GPU/HW: Use unsigned integers in shaders for texcoords

Probably needs testing on GLES.
This commit is contained in:
Connor McLaughlin 2020-04-23 15:14:16 +10:00
parent 30033ed4aa
commit e2f5905cd6

View file

@ -132,8 +132,8 @@ void GPU_HW_ShaderGen::WriteHeader(std::stringstream& ss)
void GPU_HW_ShaderGen::WriteCommonFunctions(std::stringstream& ss) void GPU_HW_ShaderGen::WriteCommonFunctions(std::stringstream& ss)
{ {
ss << "CONSTANT int RESOLUTION_SCALE = " << m_resolution_scale << ";\n"; ss << "CONSTANT uint RESOLUTION_SCALE = " << m_resolution_scale << ";\n";
ss << "CONSTANT int2 VRAM_SIZE = int2(" << GPU::VRAM_WIDTH << ", " << GPU::VRAM_HEIGHT << ") * RESOLUTION_SCALE;\n"; ss << "CONSTANT uint2 VRAM_SIZE = uint2(" << GPU::VRAM_WIDTH << ", " << GPU::VRAM_HEIGHT << ") * RESOLUTION_SCALE;\n";
ss << "CONSTANT float2 RCP_VRAM_SIZE = float2(1.0, 1.0) / float2(VRAM_SIZE);\n"; ss << "CONSTANT float2 RCP_VRAM_SIZE = float2(1.0, 1.0) / float2(VRAM_SIZE);\n";
ss << R"( ss << R"(
@ -146,10 +146,10 @@ float fixYCoord(float y)
#endif #endif
} }
int fixYCoord(int y) uint fixYCoord(uint y)
{ {
#if API_OPENGL || API_OPENGL_ES #if API_OPENGL || API_OPENGL_ES
return VRAM_SIZE.y - y - 1; return VRAM_SIZE.y - y - 1u;
#else #else
return y; return y;
#endif #endif
@ -375,7 +375,7 @@ void GPU_HW_ShaderGen::WriteBatchUniformBuffer(std::stringstream& ss)
{ {
DeclareUniformBuffer(ss, {"uint2 u_texture_window_mask", "uint2 u_texture_window_offset", "float u_src_alpha_factor", DeclareUniformBuffer(ss, {"uint2 u_texture_window_mask", "uint2 u_texture_window_offset", "float u_src_alpha_factor",
"float u_dst_alpha_factor", "bool u_set_mask_while_drawing", "float u_dst_alpha_factor", "bool u_set_mask_while_drawing",
"int u_interlaced_displayed_field"}); "uint u_interlaced_displayed_field"});
} }
std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured) std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured)
@ -389,8 +389,8 @@ std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured)
if (textured) if (textured)
{ {
DeclareVertexEntryPoint(ss, {"int2 a_pos", "float4 a_col0", "int a_texcoord", "int a_texpage"}, 1, 1, DeclareVertexEntryPoint(ss, {"int2 a_pos", "float4 a_col0", "uint a_texcoord", "uint a_texpage"}, 1, 1,
{{"nointerpolation", "int4 v_texpage"}}); {{"nointerpolation", "uint4 v_texpage"}});
} }
else else
{ {
@ -402,7 +402,7 @@ std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured)
// Offset the vertex position by 0.5 to ensure correct interpolation of texture coordinates // Offset the vertex position by 0.5 to ensure correct interpolation of texture coordinates
// at 1x resolution scale. This doesn't work at >1x, we adjust the texture coordinates before // at 1x resolution scale. This doesn't work at >1x, we adjust the texture coordinates before
// uploading there instead. // uploading there instead.
float vertex_offset = (RESOLUTION_SCALE == 1) ? 0.5 : 0.0; float vertex_offset = (RESOLUTION_SCALE == 1u) ? 0.5 : 0.0;
// 0..+1023 -> -1..1 // 0..+1023 -> -1..1
float pos_x = ((float(a_pos.x) + vertex_offset) / 512.0) - 1.0; float pos_x = ((float(a_pos.x) + vertex_offset) / 512.0) - 1.0;
@ -419,18 +419,18 @@ std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured)
// Fudge the texture coordinates by half a pixel in screen-space. // Fudge the texture coordinates by half a pixel in screen-space.
