CPU/PGXP: Normalize variable names

This commit is contained in:
Stenzek 2024-07-09 19:10:02 +10:00
parent 5410a42fd7
commit d831cb69a9
No known key found for this signature in database

View file

@ -943,43 +943,43 @@ void CPU::PGXP::CPU_ADD(u32 instr, u32 rsVal, u32 rtVal)
{ {
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
PGXP_value& rsv = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
PGXP_value& rtv = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
// Rd = Rs + Rt (signed) // Rd = Rs + Rt (signed)
Validate(&rsv, rsVal); Validate(&prsVal, rsVal);
Validate(&rtv, rtVal); Validate(&prtVal, rtVal);
PGXP_value ret; PGXP_value ret;
if (rtVal == 0) if (rtVal == 0)
{ {
ret = rsv; ret = prsVal;
CopyZIfMissing(ret, rtv); CopyZIfMissing(ret, prtVal);
} }
else if (rsVal == 0) else if (rsVal == 0)
{ {
ret = rtv; ret = prtVal;
CopyZIfMissing(ret, rsv); CopyZIfMissing(ret, prsVal);
} }
else else
{ {
ret = rsv; ret = prsVal;
ret.x = (float)f16Unsign(rsv.GetValidX(rsVal)); ret.x = (float)f16Unsign(prsVal.GetValidX(rsVal));
ret.x += (float)f16Unsign(rtv.GetValidX(rtVal)); ret.x += (float)f16Unsign(prtVal.GetValidX(rtVal));
// carry on over/underflow // carry on over/underflow
float of = (ret.x > USHRT_MAX) ? 1.f : (ret.x < 0) ? -1.f : 0.f; float of = (ret.x > USHRT_MAX) ? 1.f : (ret.x < 0) ? -1.f : 0.f;
ret.x = (float)f16Sign(ret.x); ret.x = (float)f16Sign(ret.x);
// ret.x -= of * (USHRT_MAX + 1); // ret.x -= of * (USHRT_MAX + 1);
ret.y += rtv.GetValidY(rtVal) + of; ret.y += prtVal.GetValidY(rtVal) + of;
// truncate on overflow/underflow // truncate on overflow/underflow
ret.y += (ret.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (ret.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f; ret.y += (ret.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (ret.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f;
// valid x/y only if one side had a valid x/y // valid x/y only if one side had a valid x/y
ret.flags |= (rtv.flags & VALID_XY); ret.flags |= (prtVal.flags & VALID_XY);
SelectZ(ret, ret, rtv); SelectZ(ret, ret, prtVal);
ret.flags |= VALID_TAINTED_Z; ret.flags |= VALID_TAINTED_Z;
} }
@ -992,38 +992,38 @@ void CPU::PGXP::CPU_SUB(u32 instr, u32 rsVal, u32 rtVal)
{ {
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
PGXP_value& rsv = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
PGXP_value& rtv = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
// Rd = Rs - Rt (signed) // Rd = Rs - Rt (signed)
Validate(&rsv, rsVal); Validate(&prsVal, rsVal);
Validate(&rtv, rtVal); Validate(&prtVal, rtVal);
PGXP_value ret; PGXP_value ret;
if (rtVal == 0) if (rtVal == 0)
{ {
ret = rsv; ret = prsVal;
CopyZIfMissing(ret, rtv); CopyZIfMissing(ret, prtVal);
} }
else else
{ {
ret = rsv; ret = prsVal;
ret.x = (float)f16Unsign(rsv.GetValidX(rsVal)); ret.x = (float)f16Unsign(prsVal.GetValidX(rsVal));
ret.x -= (float)f16Unsign(rtv.GetValidX(rtVal)); ret.x -= (float)f16Unsign(prtVal.GetValidX(rtVal));
// carry on over/underflow // carry on over/underflow
float of = (ret.x > USHRT_MAX) ? 1.f : (ret.x < 0) ? -1.f : 0.f; float of = (ret.x > USHRT_MAX) ? 1.f : (ret.x < 0) ? -1.f : 0.f;
ret.x = (float)f16Sign(ret.x); ret.x = (float)f16Sign(ret.x);
