mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	dep: Add libjpeg v9f
This commit is contained in:
		
							parent
							
								
									b749c483da
								
							
						
					
					
						commit
						e9c4416272
					
				|  | @ -13,6 +13,7 @@ if(NOT WIN32 AND NOT ANDROID) | |||
|   find_package(WebP REQUIRED) | ||||
|   find_package(ZLIB REQUIRED) | ||||
|   find_package(PNG REQUIRED) | ||||
|   find_package(JPEG REQUIRED) | ||||
|   find_package(CURL REQUIRED) | ||||
|   if(APPLE) | ||||
|     set(CMAKE_FIND_FRAMEWORK ${FIND_FRAMEWORK_BACKUP}) | ||||
|  |  | |||
|  | @ -37,6 +37,7 @@ if(WIN32 OR ANDROID) | |||
|   add_subdirectory(zlib EXCLUDE_FROM_ALL) | ||||
|   add_subdirectory(zstd EXCLUDE_FROM_ALL) | ||||
|   add_subdirectory(libpng EXCLUDE_FROM_ALL) | ||||
|   add_subdirectory(libjpeg EXCLUDE_FROM_ALL) | ||||
| endif() | ||||
| 
 | ||||
| if(ENABLE_CUBEB) | ||||
|  |  | |||
							
								
								
									
										65
									
								
								dep/libjpeg/CMakeLists.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										65
									
								
								dep/libjpeg/CMakeLists.txt
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,65 @@ | |||
| add_library(jpeg | ||||
|   include/jconfig.h | ||||
|   include/jerror.h | ||||
|   include/jmorecfg.h | ||||
|   include/jpegint.h | ||||
|   include/jpeglib.h | ||||
|   src/jaricom.c | ||||
|   src/jcapimin.c | ||||
|   src/jcapistd.c | ||||
|   src/jcarith.c | ||||
|   src/jccoefct.c | ||||
|   src/jccolor.c | ||||
|   src/jcdctmgr.c | ||||
|   src/jchuff.c | ||||
|   src/jcinit.c | ||||
|   src/jcmainct.c | ||||
|   src/jcmarker.c | ||||
|   src/jcmaster.c | ||||
|   src/jcomapi.c | ||||
|   src/jcparam.c | ||||
|   src/jcprepct.c | ||||
|   src/jcsample.c | ||||
|   src/jctrans.c | ||||
|   src/jdapimin.c | ||||
|   src/jdapistd.c | ||||
|   src/jdarith.c | ||||
|   src/jdatadst.c | ||||
|   src/jdatasrc.c | ||||
|   src/jdcoefct.c | ||||
|   src/jdcolor.c | ||||
|   src/jdct.h | ||||
|   src/jddctmgr.c | ||||
|   src/jdhuff.c | ||||
|   src/jdinput.c | ||||
|   src/jdmainct.c | ||||
|   src/jdmarker.c | ||||
|   src/jdmaster.c | ||||
|   src/jdmerge.c | ||||
|   src/jdpostct.c | ||||
|   src/jdsample.c | ||||
|   src/jdtrans.c | ||||
|   src/jerror.c | ||||
|   src/jfdctflt.c | ||||
|   src/jfdctfst.c | ||||
|   src/jfdctint.c | ||||
|   src/jidctflt.c | ||||
|   src/jidctfst.c | ||||
|   src/jidctint.c | ||||
|   src/jinclude.h | ||||
|   src/jmemmgr.c | ||||
|   src/jmemnobs.c | ||||
|   src/jmemsys.h | ||||
|   src/jquant1.c | ||||
|   src/jquant2.c | ||||
|   src/jutils.c | ||||
|   src/jversion.h | ||||
|   src/transupp.c | ||||
|   src/transupp.h | ||||
| ) | ||||
| 
 | ||||
| target_include_directories(jpeg PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include") | ||||
| target_include_directories(jpeg PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/src") | ||||
| disable_compiler_warnings_for_target(jpeg) | ||||
| 
 | ||||
| add_library(JPEG::JPEG ALIAS jpeg) | ||||
							
								
								
									
										374
									
								
								dep/libjpeg/README
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										374
									
