CDROM: Implement XA-ADPCM decoding

This commit is contained in:
Connor McLaughlin 2019-10-15 17:27:35 +10:00
parent 7195766563
commit aa792da823
6 changed files with 257 additions and 35 deletions

View file

@ -4,6 +4,7 @@
#include "common/state_wrapper.h" #include "common/state_wrapper.h"
#include "dma.h" #include "dma.h"
#include "interrupt_controller.h" #include "interrupt_controller.h"
#include "spu.h"
#include "system.h" #include "system.h"
Log_SetChannel(CDROM); Log_SetChannel(CDROM);
@ -11,11 +12,12 @@ CDROM::CDROM() : m_sector_buffer(SECTOR_BUFFER_SIZE) {}
CDROM::~CDROM() = default; CDROM::~CDROM() = default;
bool CDROM::Initialize(System* system, DMA* dma, InterruptController* interrupt_controller) bool CDROM::Initialize(System* system, DMA* dma, InterruptController* interrupt_controller, SPU* spu)
{ {
m_system = system; m_system = system;
m_dma = dma; m_dma = dma;
m_interrupt_controller = interrupt_controller; m_interrupt_controller = interrupt_controller;
m_spu = spu;
return true; return true;
} }
@ -39,16 +41,34 @@ void CDROM::SoftReset()
m_status.bits = 0; m_status.bits = 0;
m_secondary_status.bits = 0; m_secondary_status.bits = 0;
m_mode.bits = 0; m_mode.bits = 0;
m_setloc = {};
m_setloc_dirty = false;
m_last_sector_header = {};
m_last_sector_subheader = {};
m_interrupt_enable_register = INTERRUPT_REGISTER_MASK; m_interrupt_enable_register = INTERRUPT_REGISTER_MASK;
m_interrupt_flag_register = 0; m_interrupt_flag_register = 0;
m_setloc = {};
m_setloc_dirty = false;
m_filter_file_number = 0;
m_filter_channel_number = 0;
m_last_sector_header = {};
m_last_sector_subheader = {};
m_next_cd_audio_volume_matrix[0][0] = 0x80;
m_next_cd_audio_volume_matrix[0][1] = 0x00;
m_next_cd_audio_volume_matrix[1][0] = 0x00;
m_next_cd_audio_volume_matrix[1][1] = 0x80;
m_cd_audio_volume_matrix = m_next_cd_audio_volume_matrix;
m_xa_last_samples.fill(0);
for (u32 i = 0; i < 2; i++)
{
m_xa_resample_ring_buffer[i].fill(0);
m_xa_resample_p = 0;
m_xa_resample_sixstep = 6;
}
m_param_fifo.Clear(); m_param_fifo.Clear();
m_response_fifo.Clear(); m_response_fifo.Clear();
m_data_fifo.Clear(); m_data_fifo.Clear();
m_sector_buffer.clear(); m_sector_buffer.clear();
UpdateStatusRegister(); UpdateStatusRegister();
} }
@ -68,12 +88,20 @@ bool CDROM::DoState(StateWrapper& sw)
sw.Do(&m_status.bits); sw.Do(&m_status.bits);
sw.Do(&m_secondary_status.bits); sw.Do(&m_secondary_status.bits);
sw.Do(&m_mode.bits); sw.Do(&m_mode.bits);
sw.DoPOD(&m_setloc);
sw.Do(&m_setloc_dirty);
sw.DoPOD(&m_last_sector_header);
sw.DoPOD(&m_last_sector_subheader);
sw.Do(&m_interrupt_enable_register); sw.Do(&m_interrupt_enable_register);