// ret.x -= of * (USHRT_MAX + 1); // ret.x -= of * (USHRT_MAX + 1);
ret.y -= rtv.GetValidY(rtVal) - of; ret.y -= prtVal.GetValidY(rtVal) - of;
// truncate on overflow/underflow // truncate on overflow/underflow
ret.y += (ret.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (ret.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f; ret.y += (ret.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (ret.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f;
// valid x/y only if one side had a valid x/y // valid x/y only if one side had a valid x/y
ret.flags |= (rtv.flags & VALID_XY); ret.flags |= (prtVal.flags & VALID_XY);
SelectZ(ret, ret, rtv); SelectZ(ret, ret, prtVal);
ret.flags |= VALID_TAINTED_Z; ret.flags |= VALID_TAINTED_Z;
} }
@ -1037,9 +1037,10 @@ ALWAYS_INLINE_RELEASE void CPU::PGXP::CPU_BITWISE(u32 instr, u32 rdVal, u32 rsVa
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
// Rd = Rs & Rt // Rd = Rs & Rt
PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
psx_value vald, vals, valt; psx_value vald, vals, valt;
vald.d = rdVal; vald.d = rdVal;
@ -1055,13 +1056,13 @@ ALWAYS_INLINE_RELEASE void CPU::PGXP::CPU_BITWISE(u32 instr, u32 rdVal, u32 rsVa
} }
else if (vald.w.l == vals.w.l) else if (vald.w.l == vals.w.l)
{ {
ret.x = g_state.pgxp_gpr[rs(instr)].x; ret.x = prsVal.x;
ret.SetValid(COMP_X, g_state.pgxp_gpr[rs(instr)].HasValid(COMP_X)); ret.SetValid(COMP_X, prsVal.HasValid(COMP_X));
} }
else if (vald.w.l == valt.w.l) else if (vald.w.l == valt.w.l)
{ {
ret.x = g_state.pgxp_gpr[rt(instr)].x; ret.x = prtVal.x;
ret.SetValid(COMP_X, g_state.pgxp_gpr[rt(instr)].HasValid(COMP_X)); ret.SetValid(COMP_X, prtVal.HasValid(COMP_X));
} }
else else
{ {
@ -1075,13 +1076,13 @@ ALWAYS_INLINE_RELEASE void CPU::PGXP::CPU_BITWISE(u32 instr, u32 rdVal, u32 rsVa
} }
else if (vald.w.h == vals.w.h) else if (vald.w.h == vals.w.h)
{ {
ret.y = g_state.pgxp_gpr[rs(instr)].y; ret.y = prsVal.y;
ret.SetValid(COMP_Y, g_state.pgxp_gpr[rs(instr)].HasValid(COMP_Y)); ret.SetValid(COMP_Y, prsVal.HasValid(COMP_Y));
} }
else if (vald.w.h == valt.w.h) else if (vald.w.h == valt.w.h)
{ {
ret.y = g_state.pgxp_gpr[rt(instr)].y; ret.y = prtVal.y;
ret.SetValid(COMP_Y, g_state.pgxp_gpr[rt(instr)].HasValid(COMP_Y)); ret.SetValid(COMP_Y, prtVal.HasValid(COMP_Y));
} }
else else
{ {
@ -1090,14 +1091,14 @@ ALWAYS_INLINE_RELEASE void CPU::PGXP::CPU_BITWISE(u32 instr, u32 rdVal, u32 rsVa
} }
// Get a valid W // Get a valid W
if (g_state.pgxp_gpr[rs(instr)].HasValid(COMP_Z)) if (prsVal.HasValid(COMP_Z))
{ {
ret.z = g_state.pgxp_gpr[rs(instr)].z; ret.z = prsVal.z;
ret.SetValid(COMP_Z); ret.SetValid(COMP_Z);
} }
else if (g_state.pgxp_gpr[rt(instr)].HasValid(COMP_Z)) else if (prtVal.HasValid(COMP_Z))
{ {
ret.z = g_state.pgxp_gpr[rt(instr)].z; ret.z = prtVal.z;
ret.SetValid(COMP_Z); ret.SetValid(COMP_Z);
} }
else else
@ -1151,25 +1152,24 @@ void CPU::PGXP::CPU_SLT(u32 instr, u32 rsVal, u32 rtVal)
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
// Rd = Rs < Rt (signed) // Rd = Rs < Rt (signed)
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
// iCB: Only require one valid input // iCB: Only require one valid input
