CPU: Make namespacing explicit

This commit is contained in:
Stenzek 2023-10-01 16:00:37 +10:00
parent 68da62ec29
commit 05fe925409

View file

@ -23,12 +23,46 @@
Log_SetChannel(CPU::Core); Log_SetChannel(CPU::Core);
namespace CPU { namespace CPU {
static void SetPC(u32 new_pc); static void SetPC(u32 new_pc);
static void UpdateLoadDelay(); static void UpdateLoadDelay();
static void Branch(u32 target); static void Branch(u32 target);
static void FlushPipeline(); static void FlushPipeline();
static u32 GetExceptionVector(bool debug_exception = false);
static void RaiseException(u32 CAUSE_bits, u32 EPC, u32 vector);
static u32 ReadReg(Reg rs);
static void WriteReg(Reg rd, u32 value);
static void WriteRegDelayed(Reg rd, u32 value);
static u32 ReadCop0Reg(Cop0Reg reg);
static void WriteCop0Reg(Cop0Reg reg, u32 value);
static void DispatchCop0Breakpoint();
static void Cop0ExecutionBreakpointCheck();
template<MemoryAccessType type>
static void Cop0DataBreakpointCheck(VirtualMemoryAddress address);
static bool BreakpointCheck();
#ifdef _DEBUG
static void TracePrintInstruction();
#endif
static void DisassembleAndPrint(u32 addr, const char* prefix);
static void PrintInstruction(u32 bits, u32 pc, Registers* regs, const char* prefix);
static void LogInstruction(u32 bits, u32 pc, Registers* regs);
static void HandleWriteSyscall();
static void HandlePutcSyscall();
static void HandlePutsSyscall();
static void ExecuteDebug();
template<PGXPMode pgxp_mode, bool debug>
static void ExecuteInstruction();
template<PGXPMode pgxp_mode, bool debug>
[[noreturn]] static void ExecuteImpl();
State g_state; State g_state;
bool TRACE_EXECUTION = false; bool TRACE_EXECUTION = false;
@ -44,13 +78,14 @@ static u32 s_breakpoint_counter = 1;
static u32 s_last_breakpoint_check_pc = INVALID_BREAKPOINT_PC; static u32 s_last_breakpoint_check_pc = INVALID_BREAKPOINT_PC;
static bool s_single_step = false; static bool s_single_step = false;
static bool s_single_step_done = false; static bool s_single_step_done = false;
} // namespace CPU
bool IsTraceEnabled() bool CPU::IsTraceEnabled()
{ {
return s_trace_to_log; return s_trace_to_log;
} }
void StartTrace() void CPU::StartTrace()
{ {
if (s_trace_to_log) if (s_trace_to_log)
return; return;
@ -59,7 +94,7 @@ void StartTrace()
UpdateDebugDispatcherFlag(); UpdateDebugDispatcherFlag();
} }
void StopTrace() void CPU::StopTrace()
{ {
if (!s_trace_to_log) if (!s_trace_to_log)
return; return;
@ -72,7 +107,7 @@ void StopTrace()
UpdateDebugDispatcherFlag(); UpdateDebugDispatcherFlag();
} }
void WriteToExecutionLog(const char* format, ...) void CPU::WriteToExecutionLog(const char* format, ...)
{ {
if (!s_log_file_opened) if (!s_log_file_opened)
{ {
@ -93,7 +128,7 @@ void WriteToExecutionLog(const char* format, ...)
} }
} }
void Initialize() void CPU::Initialize()
{ {
// From nocash spec. // From nocash spec.
g_state.cop0_regs.PRID = UINT32_C(0x00000002); g_state.cop0_regs.PRID = UINT32_C(0x00000002);
@ -109,13 +144,13 @@ void Initialize()
GTE::Initialize(); GTE::Initialize();
} }
void Shutdown() void CPU::Shutdown()
{ {
ClearBreakpoints(); ClearBreakpoints();
StopTrace(); StopTrace();
} }
void Reset() void CPU::Reset()
{ {
g_state.pending_ticks = 0; g_state.pending_ticks = 0;
g_state.downcount = 0; g_state.downcount = 0;
@ -141,7 +176,7 @@ void Reset()
SetPC(RESET_VECTOR); SetPC(RESET_VECTOR);
} }
bool DoState(StateWrapper& sw) bool CPU::DoState(StateWrapper& sw)
{ {
sw.Do(&g_state.pending_ticks); sw.Do(&g_state.pending_ticks);
sw.Do(&g_state.downcount); sw.Do(&g_state.downcount);
@ -180,8 +215,10 @@ bool DoState(StateWrapper& sw)
// Compatibility with old states. // Compatibility with old states.