sw.Do(&m_interrupt_flag_register); sw.Do(&m_interrupt_flag_register);
sw.DoPOD(&m_setloc);
sw.Do(&m_setloc_dirty);
sw.Do(&m_filter_file_number);
sw.Do(&m_filter_channel_number);
sw.DoPOD(&m_last_sector_header);
sw.DoPOD(&m_last_sector_subheader);
sw.Do(&m_cd_audio_volume_matrix);
sw.Do(&m_next_cd_audio_volume_matrix);
sw.Do(&m_xa_last_samples);
sw.Do(&m_xa_resample_ring_buffer);
sw.Do(&m_xa_resample_p);
sw.Do(&m_xa_resample_sixstep);
sw.Do(&m_param_fifo); sw.Do(&m_param_fifo);
sw.Do(&m_response_fifo); sw.Do(&m_response_fifo);
sw.Do(&m_data_fifo); sw.Do(&m_data_fifo);
@ -237,7 +265,8 @@ void CDROM::WriteRegister(u32 offset, u8 value)
case 3: case 3:
{ {
Log_ErrorPrintf("Audio volume for right-to-left output <- 0x%02X", ZeroExtend32(value)); Log_DebugPrintf("Audio volume for right-to-left output <- 0x%02X", ZeroExtend32(value));
m_next_cd_audio_volume_matrix[1][0] = value;
return; return;
} }
} }
@ -270,13 +299,15 @@ void CDROM::WriteRegister(u32 offset, u8 value)
case 2: case 2:
{ {
Log_ErrorPrintf("Audio volume for left-to-left output <- 0x%02X", ZeroExtend32(value)); Log_DebugPrintf("Audio volume for left-to-left output <- 0x%02X", ZeroExtend32(value));
m_next_cd_audio_volume_matrix[0][0] = value;
return; return;
} }
case 3: case 3:
{ {
Log_ErrorPrintf("Audio volume for right-to-left output <- 0x%02X", ZeroExtend32(value)); Log_DebugPrintf("Audio volume for right-to-left output <- 0x%02X", ZeroExtend32(value));
m_next_cd_audio_volume_matrix[1][0] = value;
return; return;
} }
} }
@ -330,13 +361,15 @@ void CDROM::WriteRegister(u32 offset, u8 value)
case 2: case 2:
{ {
Log_ErrorPrintf("Audio volume for left-to-right output <- 0x%02X", ZeroExtend32(value)); Log_DebugPrintf("Audio volume for left-to-right output <- 0x%02X", ZeroExtend32(value));
m_next_cd_audio_volume_matrix[0][1] = value;
return; return;
} }
case 3: case 3:
{ {
Log_ErrorPrintf("Audio volume apply changes <- 0x%02X", ZeroExtend32(value)); Log_DebugPrintf("Audio volume apply changes <- 0x%02X", ZeroExtend32(value));
m_cd_audio_volume_matrix = m_next_cd_audio_volume_matrix;
return; return;
} }
} }
@ -675,6 +708,16 @@ void CDROM::ExecuteCommand()
} }
break; break;
case Command::Mute:
{
Log_DebugPrintf("CDROM mute command");
m_muted = true;
m_response_fifo.Push(m_secondary_status.bits);
SetInterrupt(Interrupt::ACK);
EndCommand();
}
break;
case Command::Demute: case Command::Demute:
{ {
Log_DebugPrintf("CDROM demute command"); Log_DebugPrintf("CDROM demute command");
@ -805,6 +848,7 @@ void CDROM::DoSectorRead()
} }
else else
{ {
ProcessXAADPCMSector();
} }