if (((g_state.pgxp_gpr[rt(instr)].flags & VALID_XY) != VALID_XY) != if (((prtVal.flags & VALID_XY) != VALID_XY) != ((prsVal.flags & VALID_XY) != VALID_XY))
((g_state.pgxp_gpr[rs(instr)].flags & VALID_XY) != VALID_XY))
{ {
MakeValid(&g_state.pgxp_gpr[rs(instr)], rsVal); MakeValid(&prsVal, rsVal);
MakeValid(&g_state.pgxp_gpr[rt(instr)], rtVal); MakeValid(&prtVal, rtVal);
} }
PGXP_value ret = g_state.pgxp_gpr[rs(instr)]; PGXP_value ret = prsVal;
ret.y = 0.f; ret.y = 0.f;
ret.SetValid(COMP_Y); ret.SetValid(COMP_Y);
ret.flags |= VALID_TAINTED_Z; ret.flags |= VALID_TAINTED_Z;
ret.x = (g_state.pgxp_gpr[rs(instr)].y < g_state.pgxp_gpr[rt(instr)].y) ? 1.f : ret.x = (prsVal.y < prtVal.y) ? 1.f : (f16Unsign(prsVal.x) < f16Unsign(prtVal.x)) ? 1.f : 0.f;
(f16Unsign(g_state.pgxp_gpr[rs(instr)].x) < f16Unsign(g_state.pgxp_gpr[rt(instr)].x)) ? 1.f :
0.f;
ret.value = BoolToUInt32(static_cast<s32>(rsVal) < static_cast<s32>(rtVal)); ret.value = BoolToUInt32(static_cast<s32>(rsVal) < static_cast<s32>(rtVal));
g_state.pgxp_gpr[rd(instr)] = ret; g_state.pgxp_gpr[rd(instr)] = ret;
@ -1180,25 +1180,24 @@ void CPU::PGXP::CPU_SLTU(u32 instr, u32 rsVal, u32 rtVal)
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
// Rd = Rs < Rt (unsigned) // Rd = Rs < Rt (unsigned)
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prsVal = g_state.pgxp_gpr[rt(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
// iCB: Only require one valid input // iCB: Only require one valid input
if (((g_state.pgxp_gpr[rt(instr)].flags & VALID_XY) != VALID_XY) != if (((prtVal.flags & VALID_XY) != VALID_XY) != ((prsVal.flags & VALID_XY) != VALID_XY))
((g_state.pgxp_gpr[rs(instr)].flags & VALID_XY) != VALID_XY))
{ {
MakeValid(&g_state.pgxp_gpr[rs(instr)], rsVal); MakeValid(&prsVal, rsVal);
MakeValid(&g_state.pgxp_gpr[rt(instr)], rtVal); MakeValid(&prtVal, rtVal);
} }
PGXP_value ret = g_state.pgxp_gpr[rs(instr)]; PGXP_value ret = prsVal;
ret.y = 0.f; ret.y = 0.f;
ret.SetValid(COMP_Y); ret.SetValid(COMP_Y);
ret.flags |= VALID_TAINTED_Z; ret.flags |= VALID_TAINTED_Z;
ret.x = (f16Unsign(g_state.pgxp_gpr[rs(instr)].y) < f16Unsign(g_state.pgxp_gpr[rt(instr)].y)) ? 1.f : ret.x = (f16Unsign(prsVal.y) < f16Unsign(prtVal.y)) ? 1.f : (f16Unsign(prsVal.x) < f16Unsign(prtVal.x)) ? 1.f : 0.f;
(f16Unsign(g_state.pgxp_gpr[rs(instr)].x) < f16Unsign(g_state.pgxp_gpr[rt(instr)].x)) ? 1.f :
0.f;
ret.value = BoolToUInt32(rsVal < rtVal); ret.value = BoolToUInt32(rsVal < rtVal);
g_state.pgxp_gpr[rd(instr)] = ret; g_state.pgxp_gpr[rd(instr)] = ret;
@ -1213,31 +1212,34 @@ void CPU::PGXP::CPU_MULT(u32 instr, u32 rsVal, u32 rtVal)
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
// Hi/Lo = Rs * Rt (signed) // Hi/Lo = Rs * Rt (signed)
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
// iCB: Only require one valid input // iCB: Only require one valid input
if (((g_state.pgxp_gpr[rt(instr)].flags & VALID_XY) != VALID_XY) != if (((prtVal.flags & VALID_XY) != VALID_XY) != ((prsVal.flags & VALID_XY) != VALID_XY))
((g_state.pgxp_gpr[rs(instr)].flags & VALID_XY) != VALID_XY))
{ {
MakeValid(&g_state.pgxp_gpr[rs(instr)], rsVal); MakeValid(&prsVal, rsVal);
MakeValid(&g_state.pgxp_gpr[rt(instr)], rtVal); MakeValid(&prtVal, rtVal);
} }