if (sw.GetVersion() < 59) if (sw.GetVersion() < 59)
{ {
g_state.load_delay_reg = static_cast<Reg>(std::min(static_cast<u8>(g_state.load_delay_reg), static_cast<u8>(Reg::count))); g_state.load_delay_reg =
g_state.next_load_delay_reg = static_cast<Reg>(std::min(static_cast<u8>(g_state.load_delay_reg), static_cast<u8>(Reg::count))); static_cast<Reg>(std::min(static_cast<u8>(g_state.load_delay_reg), static_cast<u8>(Reg::count)));
g_state.next_load_delay_reg =
static_cast<Reg>(std::min(static_cast<u8>(g_state.load_delay_reg), static_cast<u8>(Reg::count)));
} }
sw.Do(&g_state.cache_control.bits); sw.Do(&g_state.cache_control.bits);
@ -210,7 +247,7 @@ bool DoState(StateWrapper& sw)
return !sw.HasError(); return !sw.HasError();
} }
void UpdateFastmemBase() void CPU::UpdateFastmemBase()
{ {
if (g_state.cop0_regs.sr.Isc) if (g_state.cop0_regs.sr.Isc)
g_state.fastmem_base = nullptr; g_state.fastmem_base = nullptr;
@ -218,14 +255,14 @@ void UpdateFastmemBase()
g_state.fastmem_base = Bus::GetFastmemBase(); g_state.fastmem_base = Bus::GetFastmemBase();
} }
ALWAYS_INLINE_RELEASE void SetPC(u32 new_pc) ALWAYS_INLINE_RELEASE void CPU::SetPC(u32 new_pc)
{ {
DebugAssert(Common::IsAlignedPow2(new_pc, 4)); DebugAssert(Common::IsAlignedPow2(new_pc, 4));
g_state.npc = new_pc; g_state.npc = new_pc;
FlushPipeline(); FlushPipeline();
} }
ALWAYS_INLINE_RELEASE void Branch(u32 target) ALWAYS_INLINE_RELEASE void CPU::Branch(u32 target)
{ {
if (!Common::IsAlignedPow2(target, 4)) if (!Common::IsAlignedPow2(target, 4))
{ {
@ -239,13 +276,13 @@ ALWAYS_INLINE_RELEASE void Branch(u32 target)
g_state.branch_was_taken = true; g_state.branch_was_taken = true;
} }
ALWAYS_INLINE static u32 GetExceptionVector(bool debug_exception = false) ALWAYS_INLINE_RELEASE u32 CPU::GetExceptionVector(bool debug_exception /* = false*/)
{ {
const u32 base = g_state.cop0_regs.sr.BEV ? UINT32_C(0xbfc00100) : UINT32_C(0x80000000); const u32 base = g_state.cop0_regs.sr.BEV ? UINT32_C(0xbfc00100) : UINT32_C(0x80000000);
return base | (debug_exception ? UINT32_C(0x00000040) : UINT32_C(0x00000080)); return base | (debug_exception ? UINT32_C(0x00000040) : UINT32_C(0x00000080));
} }
ALWAYS_INLINE_RELEASE static void RaiseException(u32 CAUSE_bits, u32 EPC, u32 vector) ALWAYS_INLINE_RELEASE void CPU::RaiseException(u32 CAUSE_bits, u32 EPC, u32 vector)
{ {
g_state.cop0_regs.EPC = EPC; g_state.cop0_regs.EPC = EPC;
g_state.cop0_regs.cause.bits = (g_state.cop0_regs.cause.bits & ~Cop0Registers::CAUSE::EXCEPTION_WRITE_MASK) | g_state.cop0_regs.cause.bits = (g_state.cop0_regs.cause.bits & ~Cop0Registers::CAUSE::EXCEPTION_WRITE_MASK) |
@ -287,7 +324,7 @@ ALWAYS_INLINE_RELEASE static void RaiseException(u32 CAUSE_bits, u32 EPC, u32 ve
FlushPipeline(); FlushPipeline();
} }
ALWAYS_INLINE_RELEASE static void DispatchCop0Breakpoint() ALWAYS_INLINE_RELEASE void CPU::DispatchCop0Breakpoint()
{ {
// When a breakpoint address match occurs the PSX jumps to 80000040h (ie. unlike normal exceptions, not to 80000080h). // When a breakpoint address match occurs the PSX jumps to 80000040h (ie. unlike normal exceptions, not to 80000080h).
// The Excode value in the CAUSE register is set to 09h (same as BREAK opcode), and EPC contains the return address, // The Excode value in the CAUSE register is set to 09h (same as BREAK opcode), and EPC contains the return address,
@ -299,12 +336,12 @@ ALWAYS_INLINE_RELEASE static void DispatchCop0Breakpoint()
g_state.current_instruction_pc, GetExceptionVector(true)); g_state.current_instruction_pc, GetExceptionVector(true));
} }
void RaiseException(u32 CAUSE_bits, u32 EPC) void CPU::RaiseException(u32 CAUSE_bits, u32 EPC)
{ {
RaiseException(CAUSE_bits, EPC, GetExceptionVector()); RaiseException(CAUSE_bits, EPC, GetExceptionVector());
} }
void RaiseException(Exception excode) void CPU::RaiseException(Exception excode)
{ {
RaiseException(Cop0Registers::CAUSE::MakeValueForException(excode, g_state.current_instruction_in_branch_delay_slot, RaiseException(Cop0Registers::CAUSE::MakeValueForException(excode, g_state.current_instruction_in_branch_delay_slot,
g_state.current_instruction_was_branch_taken, g_state.current_instruction_was_branch_taken,
@ -312,7 +349,7 @@ void RaiseException(Exception excode)
g_state.current_instruction_pc, GetExceptionVector()); g_state.current_instruction_pc, GetExceptionVector());