								
								dep/libjpeg/README
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,374 @@ | |||
| The Independent JPEG Group's JPEG software | ||||
| ========================================== | ||||
| 
 | ||||
| README for release 9f of 14-Jan-2024 | ||||
| ==================================== | ||||
| 
 | ||||
| This distribution contains the ninth public release of the Independent JPEG | ||||
| Group's free JPEG software.  You are welcome to redistribute this software and | ||||
| to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. | ||||
| 
 | ||||
| This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, | ||||
| Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, | ||||
| John Korejwa, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, | ||||
| Ge' Weijers, and other members of the Independent JPEG Group. | ||||
| 
 | ||||
| IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee | ||||
| (previously known as JPEG, together with ITU-T SG16). | ||||
| 
 | ||||
| 
 | ||||
| DOCUMENTATION ROADMAP | ||||
| ===================== | ||||
| 
 | ||||
| This file contains the following sections: | ||||
| 
 | ||||
| OVERVIEW            General description of JPEG and the IJG software. | ||||
| LEGAL ISSUES        Copyright, lack of warranty, terms of distribution. | ||||
| REFERENCES          Where to learn more about JPEG. | ||||
| ARCHIVE LOCATIONS   Where to find newer versions of this software. | ||||
| ACKNOWLEDGMENTS     Special thanks. | ||||
| FILE FORMAT WARS    Software *not* to get. | ||||
| TO DO               Plans for future IJG releases. | ||||
| 
 | ||||
| Other documentation files in the distribution are: | ||||
| 
 | ||||
| User documentation: | ||||
|   install.txt       How to configure and install the IJG software. | ||||
|   usage.txt         Usage instructions for cjpeg, djpeg, jpegtran, | ||||
|                     rdjpgcom, and wrjpgcom. | ||||
|   *.1               Unix-style man pages for programs (same info as usage.txt). | ||||
|   wizard.txt        Advanced usage instructions for JPEG wizards only. | ||||
|   cdaltui.txt       Description of alternate user interface for cjpeg/djpeg. | ||||
|   change.log        Version-to-version change highlights. | ||||
| Programmer and internal documentation: | ||||
|   libjpeg.txt       How to use the JPEG library in your own programs. | ||||
|   example.c         Sample code for calling the JPEG library. | ||||
|   structure.txt     Overview of the JPEG library's internal structure. | ||||
|   filelist.txt      Road map of IJG files. | ||||
|   coderules.txt     Coding style rules --- please read if you contribute code. | ||||
| 
 | ||||
| Please read at least the files install.txt and usage.txt.  Some information | ||||
| can also be found in the JPEG FAQ (Frequently Asked Questions) article.  See | ||||
| ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. | ||||
| 
 | ||||
| If you want to understand how the JPEG code works, we suggest reading one or | ||||
| more of the REFERENCES, then looking at the documentation files (in roughly | ||||
| the order listed) before diving into the code. | ||||
| 
 | ||||
| 
 | ||||
| OVERVIEW | ||||
| ======== | ||||
| 
 | ||||
| This package contains C software to implement JPEG image encoding, decoding, | ||||
| and transcoding.  JPEG (pronounced "jay-peg") is a standardized compression | ||||
| method for full-color and grayscale images. | ||||
| 
 | ||||
| This software implements JPEG baseline, extended-sequential, and progressive | ||||
| compression processes.  Provision is made for supporting all variants of these | ||||
| processes, although some uncommon parameter settings aren't implemented yet. | ||||
| We have made no provision for supporting the hierarchical or lossless | ||||
| processes defined in the standard. | ||||
| 
 | ||||
| We provide a set of library routines for reading and writing JPEG image files, | ||||
| plus two sample applications "cjpeg" and "djpeg", which use the library to | ||||
| perform conversion between JPEG and some other popular image file formats. | ||||
| The library is intended to be reused in other applications. | ||||
| 
 | ||||
| In order to support file conversion and viewing software, we have included | ||||
| considerable functionality beyond the bare JPEG coding/decoding capability; | ||||
| for example, the color quantization modules are not strictly part of JPEG | ||||
| decoding, but they are essential for output to colormapped file formats or | ||||
| colormapped displays.  These extra functions can be compiled out of the | ||||
| library if not required for a particular application. | ||||
| 
 | ||||
| We have also included "jpegtran", a utility for lossless transcoding between | ||||
| different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple | ||||
| applications for inserting and extracting textual comments in JFIF files. | ||||
| 
 | ||||
| The emphasis in designing this software has been on achieving portability and | ||||
| flexibility, while also making it fast enough to be useful.  In particular, | ||||
| the software is not intended to be read as a tutorial on JPEG.  (See the | ||||
| REFERENCES section for introductory material.)  Rather, it is intended to | ||||
| be reliable, portable, industrial-strength code.  We do not claim to have | ||||
| achieved that goal in every aspect of the software, but we strive for it. | ||||
| 
 | ||||
| We welcome the use of this software as a component of commercial products. | ||||
| No royalty is required, but we do ask for an acknowledgement in product | ||||
| documentation, as described under LEGAL ISSUES. | ||||
| 
 | ||||
| 
 | ||||
| LEGAL ISSUES | ||||
| ============ | ||||
| 
 | ||||
| In plain English: | ||||
| 
 | ||||
| 1. We don't promise that this software works.  (But if you find any bugs, | ||||
|    please let us know!) | ||||
| 2. You can use this software for whatever you want.  You don't have to pay us. | ||||
| 3. You may not pretend that you wrote this software.  If you use it in a | ||||
|    program, you must acknowledge somewhere in your documentation that | ||||
|    you've used the IJG code. | ||||
| 
 | ||||
| In legalese: | ||||
| 
 | ||||
| The authors make NO WARRANTY or representation, either express or implied, | ||||
| with respect to this software, its quality, accuracy, merchantability, or | ||||
| fitness for a particular purpose.  This software is provided "AS IS", and you, | ||||
| its user, assume the entire risk as to its quality and accuracy. | ||||
| 
 | ||||
| This software is copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding. | ||||
| All Rights Reserved except as specified below. | ||||
| 
 | ||||
| Permission is hereby granted to use, copy, modify, and distribute this | ||||
| software (or portions thereof) for any purpose, without fee, subject to these | ||||
| conditions: | ||||
| (1) If any part of the source code for this software is distributed, then this | ||||
| README file must be included, with this copyright and no-warranty notice | ||||
| unaltered; and any additions, deletions, or changes to the original files | ||||
| must be clearly indicated in accompanying documentation. | ||||
| (2) If only executable code is distributed, then the accompanying | ||||
| documentation must state that "this software is based in part on the work of | ||||
| the Independent JPEG Group". | ||||
| (3) Permission for use of this software is granted only if the user accepts | ||||
| full responsibility for any undesirable consequences; the authors accept | ||||
| NO LIABILITY for damages of any kind. | ||||
| 
 | ||||
| These conditions apply to any software derived from or based on the IJG code, | ||||
| not just to the unmodified library.  If you use our work, you ought to | ||||
| acknowledge us. | ||||
| 
 | ||||
| Permission is NOT granted for the use of any IJG author's name or company name | ||||
| in advertising or publicity relating to this software or products derived from | ||||
| it.  This software may be referred to only as "the Independent JPEG Group's | ||||
| software". | ||||
| 
 | ||||
| We specifically permit and encourage the use of this software as the basis of | ||||
| commercial products, provided that all warranty or liability claims are | ||||
| assumed by the product vendor. | ||||
| 
 | ||||
| 
 | ||||
| The Unix configuration script "configure" was produced with GNU Autoconf. | ||||
| It is copyright by the Free Software Foundation but is freely distributable. | ||||
| The same holds for its supporting scripts (config.guess, config.sub, | ||||
| ltmain.sh).  Another support script, install-sh, is copyright by X Consortium | ||||
| but is also freely distributable. | ||||
| 
 | ||||
| 
 | ||||
| REFERENCES | ||||
| ========== | ||||
| 
 | ||||
| We recommend reading one or more of these references before trying to | ||||
| understand the innards of the JPEG software. | ||||
| 
 | ||||
| The best short technical introduction to the JPEG compression algorithm is | ||||
| 	Wallace, Gregory K.  "The JPEG Still Picture Compression Standard", | ||||
| 	Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. | ||||
| (Adjacent articles in that issue discuss MPEG motion picture compression, | ||||
| applications of JPEG, and related topics.)  If you don't have the CACM issue | ||||
| handy, a PDF file containing a revised version of Wallace's article is | ||||
| available at https://www.ijg.org/files/Wallace.JPEG.pdf.  The file (actually | ||||
| a preprint for an article that appeared in IEEE Trans. Consumer Electronics) | ||||
| omits the sample images that appeared in CACM, but it includes corrections | ||||
| and some added material.  Note: the Wallace article is copyright ACM and IEEE, | ||||
| and it may not be used for commercial purposes. | ||||
| 
 | ||||
| A somewhat less technical, more leisurely introduction to JPEG can be found in | ||||
| "The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by | ||||
| M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1.  This book provides | ||||
| good explanations and example C code for a multitude of compression methods | ||||
| including JPEG.  It is an excellent source if you are comfortable reading C | ||||
| code but don't know much about data compression in general.  The book's JPEG | ||||
| sample code is far from industrial-strength, but when you are ready to look | ||||
| at a full implementation, you've got one here... | ||||
| 
 | ||||
| The best currently available description of JPEG is the textbook "JPEG Still | ||||
| Image Data Compression Standard" by William B. Pennebaker and Joan L. | ||||
| Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. | ||||
| Price US$59.95, 638 pp.  The book includes the complete text of the ISO JPEG | ||||
| standards (DIS 10918-1 and draft DIS 10918-2). | ||||
| Although this is by far the most detailed and comprehensive exposition of | ||||