// Audio+realtime sectors aren't delivered to the CPU. // Audio+realtime sectors aren't delivered to the CPU.
@ -829,6 +873,132 @@ void CDROM::DoSectorRead()
m_system->SetDowncount(m_sector_read_remaining_ticks); m_system->SetDowncount(m_sector_read_remaining_ticks);
} }
static std::array<std::array<s16, 29>, 7> s_zigzag_table = {
{{0, 0x0, 0x0, 0x0, 0x0, -0x0002, 0x000A, -0x0022, 0x0041, -0x0054,
0x0034, 0x0009, -0x010A, 0x0400, -0x0A78, 0x234C, 0x6794, -0x1780, 0x0BCD, -0x0623,
0x0350, -0x016D, 0x006B, 0x000A, -0x0010, 0x0011, -0x0008, 0x0003, -0x0001},
{0, 0x0, 0x0, -0x0002, 0x0, 0x0003, -0x0013, 0x003C, -0x004B, 0x00A2,
-0x00E3, 0x0132, -0x0043, -0x0267, 0x0C9D, 0x74BB, -0x11B4, 0x09B8, -0x05BF, 0x0372,
-0x01A8, 0x00A6, -0x001B, 0x0005, 0x0006, -0x0008, 0x0003, -0x0001, 0x0},
{0, 0x0, -0x0001, 0x0003, -0x0002, -0x0005, 0x001F, -0x004A, 0x00B3, -0x0192,
0x02B1, -0x039E, 0x04F8, -0x05A6, 0x7939, -0x05A6, 0x04F8, -0x039E, 0x02B1, -0x0192,
0x00B3, -0x004A, 0x001F, -0x0005, -0x0002, 0x0003, -0x0001, 0x0, 0x0},
{0, -0x0001, 0x0003, -0x0008, 0x0006, 0x0005, -0x001B, 0x00A6, -0x01A8, 0x0372,
-0x05BF, 0x09B8, -0x11B4, 0x74BB, 0x0C9D, -0x0267, -0x0043, 0x0132, -0x00E3, 0x00A2,
-0x004B, 0x003C, -0x0013, 0x0003, 0x0, -0x0002, 0x0, 0x0, 0x0},
{-0x0001, 0x0003, -0x0008, 0x0011, -0x0010, 0x000A, 0x006B, -0x016D, 0x0350, -0x0623,
0x0BCD, -0x1780, 0x6794, 0x234C, -0x0A78, 0x0400, -0x010A, 0x0009, 0x0034, -0x0054,
0x0041, -0x0022, 0x000A, -0x0001, 0x0, 0x0001, 0x0, 0x0, 0x0},
{0x0002, -0x0008, 0x0010, -0x0023, 0x002B, 0x001A, -0x00EB, 0x027B, -0x0548, 0x0AFA,
-0x16FA, 0x53E0, 0x3C07, -0x1249, 0x080E, -0x0347, 0x015B, -0x0044, -0x0017, 0x0046,
-0x0023, 0x0011, -0x0005, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},
{-0x0005, 0x0011, -0x0023, 0x0046, -0x0017, -0x0044, 0x015B, -0x0347, 0x080E, -0x1249,
0x3C07, 0x53E0, -0x16FA, 0x0AFA, -0x0548, 0x027B, -0x00EB, 0x001A, 0x002B, -0x0023,
0x0010, -0x0008, 0x0002, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}};
static s16 ZigZagInterpolate(const s16* ringbuf, const s16* table, u8 p)
{
s32 sum = 0;
for (u8 i = 0; i < 29; i++)
sum += (s32(ringbuf[(p - i) & 0x1F]) * s32(table[i])) / 0x8000;
return static_cast<s16>(std::clamp<s32>(sum, -0x8000, 0x7FFF));
}
static constexpr s16 ApplyVolume(s16 sample, u8 volume)
{
return static_cast<s16>(s32(sample) * static_cast<s32>(ZeroExtend32(volume)) / 0x80);
}
template<bool STEREO, bool SAMPLE_RATE>
static void ResampleXAADPCM(const s16* samples_in, u32 num_samples_in, SPU* spu,
std::array<std::array<s16, CDROM::XA_RESAMPLE_RING_BUFFER_SIZE>, 2>& ring_buffer, u8* p_ptr,
