static_assert(HF::num_exponent_bits != 0, | ||
|  |                 "num_exponent_bits must be non-zero for a valid float"); | ||
|  |   static_assert(HF::num_fraction_bits != 0, | ||
|  |                 "num_fractin_bits must be non-zero for a valid float"); | ||
|  | 
 | ||
|  |   const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value()); | ||
|  |   const char* const sign = (bits & HF::sign_mask) ? "-" : ""; | ||
|  |   const uint_type exponent = static_cast<uint_type>( | ||
|  |       (bits & HF::exponent_mask) >> HF::num_fraction_bits); | ||
|  | 
 | ||
|  |   uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) | ||
|  |                                               << HF::num_overflow_bits); | ||
|  | 
 | ||
|  |   const bool is_zero = exponent == 0 && fraction == 0; | ||
|  |   const bool is_denorm = exponent == 0 && !is_zero; | ||
|  | 
 | ||
|  |   // exponent contains the biased exponent we have to convert it back into
 | ||
|  |   // the normal range.
 | ||
|  |   int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); | ||
|  |   // If the number is all zeros, then we actually have to NOT shift the
 | ||
|  |   // exponent.
 | ||
|  |   int_exponent = is_zero ? 0 : int_exponent; | ||
|  | 
 | ||
|  |   // If we are denorm, then start shifting, and decreasing the exponent until
 | ||
|  |   // our leading bit is 1.
 | ||
|  | 
 | ||
|  |   if (is_denorm) { | ||
|  |     while ((fraction & HF::fraction_top_bit) == 0) { | ||
|  |       fraction = static_cast<uint_type>(fraction << 1); | ||
|  |       int_exponent = static_cast<int_type>(int_exponent - 1); | ||
|  |     } | ||
|  |     // Since this is denormalized, we have to consume the leading 1 since it
 | ||
|  |     // will end up being implicit.
 | ||
|  |     fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
 | ||
|  |     fraction &= HF::fraction_represent_mask; | ||
|  |   } | ||
|  | 
 | ||
|  |   uint_type fraction_nibbles = HF::fraction_nibbles; | ||
|  |   // We do not have to display any trailing 0s, since this represents the
 | ||
|  |   // fractional part.
 | ||
|  |   while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { | ||
|  |     // Shift off any trailing values;
 | ||
|  |     fraction = static_cast<uint_type>(fraction >> 4); | ||
|  |     --fraction_nibbles; | ||
|  |   } | ||
|  | 
 | ||
|  |   const auto saved_flags = os.flags(); | ||
|  |   const auto saved_fill = os.fill(); | ||
|  | 
 | ||
|  |   os << sign << "0x" << (is_zero ? '0' : '1'); | ||
|  |   if (fraction_nibbles) { | ||
|  |     // Make sure to keep the leading 0s in place, since this is the fractional
 | ||
|  |     // part.
 | ||
|  |     os << "." << std::setw(static_cast<int>(fraction_nibbles)) | ||
|  |        << std::setfill('0') << std::hex << fraction; | ||
|  |   } | ||
|  |   os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent; | ||
|  | 
 | ||
|  |   os.flags(saved_flags); | ||
|  |   os.fill(saved_fill); | ||
|  | 
 | ||
|  |   return os; | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true if negate_value is true and the next character on the
 | ||
|  | // input stream is a plus or minus sign.  In that case we also set the fail bit
 | ||
|  | // on the stream and set the value to the zero value for its type.
 | ||
|  | template <typename T, typename Traits> | ||
|  | inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, | ||
|  |                                         HexFloat<T, Traits>& value) { | ||
|  |   if (negate_value) { | ||
|  |     auto next_char = is.peek(); | ||
|  |     if (next_char == '-' || next_char == '+') { | ||
|  |       // Fail the parse.  Emulate standard behaviour by setting the value to
 | ||
|  |       // the zero value, and set the fail bit on the stream.