| JPEG publicly available, we point out that it is still missing an explanation | ||||
| of the most essential properties and algorithms of the underlying DCT | ||||
| technology. | ||||
| If you think that you know about DCT-based JPEG after reading this book, | ||||
| then you are in delusion.  The real fundamentals and corresponding potential | ||||
| of DCT-based JPEG are not publicly known so far, and that is the reason for | ||||
| all the mistaken developments taking place in the image coding domain. | ||||
| 
 | ||||
| The original JPEG standard is divided into two parts, Part 1 being the actual | ||||
| specification, while Part 2 covers compliance testing methods.  Part 1 is | ||||
| titled "Digital Compression and Coding of Continuous-tone Still Images, | ||||
| Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS | ||||
| 10918-1, ITU-T T.81.  Part 2 is titled "Digital Compression and Coding of | ||||
| Continuous-tone Still Images, Part 2: Compliance testing" and has document | ||||
| numbers ISO/IEC IS 10918-2, ITU-T T.83. | ||||
| IJG JPEG 8 introduced an implementation of the JPEG SmartScale extension | ||||
| which is specified in two documents:  A contributed document at ITU and ISO | ||||
| with title "ITU-T JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced | ||||
| Image Coding", April 2006, Geneva, Switzerland.  The latest version of this | ||||
| document is Revision 3.  And a contributed document ISO/IEC JTC1/SC29/WG1 N | ||||
| 5799 with title "Evolution of JPEG", June/July 2011, Berlin, Germany. | ||||
| IJG JPEG 9 introduces a reversible color transform for improved lossless | ||||
| compression which is described in a contributed document ISO/IEC JTC1/SC29/ | ||||
| WG1 N 6080 with title "JPEG 9 Lossless Coding", June/July 2012, Paris, France. | ||||
| 
 | ||||
| The JPEG standard does not specify all details of an interchangeable file | ||||
| format.  For the omitted details we follow the "JFIF" conventions, version 2. | ||||
| JFIF version 1 has been adopted as Recommendation ITU-T T.871 (05/2011) : | ||||
| Information technology - Digital compression and coding of continuous-tone | ||||
| still images: JPEG File Interchange Format (JFIF).  It is available as a | ||||
| free download in PDF file format from https://www.itu.int/rec/T-REC-T.871. | ||||
| A PDF file of the older JFIF document is available at | ||||
| https://www.w3.org/Graphics/JPEG/jfif3.pdf. | ||||
| 
 | ||||
| The TIFF 6.0 file format specification can be obtained by FTP from | ||||
| ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz.  The JPEG incorporation scheme | ||||
| found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. | ||||
| IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). | ||||
| Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 | ||||
| (Compression tag 7).  Copies of this Note can be obtained from | ||||
| https://www.ijg.org/files/.  It is expected that the next revision | ||||
| of the TIFF spec will replace the 6.0 JPEG design with the Note's design. | ||||
| Although IJG's own code does not support TIFF/JPEG, the free libtiff library | ||||
| uses our library to implement TIFF/JPEG per the Note. | ||||
| 
 | ||||
| 
 | ||||
| ARCHIVE LOCATIONS | ||||
| ================= | ||||
| 
 | ||||
| The "official" archive site for this software is www.ijg.org. | ||||
| The most recent released version can always be found there in | ||||
| directory "files".  This particular version will be archived | ||||
| in Windows-compatible "zip" archive format as | ||||
| https://www.ijg.org/files/jpegsr9f.zip, and | ||||
| in Unix-compatible "tar.gz" archive format as | ||||
| https://www.ijg.org/files/jpegsrc.v9f.tar.gz. | ||||
| 
 | ||||
| The JPEG FAQ (Frequently Asked Questions) article is a source of some | ||||
| general information about JPEG. | ||||
| It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ | ||||
| and other news.answers archive sites, including the official news.answers | ||||
| archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. | ||||
| If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu | ||||
| with body | ||||
| 	send usenet/news.answers/jpeg-faq/part1 | ||||
| 	send usenet/news.answers/jpeg-faq/part2 | ||||
| 
 | ||||
| 
 | ||||
| ACKNOWLEDGMENTS | ||||
| =============== | ||||
| 
 | ||||
| Thank to Juergen Bruder for providing me with a copy of the common DCT | ||||
| algorithm article, only to find out that I had come to the same result | ||||
| in a more direct and comprehensible way with a more generative approach. | ||||
| 
 | ||||
| Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the | ||||
| ITU JPEG (Study Group 16) meeting in Geneva, Switzerland. | ||||
| 
 | ||||
| Thank to Thomas Wiegand and Gary Sullivan for inviting me to the | ||||
| Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland. | ||||
| 
 | ||||
| Thank to Thomas Richter and Daniel Lee for inviting me to the | ||||
| ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16) | ||||
| meeting in Berlin, Germany. | ||||
| 
 | ||||
| Thank to John Korejwa and Massimo Ballerini for inviting me to | ||||
| fruitful consultations in Boston, MA and Milan, Italy. | ||||
| 
 | ||||
| Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther | ||||
| Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel | ||||
| for corresponding business development. | ||||
| 
 | ||||
| Thank to Nico Zschach and Dirk Stelling of the technical support team | ||||
| at the Digital Images company in Halle for providing me with extra | ||||
| equipment for configuration tests. | ||||
| 
 | ||||
| Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful | ||||
| communication about JPEG configuration in Sigma Photo Pro software. | ||||
| 
 | ||||
| Thank to Andrew Finkenstadt for hosting the ijg.org site. | ||||
| 
 | ||||
| Thank to Thomas G. Lane for the original design and development | ||||
| of this singular software package. | ||||
| 
 | ||||
| Thank to Lars Goehler, Andreas Heinecke, Sebastian Fuss, | ||||
| Yvonne Roebert, Andrej Werner, Ulf-Dietrich Braumann, | ||||
| and Nina Ssymank for support and public relations. | ||||
| 
 | ||||
| 
 | ||||
| FILE FORMAT WARS | ||||
| ================ | ||||
| 
 | ||||
| The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG, | ||||
| together with ITU-T SG16) currently promotes different formats containing | ||||
| the name "JPEG" which is misleading because these formats are incompatible | ||||
| with original DCT-based JPEG and are based on faulty technologies. | ||||
| IJG therefore does not and will not support such momentary mistakes | ||||
| (see REFERENCES). | ||||
| There exist also distributions under the name "OpenJPEG" promoting such | ||||
| kind of formats which is misleading because they don't support original | ||||
| JPEG images. | ||||
| We have no sympathy for the promotion of inferior formats.  Indeed, one of | ||||
| the original reasons for developing this free software was to help force | ||||
| convergence on common, interoperable format standards for JPEG files. | ||||
| Don't use an incompatible file format! | ||||
| (In any case, our decoder will remain capable of reading existing JPEG | ||||
| image files indefinitely.) | ||||
| 
 | ||||
| The ISO committee pretends to be "responsible for the popular JPEG" in their | ||||
| public reports which is not true because they don't respond to actual | ||||
| requirements for the maintenance of the original JPEG specification. | ||||
| Furthermore, the ISO committee pretends to "ensure interoperability" with | ||||
| their standards which is not true because their "standards" support only | ||||
| application-specific and proprietary use cases and contain mathematically | ||||
| incorrect code. | ||||
| 
 | ||||
| There are currently different distributions in circulation containing the | ||||
| name "libjpeg" which is misleading because they don't have the features and | ||||
| are incompatible with formats supported by actual IJG libjpeg distributions. | ||||
| One of those fakes is released by members of the ISO committee and just uses | ||||
| the name of libjpeg for misdirection of people, similar to the abuse of the | ||||
| name JPEG as described above, while having nothing in common with actual IJG | ||||
| libjpeg distributions and containing mathematically incorrect code. | ||||
| The other one claims to be a "derivative" or "fork" of the original libjpeg, | ||||
| but violates the license conditions as described under LEGAL ISSUES above | ||||
| and violates basic C programming properties. | ||||
| We have no sympathy for the release of misleading, incorrect and illegal | ||||
| distributions derived from obsolete code bases. | ||||
| Don't use an obsolete code base! | ||||
| 
 | ||||
| According to the UCC (Uniform Commercial Code) law, IJG has the lawful and | ||||
| legal right to foreclose on certain standardization bodies and other | ||||
| institutions or corporations that knowingly perform substantial and | ||||
| systematic deceptive acts and practices, fraud, theft, and damaging of the | ||||
| value of the people of this planet without their knowing, willing and | ||||
| intentional consent. | ||||
| The titles, ownership, and rights of these institutions and all their assets | ||||
| are now duly secured and held in trust for the free people of this planet. | ||||
| People of the planet, on every country, may have a financial interest in | ||||
| the assets of these former principals, agents, and beneficiaries of the | ||||
| foreclosed institutions and corporations. | ||||
| IJG asserts what is: that each man, woman, and child has unalienable value | ||||
| and rights granted and deposited in them by the Creator and not any one of | ||||
| the people is subordinate to any artificial principality, corporate fiction | ||||
| or the special interest of another without their appropriate knowing, | ||||
| willing and intentional consent made by contract or accommodation agreement. | ||||
| IJG expresses that which already was. | ||||
| The people have already determined and demanded that public administration | ||||
| entities, national governments, and their supporting judicial systems must | ||||
| be fully transparent, accountable, and liable. | ||||
| IJG has secured the value for all concerned free people of the planet. | ||||
| 
 | ||||
| A partial list of foreclosed institutions and corporations ("Hall of Shame") | ||||
| is currently prepared and will be published later. | ||||
| 
 | ||||
| 
 | ||||
| TO DO | ||||
| ===== | ||||
| 
 | ||||
| Version 9 is the second release of a new generation JPEG standard | ||||
| to overcome the limitations of the original JPEG specification, | ||||
| and is the first true source reference JPEG codec. | ||||
| More features are being prepared for coming releases... | ||||
| 
 | ||||
| Please send bug reports, offers of help, etc. to jpeg-info@ijg.org. | ||||
							