// This fixes the rounding/interpolation error on NVIDIA GPUs with shared edges between triangles. // This fixes the rounding/interpolation error on NVIDIA GPUs with shared edges between triangles.
#if API_OPENGL || API_OPENGL_ES #if API_OPENGL || API_OPENGL_ES
v_tex0 = float2(float(a_texcoord & 0xFFFF) + (RCP_VRAM_SIZE.x * 0.5), v_tex0 = float2(float(a_texcoord & 0xFFFFu) + (RCP_VRAM_SIZE.x * 0.5),
float(a_texcoord >> 16) - (RCP_VRAM_SIZE.y * 0.5)); float(a_texcoord >> 16) - (RCP_VRAM_SIZE.y * 0.5));
#else #else
v_tex0 = float2(float(a_texcoord & 0xFFFF) + (RCP_VRAM_SIZE.x * 0.5), v_tex0 = float2(float(a_texcoord & 0xFFFFu) + (RCP_VRAM_SIZE.x * 0.5),
float(a_texcoord >> 16) + (RCP_VRAM_SIZE.y * 0.5)); float(a_texcoord >> 16) + (RCP_VRAM_SIZE.y * 0.5));
#endif #endif
// base_x,base_y,palette_x,palette_y // base_x,base_y,palette_x,palette_y
v_texpage.x = (a_texpage & 15) * 64 * RESOLUTION_SCALE; v_texpage.x = (a_texpage & 15u) * 64u * RESOLUTION_SCALE;
v_texpage.y = ((a_texpage >> 4) & 1) * 256 * RESOLUTION_SCALE; v_texpage.y = ((a_texpage >> 4) & 1u) * 256u * RESOLUTION_SCALE;
v_texpage.z = ((a_texpage >> 16) & 63) * 16 * RESOLUTION_SCALE; v_texpage.z = ((a_texpage >> 16) & 63u) * 16u * RESOLUTION_SCALE;
v_texpage.w = ((a_texpage >> 22) & 511) * RESOLUTION_SCALE; v_texpage.w = ((a_texpage >> 22) & 511u) * RESOLUTION_SCALE;
#endif #endif
} }
)"; )";
@ -487,10 +487,10 @@ std::string GPU_HW_ShaderGen::GenerateBatchFragmentShader(GPU_HW::BatchRenderMod
ss << "};\n"; ss << "};\n";
ss << R"( ss << R"(
int3 ApplyDithering(int2 coord, int3 icol) int3 ApplyDithering(uint2 coord, int3 icol)
{ {
int2 fc = coord & int2(3, 3); uint2 fc = coord & uint2(3u, 3u);
int offset = s_dither_values[fc.y * 4 + fc.x]; int offset = s_dither_values[fc.y * 4u + fc.x];
return icol + int3(offset, offset, offset); return icol + int3(offset, offset, offset);
} }
@ -503,44 +503,44 @@ int3 TruncateTo15Bit(int3 icol)
#if TEXTURED #if TEXTURED
CONSTANT float4 TRANSPARENT_PIXEL_COLOR = float4(0.0, 0.0, 0.0, 0.0); CONSTANT float4 TRANSPARENT_PIXEL_COLOR = float4(0.0, 0.0, 0.0, 0.0);
int2 ApplyTextureWindow(int2 coords) uint2 ApplyTextureWindow(uint2 coords)
{ {
uint x = (uint(coords.x) & ~(u_texture_window_mask.x * 8u)) | ((u_texture_window_offset.x & u_texture_window_mask.x) * 8u); uint x = (uint(coords.x) & ~(u_texture_window_mask.x * 8u)) | ((u_texture_window_offset.x & u_texture_window_mask.x) * 8u);
uint y = (uint(coords.y) & ~(u_texture_window_mask.y * 8u)) | ((u_texture_window_offset.y & u_texture_window_mask.y) * 8u); uint y = (uint(coords.y) & ~(u_texture_window_mask.y * 8u)) | ((u_texture_window_offset.y & u_texture_window_mask.y) * 8u);
return int2(int(x), int(y)); return uint2(x, y);
} }
float4 SampleFromVRAM(int4 texpage, int2 icoord) float4 SampleFromVRAM(uint4 texpage, uint2 icoord)
{ {
icoord = ApplyTextureWindow(icoord); icoord = ApplyTextureWindow(icoord);
// adjust for tightly packed palette formats // adjust for tightly packed palette formats