} }
void RaiseBreakException(u32 CAUSE_bits, u32 EPC, u32 instruction_bits) void CPU::RaiseBreakException(u32 CAUSE_bits, u32 EPC, u32 instruction_bits)
{ {
if (PCDrv::HandleSyscall(instruction_bits, g_state.regs)) if (PCDrv::HandleSyscall(instruction_bits, g_state.regs))
{ {
@ -326,18 +363,18 @@ void RaiseBreakException(u32 CAUSE_bits, u32 EPC, u32 instruction_bits)
RaiseException(CAUSE_bits, EPC, GetExceptionVector()); RaiseException(CAUSE_bits, EPC, GetExceptionVector());
} }
void SetExternalInterrupt(u8 bit) void CPU::SetExternalInterrupt(u8 bit)
{ {
g_state.cop0_regs.cause.Ip |= static_cast<u8>(1u << bit); g_state.cop0_regs.cause.Ip |= static_cast<u8>(1u << bit);
CheckForPendingInterrupt(); CheckForPendingInterrupt();
} }
void ClearExternalInterrupt(u8 bit) void CPU::ClearExternalInterrupt(u8 bit)
{ {
g_state.cop0_regs.cause.Ip &= static_cast<u8>(~(1u << bit)); g_state.cop0_regs.cause.Ip &= static_cast<u8>(~(1u << bit));
} }
ALWAYS_INLINE_RELEASE static void UpdateLoadDelay() ALWAYS_INLINE_RELEASE void CPU::UpdateLoadDelay()
{ {
// the old value is needed in case the delay slot instruction overwrites the same register // the old value is needed in case the delay slot instruction overwrites the same register
g_state.regs.r[static_cast<u8>(g_state.load_delay_reg)] = g_state.load_delay_value; g_state.regs.r[static_cast<u8>(g_state.load_delay_reg)] = g_state.load_delay_value;
@ -346,7 +383,7 @@ ALWAYS_INLINE_RELEASE static void UpdateLoadDelay()
g_state.next_load_delay_reg = Reg::count; g_state.next_load_delay_reg = Reg::count;
} }
ALWAYS_INLINE_RELEASE static void FlushPipeline() ALWAYS_INLINE_RELEASE void CPU::FlushPipeline()
{ {
// loads are flushed // loads are flushed
g_state.next_load_delay_reg = Reg::count; g_state.next_load_delay_reg = Reg::count;
@ -367,12 +404,12 @@ ALWAYS_INLINE_RELEASE static void FlushPipeline()
g_state.current_instruction_was_branch_taken = false; g_state.current_instruction_was_branch_taken = false;
} }
ALWAYS_INLINE static u32 ReadReg(Reg rs) ALWAYS_INLINE u32 CPU::ReadReg(Reg rs)
{ {
return g_state.regs.r[static_cast<u8>(rs)]; return g_state.regs.r[static_cast<u8>(rs)];
} }
ALWAYS_INLINE static void WriteReg(Reg rd, u32 value) ALWAYS_INLINE void CPU::WriteReg(Reg rd, u32 value)
{ {
g_state.regs.r[static_cast<u8>(rd)] = value; g_state.regs.r[static_cast<u8>(rd)] = value;
g_state.load_delay_reg = (rd == g_state.load_delay_reg) ? Reg::count : g_state.load_delay_reg; g_state.load_delay_reg = (rd == g_state.load_delay_reg) ? Reg::count : g_state.load_delay_reg;
@ -381,7 +418,7 @@ ALWAYS_INLINE static void WriteReg(Reg rd, u32 value)
g_state.regs.zero = 0; g_state.regs.zero = 0;
} }
ALWAYS_INLINE_RELEASE static void WriteRegDelayed(Reg rd, u32 value) ALWAYS_INLINE_RELEASE void CPU::WriteRegDelayed(Reg rd, u32 value)
{ {
DebugAssert(g_state.next_load_delay_reg == Reg::count); DebugAssert(g_state.next_load_delay_reg == Reg::count);
if (rd == Reg::zero) if (rd == Reg::zero)
@ -396,7 +433,7 @@ ALWAYS_INLINE_RELEASE static void WriteRegDelayed(Reg rd, u32 value)
g_state.next_load_delay_value = value; g_state.next_load_delay_value = value;
} }
ALWAYS_INLINE_RELEASE static u32 ReadCop0Reg(Cop0Reg reg) ALWAYS_INLINE_RELEASE u32 CPU::ReadCop0Reg(Cop0Reg reg)
{ {
switch (reg) switch (reg)
{ {
@ -438,7 +475,7 @@ ALWAYS_INLINE_RELEASE static u32 ReadCop0Reg(Cop0Reg reg)
} }
} }
ALWAYS_INLINE_RELEASE static void WriteCop0Reg(Cop0Reg reg, u32 value) ALWAYS_INLINE_RELEASE void CPU::WriteCop0Reg(Cop0Reg reg, u32 value)
{ {
switch (reg) switch (reg)
{ {
@ -509,7 +546,7 @@ ALWAYS_INLINE_RELEASE static void WriteCop0Reg(Cop0Reg reg, u32 value)
} }
} }
ALWAYS_INLINE_RELEASE void Cop0ExecutionBreakpointCheck() ALWAYS_INLINE_RELEASE void CPU::Cop0ExecutionBreakpointCheck()
{ {
if (!g_state.cop0_regs.dcic.ExecutionBreakpointsEnabled()) if (!g_state.cop0_regs.dcic.ExecutionBreakpointsEnabled())
return; return;
@ -529,7 +566,7 @@ ALWAYS_INLINE_RELEASE void Cop0ExecutionBreakpointCheck()
} }
template<MemoryAccessType type> template<MemoryAccessType type>
ALWAYS_INLINE_RELEASE void Cop0DataBreakpointCheck(VirtualMemoryAddress address) ALWAYS_INLINE_RELEASE void CPU::Cop0DataBreakpointCheck(VirtualMemoryAddress address)
{ {
if constexpr (type == MemoryAccessType::Read) if constexpr (type == MemoryAccessType::Read)
{ {