u8* sixstep_ptr, const std::array<std::array<u8, 2>, 2>& volume_matrix)
{
s16* left_ringbuf = ring_buffer[0].data();
s16* right_ringbuf = ring_buffer[1].data();
u8 p = *p_ptr;
u8 sixstep = *sixstep_ptr;
for (u32 in_sample_index = 0; in_sample_index < num_samples_in; in_sample_index++)
{
const s16 left = *(samples_in++);
const s16 right = STEREO ? *(samples_in++) : left;
for (u32 sample_dup = 0; sample_dup < (SAMPLE_RATE ? 2 : 1); sample_dup++)
{
left_ringbuf[p] = left;
if constexpr (STEREO)
right_ringbuf[p] = right;
p = (p + 1) % 32;
sixstep--;
if (sixstep == 0)
{
sixstep = 6;
for (u32 j = 0; j < 7; j++)
{
const s16 left_interp = ZigZagInterpolate(left_ringbuf, s_zigzag_table[j].data(), p);
const s16 right_interp = STEREO ? ZigZagInterpolate(right_ringbuf, s_zigzag_table[j].data(), p) : left_interp;
const s16 left_out =
ApplyVolume(left_interp, volume_matrix[0][0]) + ApplyVolume(right_interp, volume_matrix[1][0]);
const s16 right_out =
ApplyVolume(left_interp, volume_matrix[1][0]) + ApplyVolume(right_interp, volume_matrix[1][1]);
spu->AddCDAudioSample(left_out, right_out);
}
}
}
}
*p_ptr = p;
*sixstep_ptr = sixstep;
}
void CDROM::ProcessXAADPCMSector()
{
std::array<s16, CDXA::XA_ADPCM_SAMPLES_PER_SECTOR_4BIT> sample_buffer;
CDXA::DecodeADPCMSector(m_sector_buffer.data(), sample_buffer.data(), m_xa_last_samples.data());
// Only send to SPU if we're not muted.
if (m_muted)
return;
if (m_last_sector_subheader.codinginfo.IsStereo())
{
const u32 num_samples = m_last_sector_subheader.codinginfo.GetSamplesPerSector() / 2;
m_spu->EnsureCDAudioSpace(num_samples);
if (m_last_sector_subheader.codinginfo.IsHalfSampleRate())
{
ResampleXAADPCM<true, true>(sample_buffer.data(), num_samples, m_spu, m_xa_resample_ring_buffer, &m_xa_resample_p,
&m_xa_resample_sixstep, m_cd_audio_volume_matrix);
}
else
{
ResampleXAADPCM<true, false>(sample_buffer.data(), num_samples, m_spu, m_xa_resample_ring_buffer,
&m_xa_resample_p, &m_xa_resample_sixstep, m_cd_audio_volume_matrix);
}
}
else
{
const u32 num_samples = m_last_sector_subheader.codinginfo.GetSamplesPerSector();
m_spu->EnsureCDAudioSpace(num_samples);
if (m_last_sector_subheader.codinginfo.IsHalfSampleRate())
{
ResampleXAADPCM<false, true>(sample_buffer.data(), num_samples, m_spu, m_xa_resample_ring_buffer,
&m_xa_resample_p, &m_xa_resample_sixstep, m_cd_audio_volume_matrix);
}
else
{
ResampleXAADPCM<false, false>(sample_buffer.data(), num_samples, m_spu, m_xa_resample_ring_buffer,
&m_xa_resample_p, &m_xa_resample_sixstep, m_cd_audio_volume_matrix);
}
}
}
void CDROM::StopReading() void CDROM::StopReading()
{ {
if (!m_reading) if (!m_reading)