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)] = g_state.pgxp_gpr[rs(instr)]; PGXP_value& ploVal = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)];
CopyZIfMissing(g_state.pgxp_gpr[static_cast<u8>(Reg::lo)], g_state.pgxp_gpr[rs(instr)]); PGXP_value& phiVal = g_state.pgxp_gpr[static_cast<u8>(Reg::hi)];
ploVal = prsVal;
CopyZIfMissing(ploVal, prsVal);
// Z/valid is the same // Z/valid is the same
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)] = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)]; phiVal = ploVal;
double xx, xy, yx, yy; double xx, xy, yx, yy;
double lx = 0, ly = 0, hx = 0, hy = 0; double lx = 0, ly = 0, hx = 0, hy = 0;
// Multiply out components // Multiply out components
xx = f16Unsign(g_state.pgxp_gpr[rs(instr)].x) * f16Unsign(g_state.pgxp_gpr[rt(instr)].x); xx = f16Unsign(prsVal.x) * f16Unsign(prtVal.x);
xy = f16Unsign(g_state.pgxp_gpr[rs(instr)].x) * (g_state.pgxp_gpr[rt(instr)].y); xy = f16Unsign(prsVal.x) * (prtVal.y);
yx = (g_state.pgxp_gpr[rs(instr)].y) * f16Unsign(g_state.pgxp_gpr[rt(instr)].x); yx = (prsVal.y) * f16Unsign(prtVal.x);
yy = (g_state.pgxp_gpr[rs(instr)].y) * (g_state.pgxp_gpr[rt(instr)].y); yy = (prsVal.y) * (prtVal.y);
// Split values into outputs // Split values into outputs
lx = xx; lx = xx;
@ -1250,17 +1252,17 @@ void CPU::PGXP::CPU_MULT(u32 instr, u32 rsVal, u32 rtVal)
hy = f16Overflow(hx); hy = f16Overflow(hx);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].x = (float)f16Sign(lx); ploVal.x = (float)f16Sign(lx);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].y = (float)f16Sign(ly); ploVal.y = (float)f16Sign(ly);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].flags |= VALID_TAINTED_Z; ploVal.flags |= VALID_TAINTED_Z;
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].x = (float)f16Sign(hx); phiVal.x = (float)f16Sign(hx);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].y = (float)f16Sign(hy); phiVal.y = (float)f16Sign(hy);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].flags |= VALID_TAINTED_Z; phiVal.flags |= VALID_TAINTED_Z;
// compute PSX value // compute PSX value
const u64 result = static_cast<u64>(static_cast<s64>(SignExtend64(rsVal)) * static_cast<s64>(SignExtend64(rtVal))); const u64 result = static_cast<u64>(static_cast<s64>(SignExtend64(rsVal)) * static_cast<s64>(SignExtend64(rtVal)));
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value = Truncate32(result >> 32); phiVal.value = Truncate32(result >> 32);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = Truncate32(result); ploVal.value = Truncate32(result);
} }
void CPU::PGXP::CPU_MULTU(u32 instr, u32 rsVal, u32 rtVal) void CPU::PGXP::CPU_MULTU(u32 instr, u32 rsVal, u32 rtVal)
@ -1268,31 +1270,34 @@ void CPU::PGXP::CPU_MULTU(u32 instr, u32 rsVal, u32 rtVal)
LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal);
// Hi/Lo = Rs * Rt (unsigned) // Hi/Lo = Rs * Rt (unsigned)
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
// iCB: Only require one valid input // iCB: Only require one valid input
if (((g_state.pgxp_gpr[rt(instr)].flags & VALID_XY) != VALID_XY) != if (((prtVal.flags & VALID_XY) != VALID_XY) != ((prsVal.flags & VALID_XY) != VALID_XY))
((g_state.pgxp_gpr[rs(instr)].flags & VALID_XY) != VALID_XY))
{ {