@ -562,7 +599,7 @@ ALWAYS_INLINE_RELEASE void Cop0DataBreakpointCheck(VirtualMemoryAddress address)
#ifdef _DEBUG #ifdef _DEBUG
static void TracePrintInstruction() void CPU::TracePrintInstruction()
{ {
const u32 pc = g_state.current_instruction_pc; const u32 pc = g_state.current_instruction_pc;
const u32 bits = g_state.current_instruction.bits; const u32 bits = g_state.current_instruction.bits;
@ -584,7 +621,7 @@ static void TracePrintInstruction()
#endif #endif
static void PrintInstruction(u32 bits, u32 pc, Registers* regs, const char* prefix) void CPU::PrintInstruction(u32 bits, u32 pc, Registers* regs, const char* prefix)
{ {
TinyString instr; TinyString instr;
TinyString comment; TinyString comment;
@ -601,7 +638,7 @@ static void PrintInstruction(u32 bits, u32 pc, Registers* regs, const char* pref
Log_DevPrintf("%s%08x: %08x %s", prefix, pc, bits, instr.c_str()); Log_DevPrintf("%s%08x: %08x %s", prefix, pc, bits, instr.c_str());
} }
static void LogInstruction(u32 bits, u32 pc, Registers* regs) void CPU::LogInstruction(u32 bits, u32 pc, Registers* regs)
{ {
TinyString instr; TinyString instr;
TinyString comment; TinyString comment;
@ -618,7 +655,7 @@ static void LogInstruction(u32 bits, u32 pc, Registers* regs)
WriteToExecutionLog("%08x: %08x %s\n", pc, bits, instr.c_str()); WriteToExecutionLog("%08x: %08x %s\n", pc, bits, instr.c_str());
} }
static void HandleWriteSyscall() void CPU::HandleWriteSyscall()
{ {
const auto& regs = g_state.regs; const auto& regs = g_state.regs;
if (regs.a0 != 1) // stdout if (regs.a0 != 1) // stdout
@ -636,14 +673,14 @@ static void HandleWriteSyscall()
} }
} }
static void HandlePutcSyscall() void CPU::HandlePutcSyscall()
{ {
const auto& regs = g_state.regs; const auto& regs = g_state.regs;
if (regs.a0 != 0) if (regs.a0 != 0)
Bus::AddTTYCharacter(static_cast<char>(regs.a0)); Bus::AddTTYCharacter(static_cast<char>(regs.a0));
} }
static void HandlePutsSyscall() void CPU::HandlePutsSyscall()
{ {
const auto& regs = g_state.regs; const auto& regs = g_state.regs;
@ -658,7 +695,7 @@ static void HandlePutsSyscall()
} }
} }
void HandleA0Syscall() void CPU::HandleA0Syscall()
{ {
const auto& regs = g_state.regs; const auto& regs = g_state.regs;
const u32 call = regs.t1; const u32 call = regs.t1;
@ -670,7 +707,7 @@ void HandleA0Syscall()
HandlePutsSyscall(); HandlePutsSyscall();
} }
void HandleB0Syscall() void CPU::HandleB0Syscall()
{ {
const auto& regs = g_state.regs; const auto& regs = g_state.regs;
const u32 call = regs.t1; const u32 call = regs.t1;
@ -682,113 +719,113 @@ void HandleB0Syscall()
HandlePutsSyscall(); HandlePutsSyscall();
} }
const std::array<DebuggerRegisterListEntry, NUM_DEBUGGER_REGISTER_LIST_ENTRIES> g_debugger_register_list = { const std::array<CPU::DebuggerRegisterListEntry, CPU::NUM_DEBUGGER_REGISTER_LIST_ENTRIES>
{{"zero", &CPU::g_state.regs.zero}, CPU::g_debugger_register_list = {{{"zero", &CPU::g_state.regs.zero},
{"at", &CPU::g_state.regs.at}, {"at", &CPU::g_state.regs.at},
{"v0", &CPU::g_state.regs.v0}, {"v0", &CPU::g_state.regs.v0},
{"v1", &CPU::g_state.regs.v1}, {"v1", &CPU::g_state.regs.v1},
{"a0", &CPU::g_state.regs.a0}, {"a0", &CPU::g_state.regs.a0},
{"a1", &CPU::g_state.regs.a1}, {"a1", &CPU::g_state.regs.a1},
{"a2", &CPU::g_state.regs.a2}, {"a2", &CPU::g_state.regs.a2},
{"a3", &CPU::g_state.regs.a3}, {"a3", &CPU::g_state.regs.a3},
{"t0", &CPU::g_state.regs.t0}, {"t0", &CPU::g_state.regs.t0},
{"t1", &CPU::g_state.regs.t1}, {"t1", &CPU::g_state.regs.t1},
{"t2", &CPU::g_state.regs.t2}, {"t2", &CPU::g_state.regs.t2},
{"t3", &CPU::g_state.regs.t3}, {"t3", &CPU::g_state.regs.t3},
{"t4", &CPU::g_state.regs.t4}, {"t4", &CPU::g_state.regs.t4},
{"t5", &CPU::g_state.regs.t5}, {"t5", &CPU::g_state.regs.t5},
{"t6", &CPU::g_state.regs.t6}, {"t6", &CPU::g_state.regs.t6},
{"t7", &CPU::g_state.regs.t7}, {"t7", &CPU::g_state.regs.t7},
{"s0", &CPU::g_state.regs.s0}, {"s0", &CPU::g_state.regs.s0},
{"s1", &CPU::g_state.regs.s1}, {"s1", &CPU::g_state.regs.s1},
{"s2", &CPU::g_state.regs.s2}, {"s2", &CPU::g_state.regs.s2},
{"s3", &CPU::g_state.regs.s3}, {"s3", &CPU::g_state.regs.s3},
{"s4", &CPU::g_state.regs.s4}, {"s4", &CPU::g_state.regs.s4},
{"s5", &CPU::g_state.regs.s5}, {"s5", &CPU::g_state.regs.s5},
{"s6", &CPU::g_state.regs.s6}, {"s6", &CPU::g_state.regs.s6},
{"s7", &CPU::g_state.regs.s7}, {"s7", &CPU::g_state.regs.s7},