int2 index_coord = icoord; uint2 index_coord = icoord;
#if PALETTE_4_BIT #if PALETTE_4_BIT
index_coord.x /= 4; index_coord.x /= 4u;
#elif PALETTE_8_BIT #elif PALETTE_8_BIT
index_coord.x /= 2; index_coord.x /= 2u;
#endif #endif
// fixup coords // fixup coords
int2 vicoord = int2(texpage.x + index_coord.x * RESOLUTION_SCALE, fixYCoord(texpage.y + index_coord.y * RESOLUTION_SCALE)); uint2 vicoord = uint2(texpage.x + index_coord.x * RESOLUTION_SCALE, fixYCoord(texpage.y + index_coord.y * RESOLUTION_SCALE));
// load colour/palette // load colour/palette
float4 color = LOAD_TEXTURE(samp0, vicoord, 0); float4 color = LOAD_TEXTURE(samp0, int2(vicoord), 0);
// apply palette // apply palette
#if PALETTE #if PALETTE
#if PALETTE_4_BIT #if PALETTE_4_BIT
int subpixel = int(icoord.x) & 3; uint subpixel = icoord.x & 3u;
uint vram_value = RGBA8ToRGBA5551(color); uint vram_value = RGBA8ToRGBA5551(color);
int palette_index = int((vram_value >> (subpixel * 4)) & 0x0Fu); uint palette_index = (vram_value >> (subpixel * 4u)) & 0x0Fu;
#elif PALETTE_8_BIT #elif PALETTE_8_BIT
int subpixel = int(icoord.x) & 1; uint subpixel = icoord.x & 1u;
uint vram_value = RGBA8ToRGBA5551(color); uint vram_value = RGBA8ToRGBA5551(color);
int palette_index = int((vram_value >> (subpixel * 8)) & 0xFFu); uint palette_index = (vram_value >> (subpixel * 8u)) & 0xFFu;
#endif #endif
int2 palette_icoord = int2(texpage.z + (palette_index * RESOLUTION_SCALE), fixYCoord(texpage.w)); uint2 palette_icoord = uint2(texpage.z + (palette_index * RESOLUTION_SCALE), fixYCoord(texpage.w));
color = LOAD_TEXTURE(samp0, palette_icoord, 0); color = LOAD_TEXTURE(samp0, int2(palette_icoord), 0);
#endif #endif
return color; return color;
@ -550,7 +550,7 @@ float4 SampleFromVRAM(int4 texpage, int2 icoord)
if (textured) if (textured)
{ {
DeclareFragmentEntryPoint(ss, 1, 1, {{"nointerpolation", "int4 v_texpage"}}, true, use_dual_source); DeclareFragmentEntryPoint(ss, 1, 1, {{"nointerpolation", "uint4 v_texpage"}}, true, use_dual_source);
} }
else else
{ {
@ -567,7 +567,7 @@ float4 SampleFromVRAM(int4 texpage, int2 icoord)
float oalpha; float oalpha;
#if INTERLACING #if INTERLACING
if (((fixYCoord(int(v_pos.y)) / RESOLUTION_SCALE) & 1) == u_interlaced_displayed_field) if (((fixYCoord(uint(v_pos.y)) / RESOLUTION_SCALE) & 1u) == u_interlaced_displayed_field)
discard; discard;
#endif #endif
@ -577,13 +577,14 @@ float4 SampleFromVRAM(int4 texpage, int2 icoord)
// TODO: Find some way to clamp this to the triangle texture coordinates? // TODO: Find some way to clamp this to the triangle texture coordinates?
float2 texel_top_left = frac(v_tex0) - float2(0.5, 0.5); float2 texel_top_left = frac(v_tex0) - float2(0.5, 0.5);
float2 texel_offset = sign(texel_top_left); float2 texel_offset = sign(texel_top_left);
float4 fcoords = v_tex0.xyxy + float4(0.0, 0.0, texel_offset.x, texel_offset.y); float4 fcoords = max(v_tex0.xyxy + float4(0.0, 0.0, texel_offset.x, texel_offset.y),
float4(0.0, 0.0, 0.0, 0.0));
// Load four texels. // Load four texels.