MakeValid(&g_state.pgxp_gpr[rs(instr)], rsVal); MakeValid(&prsVal, rsVal);
MakeValid(&g_state.pgxp_gpr[rt(instr)], rtVal); MakeValid(&prtVal, rtVal);
} }
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)] = g_state.pgxp_gpr[rs(instr)]; PGXP_value& ploVal = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)];
CopyZIfMissing(g_state.pgxp_gpr[static_cast<u8>(Reg::lo)], g_state.pgxp_gpr[rs(instr)]); PGXP_value& phiVal = g_state.pgxp_gpr[static_cast<u8>(Reg::hi)];
ploVal = prsVal;
CopyZIfMissing(ploVal, prsVal);
// Z/valid is the same // Z/valid is the same
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)] = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)]; phiVal = ploVal;
double xx, xy, yx, yy; double xx, xy, yx, yy;
double lx = 0, ly = 0, hx = 0, hy = 0; double lx = 0, ly = 0, hx = 0, hy = 0;
// Multiply out components // Multiply out components
xx = f16Unsign(g_state.pgxp_gpr[rs(instr)].x) * f16Unsign(g_state.pgxp_gpr[rt(instr)].x); xx = f16Unsign(prsVal.x) * f16Unsign(prtVal.x);
xy = f16Unsign(g_state.pgxp_gpr[rs(instr)].x) * f16Unsign(g_state.pgxp_gpr[rt(instr)].y); xy = f16Unsign(prsVal.x) * f16Unsign(prtVal.y);
yx = f16Unsign(g_state.pgxp_gpr[rs(instr)].y) * f16Unsign(g_state.pgxp_gpr[rt(instr)].x); yx = f16Unsign(prsVal.y) * f16Unsign(prtVal.x);
yy = f16Unsign(g_state.pgxp_gpr[rs(instr)].y) * f16Unsign(g_state.pgxp_gpr[rt(instr)].y); yy = f16Unsign(prsVal.y) * f16Unsign(prtVal.y);
// Split values into outputs // Split values into outputs
lx = xx; lx = xx;
@ -1305,17 +1310,17 @@ void CPU::PGXP::CPU_MULTU(u32 instr, u32 rsVal, u32 rtVal)
hy = f16Overflow(hx); hy = f16Overflow(hx);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].x = (float)f16Sign(lx); ploVal.x = (float)f16Sign(lx);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].y = (float)f16Sign(ly); ploVal.y = (float)f16Sign(ly);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].flags |= VALID_TAINTED_Z; ploVal.flags |= VALID_TAINTED_Z;
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].x = (float)f16Sign(hx); phiVal.x = (float)f16Sign(hx);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].y = (float)f16Sign(hy); phiVal.y = (float)f16Sign(hy);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].flags |= VALID_TAINTED_Z; phiVal.flags |= VALID_TAINTED_Z;
// compute PSX value // compute PSX value
const u64 result = ZeroExtend64(rsVal) * ZeroExtend64(rtVal); const u64 result = ZeroExtend64(rsVal) * ZeroExtend64(rtVal);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value = Truncate32(result >> 32); phiVal.value = Truncate32(result >> 32);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = Truncate32(result); ploVal.value = Truncate32(result);
} }
void CPU::PGXP::CPU_DIV(u32 instr, u32 rsVal, u32 rtVal) void CPU::PGXP::CPU_DIV(u32 instr, u32 rsVal, u32 rtVal)
@ -1324,56 +1329,56 @@ void CPU::PGXP::CPU_DIV(u32 instr, u32 rsVal, u32 rtVal)
// Lo = Rs / Rt (signed) // Lo = Rs / Rt (signed)
// Hi = Rs % Rt (signed) // Hi = Rs % Rt (signed)
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
//// iCB: Only require one valid input //// iCB: Only require one valid input
if (((g_state.pgxp_gpr[rt(instr)].flags & VALID_XY) != VALID_XY) != if (((prtVal.flags & VALID_XY) != VALID_XY) != ((prsVal.flags & VALID_XY) != VALID_XY))