View file

@ -1,8 +1,10 @@
#pragma once #pragma once
#include "common/bitfield.h" #include "common/bitfield.h"
#include "common/cd_image.h" #include "common/cd_image.h"
#include "common/cd_xa.h"
#include "common/fifo_queue.h" #include "common/fifo_queue.h"
#include "types.h" #include "types.h"
#include <array>
#include <string> #include <string>
#include <vector> #include <vector>
@ -11,14 +13,25 @@ class StateWrapper;
class System; class System;
class DMA; class DMA;
class InterruptController; class InterruptController;
class SPU;
class CDROM class CDROM
{ {
public: public:
enum : u32
{
RAW_SECTOR_SIZE = CDImage::RAW_SECTOR_SIZE,
SECTOR_SYNC_SIZE = CDImage::SECTOR_SYNC_SIZE,
SECTOR_HEADER_SIZE = CDImage::SECTOR_HEADER_SIZE,
XA_RESAMPLE_RING_BUFFER_SIZE = 32,
XA_RESAMPLE_ZIGZAG_TABLE_SIZE = 29,
XA_RESAMPLE_NUM_ZIGZAG_TABLES = 7
};
CDROM(); CDROM();
~CDROM(); ~CDROM();
bool Initialize(System* system, DMA* dma, InterruptController* interrupt_controller); bool Initialize(System* system, DMA* dma, InterruptController* interrupt_controller, SPU* spu);
void Reset(); void Reset();
bool DoState(StateWrapper& sw); bool DoState(StateWrapper& sw);
@ -34,14 +47,6 @@ public:
void Execute(TickCount ticks); void Execute(TickCount ticks);
private: private:
enum : u32
{
RAW_SECTOR_SIZE = CDImage::RAW_SECTOR_SIZE,
SECTOR_SYNC_SIZE = CDImage::SECTOR_SYNC_SIZE,
SECTOR_HEADER_SIZE = CDImage::SECTOR_HEADER_SIZE,
SECTOR_XA_SUBHEADER_SIZE = CDImage::SECTOR_XA_SUBHEADER_SIZE,
};
static constexpr u32 PARAM_FIFO_SIZE = 16; static constexpr u32 PARAM_FIFO_SIZE = 16;
static constexpr u32 RESPONSE_FIFO_SIZE = 16; static constexpr u32 RESPONSE_FIFO_SIZE = 16;
static constexpr u32 DATA_FIFO_SIZE = 4096; static constexpr u32 DATA_FIFO_SIZE = 4096;
@ -170,12 +175,14 @@ private:
void ExecuteTestCommand(u8 subcommand); void ExecuteTestCommand(u8 subcommand);
void BeginReading(); void BeginReading();
void DoSectorRead(); void DoSectorRead();
void ProcessXAADPCMSector();
void StopReading(); void StopReading();
void LoadDataFIFO(); void LoadDataFIFO();
System* m_system = nullptr; System* m_system = nullptr;
DMA* m_dma = nullptr; DMA* m_dma = nullptr;
InterruptController* m_interrupt_controller = nullptr; InterruptController* m_interrupt_controller = nullptr;
SPU* m_spu = nullptr;
std::unique_ptr<CDImage> m_media; std::unique_ptr<CDImage> m_media;
std::string m_media_filename; std::string m_media_filename;
@ -192,14 +199,26 @@ private:
SecondaryStatusRegister m_secondary_status = {}; SecondaryStatusRegister m_secondary_status = {};
ModeRegister m_mode = {}; ModeRegister m_mode = {};
Loc m_setloc = {};
bool m_setloc_dirty = false;
CDImage::SectorHeader m_last_sector_header = {};
CDImage::XASubHeader m_last_sector_subheader = {};
u8 m_interrupt_enable_register = INTERRUPT_REGISTER_MASK; u8 m_interrupt_enable_register = INTERRUPT_REGISTER_MASK;
u8 m_interrupt_flag_register = 0; u8 m_interrupt_flag_register = 0;
Loc m_setloc = {};
bool m_setloc_dirty = false;
u8 m_filter_file_number = 0;
u8 m_filter_channel_number = 0;
CDImage::SectorHeader m_last_sector_header = {};
CDXA::XASubHeader m_last_sector_subheader = {};
std::array<std::array<u8, 2>, 2> m_cd_audio_volume_matrix{};
std::array<std::array<u8, 2>, 2> m_next_cd_audio_volume_matrix{};
std::array<s32, 4> m_xa_last_samples{};
std::array<std::array<s16, XA_RESAMPLE_RING_BUFFER_SIZE>, 2> m_xa_resample_ring_buffer{};
u8 m_xa_resample_p = 0;
u8 m_xa_resample_sixstep = 6;
InlineFIFOQueue<u8, PARAM_FIFO_SIZE> m_param_fifo; InlineFIFOQueue<u8, PARAM_FIFO_SIZE> m_param_fifo;
InlineFIFOQueue<u8, RESPONSE_FIFO_SIZE> m_response_fifo; InlineFIFOQueue<u8, RESPONSE_FIFO_SIZE> m_response_fifo;
HeapFIFOQueue<u8, DATA_FIFO_SIZE> m_data_fifo; HeapFIFOQueue<u8, DATA_FIFO_SIZE> m_data_fifo;