{"t8", &CPU::g_state.regs.t8}, {"t8", &CPU::g_state.regs.t8},
{"t9", &CPU::g_state.regs.t9}, {"t9", &CPU::g_state.regs.t9},
{"k0", &CPU::g_state.regs.k0}, {"k0", &CPU::g_state.regs.k0},
{"k1", &CPU::g_state.regs.k1}, {"k1", &CPU::g_state.regs.k1},
{"gp", &CPU::g_state.regs.gp}, {"gp", &CPU::g_state.regs.gp},
{"sp", &CPU::g_state.regs.sp}, {"sp", &CPU::g_state.regs.sp},
{"fp", &CPU::g_state.regs.fp}, {"fp", &CPU::g_state.regs.fp},
{"ra", &CPU::g_state.regs.ra}, {"ra", &CPU::g_state.regs.ra},
{"hi", &CPU::g_state.regs.hi}, {"hi", &CPU::g_state.regs.hi},
{"lo", &CPU::g_state.regs.lo}, {"lo", &CPU::g_state.regs.lo},
{"pc", &CPU::g_state.pc}, {"pc", &CPU::g_state.pc},
{"npc", &CPU::g_state.npc}, {"npc", &CPU::g_state.npc},
{"COP0_SR", &CPU::g_state.cop0_regs.sr.bits}, {"COP0_SR", &CPU::g_state.cop0_regs.sr.bits},
{"COP0_CAUSE", &CPU::g_state.cop0_regs.cause.bits}, {"COP0_CAUSE", &CPU::g_state.cop0_regs.cause.bits},
{"COP0_EPC", &CPU::g_state.cop0_regs.EPC}, {"COP0_EPC", &CPU::g_state.cop0_regs.EPC},
{"COP0_BadVAddr", &CPU::g_state.cop0_regs.BadVaddr}, {"COP0_BadVAddr", &CPU::g_state.cop0_regs.BadVaddr},
{"V0_XY", &CPU::g_state.gte_regs.r32[0]}, {"V0_XY", &CPU::g_state.gte_regs.r32[0]},
{"V0_Z", &CPU::g_state.gte_regs.r32[1]}, {"V0_Z", &CPU::g_state.gte_regs.r32[1]},
{"V1_XY", &CPU::g_state.gte_regs.r32[2]}, {"V1_XY", &CPU::g_state.gte_regs.r32[2]},
{"V1_Z", &CPU::g_state.gte_regs.r32[3]}, {"V1_Z", &CPU::g_state.gte_regs.r32[3]},
{"V2_XY", &CPU::g_state.gte_regs.r32[4]}, {"V2_XY", &CPU::g_state.gte_regs.r32[4]},
{"V2_Z", &CPU::g_state.gte_regs.r32[5]}, {"V2_Z", &CPU::g_state.gte_regs.r32[5]},
{"RGBC", &CPU::g_state.gte_regs.r32[6]}, {"RGBC", &CPU::g_state.gte_regs.r32[6]},
{"OTZ", &CPU::g_state.gte_regs.r32[7]}, {"OTZ", &CPU::g_state.gte_regs.r32[7]},
{"IR0", &CPU::g_state.gte_regs.r32[8]}, {"IR0", &CPU::g_state.gte_regs.r32[8]},
{"IR1", &CPU::g_state.gte_regs.r32[9]}, {"IR1", &CPU::g_state.gte_regs.r32[9]},
{"IR2", &CPU::g_state.gte_regs.r32[10]}, {"IR2", &CPU::g_state.gte_regs.r32[10]},
{"IR3", &CPU::g_state.gte_regs.r32[11]}, {"IR3", &CPU::g_state.gte_regs.r32[11]},
{"SXY0", &CPU::g_state.gte_regs.r32[12]}, {"SXY0", &CPU::g_state.gte_regs.r32[12]},
{"SXY1", &CPU::g_state.gte_regs.r32[13]}, {"SXY1", &CPU::g_state.gte_regs.r32[13]},
{"SXY2", &CPU::g_state.gte_regs.r32[14]}, {"SXY2", &CPU::g_state.gte_regs.r32[14]},
{"SXYP", &CPU::g_state.gte_regs.r32[15]}, {"SXYP", &CPU::g_state.gte_regs.r32[15]},
{"SZ0", &CPU::g_state.gte_regs.r32[16]}, {"SZ0", &CPU::g_state.gte_regs.r32[16]},
{"SZ1", &CPU::g_state.gte_regs.r32[17]}, {"SZ1", &CPU::g_state.gte_regs.r32[17]},
{"SZ2", &CPU::g_state.gte_regs.r32[18]}, {"SZ2", &CPU::g_state.gte_regs.r32[18]},
{"SZ3", &CPU::g_state.gte_regs.r32[19]}, {"SZ3", &CPU::g_state.gte_regs.r32[19]},
{"RGB0", &CPU::g_state.gte_regs.r32[20]}, {"RGB0", &CPU::g_state.gte_regs.r32[20]},
{"RGB1", &CPU::g_state.gte_regs.r32[21]}, {"RGB1", &CPU::g_state.gte_regs.r32[21]},
{"RGB2", &CPU::g_state.gte_regs.r32[22]}, {"RGB2", &CPU::g_state.gte_regs.r32[22]},
{"RES1", &CPU::g_state.gte_regs.r32[23]}, {"RES1", &CPU::g_state.gte_regs.r32[23]},
{"MAC0", &CPU::g_state.gte_regs.r32[24]}, {"MAC0", &CPU::g_state.gte_regs.r32[24]},
{"MAC1", &CPU::g_state.gte_regs.r32[25]}, {"MAC1", &CPU::g_state.gte_regs.r32[25]},
{"MAC2", &CPU::g_state.gte_regs.r32[26]}, {"MAC2", &CPU::g_state.gte_regs.r32[26]},
{"MAC3", &CPU::g_state.gte_regs.r32[27]}, {"MAC3", &CPU::g_state.gte_regs.r32[27]},
{"IRGB", &CPU::g_state.gte_regs.r32[28]}, {"IRGB", &CPU::g_state.gte_regs.r32[28]},
{"ORGB", &CPU::g_state.gte_regs.r32[29]}, {"ORGB", &CPU::g_state.gte_regs.r32[29]},
{"LZCS", &CPU::g_state.gte_regs.r32[30]}, {"LZCS", &CPU::g_state.gte_regs.r32[30]},
{"LZCR", &CPU::g_state.gte_regs.r32[31]}, {"LZCR", &CPU::g_state.gte_regs.r32[31]},
{"RT_0", &CPU::g_state.gte_regs.r32[32]}, {"RT_0", &CPU::g_state.gte_regs.r32[32]},
{"RT_1", &CPU::g_state.gte_regs.r32[33]}, {"RT_1", &CPU::g_state.gte_regs.r32[33]},
{"RT_2", &CPU::g_state.gte_regs.r32[34]}, {"RT_2", &CPU::g_state.gte_regs.r32[34]},
{"RT_3", &CPU::g_state.gte_regs.r32[35]}, {"RT_3", &CPU::g_state.gte_regs.r32[35]},
{"RT_4", &CPU::g_state.gte_regs.r32[36]}, {"RT_4", &CPU::g_state.gte_regs.r32[36]},
{"TRX", &CPU::g_state.gte_regs.r32[37]}, {"TRX", &CPU::g_state.gte_regs.r32[37]},
{"TRY", &CPU::g_state.gte_regs.r32[38]}, {"TRY", &CPU::g_state.gte_regs.r32[38]},