((g_state.pgxp_gpr[rs(instr)].flags & VALID_XY) != VALID_XY))
{ {
MakeValid(&g_state.pgxp_gpr[rs(instr)], rsVal); MakeValid(&prsVal, rsVal);
MakeValid(&g_state.pgxp_gpr[rt(instr)], rtVal); MakeValid(&prtVal, rtVal);
} }
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)] = g_state.pgxp_gpr[rs(instr)]; PGXP_value& ploVal = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)];
CopyZIfMissing(g_state.pgxp_gpr[static_cast<u8>(Reg::lo)], g_state.pgxp_gpr[rs(instr)]); PGXP_value& phiVal = g_state.pgxp_gpr[static_cast<u8>(Reg::hi)];
ploVal = prsVal;
CopyZIfMissing(ploVal, prsVal);
// Z/valid is the same // Z/valid is the same
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)] = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)]; phiVal = ploVal;
double vs = f16Unsign(g_state.pgxp_gpr[rs(instr)].x) + (g_state.pgxp_gpr[rs(instr)].y) * (double)(1 << 16); double vs = f16Unsign(prsVal.x) + (prsVal.y) * (double)(1 << 16);
double vt = f16Unsign(g_state.pgxp_gpr[rt(instr)].x) + (g_state.pgxp_gpr[rt(instr)].y) * (double)(1 << 16); double vt = f16Unsign(prtVal.x) + (prtVal.y) * (double)(1 << 16);
double lo = vs / vt; double lo = vs / vt;
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].y = (float)f16Sign(f16Overflow(lo)); ploVal.y = (float)f16Sign(f16Overflow(lo));
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].x = (float)f16Sign(lo); ploVal.x = (float)f16Sign(lo);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].flags |= VALID_TAINTED_Z; ploVal.flags |= VALID_TAINTED_Z;
double hi = fmod(vs, vt); double hi = fmod(vs, vt);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].y = (float)f16Sign(f16Overflow(hi)); phiVal.y = (float)f16Sign(f16Overflow(hi));
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].x = (float)f16Sign(hi); phiVal.x = (float)f16Sign(hi);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].flags |= VALID_TAINTED_Z; phiVal.flags |= VALID_TAINTED_Z;
// compute PSX value // compute PSX value
if (static_cast<s32>(rtVal) == 0) if (static_cast<s32>(rtVal) == 0)
{ {
// divide by zero // divide by zero
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = ploVal.value = (static_cast<s32>(rsVal) >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1);
(static_cast<s32>(rsVal) >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1); phiVal.value = static_cast<u32>(static_cast<s32>(rsVal));
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value = static_cast<u32>(static_cast<s32>(rsVal));
} }
else if (rsVal == UINT32_C(0x80000000) && static_cast<s32>(rtVal) == -1) else if (rsVal == UINT32_C(0x80000000) && static_cast<s32>(rtVal) == -1)
{ {
// unrepresentable // unrepresentable
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = UINT32_C(0x80000000); ploVal.value = UINT32_C(0x80000000);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value = 0; phiVal.value = 0;
} }
else else
{ {
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = ploVal.value = static_cast<u32>(static_cast<s32>(rsVal) / static_cast<s32>(rtVal));
static_cast<u32>(static_cast<s32>(rsVal) / static_cast<s32>(rtVal)); phiVal.value = static_cast<u32>(static_cast<s32>(rsVal) % static_cast<s32>(rtVal));