								
								
									
										527
									
								
								dep/libjpeg/change.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										527
									
								
								dep/libjpeg/change.log
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,527 @@ | |||
| CHANGE LOG for Independent JPEG Group's JPEG software | ||||
| 
 | ||||
| 
 | ||||
| Version 9f  14-Jan-2024 | ||||
| ----------------------- | ||||
| 
 | ||||
| Add build system for C++Builder/RAD Studio. | ||||
| 
 | ||||
| Add build system for Xcode (beside configure). | ||||
| 
 | ||||
| Add ARM64EC (Emulation Compatible) platform support in the | ||||
| Visual Studio build. | ||||
| 
 | ||||
| 
 | ||||
| Version 9e  16-Jan-2022 | ||||
| ----------------------- | ||||
| 
 | ||||
| Include alternate user interface files for cjpeg/djpeg. | ||||
| 
 | ||||
| jcparam.c: change default chrominance DC quantization factor | ||||
| for lossless support.  Note: Requires rebuild of test images. | ||||
| 
 | ||||
| rdgif.c, cderror.h: add sanity check for GIF image dimensions. | ||||
| Thank to Casper Sun for cjpeg potential vulnerability report. | ||||
| 
 | ||||
| Add ARM and ARM64 platform support in the Visual Studio build. | ||||
| 
 | ||||
| 
 | ||||
| Version 9d  12-Jan-2020 | ||||
| ----------------------- | ||||
| 
 | ||||
| Optimize the optimal Huffman code table generation to produce | ||||
| slightly smaller files.  Thank to John Korejwa for suggestion. | ||||
| Note: Requires rebuild of testimgp.jpg. | ||||
| 
 | ||||
| Decoding Huffman: Use default tables if tables are not defined. | ||||
| Thank to Simone Azzalin for report (Motion JPEG), | ||||
| and to Martin Strunz for hint. | ||||
| 
 | ||||
| Add sanity check in optimal Huffman code table generation. | ||||
| Thank to Adam Farley for suggestion. | ||||
| 
 | ||||
| rdtarga.c: use read_byte(), with EOF check, instead of getc() | ||||
| in read_*_pixel(). | ||||
| Thank to Chijin Zhou for cjpeg potential vulnerability report. | ||||
| 
 | ||||
| jmemnobs.c: respect the max_memory_to_use setting in | ||||
| jpeg_mem_available() computation.  Thank to Sheng Shu and | ||||
| Dongdong She for djpeg potential vulnerability report. | ||||
| 
 | ||||
| jdarith.c, jdhuff.c: avoid left shift of negative value | ||||
| compiler warning in decode_mcu_AC_refine(). | ||||
| Thank to Indu Bhagat for suggestion. | ||||
| 
 | ||||
| Add x64 (64-bit) platform support, avoid compiler warnings. | ||||
| Thank to Jonathan Potter, Feiyun Wang, and Sheng Shu for suggestion. | ||||
| 
 | ||||
| Adjust libjpeg version specification for pkg-config file. | ||||
| Thank to Chen Chen for suggestion. | ||||
| 
 | ||||
| Restore GIF read and write support from libjpeg version 6a. | ||||
| Thank to Wolfgang Werner (W.W.) Heinz for suggestion. | ||||
| 
 | ||||
| Improve consistency in raw (downsampled) image data processing mode. | ||||
| Thank to Zhongyuan Zhou for hint. | ||||
| 
 | ||||
| Avoid out of bounds array read (AC derived table pointers) | ||||
| in start pass in jdhuff.c.  Thank to Peng Li for report. | ||||
| 
 | ||||
| Improve code sanity (jdhuff.c). | ||||
| Thank to Reza Mirzazade farkhani for reports. | ||||
| 
 | ||||
| Add jpegtran -drop option; add options to the crop extension and wipe | ||||
| to fill the extra area with content from the source image region, | ||||
| instead of gray out. | ||||
| 
 | ||||
| 
 | ||||
| Version 9c  14-Jan-2018 | ||||
| ----------------------- | ||||
| 
 | ||||
| jpegtran: add an option to the -wipe switch to fill the region | ||||
| with the average of adjacent blocks, instead of gray out. | ||||
| Thank to Caitlyn Feddock and Maddie Ziegler for inspiration. | ||||
| 
 | ||||
| Make range extension bits adjustable (in jpegint.h). | ||||
| Thank to Robin Watts for suggestion. | ||||
| 
 | ||||
| Provide macros for fflush() and ferror() in jinclude.h in order | ||||
| to facilitate adaption by applications using an own FILE class. | ||||
| Thank to Gerhard Huber for suggestion. | ||||
| 
 | ||||
| Add libjpeg pkg-config file.  Thank to Mark Lavi, Vincent Torri, | ||||
| Patrick McMunn, and Huw Davies for suggestion. | ||||
| 
 | ||||
| Add sanity checks in cjpeg image reader modules. | ||||
| Thank to Bingchang, Liu for reports. | ||||
| 
 | ||||
| 
 | ||||
| Version 9b  17-Jan-2016 | ||||
| ----------------------- | ||||
| 
 | ||||
| Improvements and optimizations in DCT and color calculations. | ||||
| Normalize range limit array composition and access pattern. | ||||
| Thank to Sia Furler and Maddie Ziegler for inspiration. | ||||
| 
 | ||||
| Use merged upsample with scaled DCT sizes larger than 8. | ||||
| Thank to Taylor Hatala for inspiration. | ||||
| 
 | ||||
| Check for excessive comment lengths in argument parsing in wrjpgcom.c. | ||||
| Thank to Julian Cohen for hint. | ||||
| 
 | ||||
| Add makefile.b32 for use with Borland C++ 32-bit (bcc32). | ||||
| Thank to Joe Slater for contribution. | ||||
| 
 | ||||
| Document 'f' specifier for jpegtran -crop specification. | ||||
| Thank to Michele Martone for suggestion. | ||||
| 
 | ||||
| Use defined value from header instead of hardwired number in rdswitch.c. | ||||
| Thank to Robert Sprowson for hint. | ||||
| 
 | ||||
| 
 | ||||
| Version 9a  19-Jan-2014 | ||||
| ----------------------- | ||||
| 
 | ||||
| Add support for wide gamut color spaces (JFIF version 2). | ||||
| Improve clarity and accuracy in color conversion modules. | ||||
| Note: Requires rebuild of test images. | ||||
| 
 | ||||
| Extend the bit depth support to all values from 8 to 12 | ||||
| (BITS_IN_JSAMPLE configuration option in jmorecfg.h). | ||||
| jpegtran now supports N bits sample data precision with all N from 8 to 12 | ||||
| in a single instance.  Thank to Roland Fassauer for inspiration. | ||||
| 
 | ||||
| Try to resolve issues with new boolean type definition. | ||||
| Thank also to v4hn for suggestion. | ||||
| 
 | ||||
| Enable option to use default Huffman tables for lossless compression | ||||
| (for hardware solution), and in this case improve lossless RGB compression | ||||
| with reversible color transform.  Thank to Benny Alexandar for hint. | ||||
| 
 | ||||
| Extend the entropy decoding structure, so that extraneous bytes between | ||||
| compressed scan data and following marker can be reported correctly. | ||||
| Thank to Nigel Tao for hint. | ||||
| 
 | ||||
| Add jpegtran -wipe option and extension for -crop. | ||||
| Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion. | ||||
| 
 | ||||
| 
 | ||||
| Version 9  13-Jan-2013 | ||||
| ---------------------- | ||||
| 
 | ||||
| Add cjpeg -rgb1 option to create an RGB JPEG file, and insert | ||||
| a simple reversible color transform into the processing which | ||||
| significantly improves the compression. | ||||
| The recommended command for lossless coding of RGB images is now | ||||
| cjpeg -rgb1 -block 1 -arithmetic. | ||||
| As said, this option improves the compression significantly, but | ||||
| the files are not compatible with JPEG decoders prior to IJG v9 | ||||
| due to the included color transform. | ||||
| The used color transform and marker signaling is compatible with | ||||
| other JPEG standards (e.g., JPEG-LS part 2). | ||||
| 
 | ||||
| Remove the automatic de-ANSI-fication support (Automake 1.12). | ||||
| Thank also to Nitin A Kamble for suggestion. | ||||
| 
 | ||||
| Add remark for jpeg_mem_dest() in jdatadst.c. | ||||
| Thank to Elie-Gregoire Khoury for the hint. | ||||
| 
 | ||||
| Support files with invalid component identifiers (created | ||||
| by Adobe PDF).  Thank to Robin Watts for the suggestion. | ||||
| 
 | ||||
| Adapt full buffer case in jcmainct.c for use with scaled DCT. | ||||
| Thank to Sergii Biloshytskyi for the suggestion. | ||||
| 
 | ||||
| Add type identifier for declaration of noreturn functions. | ||||
| Thank to Brett L. Moore for the suggestion. | ||||
| 
 | ||||
| Correct argument type in format string, avoid compiler warnings. | ||||
| Thank to Vincent Torri for hint. | ||||
| 
 | ||||
| Add missing #include directives in configuration checks, avoid | ||||
| configuration errors.  Thank to John Spencer for the hint. | ||||
| 
 | ||||
| 
 | ||||
| Version 8d  15-Jan-2012 | ||||
| ----------------------- | ||||
| 
 | ||||
| Add cjpeg -rgb option to create RGB JPEG files. | ||||
| Using this switch suppresses the conversion from RGB | ||||
| colorspace input to the default YCbCr JPEG colorspace. | ||||
| This feature allows true lossless JPEG coding of RGB color images. | ||||
| The recommended command for this purpose is currently | ||||
| cjpeg -rgb -block 1 -arithmetic. | ||||
| SmartScale capable decoder (introduced with IJG JPEG 8) required. | ||||
| Thank to Michael Koch for the initial suggestion. | ||||
| 
 | ||||
| Add option to disable the region adjustment in the transupp crop code. | ||||
| Thank to Jeffrey Friedl for the suggestion. | ||||
| 
 | ||||
| Thank to Richard Jones and Edd Dawson for various minor corrections. | ||||
| 
 | ||||
| Thank to Akim Demaille for configure.ac cleanup. | ||||
| 
 | ||||
| 
 | ||||
| Version 8c  16-Jan-2011 | ||||
| ----------------------- | ||||
| 
 | ||||
| Add option to compression library and cjpeg (-block N) to use | ||||
| different DCT block size. | ||||
| All N from 1 to 16 are possible.  Default is 8 (baseline format). | ||||
| Larger values produce higher compression, | ||||
| smaller values produce higher quality. | ||||
| SmartScale capable decoder (introduced with IJG JPEG 8) required. | ||||
| 
 | ||||
| 
 | ||||
| Version 8b  16-May-2010 | ||||
| ----------------------- | ||||
| 
 | ||||
| Repair problem in new memory source manager with corrupt JPEG data. | ||||
| Thank to Ted Campbell and Samuel Chun for the report. | ||||
| 
 | ||||
| Repair problem in Makefile.am test target. | ||||
| Thank to anonymous user for the report. | ||||
| 
 | ||||
| Support MinGW installation with automatic configure. | ||||
| Thank to Volker Grabsch for the suggestion. | ||||
| 
 | ||||
| 
 | ||||
| Version 8a  28-Feb-2010 | ||||
| ----------------------- | ||||
| 
 | ||||
| Writing tables-only datastreams via jpeg_write_tables works again. | ||||
| 
 | ||||
| Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg. | ||||
| Thank to Brett Blackham for the suggestion. | ||||
| 
 | ||||
| Improve accuracy in floating point IDCT calculation. | ||||
| Thank to Robert Hooke for the hint. | ||||
| 
 | ||||
| 
 | ||||
| Version 8  10-Jan-2010 | ||||
| ---------------------- | ||||
| 
 | ||||
| jpegtran now supports the same -scale option as djpeg for "lossless" resize. | ||||
| An implementation of the JPEG SmartScale extension is required for this | ||||
| feature.  A (draft) specification of the JPEG SmartScale extension is | ||||
| available as a contributed document at ITU and ISO.  Revision 2 or later | ||||
| of the document is required (latest document version is Revision 3). | ||||
| The SmartScale extension will enable more features beside lossless resize | ||||
| in future implementations, as described in the document (new compression | ||||
| options). | ||||
| 
 | ||||
| Add sanity check in BMP reader module to avoid cjpeg crash for empty input | ||||
| image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error). | ||||
| 
 | ||||
| Add data source and destination managers for read from and write to | ||||
| memory buffers.  New API functions jpeg_mem_src and jpeg_mem_dest. | ||||
| Thank to Roberto Boni from Italy for the suggestion. | ||||
| 
 | ||||
| 
 | ||||
| Version 7  27-Jun-2009 | ||||
| ---------------------- | ||||
| 
 | ||||
| New scaled DCTs implemented. | ||||
| djpeg now supports scalings N/8 with all N from 1 to 16. | ||||
| cjpeg now supports scalings 8/N with all N from 1 to 16. | ||||
| Scaled DCTs with size larger than 8 are now also used for resolving the | ||||
| common 2x2 chroma subsampling case without additional spatial resampling. | ||||
| Separate spatial resampling for those kind of files is now only necessary | ||||
| for N>8 scaling cases. | ||||
| Furthermore, separate scaled DCT functions are provided for direct resolving | ||||
| of the common asymmetric subsampling cases (2x1 and 1x2) without additional | ||||
| spatial resampling. | ||||
| 
 | ||||
| cjpeg -quality option has been extended for support of separate quality | ||||
| settings for luminance and chrominance (or in general, for every provided | ||||
| quantization table slot). | ||||
| New API function jpeg_default_qtables() and q_scale_factor array in library. | ||||
| 
 | ||||
| Added -nosmooth option to cjpeg, complementary to djpeg. | ||||