{"TRZ", &CPU::g_state.gte_regs.r32[39]}, {"TRZ", &CPU::g_state.gte_regs.r32[39]},
{"LLM_0", &CPU::g_state.gte_regs.r32[40]}, {"LLM_0", &CPU::g_state.gte_regs.r32[40]},
{"LLM_1", &CPU::g_state.gte_regs.r32[41]}, {"LLM_1", &CPU::g_state.gte_regs.r32[41]},
{"LLM_2", &CPU::g_state.gte_regs.r32[42]}, {"LLM_2", &CPU::g_state.gte_regs.r32[42]},
{"LLM_3", &CPU::g_state.gte_regs.r32[43]}, {"LLM_3", &CPU::g_state.gte_regs.r32[43]},
{"LLM_4", &CPU::g_state.gte_regs.r32[44]}, {"LLM_4", &CPU::g_state.gte_regs.r32[44]},
{"RBK", &CPU::g_state.gte_regs.r32[45]}, {"RBK", &CPU::g_state.gte_regs.r32[45]},
{"GBK", &CPU::g_state.gte_regs.r32[46]}, {"GBK", &CPU::g_state.gte_regs.r32[46]},
{"BBK", &CPU::g_state.gte_regs.r32[47]}, {"BBK", &CPU::g_state.gte_regs.r32[47]},
{"LCM_0", &CPU::g_state.gte_regs.r32[48]}, {"LCM_0", &CPU::g_state.gte_regs.r32[48]},
{"LCM_1", &CPU::g_state.gte_regs.r32[49]}, {"LCM_1", &CPU::g_state.gte_regs.r32[49]},
{"LCM_2", &CPU::g_state.gte_regs.r32[50]}, {"LCM_2", &CPU::g_state.gte_regs.r32[50]},
{"LCM_3", &CPU::g_state.gte_regs.r32[51]}, {"LCM_3", &CPU::g_state.gte_regs.r32[51]},
{"LCM_4", &CPU::g_state.gte_regs.r32[52]}, {"LCM_4", &CPU::g_state.gte_regs.r32[52]},
{"RFC", &CPU::g_state.gte_regs.r32[53]}, {"RFC", &CPU::g_state.gte_regs.r32[53]},
{"GFC", &CPU::g_state.gte_regs.r32[54]}, {"GFC", &CPU::g_state.gte_regs.r32[54]},
{"BFC", &CPU::g_state.gte_regs.r32[55]}, {"BFC", &CPU::g_state.gte_regs.r32[55]},
{"OFX", &CPU::g_state.gte_regs.r32[56]}, {"OFX", &CPU::g_state.gte_regs.r32[56]},
{"OFY", &CPU::g_state.gte_regs.r32[57]}, {"OFY", &CPU::g_state.gte_regs.r32[57]},
{"H", &CPU::g_state.gte_regs.r32[58]}, {"H", &CPU::g_state.gte_regs.r32[58]},
{"DQA", &CPU::g_state.gte_regs.r32[59]}, {"DQA", &CPU::g_state.gte_regs.r32[59]},
{"DQB", &CPU::g_state.gte_regs.r32[60]}, {"DQB", &CPU::g_state.gte_regs.r32[60]},
{"ZSF3", &CPU::g_state.gte_regs.r32[61]}, {"ZSF3", &CPU::g_state.gte_regs.r32[61]},
{"ZSF4", &CPU::g_state.gte_regs.r32[62]}, {"ZSF4", &CPU::g_state.gte_regs.r32[62]},
{"FLAG", &CPU::g_state.gte_regs.r32[63]}}}; {"FLAG", &CPU::g_state.gte_regs.r32[63]}}};
ALWAYS_INLINE static constexpr bool AddOverflow(u32 old_value, u32 add_value, u32 new_value) ALWAYS_INLINE static constexpr bool AddOverflow(u32 old_value, u32 add_value, u32 new_value)
{ {
@ -800,14 +837,14 @@ ALWAYS_INLINE static constexpr bool SubOverflow(u32 old_value, u32 sub_value, u3
return (((new_value ^ old_value) & (old_value ^ sub_value)) & UINT32_C(0x80000000)) != 0; return (((new_value ^ old_value) & (old_value ^ sub_value)) & UINT32_C(0x80000000)) != 0;
} }
void DisassembleAndPrint(u32 addr, const char* prefix) void CPU::DisassembleAndPrint(u32 addr, const char* prefix)
{ {
u32 bits = 0; u32 bits = 0;
SafeReadMemoryWord(addr, &bits); SafeReadMemoryWord(addr, &bits);
PrintInstruction(bits, addr, &g_state.regs, prefix); PrintInstruction(bits, addr, &g_state.regs, prefix);
} }
void DisassembleAndPrint(u32 addr, u32 instructions_before /* = 0 */, u32 instructions_after /* = 0 */) void CPU::DisassembleAndPrint(u32 addr, u32 instructions_before /* = 0 */, u32 instructions_after /* = 0 */)
{ {
u32 disasm_addr = addr - (instructions_before * sizeof(u32)); u32 disasm_addr = addr - (instructions_before * sizeof(u32));
for (u32 i = 0; i < instructions_before; i++) for (u32 i = 0; i < instructions_before; i++)
@ -825,7 +862,7 @@ void DisassembleAndPrint(u32 addr, u32 instructions_before /* = 0 */, u32 instru
} }
template<PGXPMode pgxp_mode, bool debug> template<PGXPMode pgxp_mode, bool debug>
ALWAYS_INLINE_RELEASE static void ExecuteInstruction() ALWAYS_INLINE_RELEASE void CPU::ExecuteInstruction()
{ {
restart_instruction: restart_instruction:
const Instruction inst = g_state.current_instruction; const Instruction inst = g_state.current_instruction;
@ -1798,7 +1835,7 @@ restart_instruction:
} }
} }
void DispatchInterrupt() void CPU::DispatchInterrupt()
{ {
// If the instruction we're about to execute is a GTE instruction, delay dispatching the interrupt until the next // If the instruction we're about to execute is a GTE instruction, delay dispatching the interrupt until the next
// instruction. For some reason, if we don't do this, we end up with incorrectly sorted polygons and flickering.. // instruction. For some reason, if we don't do this, we end up with incorrectly sorted polygons and flickering..
