Duckstation/src/core/psf_loader.cpp

239 lines
6.7 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: 2019-2022 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "psf_loader.h"
2021-01-24 03:55:19 +00:00
#include "bios.h"
#include "common/assert.h"
#include "common/file_system.h"
#include "common/log.h"
2022-07-08 11:57:06 +00:00
#include "common/path.h"
#include "system.h"
#include "zlib.h"
#include <cctype>
#include <cstring>
Log_SetChannel(PSFLoader);
namespace PSFLoader {
std::optional<std::string> File::GetTagString(const char* tag_name) const
{
auto it = m_tags.find(tag_name);
if (it == m_tags.end())
return std::nullopt;
return it->second;
}
std::optional<int> File::GetTagInt(const char* tag_name) const
{
auto it = m_tags.find(tag_name);
if (it == m_tags.end())
return std::nullopt;
return std::atoi(it->second.c_str());
}
std::optional<float> File::GetTagFloat(const char* tag_name) const
{
auto it = m_tags.find(tag_name);
if (it == m_tags.end())
return std::nullopt;
return static_cast<float>(std::atof(it->second.c_str()));
}
std::string File::GetTagString(const char* tag_name, const char* default_value) const
{
std::optional<std::string> value(GetTagString(tag_name));
if (value.has_value())
return value.value();
return default_value;
}
int File::GetTagInt(const char* tag_name, int default_value) const
{
return GetTagInt(tag_name).value_or(default_value);
}
float File::GetTagFloat(const char* tag_name, float default_value) const
{
return GetTagFloat(tag_name).value_or(default_value);
}
bool File::Load(const char* path)
{
std::optional<std::vector<u8>> file_data(FileSystem::ReadBinaryFile(path));
if (!file_data.has_value() || file_data->empty())
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Failed to open/read PSF file '{}'", path);
return false;
}
const u8* file_pointer = file_data->data();
const u8* file_pointer_end = file_data->data() + file_data->size();
const u32 file_size = static_cast<u32>(file_data->size());
PSFHeader header;
std::memcpy(&header, file_pointer, sizeof(header));
file_pointer += sizeof(header);
if (header.id[0] != 'P' || header.id[1] != 'S' || header.id[2] != 'F' || header.version != 0x01 ||
header.compressed_program_size == 0 ||
(sizeof(header) + header.reserved_area_size + header.compressed_program_size) > file_size)
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Invalid or incompatible header in PSF '{}'", path);
return false;
}
file_pointer += header.reserved_area_size;
m_program_data.resize(MAX_PROGRAM_SIZE);
z_stream strm = {};
strm.avail_in = static_cast<uInt>(file_pointer_end - file_pointer);
strm.next_in = static_cast<Bytef*>(const_cast<u8*>(file_pointer));
strm.avail_out = static_cast<uInt>(m_program_data.size());
strm.next_out = static_cast<Bytef*>(m_program_data.data());
int err = inflateInit(&strm);
if (err != Z_OK)
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("inflateInit() failed: {}", err);
return false;
}
// we can do this in one pass because we preallocate the max size
err = inflate(&strm, Z_NO_FLUSH);
if (err != Z_STREAM_END)
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("inflate() failed: {}", err);
inflateEnd(&strm);
return false;
}
else if (strm.total_in != header.compressed_program_size)
{
2024-05-23 10:55:28 +00:00
WARNING_LOG("Mismatch between compressed size in header and stream {}/{}", header.compressed_program_size,
static_cast<u32>(strm.total_in));
}
m_program_data.resize(strm.total_out);
file_pointer += header.compressed_program_size;
inflateEnd(&strm);
u32 remaining_tag_data = static_cast<u32>(file_pointer_end - file_pointer);
static constexpr char tag_signature[] = {'[', 'T', 'A', 'G', ']'};
if (remaining_tag_data >= sizeof(tag_signature) &&
std::memcmp(file_pointer, tag_signature, sizeof(tag_signature)) == 0)
{
file_pointer += sizeof(tag_signature);
while (file_pointer < file_pointer_end)
{
// skip whitespace
while (file_pointer < file_pointer_end && *file_pointer <= 0x20)
file_pointer++;
std::string tag_key;
while (file_pointer < file_pointer_end && *file_pointer != '=')
tag_key += (static_cast<char>(*(file_pointer++)));
// skip =
if (file_pointer < file_pointer_end)
file_pointer++;
std::string tag_value;
while (file_pointer < file_pointer_end && *file_pointer != '\n')
tag_value += (static_cast<char>(*(file_pointer++)));
if (!tag_key.empty())
{
2024-05-23 10:55:28 +00:00
DEV_LOG("PSF Tag: '{}' = '{}'", tag_key, tag_value);
m_tags.emplace(std::move(tag_key), std::move(tag_value));
}
}
}
2021-01-24 03:55:19 +00:00
// Region detection.
m_region = BIOS::GetPSExeDiscRegion(*reinterpret_cast<const BIOS::PSEXEHeader*>(m_program_data.data()));
// _refresh tag takes precedence.
const int refresh_tag = GetTagInt("_region", 0);
if (refresh_tag == 60)
m_region = DiscRegion::NTSC_U;
else if (refresh_tag == 50)
m_region = DiscRegion::PAL;
return true;
}
static bool LoadLibraryPSF(const char* path, bool use_pc_sp, u32 depth = 0)
{
// don't recurse past 10 levels just in case of broken files
if (depth >= 10)
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Recursion depth exceeded when loading PSF '{}'", path);
return false;
}
File file;
if (!file.Load(path))
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Failed to load main PSF '{}'", path);
return false;
}
// load the main parent library - this has to be done first so the specified PSF takes precedence
std::optional<std::string> lib_name(file.GetTagString("_lib"));
if (lib_name.has_value())
{
2022-07-08 11:57:06 +00:00
const std::string lib_path(Path::BuildRelativePath(path, lib_name.value()));
2024-05-23 10:55:28 +00:00
INFO_LOG("Loading main parent PSF '{}'", lib_path);
// We should use the initial SP/PC from the **first** parent lib.
const bool lib_use_pc_sp = (depth == 0);
if (!LoadLibraryPSF(lib_path.c_str(), lib_use_pc_sp, depth + 1))
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Failed to load main parent PSF '{}'", lib_path);
return false;
}
// Don't apply the PC/SP from the minipsf file.
if (lib_use_pc_sp)
use_pc_sp = false;
}
// apply the main psf
if (!System::InjectEXEFromBuffer(file.GetProgramData().data(), static_cast<u32>(file.GetProgramData().size()),
use_pc_sp))
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Failed to parse EXE from PSF '{}'", path);
return false;
}
// load any other parent psfs
u32 lib_counter = 2;
for (;;)
{
lib_name = file.GetTagString(TinyString::from_format("_lib{}", lib_counter++));
if (!lib_name.has_value())
break;
2022-07-08 11:57:06 +00:00
const std::string lib_path(Path::BuildRelativePath(path, lib_name.value()));
2024-05-23 10:55:28 +00:00
INFO_LOG("Loading parent PSF '{}'", lib_path);
if (!LoadLibraryPSF(lib_path.c_str(), false, depth + 1))
{
2024-05-23 10:55:28 +00:00
ERROR_LOG("Failed to load parent PSF '{}'", lib_path);
return false;
}
}
return true;
}
bool Load(const char* path)
{
2024-05-23 10:55:28 +00:00
INFO_LOG("Loading PSF file from '{}'", path);
return LoadLibraryPSF(path, true);
}
} // namespace PSFLoader