| New variable "do_fancy_downsampling" in library, complement to fancy | ||||
| upsampling.  Fancy upsampling now uses direct DCT scaling with sizes | ||||
| larger than 8.  The old method is not reversible and has been removed. | ||||
| 
 | ||||
| Support arithmetic entropy encoding and decoding. | ||||
| Added files jaricom.c, jcarith.c, jdarith.c. | ||||
| 
 | ||||
| Straighten the file structure: | ||||
| Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h. | ||||
| 
 | ||||
| jpegtran has a new "lossless" cropping feature. | ||||
| 
 | ||||
| Implement -perfect option in jpegtran, new API function | ||||
| jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch) | ||||
| 
 | ||||
| Better error messages for jpegtran fopen failure. | ||||
| (DP 203_jpegtran_errmsg.dpatch) | ||||
| 
 | ||||
| Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c: | ||||
| according to Netpbm, the de facto standard implementation of the PNM formats, | ||||
| the most significant byte is first. (DP 203_rdppm.dpatch) | ||||
| 
 | ||||
| Add -raw option to rdjpgcom not to mangle the output. | ||||
| (DP 205_rdjpgcom_raw.dpatch) | ||||
| 
 | ||||
| Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch) | ||||
| 
 | ||||
| Add extern "C" to jpeglib.h. | ||||
| This avoids the need to put extern "C" { ... } around #include "jpeglib.h" | ||||
| in your C++ application.  Defining the symbol DONT_USE_EXTERN_C in the | ||||
| configuration prevents this. (DP 202_jpeglib.h_c++.dpatch) | ||||
| 
 | ||||
| 
 | ||||
| Version 6b  27-Mar-1998 | ||||
| ----------------------- | ||||
| 
 | ||||
| jpegtran has new features for lossless image transformations (rotation | ||||
| and flipping) as well as "lossless" reduction to grayscale. | ||||
| 
 | ||||
| jpegtran now copies comments by default; it has a -copy switch to enable | ||||
| copying all APPn blocks as well, or to suppress comments.  (Formerly it | ||||
| always suppressed comments and APPn blocks.)  jpegtran now also preserves | ||||
| JFIF version and resolution information. | ||||
| 
 | ||||
| New decompressor library feature: COM and APPn markers found in the input | ||||
| file can be saved in memory for later use by the application.  (Before, | ||||
| you had to code this up yourself with a custom marker processor.) | ||||
| 
 | ||||
| There is an unused field "void * client_data" now in compress and decompress | ||||
| parameter structs; this may be useful in some applications. | ||||
| 
 | ||||
| JFIF version number information is now saved by the decoder and accepted by | ||||
| the encoder.  jpegtran uses this to copy the source file's version number, | ||||
| to ensure "jpegtran -copy all" won't create bogus files that contain JFXX | ||||
| extensions but claim to be version 1.01.  Applications that generate their | ||||
| own JFXX extension markers also (finally) have a supported way to cause the | ||||
| encoder to emit JFIF version number 1.02. | ||||
| 
 | ||||
| djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather | ||||
| than as unknown APP0 markers. | ||||
| 
 | ||||
| In -verbose mode, djpeg and rdjpgcom will try to print the contents of | ||||
| APP12 markers as text.  Some digital cameras store useful text information | ||||
| in APP12 markers. | ||||
| 
 | ||||
| Handling of truncated data streams is more robust: blocks beyond the one in | ||||
| which the error occurs will be output as uniform gray, or left unchanged | ||||
| if decoding a progressive JPEG.  The appearance no longer depends on the | ||||
| Huffman tables being used. | ||||
| 
 | ||||
| Huffman tables are checked for validity much more carefully than before. | ||||
| 
 | ||||
| To avoid the Unisys LZW patent, djpeg's GIF output capability has been | ||||
| changed to produce "uncompressed GIFs", and cjpeg's GIF input capability | ||||
| has been removed altogether.  We're not happy about it either, but there | ||||
| seems to be no good alternative. | ||||
| 
 | ||||
| The configure script now supports building libjpeg as a shared library | ||||
| on many flavors of Unix (all the ones that GNU libtool knows how to | ||||
| build shared libraries for).  Use "./configure --enable-shared" to | ||||
| try this out. | ||||
| 
 | ||||
| New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio. | ||||
| Also, a jconfig file and a build script for Metrowerks CodeWarrior | ||||
| on Apple Macintosh.  makefile.dj has been updated for DJGPP v2, and there | ||||
| are miscellaneous other minor improvements in the makefiles. | ||||
| 
 | ||||
| jmemmac.c now knows how to create temporary files following Mac System 7 | ||||
| conventions. | ||||
| 
 | ||||
| djpeg's -map switch is now able to read raw-format PPM files reliably. | ||||
| 
 | ||||
| cjpeg -progressive -restart no longer generates any unnecessary DRI markers. | ||||
| 
 | ||||
| Multiple calls to jpeg_simple_progression for a single JPEG object | ||||
| no longer leak memory. | ||||
| 
 | ||||
| 
 | ||||
| Version 6a  7-Feb-96 | ||||
| -------------------- | ||||
| 
 | ||||
| Library initialization sequence modified to detect version mismatches | ||||
| and struct field packing mismatches between library and calling application. | ||||
| This change requires applications to be recompiled, but does not require | ||||
| any application source code change. | ||||
| 
 | ||||
| All routine declarations changed to the style "GLOBAL(type) name ...", | ||||
| that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the | ||||
| routine's return type as an argument.  This makes it possible to add | ||||
| Microsoft-style linkage keywords to all the routines by changing just | ||||
| these macros.  Note that any application code that was using these macros | ||||
| will have to be changed. | ||||
| 
 | ||||
| DCT coefficient quantization tables are now stored in normal array order | ||||
| rather than zigzag order.  Application code that calls jpeg_add_quant_table, | ||||
| or otherwise manipulates quantization tables directly, will need to be | ||||
| changed.  If you need to make such code work with either older or newer | ||||
| versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is | ||||
| recommended. | ||||
| 
 | ||||
| djpeg's trace capability now dumps DQT tables in natural order, not zigzag | ||||
| order.  This allows the trace output to be made into a "-qtables" file | ||||
| more easily. | ||||
| 
 | ||||
| New system-dependent memory manager module for use on Apple Macintosh. | ||||
| 
 | ||||
| Fix bug in cjpeg's -smooth option: last one or two scanlines would be | ||||
| duplicates of the prior line unless the image height mod 16 was 1 or 2. | ||||
| 
 | ||||
| Repair minor problems in VMS, BCC, MC6 makefiles. | ||||
| 
 | ||||
| New configure script based on latest GNU Autoconf. | ||||
| 
 | ||||
| Correct the list of include files needed by MetroWerks C for ccommand(). | ||||
| 
 | ||||
| Numerous small documentation updates. | ||||
| 
 | ||||
| 
 | ||||
| Version 6  2-Aug-95 | ||||
| ------------------- | ||||
| 
 | ||||
| Progressive JPEG support: library can read and write full progressive JPEG | ||||
| files.  A "buffered image" mode supports incremental decoding for on-the-fly | ||||
| display of progressive images.  Simply recompiling an existing IJG-v5-based | ||||
| decoder with v6 should allow it to read progressive files, though of course | ||||
| without any special progressive display. | ||||
| 
 | ||||
| New "jpegtran" application performs lossless transcoding between different | ||||
| JPEG formats; primarily, it can be used to convert baseline to progressive | ||||
| JPEG and vice versa.  In support of jpegtran, the library now allows lossless | ||||
| reading and writing of JPEG files as DCT coefficient arrays.  This ability | ||||
| may be of use in other applications. | ||||
| 
 | ||||
| Notes for programmers: | ||||
| * We changed jpeg_start_decompress() to be able to suspend; this makes all | ||||
| decoding modes available to suspending-input applications.  However, | ||||
| existing applications that use suspending input will need to be changed | ||||
| to check the return value from jpeg_start_decompress().  You don't need to | ||||
| do anything if you don't use a suspending data source. | ||||
| * We changed the interface to the virtual array routines: access_virt_array | ||||
| routines now take a count of the number of rows to access this time.  The | ||||
| last parameter to request_virt_array routines is now interpreted as the | ||||
| maximum number of rows that may be accessed at once, but not necessarily | ||||
| the height of every access. | ||||
| 
 | ||||
| 
 | ||||
| Version 5b  15-Mar-95 | ||||
| --------------------- | ||||
| 
 | ||||
| Correct bugs with grayscale images having v_samp_factor > 1. | ||||
| 
 | ||||
| jpeg_write_raw_data() now supports output suspension. | ||||
| 
 | ||||
| Correct bugs in "configure" script for case of compiling in | ||||
| a directory other than the one containing the source files. | ||||
| 
 | ||||
| Repair bug in jquant1.c: sometimes didn't use as many colors as it could. | ||||
| 
 | ||||
| Borland C makefile and jconfig file work under either MS-DOS or OS/2. | ||||
| 
 | ||||
| Miscellaneous improvements to documentation. | ||||
| 
 | ||||
| 
 | ||||
| Version 5a  7-Dec-94 | ||||
| -------------------- | ||||
| 
 | ||||
| Changed color conversion roundoff behavior so that grayscale values are | ||||
| represented exactly.  (This causes test image files to change.) | ||||
| 
 | ||||
| Make ordered dither use 16x16 instead of 4x4 pattern for a small quality | ||||
| improvement. | ||||
| 
 | ||||
| New configure script based on latest GNU Autoconf. | ||||
| Fix configure script to handle CFLAGS correctly. | ||||
| Rename *.auto files to *.cfg, so that configure script still works if | ||||
| file names have been truncated for DOS. | ||||
| 
 | ||||
| Fix bug in rdbmp.c: didn't allow for extra data between header and image. | ||||
| 
 | ||||
| Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data. | ||||
| 
 | ||||
| Fix several bugs in rdrle.c. | ||||
| 
 | ||||
| NEED_SHORT_EXTERNAL_NAMES option was broken. | ||||
| 
 | ||||
| Revise jerror.h/jerror.c for more flexibility in message table. | ||||
| 
 | ||||
| Repair oversight in jmemname.c NO_MKTEMP case: file could be there | ||||
| but unreadable. | ||||
| 
 | ||||
| 
 | ||||
| Version 5  24-Sep-94 | ||||
| -------------------- | ||||
| 
 | ||||
| Version 5 represents a nearly complete redesign and rewrite of the IJG | ||||
| software.  Major user-visible changes include: | ||||
|   * Automatic configuration simplifies installation for most Unix systems. | ||||
|   * A range of speed vs. image quality tradeoffs are supported. | ||||
|     This includes resizing of an image during decompression: scaling down | ||||
|     by a factor of 1/2, 1/4, or 1/8 is handled very efficiently. | ||||
|   * New programs rdjpgcom and wrjpgcom allow insertion and extraction | ||||
|     of text comments in a JPEG file. | ||||
| 
 | ||||
| The application programmer's interface to the library has changed completely. | ||||
| Notable improvements include: | ||||
|   * We have eliminated the use of callback routines for handling the | ||||
|     uncompressed image data.  The application now sees the library as a | ||||
|     set of routines that it calls to read or write image data on a | ||||
|     scanline-by-scanline basis. | ||||
|   * The application image data is represented in a conventional interleaved- | ||||
|     pixel format, rather than as a separate array for each color channel. | ||||
|     This can save a copying step in many programs. | ||||
|   * The handling of compressed data has been cleaned up: the application can | ||||
|     supply routines to source or sink the compressed data.  It is possible to | ||||
|     suspend processing on source/sink buffer overrun, although this is not | ||||
|     supported in all operating modes. | ||||
|   * All static state has been eliminated from the library, so that multiple | ||||
|     instances of compression or decompression can be active concurrently. | ||||
|   * JPEG abbreviated datastream formats are supported, ie, quantization and | ||||
|     Huffman tables can be stored separately from the image data. | ||||
|   * And not only that, but the documentation of the library has improved | ||||
|     considerably! | ||||
| 
 | ||||
| 
 | ||||
| The last widely used release before the version 5 rewrite was version 4A of | ||||
| 18-Feb-93.  Change logs before that point have been discarded, since they | ||||
| are not of much interest after the rewrite. | ||||
							