@ -1819,7 +1856,7 @@ void DispatchInterrupt()
TimingEvents::UpdateCPUDowncount(); TimingEvents::UpdateCPUDowncount();
} }
void UpdateDebugDispatcherFlag() void CPU::UpdateDebugDispatcherFlag()
{ {
const bool has_any_breakpoints = !s_breakpoints.empty(); const bool has_any_breakpoints = !s_breakpoints.empty();
@ -1840,7 +1877,7 @@ void UpdateDebugDispatcherFlag()
ExitExecution(); ExitExecution();
} }
void ExitExecution() void CPU::ExitExecution()
{ {
// can't exit while running events without messing things up // can't exit while running events without messing things up
if (TimingEvents::IsRunningEvents()) if (TimingEvents::IsRunningEvents())
@ -1849,12 +1886,12 @@ void ExitExecution()
fastjmp_jmp(&s_jmp_buf, 1); fastjmp_jmp(&s_jmp_buf, 1);
} }
bool HasAnyBreakpoints() bool CPU::HasAnyBreakpoints()
{ {
return !s_breakpoints.empty(); return !s_breakpoints.empty();
} }
bool HasBreakpointAtAddress(VirtualMemoryAddress address) bool CPU::HasBreakpointAtAddress(VirtualMemoryAddress address)
{ {
for (const Breakpoint& bp : s_breakpoints) for (const Breakpoint& bp : s_breakpoints)
{ {
@ -1865,7 +1902,7 @@ bool HasBreakpointAtAddress(VirtualMemoryAddress address)
return false; return false;
} }
BreakpointList GetBreakpointList(bool include_auto_clear, bool include_callbacks) CPU::BreakpointList CPU::GetBreakpointList(bool include_auto_clear, bool include_callbacks)
{ {
BreakpointList bps; BreakpointList bps;
bps.reserve(s_breakpoints.size()); bps.reserve(s_breakpoints.size());
@ -1883,7 +1920,7 @@ BreakpointList GetBreakpointList(bool include_auto_clear, bool include_callbacks
return bps; return bps;
} }
bool AddBreakpoint(VirtualMemoryAddress address, bool auto_clear, bool enabled) bool CPU::AddBreakpoint(VirtualMemoryAddress address, bool auto_clear, bool enabled)
{ {
if (HasBreakpointAtAddress(address)) if (HasBreakpointAtAddress(address))
return false; return false;
@ -1896,14 +1933,13 @@ bool AddBreakpoint(VirtualMemoryAddress address, bool auto_clear, bool enabled)
if (!auto_clear) if (!auto_clear)
{ {
Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "Added breakpoint at 0x%08X."), Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "Added breakpoint at 0x%08X."), address);
address);
} }
return true; return true;
} }
bool AddBreakpointWithCallback(VirtualMemoryAddress address, BreakpointCallback callback) bool CPU::AddBreakpointWithCallback(VirtualMemoryAddress address, BreakpointCallback callback)
{ {
if (HasBreakpointAtAddress(address)) if (HasBreakpointAtAddress(address))
return false; return false;
@ -1916,15 +1952,14 @@ bool AddBreakpointWithCallback(VirtualMemoryAddress address, BreakpointCallback
return true; return true;
} }
bool RemoveBreakpoint(VirtualMemoryAddress address) bool CPU::RemoveBreakpoint(VirtualMemoryAddress address)
{ {
auto it = std::find_if(s_breakpoints.begin(), s_breakpoints.end(), auto it = std::find_if(s_breakpoints.begin(), s_breakpoints.end(),
[address](const Breakpoint& bp) { return bp.address == address; }); [address](const Breakpoint& bp) { return bp.address == address; });
if (it == s_breakpoints.end()) if (it == s_breakpoints.end())
return false; return false;
Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "Removed breakpoint at 0x%08X."), Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "Removed breakpoint at 0x%08X."), address);
address);
s_breakpoints.erase(it); s_breakpoints.erase(it);
UpdateDebugDispatcherFlag(); UpdateDebugDispatcherFlag();
@ -1935,7 +1970,7 @@ bool RemoveBreakpoint(VirtualMemoryAddress address)
return true; return true;
} }
void ClearBreakpoints() void CPU::ClearBreakpoints()
{ {
s_breakpoints.clear(); s_breakpoints.clear();
s_breakpoint_counter = 0; s_breakpoint_counter = 0;
@ -1943,7 +1978,7 @@ void ClearBreakpoints()
UpdateDebugDispatcherFlag(); UpdateDebugDispatcherFlag();
} }
bool AddStepOverBreakpoint() bool CPU::AddStepOverBreakpoint()
{ {
u32 bp_pc = g_state.pc; u32 bp_pc = g_state.pc;
@ -1955,8 +1990,7 @@ bool AddStepOverBreakpoint()
if (!IsCallInstruction(inst)) if (!IsCallInstruction(inst))
{ {
Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "0x%08X is not a call instruction."), Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "0x%08X is not a call instruction."), g_state.pc);
g_state.pc);
return false; return false;
} }
@ -1965,8 +1999,8 @@ bool AddStepOverBreakpoint()
if (IsBranchInstruction(inst)) if (IsBranchInstruction(inst))
{ {
Host::ReportFormattedDebuggerMessage( Host::ReportFormattedDebuggerMessage(TRANSLATE("DebuggerMessage", "Can't step over double branch at 0x%08X"),
TRANSLATE("DebuggerMessage", "Can't step over double branch at 0x%08X"), g_state.pc); g_state.pc);
return false; return false;
} }
@ -1978,7 +2012,7 @@ bool AddStepOverBreakpoint()
return AddBreakpoint(bp_pc, true); return AddBreakpoint(bp_pc, true);
} }
bool AddStepOutBreakpoint(u32 max_instructions_to_search) bool CPU::AddStepOutBreakpoint(u32 max_instructions_to_search)
{ {
// find the branch-to-ra instruction. // find the branch-to-ra instruction.