float4 s00 = SampleFromVRAM(v_texpage, int2(fcoords.xy)); float4 s00 = SampleFromVRAM(v_texpage, uint2(fcoords.xy));
float4 s10 = SampleFromVRAM(v_texpage, int2(fcoords.zy)); float4 s10 = SampleFromVRAM(v_texpage, uint2(fcoords.zy));
float4 s01 = SampleFromVRAM(v_texpage, int2(fcoords.xw)); float4 s01 = SampleFromVRAM(v_texpage, uint2(fcoords.xw));
float4 s11 = SampleFromVRAM(v_texpage, int2(fcoords.zw)); float4 s11 = SampleFromVRAM(v_texpage, uint2(fcoords.zw));
// Compute alpha from how many texels aren't pixel color 0000h. // Compute alpha from how many texels aren't pixel color 0000h.
float a00 = float(VECTOR_NEQ(s00, TRANSPARENT_PIXEL_COLOR)); float a00 = float(VECTOR_NEQ(s00, TRANSPARENT_PIXEL_COLOR));
@ -601,7 +602,7 @@ float4 SampleFromVRAM(int4 texpage, int2 icoord)
texcol.rgb /= float3(ialpha, ialpha, ialpha); texcol.rgb /= float3(ialpha, ialpha, ialpha);
semitransparent = (texcol.a != 0.0); semitransparent = (texcol.a != 0.0);
#else #else
float4 texcol = SampleFromVRAM(v_texpage, int2(floor(v_tex0))); float4 texcol = SampleFromVRAM(v_texpage, uint2(floor(v_tex0)));
if (VECTOR_EQ(texcol, TRANSPARENT_PIXEL_COLOR)) if (VECTOR_EQ(texcol, TRANSPARENT_PIXEL_COLOR))
discard; discard;
@ -630,9 +631,9 @@ float4 SampleFromVRAM(int4 texpage, int2 icoord)
// Apply dithering // Apply dithering
#if DITHERING #if DITHERING
#if DITHERING_SCALED #if DITHERING_SCALED
icolor = ApplyDithering(int2(v_pos.xy), icolor); icolor = ApplyDithering(uint2(v_pos.xy), icolor);
#else #else
icolor = ApplyDithering(int2(v_pos.xy) / int2(RESOLUTION_SCALE, RESOLUTION_SCALE), icolor); icolor = ApplyDithering(uint2(v_pos.xy) / uint2(RESOLUTION_SCALE, RESOLUTION_SCALE), icolor);
#endif #endif
#endif #endif
@ -825,12 +826,12 @@ std::string GPU_HW_ShaderGen::GenerateInterlacedFillFragmentShader()
std::stringstream ss; std::stringstream ss;
WriteHeader(ss); WriteHeader(ss);
WriteCommonFunctions(ss); WriteCommonFunctions(ss);
DeclareUniformBuffer(ss, {"float4 u_fill_color", "int u_interlaced_displayed_field"}); DeclareUniformBuffer(ss, {"float4 u_fill_color", "uint u_interlaced_displayed_field"});
DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false); DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false);
ss << R"( ss << R"(
{ {
if (((fixYCoord(int(v_pos.y)) / RESOLUTION_SCALE) & 1) == u_interlaced_displayed_field) if (((fixYCoord(uint(v_pos.y)) / RESOLUTION_SCALE) & 1u) == u_interlaced_displayed_field)
discard; discard;
o_col0 = u_fill_color; o_col0 = u_fill_color;
@ -875,18 +876,18 @@ std::string GPU_HW_ShaderGen::GenerateDisplayFragmentShader(bool depth_24bit, bo
uint2 icoords = uint2(v_pos.xy) + u_vram_offset; uint2 icoords = uint2(v_pos.xy) + u_vram_offset;
#if INTERLACED #if INTERLACED
if (((icoords.y / uint(RESOLUTION_SCALE)) & 1u) != u_field_offset) if (((icoords.y / RESOLUTION_SCALE) & 1u) != u_field_offset)
discard; discard;
#endif #endif
#if DEPTH_24BIT #if DEPTH_24BIT
// relative to start of scanout // relative to start of scanout
uint relative_x = (icoords.x - u_vram_offset.x) / uint(RESOLUTION_SCALE); uint relative_x = (icoords.x - u_vram_offset.x) / RESOLUTION_SCALE;
icoords.x = u_vram_offset.x + ((relative_x * 3u) / 2u) * uint(RESOLUTION_SCALE); icoords.x = u_vram_offset.x + ((relative_x * 3u) / 2u) * RESOLUTION_SCALE;