								
								
									
										171
									
								
								dep/libjpeg/include/jconfig.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										171
									
								
								dep/libjpeg/include/jconfig.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,171 @@ | |||
| /*
 | ||||
|  * jconfig.txt | ||||
|  * | ||||
|  * Copyright (C) 1991-1994, Thomas G. Lane. | ||||
|  * Modified 2009-2013 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file documents the configuration options that are required to | ||||
|  * customize the JPEG software for a particular system. | ||||
|  * | ||||
|  * The actual configuration options for a particular installation are stored | ||||
|  * in jconfig.h.  On many machines, jconfig.h can be generated automatically | ||||
|  * or copied from one of the "canned" jconfig files that we supply.  But if | ||||
|  * you need to generate a jconfig.h file by hand, this file tells you how. | ||||
|  * | ||||
|  * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING. | ||||
|  * EDIT A COPY NAMED JCONFIG.H. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These symbols indicate the properties of your machine or compiler. | ||||
|  * #define the symbol if yes, #undef it if no. | ||||
|  */ | ||||
| 
 | ||||
| /* Does your compiler support function prototypes?
 | ||||
|  * (If not, you also need to use ansi2knr, see install.txt) | ||||
|  */ | ||||
| #define HAVE_PROTOTYPES | ||||
| 
 | ||||
| /* Does your compiler support the declaration "unsigned char" ?
 | ||||
|  * How about "unsigned short" ? | ||||
|  */ | ||||
| #define HAVE_UNSIGNED_CHAR | ||||
| #define HAVE_UNSIGNED_SHORT | ||||
| 
 | ||||
| /* Define "void" as "char" if your compiler doesn't know about type void.
 | ||||
|  * NOTE: be sure to define void such that "void *" represents the most general | ||||
|  * pointer type, e.g., that returned by malloc(). | ||||
|  */ | ||||
| /* #define void char */ | ||||
| 
 | ||||
| /* Define "const" as empty if your compiler doesn't know the "const" keyword.
 | ||||
|  */ | ||||
| /* #define const */ | ||||
| 
 | ||||
| /* Define this if an ordinary "char" type is unsigned.
 | ||||
|  * If you're not sure, leaving it undefined will work at some cost in speed. | ||||
|  * If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal. | ||||
|  */ | ||||
| #undef CHAR_IS_UNSIGNED | ||||
| 
 | ||||
| /* Define this if your system has an ANSI-conforming <stddef.h> file.
 | ||||
|  */ | ||||
| #define HAVE_STDDEF_H | ||||
| 
 | ||||
| /* Define this if your system has an ANSI-conforming <stdlib.h> file.
 | ||||
|  */ | ||||
| #define HAVE_STDLIB_H | ||||
| 
 | ||||
| /* Define this if your system does not have an ANSI/SysV <string.h>,
 | ||||
|  * but does have a BSD-style <strings.h>. | ||||
|  */ | ||||
| #undef NEED_BSD_STRINGS | ||||
| 
 | ||||
| /* Define this if your system does not provide typedef size_t in any of the
 | ||||
|  * ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in | ||||
|  * <sys/types.h> instead. | ||||
|  */ | ||||
| #undef NEED_SYS_TYPES_H | ||||
| 
 | ||||
| /* For 80x86 machines, you need to define NEED_FAR_POINTERS,
 | ||||
|  * unless you are using a large-data memory model or 80386 flat-memory mode. | ||||
|  * On less brain-damaged CPUs this symbol must not be defined. | ||||
|  * (Defining this symbol causes large data structures to be referenced through | ||||
|  * "far" pointers and to be allocated with a special version of malloc.) | ||||
|  */ | ||||
| #undef NEED_FAR_POINTERS | ||||
| 
 | ||||
| /* Define this if your linker needs global names to be unique in less
 | ||||
|  * than the first 15 characters. | ||||
|  */ | ||||
| #undef NEED_SHORT_EXTERNAL_NAMES | ||||
| 
 | ||||
| /* Although a real ANSI C compiler can deal perfectly well with pointers to
 | ||||
|  * unspecified structures (see "incomplete types" in the spec), a few pre-ANSI | ||||
|  * and pseudo-ANSI compilers get confused.  To keep one of these bozos happy, | ||||
|  * define INCOMPLETE_TYPES_BROKEN.  This is not recommended unless you | ||||
|  * actually get "missing structure definition" warnings or errors while | ||||
|  * compiling the JPEG code. | ||||
|  */ | ||||
| #undef INCOMPLETE_TYPES_BROKEN | ||||
| 
 | ||||
| /* Define "boolean" as unsigned char, not enum, on Windows systems.
 | ||||
|  */ | ||||
| #ifdef _WIN32 | ||||
| #ifndef __RPCNDR_H__		/* don't conflict if rpcndr.h already read */ | ||||
| typedef unsigned char boolean; | ||||
| #endif | ||||
| #ifndef FALSE			/* in case these macros already exist */ | ||||
| #define FALSE	0		/* values of boolean */ | ||||
| #endif | ||||
| #ifndef TRUE | ||||
| #define TRUE	1 | ||||
| #endif | ||||
| #define HAVE_BOOLEAN		/* prevent jmorecfg.h from redefining it */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The following options affect code selection within the JPEG library, | ||||
|  * but they don't need to be visible to applications using the library. | ||||
|  * To minimize application namespace pollution, the symbols won't be | ||||
|  * defined unless JPEG_INTERNALS has been defined. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef JPEG_INTERNALS | ||||
| 
 | ||||
| /* Define this if your compiler implements ">>" on signed values as a logical
 | ||||
|  * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift, | ||||
|  * which is the normal and rational definition. | ||||
|  */ | ||||
| #undef RIGHT_SHIFT_IS_UNSIGNED | ||||
| 
 | ||||
| 
 | ||||
| #endif /* JPEG_INTERNALS */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The remaining options do not affect the JPEG library proper, | ||||
|  * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c). | ||||
|  * Other applications can ignore these. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef JPEG_CJPEG_DJPEG | ||||
| 
 | ||||
| /* These defines indicate which image (non-JPEG) file formats are allowed. */ | ||||
| 
 | ||||
| #define BMP_SUPPORTED		/* BMP image file format */ | ||||
| #define GIF_SUPPORTED		/* GIF image file format */ | ||||
| #define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */ | ||||
| #undef RLE_SUPPORTED		/* Utah RLE image file format */ | ||||
| #define TARGA_SUPPORTED		/* Targa image file format */ | ||||
| 
 | ||||
| /* Define this if you want to name both input and output files on the command
 | ||||
|  * line, rather than using stdout and optionally stdin.  You MUST do this if | ||||
|  * your system can't cope with binary I/O to stdin/stdout.  See comments at | ||||
|  * head of cjpeg.c or djpeg.c. | ||||
|  */ | ||||
| #undef TWO_FILE_COMMANDLINE | ||||
| 
 | ||||
| /* Define this if your system needs explicit cleanup of temporary files.
 | ||||
|  * This is crucial under MS-DOS, where the temporary "files" may be areas | ||||
|  * of extended memory; on most other systems it's not as important. | ||||
|  */ | ||||
| #undef NEED_SIGNAL_CATCHER | ||||
| 
 | ||||
| /* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
 | ||||
|  * This is necessary on systems that distinguish text files from binary files, | ||||
|  * and is harmless on most systems that don't.  If you have one of the rare | ||||
|  * systems that complains about the "b" spec, define this symbol. | ||||
|  */ | ||||
| #undef DONT_USE_B_MODE | ||||
| 
 | ||||
| /* Define this if you want percent-done progress reports from cjpeg/djpeg.
 | ||||
|  */ | ||||
| #undef PROGRESS_REPORT | ||||
| 
 | ||||
| 
 | ||||
| #endif /* JPEG_CJPEG_DJPEG */ | ||||
							
								
								
									
										304
									
								
								dep/libjpeg/include/jerror.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										304
									