 | ||
|  |       value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); | ||
|  |       is.setstate(std::ios_base::failbit); | ||
|  |       return true; | ||
|  |     } | ||
|  |   } | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | // Parses a floating point number from the given stream and stores it into the
 | ||
|  | // value parameter.
 | ||
|  | // If negate_value is true then the number may not have a leading minus or
 | ||
|  | // plus, and if it successfully parses, then the number is negated before
 | ||
|  | // being stored into the value parameter.
 | ||
|  | // If the value cannot be correctly parsed or overflows the target floating
 | ||
|  | // point type, then set the fail bit on the stream.
 | ||
|  | // TODO(dneto): Promise C++11 standard behavior in how the value is set in
 | ||
|  | // the error case, but only after all target platforms implement it correctly.
 | ||
|  | // In particular, the Microsoft C++ runtime appears to be out of spec.
 | ||
|  | template <typename T, typename Traits> | ||
|  | inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, | ||
|  |                                       HexFloat<T, Traits>& value) { | ||
|  |   if (RejectParseDueToLeadingSign(is, negate_value, value)) { | ||
|  |     return is; | ||
|  |   } | ||
|  |   T val; | ||
|  |   is >> val; | ||
|  |   if (negate_value) { | ||
|  |     val = -val; | ||
|  |   } | ||
|  |   value.set_value(val); | ||
|  |   // In the failure case, map -0.0 to 0.0.
 | ||
|  |   if (is.fail() && value.getUnsignedBits() == 0u) { | ||
|  |     value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); | ||
|  |   } | ||
|  |   if (val.isInfinity()) { | ||
|  |     // Fail the parse.  Emulate standard behaviour by setting the value to
 | ||
|  |     // the closest normal value, and set the fail bit on the stream.
 | ||
|  |     value.set_value((value.isNegative() || negate_value) ? T::lowest() | ||
|  |                                                          : T::max()); | ||
|  |     is.setstate(std::ios_base::failbit); | ||
|  |   } | ||
|  |   return is; | ||
|  | } | ||
|  | 
 | ||
|  | // Specialization of ParseNormalFloat for FloatProxy<Float16> values.
 | ||
|  | // This will parse the float as it were a 32-bit floating point number,
 | ||
|  | // and then round it down to fit into a Float16 value.
 | ||
|  | // The number is rounded towards zero.
 | ||
|  | // If negate_value is true then the number may not have a leading minus or
 | ||
|  | // plus, and if it successfully parses, then the number is negated before
 | ||
|  | // being stored into the value parameter.
 | ||
|  | // If the value cannot be correctly parsed or overflows the target floating
 | ||
|  | // point type, then set the fail bit on the stream.
 | ||
|  | // TODO(dneto): Promise C++11 standard behavior in how the value is set in
 | ||
|  | // the error case, but only after all target platforms implement it correctly.
 | ||
|  | // In particular, the Microsoft C++ runtime appears to be out of spec.
 | ||
|  | template <> | ||
|  | inline std::istream& | ||
|  | ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( | ||
|  |     std::istream& is, bool negate_value, | ||
|  |     HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { | ||
|  |   // First parse as a 32-bit float.
 | ||
|  |   HexFloat<FloatProxy<float>> float_val(0.0f); | ||
|  |   ParseNormalFloat(is, negate_value, float_val); | ||
|  | 
 | ||
|  |   // Then convert to 16-bit float, saturating at infinities, and
 | ||
|  |   // rounding toward zero.
 | ||
|  |   float_val.castTo(value, kRoundToZero); | ||
|  | 
 | ||
|  |   // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
 | ||
|  |   // fail bit and set the lowest or highest value.
 | ||
|  |   if (Float16::isInfinity(value.value().getAsFloat())) { | ||
|  |     value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); | ||
|  |     is.setstate(std::ios_base::failbit); | ||
|  |   } | ||
|  |   return is; | ||
|  | } | ||
|  | 
 | ||
|  | // Reads a HexFloat from the given stream.