// load adjacent 16-bit texels // load adjacent 16-bit texels
uint s0 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(icoords % uint2(VRAM_SIZE)), 0)); uint s0 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(icoords % VRAM_SIZE), 0));
uint s1 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2((icoords + uint2(uint(RESOLUTION_SCALE), 0)) % uint2(VRAM_SIZE)), 0)); uint s1 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2((icoords + uint2(RESOLUTION_SCALE, 0)) % VRAM_SIZE), 0));
// select which part of the combined 16-bit texels we are currently shading // select which part of the combined 16-bit texels we are currently shading
uint s1s0 = ((s1 << 16) | s0) >> ((relative_x & 1u) * 8u); uint s1s0 = ((s1 << 16) | s0) >> ((relative_x & 1u) * 8u);
@ -896,7 +897,7 @@ std::string GPU_HW_ShaderGen::GenerateDisplayFragmentShader(bool depth_24bit, bo
float((s1s0 >> 16u) & 0xFFu) / 255.0, 1.0); float((s1s0 >> 16u) & 0xFFu) / 255.0, 1.0);
#else #else
// load and return // load and return
o_col0 = LOAD_TEXTURE(samp0, int2(icoords % uint2(VRAM_SIZE)), 0); o_col0 = LOAD_TEXTURE(samp0, int2(icoords % VRAM_SIZE), 0);
#endif #endif
} }
)"; )";
@ -909,23 +910,23 @@ std::string GPU_HW_ShaderGen::GenerateVRAMReadFragmentShader()
std::stringstream ss; std::stringstream ss;
WriteHeader(ss); WriteHeader(ss);
WriteCommonFunctions(ss); WriteCommonFunctions(ss);
DeclareUniformBuffer(ss, {"int2 u_base_coords", "int2 u_size"}); DeclareUniformBuffer(ss, {"uint2 u_base_coords", "uint2 u_size"});
DeclareTexture(ss, "samp0", 0); DeclareTexture(ss, "samp0", 0);
ss << R"( ss << R"(
uint SampleVRAM(int2 coords) uint SampleVRAM(uint2 coords)
{ {
if (RESOLUTION_SCALE == 1) if (RESOLUTION_SCALE == 1u)
return RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, coords, 0)); return RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(coords), 0));
// Box filter for downsampling. // Box filter for downsampling.
float4 value = float4(0.0, 0.0, 0.0, 0.0); float4 value = float4(0.0, 0.0, 0.0, 0.0);
int2 base_coords = coords * int2(RESOLUTION_SCALE, RESOLUTION_SCALE); uint2 base_coords = coords * uint2(RESOLUTION_SCALE, RESOLUTION_SCALE);
for (int offset_x = 0; offset_x < RESOLUTION_SCALE; offset_x++) for (uint offset_x = 0u; offset_x < RESOLUTION_SCALE; offset_x++)
{ {
for (int offset_y = 0; offset_y < RESOLUTION_SCALE; offset_y++) for (uint offset_y = 0u; offset_y < RESOLUTION_SCALE; offset_y++)
value += LOAD_TEXTURE(samp0, base_coords + int2(offset_x, offset_y), 0); value += LOAD_TEXTURE(samp0, int2(base_coords + uint2(offset_x, offset_y)), 0);
} }
value /= float(RESOLUTION_SCALE * RESOLUTION_SCALE); value /= float(RESOLUTION_SCALE * RESOLUTION_SCALE);
return RGBA8ToRGBA5551(value); return RGBA8ToRGBA5551(value);
@ -935,19 +936,19 @@ uint SampleVRAM(int2 coords)
DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false); DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false);
ss << R"( ss << R"(
{ {
int2 sample_coords = int2(int(v_pos.x) * 2, int(v_pos.y)); uint2 sample_coords = uint2(uint(v_pos.x) * 2u, uint(v_pos.y));
#if API_OPENGL || API_OPENGL_ES #if API_OPENGL || API_OPENGL_ES
// Lower-left origin flip for OpenGL. // Lower-left origin flip for OpenGL.