								
								dep/libjpeg/include/jerror.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,304 @@ | |||
| /*
 | ||||
|  * jerror.h | ||||
|  * | ||||
|  * Copyright (C) 1994-1997, Thomas G. Lane. | ||||
|  * Modified 1997-2018 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file defines the error and message codes for the JPEG library. | ||||
|  * Edit this file to add new codes, or to translate the message strings to | ||||
|  * some other language. | ||||
|  * A set of error-reporting macros are defined too.  Some applications using | ||||
|  * the JPEG library may wish to include this file to get the error codes | ||||
|  * and/or the macros. | ||||
|  */ | ||||
| 
 | ||||
| /*
 | ||||
|  * To define the enum list of message codes, include this file without | ||||
|  * defining macro JMESSAGE.  To create a message string table, include it | ||||
|  * again with a suitable JMESSAGE definition (see jerror.c for an example). | ||||
|  */ | ||||
| #ifndef JMESSAGE | ||||
| #ifndef JERROR_H | ||||
| /* First time through, define the enum list */ | ||||
| #define JMAKE_ENUM_LIST | ||||
| #else | ||||
| /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ | ||||
| #define JMESSAGE(code,string) | ||||
| #endif /* JERROR_H */ | ||||
| #endif /* JMESSAGE */ | ||||
| 
 | ||||
| #ifdef JMAKE_ENUM_LIST | ||||
| 
 | ||||
| typedef enum { | ||||
| 
 | ||||
| #define JMESSAGE(code,string)	code , | ||||
| 
 | ||||
| #endif /* JMAKE_ENUM_LIST */ | ||||
| 
 | ||||
| JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ | ||||
| 
 | ||||
| /* For maintenance convenience, list is alphabetical by message code name */ | ||||
| JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") | ||||
| JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") | ||||
| JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") | ||||
| JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") | ||||
| JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") | ||||
| JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") | ||||
| JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported") | ||||
| JMESSAGE(JERR_BAD_DROP_SAMPLING, | ||||
| 	 "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") | ||||
| JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") | ||||
| JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") | ||||
| JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") | ||||
| JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") | ||||
| JMESSAGE(JERR_BAD_LIB_VERSION, | ||||
| 	 "Wrong JPEG library version: library is %d, caller expects %d") | ||||
| JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") | ||||
| JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") | ||||
| JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") | ||||
| JMESSAGE(JERR_BAD_PROGRESSION, | ||||
| 	 "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") | ||||
| JMESSAGE(JERR_BAD_PROG_SCRIPT, | ||||
| 	 "Invalid progressive parameters at scan script entry %d") | ||||
| JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") | ||||
| JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") | ||||
| JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") | ||||
| JMESSAGE(JERR_BAD_STRUCT_SIZE, | ||||
| 	 "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") | ||||
| JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") | ||||
| JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") | ||||
| JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") | ||||
| JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") | ||||
| JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") | ||||
| JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") | ||||
| JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") | ||||
| JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") | ||||
| JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") | ||||
| JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") | ||||
| JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") | ||||
| JMESSAGE(JERR_EMS_READ, "Read from EMS failed") | ||||
| JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") | ||||
| JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") | ||||
| JMESSAGE(JERR_FILE_READ, "Input file read error") | ||||
| JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") | ||||
| JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") | ||||
| JMESSAGE(JERR_HUFF_CLEN_OUTOFBOUNDS, "Huffman code size table out of bounds") | ||||
| JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") | ||||
| JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") | ||||
| JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") | ||||
| JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") | ||||
| JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, | ||||
| 	 "Cannot transcode due to multiple use of quantization table %d") | ||||
| JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") | ||||
| JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") | ||||
| JMESSAGE(JERR_NOTIMPL, "Not implemented yet") | ||||
| JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") | ||||
| JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") | ||||
| JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") | ||||
| JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") | ||||
| JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") | ||||
| JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") | ||||
| JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") | ||||
| JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") | ||||
| JMESSAGE(JERR_QUANT_COMPONENTS, | ||||
| 	 "Cannot quantize more than %d color components") | ||||
| JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") | ||||
| JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") | ||||
| JMESSAGE(JERR_SOF_BEFORE, "Invalid JPEG file structure: %s before SOF") | ||||
| JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") | ||||
| JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") | ||||
| JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") | ||||
| JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") | ||||
| JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") | ||||
| JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") | ||||
| JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") | ||||
| JMESSAGE(JERR_TFILE_WRITE, | ||||
| 	 "Write failed on temporary file --- out of disk space?") | ||||
| JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") | ||||
| JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") | ||||
| JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") | ||||
| JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") | ||||
| JMESSAGE(JERR_XMS_READ, "Read from XMS failed") | ||||
| JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") | ||||
| JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) | ||||
| JMESSAGE(JMSG_VERSION, JVERSION) | ||||
| JMESSAGE(JTRC_16BIT_TABLES, | ||||
| 	 "Caution: quantization tables are too coarse for baseline JPEG") | ||||
| JMESSAGE(JTRC_ADOBE, | ||||
| 	 "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") | ||||
| JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") | ||||
| JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") | ||||
| JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") | ||||
| JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") | ||||
| JMESSAGE(JTRC_DQT, "Define Quantization Table %d  precision %d") | ||||
| JMESSAGE(JTRC_DRI, "Define Restart Interval %u") | ||||
| JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") | ||||
| JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") | ||||
| JMESSAGE(JTRC_EOI, "End Of Image") | ||||
| JMESSAGE(JTRC_HUFFBITS, "        %3d %3d %3d %3d %3d %3d %3d %3d") | ||||
| JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d  %d") | ||||
| JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, | ||||
| 	 "Warning: thumbnail image size does not match data length %u") | ||||
| JMESSAGE(JTRC_JFIF_EXTENSION, | ||||
| 	 "JFIF extension marker: type 0x%02x, length %u") | ||||
| JMESSAGE(JTRC_JFIF_THUMBNAIL, "    with %d x %d thumbnail image") | ||||
| JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") | ||||
| JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") | ||||
| JMESSAGE(JTRC_QUANTVALS, "        %4u %4u %4u %4u %4u %4u %4u %4u") | ||||
| JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") | ||||
| JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") | ||||
| JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") | ||||
| JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") | ||||
| JMESSAGE(JTRC_RST, "RST%d") | ||||
| JMESSAGE(JTRC_SMOOTH_NOTIMPL, | ||||
| 	 "Smoothing not supported with nonstandard sampling ratios") | ||||
| JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") | ||||
| JMESSAGE(JTRC_SOF_COMPONENT, "    Component %d: %dhx%dv q=%d") | ||||
| JMESSAGE(JTRC_SOI, "Start of Image") | ||||
| JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") | ||||
| JMESSAGE(JTRC_SOS_COMPONENT, "    Component %d: dc=%d ac=%d") | ||||
| JMESSAGE(JTRC_SOS_PARAMS, "  Ss=%d, Se=%d, Ah=%d, Al=%d") | ||||
| JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") | ||||
| JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") | ||||
| JMESSAGE(JTRC_THUMB_JPEG, | ||||
| 	 "JFIF extension marker: JPEG-compressed thumbnail image, length %u") | ||||
| JMESSAGE(JTRC_THUMB_PALETTE, | ||||
| 	 "JFIF extension marker: palette thumbnail image, length %u") | ||||
| JMESSAGE(JTRC_THUMB_RGB, | ||||
| 	 "JFIF extension marker: RGB thumbnail image, length %u") | ||||
| JMESSAGE(JTRC_UNKNOWN_IDS, | ||||
| 	 "Unrecognized component IDs %d %d %d, assuming YCbCr") | ||||
| JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") | ||||
| JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") | ||||
| JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") | ||||
| JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") | ||||
| JMESSAGE(JWRN_BOGUS_PROGRESSION, | ||||
| 	 "Inconsistent progression sequence for component %d coefficient %d") | ||||
| JMESSAGE(JWRN_EXTRANEOUS_DATA, | ||||
| 	 "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") | ||||
| JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") | ||||
| JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") | ||||
| JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") | ||||
| JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") | ||||
| JMESSAGE(JWRN_MUST_RESYNC, | ||||
| 	 "Corrupt JPEG data: found marker 0x%02x instead of RST%d") | ||||
| JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") | ||||
| JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") | ||||
| 
 | ||||
| #ifdef JMAKE_ENUM_LIST | ||||
| 
 | ||||
|   JMSG_LASTMSGCODE | ||||
| } J_MESSAGE_CODE; | ||||
| 
 | ||||
| #undef JMAKE_ENUM_LIST | ||||
| #endif /* JMAKE_ENUM_LIST */ | ||||
| 
 | ||||
| /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ | ||||
| #undef JMESSAGE | ||||
| 
 | ||||
| 
 | ||||
| #ifndef JERROR_H | ||||
| #define JERROR_H | ||||
| 
 | ||||
| /* Macros to simplify using the error and trace message stuff */ | ||||
| /* The first parameter is either type of cinfo pointer */ | ||||
| 
 | ||||
| /* Fatal errors (print message and exit) */ | ||||
| #define ERREXIT(cinfo,code)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| #define ERREXIT1(cinfo,code,p1)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| #define ERREXIT2(cinfo,code,p1,p2)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (cinfo)->err->msg_parm.i[1] = (p2), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| #define ERREXIT3(cinfo,code,p1,p2,p3)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (cinfo)->err->msg_parm.i[1] = (p2), \ | ||||
|    (cinfo)->err->msg_parm.i[2] = (p3), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| #define ERREXIT4(cinfo,code,p1,p2,p3,p4)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (cinfo)->err->msg_parm.i[1] = (p2), \ | ||||
|    (cinfo)->err->msg_parm.i[2] = (p3), \ | ||||
|    (cinfo)->err->msg_parm.i[3] = (p4), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| #define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (cinfo)->err->msg_parm.i[1] = (p2), \ | ||||
|    (cinfo)->err->msg_parm.i[2] = (p3), \ | ||||
|    (cinfo)->err->msg_parm.i[3] = (p4), \ | ||||
|    (cinfo)->err->msg_parm.i[4] = (p5), \ | ||||
|    (cinfo)->err->msg_parm.i[5] = (p6), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| #define ERREXITS(cinfo,code,str)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ | ||||
|    (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | ||||
| 
 | ||||
| #define MAKESTMT(stuff)		do { stuff } while (0) | ||||
| 
 | ||||
| /* Nonfatal errors (we can keep going, but the data is probably corrupt) */ | ||||
| #define WARNMS(cinfo,code)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) | ||||
| #define WARNMS1(cinfo,code,p1)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) | ||||
| #define WARNMS2(cinfo,code,p1,p2)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (cinfo)->err->msg_parm.i[1] = (p2), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) | ||||
| 
 | ||||
| /* Informational/debugging messages */ | ||||
| #define TRACEMS(cinfo,lvl,code)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | ||||
| #define TRACEMS1(cinfo,lvl,code,p1)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | ||||
| #define TRACEMS2(cinfo,lvl,code,p1,p2)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    (cinfo)->err->msg_parm.i[0] = (p1), \ | ||||
|    (cinfo)->err->msg_parm.i[1] = (p2), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | ||||
| #define TRACEMS3(cinfo,lvl,code,p1,p2,p3)  \ | ||||
|   MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | ||||
| 	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ | ||||
| 	   (cinfo)->err->msg_code = (code); \ | ||||
| 	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | ||||
| #define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4)  \ | ||||
|   MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | ||||
| 	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ | ||||
| 	   (cinfo)->err->msg_code = (code); \ | ||||
| 	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | ||||
| #define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5)  \ | ||||
|   MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | ||||
| 	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ | ||||
| 	   _mp[4] = (p5); \ | ||||
| 	   (cinfo)->err->msg_code = (code); \ | ||||
| 	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | ||||
| #define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8)  \ | ||||
|   MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | ||||
| 	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ | ||||
| 	   _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ | ||||
| 	   (cinfo)->err->msg_code = (code); \ | ||||
| 	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | ||||
| #define TRACEMSS(cinfo,lvl,code,str)  \ | ||||
|   ((cinfo)->err->msg_code = (code), \ | ||||
|    strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ | ||||
|    (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | ||||
| 
 | ||||
| #endif /* JERROR_H */ | ||||
							
								
								
									
										457
									
								
								dep/libjpeg/include/jmorecfg.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										457
									