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value =
static_cast<u32>(static_cast<s32>(rsVal) % static_cast<s32>(rtVal));
} }
} }
@ -1383,46 +1388,49 @@ void CPU::PGXP::CPU_DIVU(u32 instr, u32 rsVal, u32 rtVal)
// Lo = Rs / Rt (unsigned) // Lo = Rs / Rt (unsigned)
// Hi = Rs % Rt (unsigned) // Hi = Rs % Rt (unsigned)
Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)];
Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)];
Validate(&prsVal, rsVal);
Validate(&prtVal, rtVal);
//// iCB: Only require one valid input //// iCB: Only require one valid input
if (((g_state.pgxp_gpr[rt(instr)].flags & VALID_XY) != VALID_XY) != if (((prtVal.flags & VALID_XY) != VALID_XY) != ((prsVal.flags & VALID_XY) != VALID_XY))
((g_state.pgxp_gpr[rs(instr)].flags & VALID_XY) != VALID_XY))
{ {
MakeValid(&g_state.pgxp_gpr[rs(instr)], rsVal); MakeValid(&prsVal, rsVal);
MakeValid(&g_state.pgxp_gpr[rt(instr)], rtVal); MakeValid(&prtVal, rtVal);
} }
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)] = g_state.pgxp_gpr[rs(instr)]; PGXP_value& ploVal = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)];
CopyZIfMissing(g_state.pgxp_gpr[static_cast<u8>(Reg::lo)], g_state.pgxp_gpr[rs(instr)]); PGXP_value& phiVal = g_state.pgxp_gpr[static_cast<u8>(Reg::hi)];
ploVal = prsVal;
CopyZIfMissing(ploVal, prsVal);
// Z/valid is the same // Z/valid is the same
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)] = g_state.pgxp_gpr[static_cast<u8>(Reg::lo)]; phiVal = ploVal;
double vs = f16Unsign(g_state.pgxp_gpr[rs(instr)].x) + f16Unsign(g_state.pgxp_gpr[rs(instr)].y) * (double)(1 << 16); double vs = f16Unsign(prsVal.x) + f16Unsign(prsVal.y) * (double)(1 << 16);
double vt = f16Unsign(g_state.pgxp_gpr[rt(instr)].x) + f16Unsign(g_state.pgxp_gpr[rt(instr)].y) * (double)(1 << 16); double vt = f16Unsign(prtVal.x) + f16Unsign(prtVal.y) * (double)(1 << 16);
double lo = vs / vt; double lo = vs / vt;
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].y = (float)f16Sign(f16Overflow(lo)); ploVal.y = (float)f16Sign(f16Overflow(lo));
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].x = (float)f16Sign(lo); ploVal.x = (float)f16Sign(lo);
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].flags |= VALID_TAINTED_Z; ploVal.flags |= VALID_TAINTED_Z;
double hi = fmod(vs, vt); double hi = fmod(vs, vt);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].y = (float)f16Sign(f16Overflow(hi)); phiVal.y = (float)f16Sign(f16Overflow(hi));
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].x = (float)f16Sign(hi); phiVal.x = (float)f16Sign(hi);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].flags |= VALID_TAINTED_Z; phiVal.flags |= VALID_TAINTED_Z;
if (rtVal == 0) if (rtVal == 0)
{ {
// divide by zero // divide by zero
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = UINT32_C(0xFFFFFFFF); ploVal.value = UINT32_C(0xFFFFFFFF);
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value = rsVal; phiVal.value = rsVal;
} }
else else
{ {
g_state.pgxp_gpr[static_cast<u8>(Reg::lo)].value = rsVal / rtVal; ploVal.value = rsVal / rtVal;
g_state.pgxp_gpr[static_cast<u8>(Reg::hi)].value = rsVal % rtVal; phiVal.value = rsVal % rtVal;
} }
} }