View file

@ -479,7 +479,7 @@ void SPU::Execute(TickCount ticks)
{ {
TickCount num_samples = (ticks + m_ticks_carry) / SYSCLK_TICKS_PER_SPU_TICK; TickCount num_samples = (ticks + m_ticks_carry) / SYSCLK_TICKS_PER_SPU_TICK;
m_ticks_carry = (ticks + m_ticks_carry) % SYSCLK_TICKS_PER_SPU_TICK; m_ticks_carry = (ticks + m_ticks_carry) % SYSCLK_TICKS_PER_SPU_TICK;
if (num_samples == 0 || !m_SPUCNT.enable) if (num_samples == 0 || (!m_SPUCNT.enable && !m_SPUCNT.cd_audio_enable))
return; return;
for (TickCount i = 0; i < num_samples; i++) for (TickCount i = 0; i < num_samples; i++)
@ -826,15 +826,36 @@ std::tuple<SPU::SampleFormat, SPU::SampleFormat> SPU::SampleVoice(u32 voice_inde
// return std::make_tuple(sample16, sample16); // return std::make_tuple(sample16, sample16);
} }
void SPU::EnsureCDAudioSpace(u32 num_samples)
{
if (m_cd_audio_buffer.GetSpace() < (num_samples * 2))
{
Log_WarningPrintf("SPU CD Audio buffer overflow - writing %u samples with %u samples space", num_samples,
m_cd_audio_buffer.GetSpace() / 2);
m_cd_audio_buffer.Remove((num_samples * 2) - m_cd_audio_buffer.GetSpace());
}
}
void SPU::GenerateSample() void SPU::GenerateSample()
{ {
s32 left_sum = 0; s32 left_sum = 0;
s32 right_sum = 0; s32 right_sum = 0;
for (u32 i = 0; i < NUM_VOICES; i++) if (m_SPUCNT.enable)
{ {
const auto [left, right] = SampleVoice(i); for (u32 i = 0; i < NUM_VOICES; i++)
left_sum += left; {
right_sum += right; const auto [left, right] = SampleVoice(i);
left_sum += left;
right_sum += right;
}
}
// Mix in CD audio.
// TODO: Volume control.
if (m_SPUCNT.cd_audio_enable && !m_cd_audio_buffer.IsEmpty())
{
left_sum += s32(m_cd_audio_buffer.Pop());
right_sum += s32(m_cd_audio_buffer.Pop());
} }
// Log_DebugPrintf("SPU sample %d %d", left_sum, right_sum); // Log_DebugPrintf("SPU sample %d %d", left_sum, right_sum);

