GPU/HW: Implement flipped quad coordinate hack from beetle-psx

Fixes graphical glitches around the edges of flipped sprites.
This commit is contained in:
Connor McLaughlin 2020-03-28 02:24:22 +10:00
parent f23bcc0faa
commit 0b347e2151
5 changed files with 99 additions and 14 deletions

View file

@ -89,6 +89,89 @@ void GPU_HW::PrintSettingsToLog()
Log_InfoPrintf("Dual-source blending: %s", m_supports_dual_source_blend ? "Supported" : "Not supported");
}
void GPU_HW::HandleFlippedQuadTextureCoordinates(BatchVertex* vertices)
{
// Taken from beetle-psx gpu_polygon.cpp
// For X/Y flipped 2D sprites, PSX games rely on a very specific rasterization behavior. If U or V is decreasing in X
// or Y, and we use the provided U/V as is, we will sample the wrong texel as interpolation covers an entire pixel,
// while PSX samples its interpolation essentially in the top-left corner and splats that interpolant across the
// entire pixel. While we could emulate this reasonably well in native resolution by shifting our vertex coords by
// 0.5, this breaks in upscaling scenarios, because we have several samples per native sample and we need NN rules to
// hit the same UV every time. One approach here is to use interpolate at offset or similar tricks to generalize the
// PSX interpolation patterns, but the problem is that vertices sharing an edge will no longer see the same UV (due to
// different plane derivatives), we end up sampling outside the intended boundary and artifacts are inevitable, so the
// only case where we can apply this fixup is for "sprites" or similar which should not share edges, which leads to
// this unfortunate code below.
// It might be faster to do more direct checking here, but the code below handles primitives in any order and
// orientation, and is far more SIMD-friendly if needed.
const s32 abx = vertices[1].x - vertices[0].x;
const s32 aby = vertices[1].y - vertices[0].y;
const s32 bcx = vertices[2].x - vertices[1].x;
const s32 bcy = vertices[2].y - vertices[1].y;
const s32 cax = vertices[0].x - vertices[2].x;
const s32 cay = vertices[0].y - vertices[2].y;
// Compute static derivatives, just assume W is uniform across the primitive and that the plane equation remains the
// same across the quad. (which it is, there is no Z.. yet).
const s32 dudx = -aby * vertices[2].u - bcy * vertices[0].u - cay * vertices[1].u;
const s32 dvdx = -aby * vertices[2].v - bcy * vertices[0].v - cay * vertices[1].v;
const s32 dudy = +abx * vertices[2].u + bcx * vertices[0].u + cax * vertices[1].u;
const s32 dvdy = +abx * vertices[2].v + bcx * vertices[0].v + cax * vertices[1].v;
const s32 area = bcx * cay - bcy * cax;
// Detect and reject any triangles with 0 size texture area
const s32 texArea = (vertices[1].u - vertices[0].u) * (vertices[2].v - vertices[0].v) -
(vertices[2].u - vertices[0].u) * (vertices[1].v - vertices[0].v);
// Shouldn't matter as degenerate primitives will be culled anyways.
if (area == 0 && texArea == 0)
return;
// Use floats here as it'll be faster than integer divides.
const float rcp_area = 1.0f / static_cast<float>(area);
const float dudx_area = static_cast<float>(dudx) * rcp_area;
const float dudy_area = static_cast<float>(dudy) * rcp_area;