 | ||
|  | // If the float is not encoded as a hex-float then it will be parsed
 | ||
|  | // as a regular float.
 | ||
|  | // This may fail if your stream does not support at least one unget.
 | ||
|  | // Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
 | ||
|  | // This would normally overflow a float and round to
 | ||
|  | // infinity but this special pattern is the exact representation for a NaN,
 | ||
|  | // and therefore is actually encoded as the correct NaN. To encode inf,
 | ||
|  | // either 0x0p+exponent_bias can be specified or any exponent greater than
 | ||
|  | // exponent_bias.
 | ||
|  | // Examples using IEEE 32-bit float encoding.
 | ||
|  | //    0x1.0p+128 (+inf)
 | ||
|  | //    -0x1.0p-128 (-inf)
 | ||
|  | //
 | ||
|  | //    0x1.1p+128 (+Nan)
 | ||
|  | //    -0x1.1p+128 (-Nan)
 | ||
|  | //
 | ||
|  | //    0x1p+129 (+inf)
 | ||
|  | //    -0x1p+129 (-inf)
 | ||
|  | template <typename T, typename Traits> | ||
|  | std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { | ||
|  |   using HF = HexFloat<T, Traits>; | ||
|  |   using uint_type = typename HF::uint_type; | ||
|  |   using int_type = typename HF::int_type; | ||
|  | 
 | ||
|  |   value.set_value(static_cast<typename HF::native_type>(0.f)); | ||
|  | 
 | ||
|  |   if (is.flags() & std::ios::skipws) { | ||
|  |     // If the user wants to skip whitespace , then we should obey that.
 | ||
|  |     while (std::isspace(is.peek())) { | ||
|  |       is.get(); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   auto next_char = is.peek(); | ||
|  |   bool negate_value = false; | ||
|  | 
 | ||
|  |   if (next_char != '-' && next_char != '0') { | ||
|  |     return ParseNormalFloat(is, negate_value, value); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (next_char == '-') { | ||
|  |     negate_value = true; | ||
|  |     is.get(); | ||
|  |     next_char = is.peek(); | ||
|  |   } | ||
|  | 
 | ||
|  |   if (next_char == '0') { | ||
|  |     is.get();  // We may have to unget this.
 | ||
|  |     auto maybe_hex_start = is.peek(); | ||
|  |     if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { | ||
|  |       is.unget(); | ||
|  |       return ParseNormalFloat(is, negate_value, value); | ||
|  |     } else { | ||
|  |       is.get();  // Throw away the 'x';
 | ||
|  |     } | ||
|  |   } else { | ||
|  |     return ParseNormalFloat(is, negate_value, value); | ||
|  |   } | ||
|  | 
 | ||
|  |   // This "looks" like a hex-float so treat it as one.
 | ||
|  |   bool seen_p = false; | ||
|  |   bool seen_dot = false; | ||
|  |   uint_type fraction_index = 0; | ||
|  | 
 | ||
|  |   uint_type fraction = 0; | ||
|  |   int_type exponent = HF::exponent_bias; | ||
|  | 
 | ||
|  |   // Strip off leading zeros so we don't have to special-case them later.
 | ||
|  |   while ((next_char = is.peek()) == '0') { | ||
|  |     is.get(); | ||
|  |   } | ||
|  | 
 | ||
|  |   bool is_denorm = | ||
|  |       true;  // Assume denorm "representation" until we hear otherwise.
 | ||
|  |              // NB: This does not mean the value is actually denorm,
 | ||
|  |              // it just means that it was written 0.
 | ||
|  |   bool bits_written = false;  // Stays false until we write a bit.
 | ||
|  |   while (!seen_p && !seen_dot) { | ||
|  |     // Handle characters that are left of the fractional part.