View file

@ -1,5 +1,6 @@
#pragma once #pragma once
#include "common/bitfield.h" #include "common/bitfield.h"
#include "common/fifo_queue.h"
#include "types.h" #include "types.h"
#include <array> #include <array>
@ -36,6 +37,14 @@ public:
// Manipulating debug options. // Manipulating debug options.
void DrawDebugMenu(); void DrawDebugMenu();
// External input from CD controller.
void AddCDAudioSample(s16 left, s16 right)
{
m_cd_audio_buffer.Push(left);
m_cd_audio_buffer.Push(right);
}
void EnsureCDAudioSpace(u32 num_samples);
private: private:
static constexpr u32 RAM_SIZE = 512 * 1024; static constexpr u32 RAM_SIZE = 512 * 1024;
static constexpr u32 RAM_MASK = RAM_SIZE - 1; static constexpr u32 RAM_MASK = RAM_SIZE - 1;
@ -48,6 +57,7 @@ private:
static constexpr u32 SYSCLK_TICKS_PER_SPU_TICK = MASTER_CLOCK / SAMPLE_RATE; // 0x300 static constexpr u32 SYSCLK_TICKS_PER_SPU_TICK = MASTER_CLOCK / SAMPLE_RATE; // 0x300
static constexpr s16 ADSR_MIN_VOLUME = 0; static constexpr s16 ADSR_MIN_VOLUME = 0;
static constexpr s16 ADSR_MAX_VOLUME = 0x7FFF; static constexpr s16 ADSR_MAX_VOLUME = 0x7FFF;
static constexpr u32 CD_AUDIO_SAMPLE_BUFFER_SIZE = 44100 * 2;
enum class RAMTransferMode : u8 enum class RAMTransferMode : u8
{ {
@ -280,4 +290,6 @@ private:
std::array<Voice, NUM_VOICES> m_voices{}; std::array<Voice, NUM_VOICES> m_voices{};
std::array<u8, RAM_SIZE> m_ram{}; std::array<u8, RAM_SIZE> m_ram{};
InlineFIFOQueue<s16, CD_AUDIO_SAMPLE_BUFFER_SIZE> m_cd_audio_buffer;
}; };

View file

@ -62,7 +62,7 @@ bool System::Initialize()
if (!m_gpu->Initialize(this, m_dma.get(), m_interrupt_controller.get(), m_timers.get())) if (!m_gpu->Initialize(this, m_dma.get(), m_interrupt_controller.get(), m_timers.get()))
return false; return false;
if (!m_cdrom->Initialize(this, m_dma.get(), m_interrupt_controller.get())) if (!m_cdrom->Initialize(this, m_dma.get(), m_interrupt_controller.get(), m_spu.get()))
return false; return false;
if (!m_pad->Initialize(this, m_interrupt_controller.get())) if (!m_pad->Initialize(this, m_interrupt_controller.get()))

View file

@ -96,7 +96,7 @@ int main(int argc, char* argv[])
#else #else
g_pLog->SetConsoleOutputParams(true, nullptr, LOGLEVEL_DEBUG); g_pLog->SetConsoleOutputParams(true, nullptr, LOGLEVEL_DEBUG);
// g_pLog->SetConsoleOutputParams(true, "GPU GPU_HW_OpenGL SPU Pad DigitalController", LOGLEVEL_DEBUG); // g_pLog->SetConsoleOutputParams(true, "GPU GPU_HW_OpenGL SPU Pad DigitalController", LOGLEVEL_DEBUG);
g_pLog->SetConsoleOutputParams(true, "Pad DigitalController InterruptController", LOGLEVEL_DEBUG); g_pLog->SetConsoleOutputParams(true, "GPU GPU_HW_OpenGL Pad DigitalController InterruptController", LOGLEVEL_DEBUG);
// g_pLog->SetFilterLevel(LOGLEVEL_TRACE); // g_pLog->SetFilterLevel(LOGLEVEL_TRACE);
g_pLog->SetFilterLevel(LOGLEVEL_DEBUG); g_pLog->SetFilterLevel(LOGLEVEL_DEBUG);
// g_pLog->SetFilterLevel(LOGLEVEL_DEV); // g_pLog->SetFilterLevel(LOGLEVEL_DEV);