u32 ret_pc = g_state.pc; u32 ret_pc = g_state.pc;
@ -1990,8 +2024,7 @@ bool AddStepOutBreakpoint(u32 max_instructions_to_search)
if (!SafeReadInstruction(ret_pc, &inst.bits)) if (!SafeReadInstruction(ret_pc, &inst.bits))
{ {
Host::ReportFormattedDebuggerMessage( Host::ReportFormattedDebuggerMessage(
TRANSLATE("DebuggerMessage", "Instruction read failed at %08X while searching for function end."), TRANSLATE("DebuggerMessage", "Instruction read failed at %08X while searching for function end."), ret_pc);
ret_pc);
return false; return false;
} }
@ -2010,7 +2043,7 @@ bool AddStepOutBreakpoint(u32 max_instructions_to_search)
return false; return false;
} }
ALWAYS_INLINE_RELEASE static bool BreakpointCheck() bool CPU::BreakpointCheck()
{ {
const u32 pc = g_state.pc; const u32 pc = g_state.pc;
@ -2085,7 +2118,7 @@ ALWAYS_INLINE_RELEASE static bool BreakpointCheck()
} }
template<PGXPMode pgxp_mode, bool debug> template<PGXPMode pgxp_mode, bool debug>
[[noreturn]] static void ExecuteImpl() [[noreturn]] void CPU::ExecuteImpl()
{ {
for (;;) for (;;)
{ {
@ -2148,7 +2181,7 @@ template<PGXPMode pgxp_mode, bool debug>
} }
} }
static void ExecuteDebug() void CPU::ExecuteDebug()
{ {
if (g_settings.gpu_pgxp_enable) if (g_settings.gpu_pgxp_enable)
{ {
@ -2163,7 +2196,7 @@ static void ExecuteDebug()
} }
} }
void Execute() void CPU::Execute()
{ {
const CPUExecutionMode exec_mode = g_settings.cpu_execution_mode; const CPUExecutionMode exec_mode = g_settings.cpu_execution_mode;
const bool use_debug_dispatcher = g_state.use_debug_dispatcher; const bool use_debug_dispatcher = g_state.use_debug_dispatcher;
@ -2208,7 +2241,7 @@ void Execute()
} }
} }
void SingleStep() void CPU::SingleStep()
{ {
s_single_step = true; s_single_step = true;
s_single_step_done = false; s_single_step_done = false;
@ -2217,10 +2250,8 @@ void SingleStep()
Host::ReportFormattedDebuggerMessage("Stepped to 0x%08X.", g_state.pc); Host::ReportFormattedDebuggerMessage("Stepped to 0x%08X.", g_state.pc);
} }
namespace CodeCache {
template<PGXPMode pgxp_mode> template<PGXPMode pgxp_mode>
void InterpretCachedBlock(const CodeBlock& block) void CPU::CodeCache::InterpretCachedBlock(const CodeBlock& block)
{ {
// set up the state so we've already fetched the instruction // set up the state so we've already fetched the instruction
DebugAssert(g_state.pc == block.GetPC()); DebugAssert(g_state.pc == block.GetPC());
@ -2256,12 +2287,12 @@ void InterpretCachedBlock(const CodeBlock& block)
g_state.next_instruction_is_branch_delay_slot = false; g_state.next_instruction_is_branch_delay_slot = false;
} }
template void InterpretCachedBlock<PGXPMode::Disabled>(const CodeBlock& block); template void CPU::CodeCache::InterpretCachedBlock<PGXPMode::Disabled>(const CodeBlock& block);
template void InterpretCachedBlock<PGXPMode::Memory>(const CodeBlock& block); template void CPU::CodeCache::InterpretCachedBlock<PGXPMode::Memory>(const CodeBlock& block);
template void InterpretCachedBlock<PGXPMode::CPU>(const CodeBlock& block); template void CPU::CodeCache::InterpretCachedBlock<PGXPMode::CPU>(const CodeBlock& block);
template<PGXPMode pgxp_mode> template<PGXPMode pgxp_mode>
void InterpretUncachedBlock() void CPU::CodeCache::InterpretUncachedBlock()
{ {
g_state.npc = g_state.pc; g_state.npc = g_state.pc;
if (!FetchInstructionForInterpreterFallback()) if (!FetchInstructionForInterpreterFallback())
@ -2311,26 +2342,18 @@ void InterpretUncachedBlock()
} }
} }
template void InterpretUncachedBlock<PGXPMode::Disabled>(); template void CPU::CodeCache::InterpretUncachedBlock<PGXPMode::Disabled>();
template void InterpretUncachedBlock<PGXPMode::Memory>(); template void CPU::CodeCache::InterpretUncachedBlock<PGXPMode::Memory>();
template void InterpretUncachedBlock<PGXPMode::CPU>(); template void CPU::CodeCache::InterpretUncachedBlock<PGXPMode::CPU>();
} // namespace CodeCache bool CPU::Recompiler::Thunks::InterpretInstruction()
namespace Recompiler::Thunks {
bool InterpretInstruction()
{ {
ExecuteInstruction<PGXPMode::Disabled, false>(); ExecuteInstruction<PGXPMode::Disabled, false>();
return g_state.exception_raised; return g_state.exception_raised;
} }
bool InterpretInstructionPGXP() bool CPU::Recompiler::Thunks::InterpretInstructionPGXP()
{ {
ExecuteInstruction<PGXPMode::Memory, false>(); ExecuteInstruction<PGXPMode::Memory, false>();
return g_state.exception_raised; return g_state.exception_raised;
} }
} // namespace Recompiler::Thunks
} // namespace CPU