 | ||
|  |     if (next_char == '.') { | ||
|  |       seen_dot = true; | ||
|  |     } else if (next_char == 'p') { | ||
|  |       seen_p = true; | ||
|  |     } else if (::isxdigit(next_char)) { | ||
|  |       // We know this is not denormalized since we have stripped all leading
 | ||
|  |       // zeroes and we are not a ".".
 | ||
|  |       is_denorm = false; | ||
|  |       int number = get_nibble_from_character(next_char); | ||
|  |       for (int i = 0; i < 4; ++i, number <<= 1) { | ||
|  |         uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; | ||
|  |         if (bits_written) { | ||
|  |           // If we are here the bits represented belong in the fractional
 | ||
|  |           // part of the float, and we have to adjust the exponent accordingly.
 | ||
|  |           fraction = static_cast<uint_type>( | ||
|  |               fraction | | ||
|  |               static_cast<uint_type>( | ||
|  |                   write_bit << (HF::top_bit_left_shift - fraction_index++))); | ||
|  |           exponent = static_cast<int_type>(exponent + 1); | ||
|  |         } | ||
|  |         bits_written |= write_bit != 0; | ||
|  |       } | ||
|  |     } else { | ||
|  |       // We have not found our exponent yet, so we have to fail.
 | ||
|  |       is.setstate(std::ios::failbit); | ||
|  |       return is; | ||
|  |     } | ||
|  |     is.get(); | ||
|  |     next_char = is.peek(); | ||
|  |   } | ||
|  |   bits_written = false; | ||
|  |   while (seen_dot && !seen_p) { | ||
|  |     // Handle only fractional parts now.
 | ||
|  |     if (next_char == 'p') { | ||
|  |       seen_p = true; | ||
|  |     } else if (::isxdigit(next_char)) { | ||
|  |       int number = get_nibble_from_character(next_char); | ||
|  |       for (int i = 0; i < 4; ++i, number <<= 1) { | ||
|  |         uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; | ||
|  |         bits_written |= write_bit != 0; | ||
|  |         if (is_denorm && !bits_written) { | ||
|  |           // Handle modifying the exponent here this way we can handle
 | ||
|  |           // an arbitrary number of hex values without overflowing our
 | ||
|  |           // integer.
 | ||
|  |           exponent = static_cast<int_type>(exponent - 1); | ||
|  |         } else { | ||
|  |           fraction = static_cast<uint_type>( | ||
|  |               fraction | | ||
|  |               static_cast<uint_type>( | ||
|  |                   write_bit << (HF::top_bit_left_shift - fraction_index++))); | ||
|  |         } | ||
|  |       } | ||
|  |     } else { | ||
|  |       // We still have not found our 'p' exponent yet, so this is not a valid
 | ||
|  |       // hex-float.
 | ||
|  |       is.setstate(std::ios::failbit); | ||
|  |       return is; | ||
|  |     } | ||
|  |     is.get(); | ||
|  |     next_char = is.peek(); | ||
|  |   } | ||
|  | 
 | ||
|  |   bool seen_sign = false; | ||
|  |   int8_t exponent_sign = 1; | ||
|  |   int_type written_exponent = 0; | ||
|  |   while (true) { | ||
|  |     if ((next_char == '-' || next_char == '+')) { | ||
|  |       if (seen_sign) { | ||
|  |         is.setstate(std::ios::failbit); | ||
|  |         return is; | ||
|  |       } | ||
|  |       seen_sign = true; | ||
|  |       exponent_sign = (next_char == '-') ? -1 : 1; | ||
|  |     } else if (::isdigit(next_char)) { | ||
|  |       // Hex-floats express their exponent as decimal.