const float dvdx_area = static_cast<float>(dvdx) * rcp_area;
const float dvdy_area = static_cast<float>(dvdy) * rcp_area;
const bool neg_dudx = dudx_area < 0.0f;
const bool neg_dudy = dudy_area < 0.0f;
const bool neg_dvdx = dvdx_area < 0.0f;
const bool neg_dvdy = dvdy_area < 0.0f;
const bool zero_dudx = dudx_area == 0.0f;
const bool zero_dudy = dudy_area == 0.0f;
const bool zero_dvdx = dvdx_area == 0.0f;
const bool zero_dvdy = dvdy_area == 0.0f;
// If we have negative dU or dV in any direction, increment the U or V to work properly with nearest-neighbor in
// this impl. If we don't have 1:1 pixel correspondence, this creates a slight "shift" in the sprite, but we
// guarantee that we don't sample garbage at least. Overall, this is kinda hacky because there can be legitimate,
// rare cases where 3D meshes hit this scenario, and a single texel offset can pop in, but this is way better than
// having borked 2D overall.
//
// TODO: If perf becomes an issue, we can probably SIMD the 8 comparisons above,
// create an 8-bit code, and use a LUT to get the offsets.
// Case 1: U is decreasing in X, but no change in Y.
// Case 2: U is decreasing in Y, but no change in X.
// Case 3: V is decreasing in X, but no change in Y.
// Case 4: V is decreasing in Y, but no change in X.
if ((neg_dudx && zero_dudy) || (neg_dudy && zero_dudx))
{
vertices[0].u++;
vertices[1].u++;
vertices[2].u++;
vertices[3].u++;
}
if ((neg_dvdx && zero_dvdy) || (neg_dvdy && zero_dvdx))
{
vertices[0].v++;
vertices[1].v++;
vertices[2].v++;
vertices[3].v++;
}
}
void GPU_HW::LoadVertices(RenderCommand rc, u32 num_vertices, const u32* command_ptr)
{
const u32 texpage = ZeroExtend32(m_draw_mode.mode_reg.bits) | (ZeroExtend32(m_draw_mode.palette_reg) << 16);
@ -112,7 +195,7 @@ void GPU_HW::LoadVertices(RenderCommand rc, u32 num_vertices, const u32* command
u32 buffer_pos = 1;
std::array<BatchVertex, 4> vertices;
for (u32 i = 0; i < 3; i++)
for (u32 i = 0; i < num_vertices; i++)
{
const u32 color = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color;
const VertexPosition vp{command_ptr[buffer_pos++]};
@ -121,6 +204,9 @@ void GPU_HW::LoadVertices(RenderCommand rc, u32 num_vertices, const u32* command
vertices[i].Set(m_drawing_offset.x + vp.x, m_drawing_offset.y + vp.y, color, texpage, packed_texcoord);
}
if (rc.quad_polygon)
HandleFlippedQuadTextureCoordinates(vertices.data());
// Cull polygons which are too large.
if (std::abs(vertices[2].x - vertices[0].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[2].x - vertices[1].x) >= MAX_PRIMITIVE_WIDTH ||
@ -144,14 +230,8 @@ void GPU_HW::LoadVertices(RenderCommand rc, u32 num_vertices, const u32* command
}
// quads
for (u32 i = 3; i < num_vertices; i++)
if (rc.quad_polygon)
{
const u32 color = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color;
const VertexPosition vp{command_ptr[buffer_pos++]};
const u16 packed_texcoord = textured ? Truncate16(command_ptr[buffer_pos++]) : 0;
vertices[3].Set(m_drawing_offset.x + vp.x, m_drawing_offset.y + vp.y, color, texpage, packed_texcoord);
// Cull polygons which are too large.
if (std::abs(vertices[3].x - vertices[2].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[3].x - vertices[1].x) >= MAX_PRIMITIVE_WIDTH ||