// We want to write the image out upside-down so we can read it top-to-bottom. // We want to write the image out upside-down so we can read it top-to-bottom.
sample_coords.y = u_size.y - sample_coords.y - 1; sample_coords.y = u_size.y - sample_coords.y - 1u;
#endif #endif
sample_coords += u_base_coords; sample_coords += u_base_coords;
// We're encoding as 32-bit, so the output width is halved and we pack two 16-bit pixels in one 32-bit pixel. // We're encoding as 32-bit, so the output width is halved and we pack two 16-bit pixels in one 32-bit pixel.
uint left = SampleVRAM(sample_coords); uint left = SampleVRAM(sample_coords);
uint right = SampleVRAM(int2(sample_coords.x + 1, sample_coords.y)); uint right = SampleVRAM(uint2(sample_coords.x + 1u, sample_coords.y));
o_col0 = float4(float(left & 0xFFu), float((left >> 8) & 0xFFu), o_col0 = float4(float(left & 0xFFu), float((left >> 8) & 0xFFu),
float(right & 0xFFu), float((right >> 8) & 0xFFu)) float(right & 0xFFu), float((right >> 8) & 0xFFu))
@ -962,22 +963,22 @@ std::string GPU_HW_ShaderGen::GenerateVRAMWriteFragmentShader()
std::stringstream ss; std::stringstream ss;
WriteHeader(ss); WriteHeader(ss);
WriteCommonFunctions(ss); WriteCommonFunctions(ss);
DeclareUniformBuffer(ss, {"int2 u_base_coords", "int2 u_size", "int u_buffer_base_offset"}); DeclareUniformBuffer(ss, {"uint2 u_base_coords", "uint2 u_size", "uint u_buffer_base_offset"});
DeclareTextureBuffer(ss, "samp0", 0, true, true); DeclareTextureBuffer(ss, "samp0", 0, true, true);
DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false); DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false);
ss << R"( ss << R"(
{ {
int2 coords = int2(v_pos.xy) / int2(RESOLUTION_SCALE, RESOLUTION_SCALE); uint2 coords = uint2(v_pos.xy) / uint2(RESOLUTION_SCALE, RESOLUTION_SCALE);
int2 offset = coords - u_base_coords; uint2 offset = coords - u_base_coords;
#if API_OPENGL || API_OPENGL_ES #if API_OPENGL || API_OPENGL_ES
// Lower-left origin flip for OpenGL // Lower-left origin flip for OpenGL
offset.y = u_size.y - offset.y - 1; offset.y = u_size.y - offset.y - 1u;
#endif #endif
int buffer_offset = u_buffer_base_offset + (offset.y * u_size.x) + offset.x; uint buffer_offset = u_buffer_base_offset + (offset.y * u_size.x) + offset.x;
uint value = LOAD_TEXTURE_BUFFER(samp0, buffer_offset).r; uint value = LOAD_TEXTURE_BUFFER(samp0, int(buffer_offset)).r;
o_col0 = RGBA5551ToRGBA8(value); o_col0 = RGBA5551ToRGBA8(value);
})"; })";
@ -1000,11 +1001,11 @@ std::string GPU_HW_ShaderGen::GenerateVRAMCopyFragmentShader()
// find offset from the start of the row/column // find offset from the start of the row/column
uint2 offset; uint2 offset;
offset.x = (dst_coords.x < u_dst_coords.x) ? (uint(VRAM_SIZE.x - 1) - u_dst_coords.x + dst_coords.x) : (dst_coords.x - u_dst_coords.x); offset.x = (dst_coords.x < u_dst_coords.x) ? ((VRAM_SIZE.x - 1u) - u_dst_coords.x + dst_coords.x) : (dst_coords.x - u_dst_coords.x);
offset.y = (dst_coords.y < u_dst_coords.y) ? (uint(VRAM_SIZE.y - 1) - u_dst_coords.y + dst_coords.y) : (dst_coords.y - u_dst_coords.y); offset.y = (dst_coords.y < u_dst_coords.y) ? ((VRAM_SIZE.y - 1u) - u_dst_coords.y + dst_coords.y) : (dst_coords.y - u_dst_coords.y);
// find the source coordinates to copy from // find the source coordinates to copy from
uint2 src_coords = (u_src_coords + offset) % uint2(VRAM_SIZE); uint2 src_coords = (u_src_coords + offset) % VRAM_SIZE;
// sample and apply mask bit // sample and apply mask bit
float4 color = LOAD_TEXTURE(samp0, int2(src_coords), 0); float4 color = LOAD_TEXTURE(samp0, int2(src_coords), 0);