 | ||
|  |       written_exponent = static_cast<int_type>(written_exponent * 10); | ||
|  |       written_exponent = | ||
|  |           static_cast<int_type>(written_exponent + (next_char - '0')); | ||
|  |     } else { | ||
|  |       break; | ||
|  |     } | ||
|  |     is.get(); | ||
|  |     next_char = is.peek(); | ||
|  |   } | ||
|  | 
 | ||
|  |   written_exponent = static_cast<int_type>(written_exponent * exponent_sign); | ||
|  |   exponent = static_cast<int_type>(exponent + written_exponent); | ||
|  | 
 | ||
|  |   bool is_zero = is_denorm && (fraction == 0); | ||
|  |   if (is_denorm && !is_zero) { | ||
|  |     fraction = static_cast<uint_type>(fraction << 1); | ||
|  |     exponent = static_cast<int_type>(exponent - 1); | ||
|  |   } else if (is_zero) { | ||
|  |     exponent = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (exponent <= 0 && !is_zero) { | ||
|  |     fraction = static_cast<uint_type>(fraction >> 1); | ||
|  |     fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; | ||
|  |   } | ||
|  | 
 | ||
|  |   fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; | ||
|  | 
 | ||
|  |   const int_type max_exponent = | ||
|  |       SetBits<uint_type, 0, HF::num_exponent_bits>::get; | ||
|  | 
 | ||
|  |   // Handle actual denorm numbers
 | ||
|  |   while (exponent < 0 && !is_zero) { | ||
|  |     fraction = static_cast<uint_type>(fraction >> 1); | ||
|  |     exponent = static_cast<int_type>(exponent + 1); | ||
|  | 
 | ||
|  |     fraction &= HF::fraction_encode_mask; | ||
|  |     if (fraction == 0) { | ||
|  |       // We have underflowed our fraction. We should clamp to zero.
 | ||
|  |       is_zero = true; | ||
|  |       exponent = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // We have overflowed so we should be inf/-inf.
 | ||
|  |   if (exponent > max_exponent) { | ||
|  |     exponent = max_exponent; | ||
|  |     fraction = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   uint_type output_bits = static_cast<uint_type>( | ||
|  |       static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); | ||
|  |   output_bits |= fraction; | ||
|  | 
 | ||
|  |   uint_type shifted_exponent = static_cast<uint_type>( | ||
|  |       static_cast<uint_type>(exponent << HF::exponent_left_shift) & | ||
|  |       HF::exponent_mask); | ||
|  |   output_bits |= shifted_exponent; | ||
|  | 
 | ||
|  |   T output_float = spvutils::BitwiseCast<T>(output_bits); | ||
|  |   value.set_value(output_float); | ||
|  | 
 | ||
|  |   return is; | ||
|  | } | ||
|  | 
 | ||
|  | // Writes a FloatProxy value to a stream.
 | ||
|  | // Zero and normal numbers are printed in the usual notation, but with
 | ||
|  | // enough digits to fully reproduce the value.  Other values (subnormal,
 | ||
|  | // NaN, and infinity) are printed as a hex float.
 | ||
|  | template <typename T> | ||
|  | std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { | ||
|  |   auto float_val = value.getAsFloat(); | ||
|  |   switch (std::fpclassify(float_val)) { | ||
|  |     case FP_ZERO: | ||
|  |     case FP_NORMAL: { | ||
|  |       auto saved_precision = os.precision(); | ||
|  |       os.precision(std::numeric_limits<T>::digits10); | ||
|  |       os << float_val; | ||
|  |       os.precision(saved_precision); | ||
|  |     } break; | ||
|  |     default: | ||
|  |       os << HexFloat<FloatProxy<T>>(value); | ||
|  |       break; | ||
|  |   } | ||
|  |   return os; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline std::ostream& operator<<<Float16>(std::ostream& os, | ||
|  |                                          const FloatProxy<Float16>& value) { | ||
|  |   os << HexFloat<FloatProxy<Float16>>(value); | ||
|  |   return os; | ||
|  | } | ||
|  | } | ||
|  | 
 | ||
|  | #endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_
 |