View file

@ -51,20 +51,22 @@ protected:
s32 y;
u32 color;
u32 texpage;
u32 texcoord; // 16-bit texcoords are needed for 256 extent rectangles
u16 u; // 16-bit texcoords are needed for 256 extent rectangles
u16 v;
ALWAYS_INLINE void Set(s32 x_, s32 y_, u32 color_, u32 texpage_, u16 packed_texcoord)
{
Set(x_, y_, color_, texpage_, packed_texcoord & 0xFF, (packed_texcoord >> 8));
}
ALWAYS_INLINE void Set(s32 x_, s32 y_, u32 color_, u32 texpage_, u16 texcoord_x, u16 texcoord_y)
ALWAYS_INLINE void Set(s32 x_, s32 y_, u32 color_, u32 texpage_, u16 u_, u16 v_)
{
x = x_;
y = y_;
color = color_;
texpage = texpage_;
texcoord = ZeroExtend32(texcoord_x) | (ZeroExtend32(texcoord_y) << 16);
u = u_;
v = v_;
}
};
@ -151,6 +153,9 @@ protected:
/// Computes the area affected by a VRAM transfer, including wrap-around of X.
Common::Rectangle<u32> GetVRAMTransferBounds(u32 x, u32 y, u32 width, u32 height);
/// Handles quads with flipped texture coordinate directions.
static void HandleFlippedQuadTextureCoordinates(BatchVertex* vertices);
HeapArray<u16, VRAM_WIDTH * VRAM_HEIGHT> m_vram_shadow;
BatchVertex* m_batch_start_vertex_ptr = nullptr;

View file

@ -238,7 +238,7 @@ bool GPU_HW_D3D11::CreateBatchInputLayout()
static constexpr std::array<D3D11_INPUT_ELEMENT_DESC, 4> attributes = {
{{"ATTR", 0, DXGI_FORMAT_R32G32_SINT, 0, offsetof(BatchVertex, x), D3D11_INPUT_PER_VERTEX_DATA, 0},
{"ATTR", 1, DXGI_FORMAT_R8G8B8A8_UNORM, 0, offsetof(BatchVertex, color), D3D11_INPUT_PER_VERTEX_DATA, 0},
{"ATTR", 2, DXGI_FORMAT_R32_SINT, 0, offsetof(BatchVertex, texcoord), D3D11_INPUT_PER_VERTEX_DATA, 0},
{"ATTR", 2, DXGI_FORMAT_R32_SINT, 0, offsetof(BatchVertex, u), D3D11_INPUT_PER_VERTEX_DATA, 0},
{"ATTR", 3, DXGI_FORMAT_R32_SINT, 0, offsetof(BatchVertex, texpage), D3D11_INPUT_PER_VERTEX_DATA, 0}}};
// we need a vertex shader...

View file

@ -252,7 +252,7 @@ bool GPU_HW_OpenGL::CreateVertexBuffer()
glVertexAttribIPointer(0, 2, GL_INT, sizeof(BatchVertex), reinterpret_cast<void*>(offsetof(BatchVertex, x)));
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex),
reinterpret_cast<void*>(offsetof(BatchVertex, color)));
glVertexAttribIPointer(2, 1, GL_INT, sizeof(BatchVertex), reinterpret_cast<void*>(offsetof(BatchVertex, texcoord)));
glVertexAttribIPointer(2, 1, GL_INT, sizeof(BatchVertex), reinterpret_cast<void*>(offsetof(BatchVertex, u)));
glVertexAttribIPointer(3, 1, GL_INT, sizeof(BatchVertex), reinterpret_cast<void*>(offsetof(BatchVertex, texpage)));
glBindVertexArray(0);

View file

@ -274,7 +274,7 @@ void GPU_HW_OpenGL_ES::SetVertexPointers()
glEnableVertexAttribArray(3);
glVertexAttribIPointer(0, 2, GL_INT, sizeof(BatchVertex), &m_vertex_buffer[0].x);
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex), &m_vertex_buffer[0].color);
glVertexAttribIPointer(2, 1, GL_INT, sizeof(BatchVertex), &m_vertex_buffer[0].texcoord);
glVertexAttribIPointer(2, 1, GL_INT, sizeof(BatchVertex), &m_vertex_buffer[0].u);
glVertexAttribIPointer(3, 1, GL_INT, sizeof(BatchVertex), &m_vertex_buffer[0].texpage);
}