								
								dep/libjpeg/include/jmorecfg.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,457 @@ | |||
| /*
 | ||||
|  * jmorecfg.h | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 1997-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains additional configuration options that customize the | ||||
|  * JPEG software for special applications or support machine-dependent | ||||
|  * optimizations.  Most users will not need to touch this file. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Define BITS_IN_JSAMPLE as either | ||||
|  *   8   for 8-bit sample values (the usual setting) | ||||
|  *   9   for 9-bit sample values | ||||
|  *   10  for 10-bit sample values | ||||
|  *   11  for 11-bit sample values | ||||
|  *   12  for 12-bit sample values | ||||
|  * Only 8, 9, 10, 11, and 12 bits sample data precision are supported for | ||||
|  * full-feature DCT processing.  Further depths up to 16-bit may be added | ||||
|  * later for the lossless modes of operation. | ||||
|  * Run-time selection and conversion of data precision will be added later | ||||
|  * and are currently not supported, sorry. | ||||
|  * Exception:  The transcoding part (jpegtran) supports all settings in a | ||||
|  * single instance, since it operates on the level of DCT coefficients and | ||||
|  * not sample values.  The DCT coefficients are of the same type (16 bits) | ||||
|  * in all cases (see below). | ||||
|  */ | ||||
| 
 | ||||
| #define BITS_IN_JSAMPLE  8	/* use 8, 9, 10, 11, or 12 */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Maximum number of components (color channels) allowed in JPEG image. | ||||
|  * To meet the letter of the JPEG spec, set this to 255.  However, darn | ||||
|  * few applications need more than 4 channels (maybe 5 for CMYK + alpha | ||||
|  * mask).  We recommend 10 as a reasonable compromise; use 4 if you are | ||||
|  * really short on memory.  (Each allowed component costs a hundred or so | ||||
|  * bytes of storage, whether actually used in an image or not.) | ||||
|  */ | ||||
| 
 | ||||
| #define MAX_COMPONENTS  10	/* maximum number of image components */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Basic data types. | ||||
|  * You may need to change these if you have a machine with unusual data | ||||
|  * type sizes; for example, "char" not 8 bits, "short" not 16 bits, | ||||
|  * or "long" not 32 bits.  We don't care whether "int" is 16 or 32 bits, | ||||
|  * but it had better be at least 16. | ||||
|  */ | ||||
| 
 | ||||
| /* Representation of a single sample (pixel element value).
 | ||||
|  * We frequently allocate large arrays of these, so it's important to keep | ||||
|  * them small.  But if you have memory to burn and access to char or short | ||||
|  * arrays is very slow on your hardware, you might want to change these. | ||||
|  */ | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| /* JSAMPLE should be the smallest type that will hold the values 0..255.
 | ||||
|  * You can use a signed char by having GETJSAMPLE mask it with 0xFF. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef HAVE_UNSIGNED_CHAR | ||||
| 
 | ||||
| typedef unsigned char JSAMPLE; | ||||
| #define GETJSAMPLE(value)  ((int) (value)) | ||||
| 
 | ||||
| #else /* not HAVE_UNSIGNED_CHAR */ | ||||
| 
 | ||||
| typedef char JSAMPLE; | ||||
| #ifdef CHAR_IS_UNSIGNED | ||||
| #define GETJSAMPLE(value)  ((int) (value)) | ||||
| #else | ||||
| #define GETJSAMPLE(value)  ((int) (value) & 0xFF) | ||||
| #endif /* CHAR_IS_UNSIGNED */ | ||||
| 
 | ||||
| #endif /* HAVE_UNSIGNED_CHAR */ | ||||
| 
 | ||||
| #define MAXJSAMPLE	255 | ||||
| #define CENTERJSAMPLE	128 | ||||
| 
 | ||||
| #endif /* BITS_IN_JSAMPLE == 8 */ | ||||
| 
 | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 9 | ||||
| /* JSAMPLE should be the smallest type that will hold the values 0..511.
 | ||||
|  * On nearly all machines "short" will do nicely. | ||||
|  */ | ||||
| 
 | ||||
| typedef short JSAMPLE; | ||||
| #define GETJSAMPLE(value)  ((int) (value)) | ||||
| 
 | ||||
| #define MAXJSAMPLE	511 | ||||
| #define CENTERJSAMPLE	256 | ||||
| 
 | ||||
| #endif /* BITS_IN_JSAMPLE == 9 */ | ||||
| 
 | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 10 | ||||
| /* JSAMPLE should be the smallest type that will hold the values 0..1023.
 | ||||
|  * On nearly all machines "short" will do nicely. | ||||
|  */ | ||||
| 
 | ||||
| typedef short JSAMPLE; | ||||
| #define GETJSAMPLE(value)  ((int) (value)) | ||||
| 
 | ||||
| #define MAXJSAMPLE	1023 | ||||
| #define CENTERJSAMPLE	512 | ||||
| 
 | ||||
| #endif /* BITS_IN_JSAMPLE == 10 */ | ||||
| 
 | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 11 | ||||
| /* JSAMPLE should be the smallest type that will hold the values 0..2047.
 | ||||
|  * On nearly all machines "short" will do nicely. | ||||
|  */ | ||||
| 
 | ||||
| typedef short JSAMPLE; | ||||
| #define GETJSAMPLE(value)  ((int) (value)) | ||||
| 
 | ||||
| #define MAXJSAMPLE	2047 | ||||
| #define CENTERJSAMPLE	1024 | ||||
| 
 | ||||
| #endif /* BITS_IN_JSAMPLE == 11 */ | ||||
| 
 | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 12 | ||||
| /* JSAMPLE should be the smallest type that will hold the values 0..4095.
 | ||||
|  * On nearly all machines "short" will do nicely. | ||||
|  */ | ||||
| 
 | ||||
| typedef short JSAMPLE; | ||||
| #define GETJSAMPLE(value)  ((int) (value)) | ||||
| 
 | ||||
| #define MAXJSAMPLE	4095 | ||||
| #define CENTERJSAMPLE	2048 | ||||
| 
 | ||||
| #endif /* BITS_IN_JSAMPLE == 12 */ | ||||
| 
 | ||||
| 
 | ||||
| /* Representation of a DCT frequency coefficient.
 | ||||
|  * This should be a signed value of at least 16 bits; "short" is usually OK. | ||||
|  * Again, we allocate large arrays of these, but you can change to int | ||||
|  * if you have memory to burn and "short" is really slow. | ||||
|  */ | ||||
| 
 | ||||
| typedef short JCOEF; | ||||
| 
 | ||||
| 
 | ||||
| /* Compressed datastreams are represented as arrays of JOCTET.
 | ||||
|  * These must be EXACTLY 8 bits wide, at least once they are written to | ||||
|  * external storage.  Note that when using the stdio data source/destination | ||||
|  * managers, this is also the data type passed to fread/fwrite. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef HAVE_UNSIGNED_CHAR | ||||
| 
 | ||||
| typedef unsigned char JOCTET; | ||||
| #define GETJOCTET(value)  (value) | ||||
| 
 | ||||
| #else /* not HAVE_UNSIGNED_CHAR */ | ||||
| 
 | ||||
| typedef char JOCTET; | ||||
| #ifdef CHAR_IS_UNSIGNED | ||||
| #define GETJOCTET(value)  (value) | ||||
| #else | ||||
| #define GETJOCTET(value)  ((value) & 0xFF) | ||||
| #endif /* CHAR_IS_UNSIGNED */ | ||||
| 
 | ||||
| #endif /* HAVE_UNSIGNED_CHAR */ | ||||
| 
 | ||||
| 
 | ||||
| /* These typedefs are used for various table entries and so forth.
 | ||||
|  * They must be at least as wide as specified; but making them too big | ||||
|  * won't cost a huge amount of memory, so we don't provide special | ||||
|  * extraction code like we did for JSAMPLE.  (In other words, these | ||||
|  * typedefs live at a different point on the speed/space tradeoff curve.) | ||||
|  */ | ||||
| 
 | ||||
| /* UINT8 must hold at least the values 0..255. */ | ||||
| 
 | ||||
| #ifdef HAVE_UNSIGNED_CHAR | ||||
| typedef unsigned char UINT8; | ||||
| #else /* not HAVE_UNSIGNED_CHAR */ | ||||
| #ifdef CHAR_IS_UNSIGNED | ||||
| typedef char UINT8; | ||||
| #else /* not CHAR_IS_UNSIGNED */ | ||||
| typedef short UINT8; | ||||
| #endif /* CHAR_IS_UNSIGNED */ | ||||
| #endif /* HAVE_UNSIGNED_CHAR */ | ||||
| 
 | ||||
| /* UINT16 must hold at least the values 0..65535. */ | ||||
| 
 | ||||
| #ifdef HAVE_UNSIGNED_SHORT | ||||
| typedef unsigned short UINT16; | ||||
| #else /* not HAVE_UNSIGNED_SHORT */ | ||||
| typedef unsigned int UINT16; | ||||
| #endif /* HAVE_UNSIGNED_SHORT */ | ||||
| 
 | ||||
| /* INT16 must hold at least the values -32768..32767. */ | ||||
| 
 | ||||
| #ifndef XMD_H			/* X11/xmd.h correctly defines INT16 */ | ||||
| typedef short INT16; | ||||
| #endif | ||||
| 
 | ||||
| /* INT32 must hold at least signed 32-bit values. */ | ||||
| 
 | ||||
| #ifndef XMD_H			/* X11/xmd.h correctly defines INT32 */ | ||||
| #ifndef _BASETSD_H_		/* Microsoft defines it in basetsd.h */ | ||||
| #ifndef _BASETSD_H		/* MinGW is slightly different */ | ||||
| #ifndef QGLOBAL_H		/* Qt defines it in qglobal.h */ | ||||
| typedef long INT32; | ||||
| #endif | ||||
| #endif | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| /* Datatype used for image dimensions.  The JPEG standard only supports
 | ||||
|  * images up to 64K*64K due to 16-bit fields in SOF markers.  Therefore | ||||
|  * "unsigned int" is sufficient on all machines.  However, if you need to | ||||
|  * handle larger images and you don't mind deviating from the spec, you | ||||
|  * can change this datatype. | ||||
|  */ | ||||
| 
 | ||||
| typedef unsigned int JDIMENSION; | ||||
| 
 | ||||
| #define JPEG_MAX_DIMENSION  65500L  /* a tad under 64K to prevent overflows */ | ||||
| 
 | ||||
| 
 | ||||
| /* These macros are used in all function definitions and extern declarations.
 | ||||
|  * You could modify them if you need to change function linkage conventions; | ||||
|  * in particular, you'll need to do that to make the library a Windows DLL. | ||||
|  * Another application is to make all functions global for use with debuggers | ||||
|  * or code profilers that require it. | ||||
|  */ | ||||
| 
 | ||||
| /* a function called through method pointers: */ | ||||
| #define METHODDEF(type)		static type | ||||
| /* a function used only in its module: */ | ||||
| #define LOCAL(type)		static type | ||||
| /* a function referenced thru EXTERNs: */ | ||||
| #define GLOBAL(type)		type | ||||
| /* a reference to a GLOBAL function: */ | ||||
| #define EXTERN(type)		extern type | ||||
| 
 | ||||
| 
 | ||||
| /* This macro is used to declare a "method", that is, a function pointer.
 | ||||
|  * We want to supply prototype parameters if the compiler can cope. | ||||
|  * Note that the arglist parameter must be parenthesized! | ||||
|  * Again, you can customize this if you need special linkage keywords. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef HAVE_PROTOTYPES | ||||
| #define JMETHOD(type,methodname,arglist)  type (*methodname) arglist | ||||
| #else | ||||
| #define JMETHOD(type,methodname,arglist)  type (*methodname) () | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* The noreturn type identifier is used to declare functions
 | ||||
|  * which cannot return. | ||||
|  * Compilers can thus create more optimized code and perform | ||||
|  * better checks for warnings and errors. | ||||
|  * Static analyzer tools can make improved inferences about | ||||
|  * execution paths and are prevented from giving false alerts. | ||||
|  * | ||||
|  * Unfortunately, the proposed specifications of corresponding | ||||
|  * extensions in the Dec 2011 ISO C standard revision (C11), | ||||
|  * GCC, MSVC, etc. are not viable. | ||||
|  * Thus we introduce a user defined type to declare noreturn | ||||
|  * functions at least for clarity.  A proper compiler would | ||||
|  * have a suitable noreturn type to match in place of void. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef HAVE_NORETURN_T | ||||
| typedef void noreturn_t; | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Here is the pseudo-keyword for declaring pointers that must be "far"
 | ||||
|  * on 80x86 machines.  Most of the specialized coding for 80x86 is handled | ||||
|  * by just saying "FAR *" where such a pointer is needed.  In a few places | ||||
|  * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef FAR | ||||
| #ifdef NEED_FAR_POINTERS | ||||
| #define FAR  far | ||||
| #else | ||||
| #define FAR | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * On a few systems, type boolean and/or its values FALSE, TRUE may appear | ||||
|  * in standard header files.  Or you may have conflicts with application- | ||||
|  * specific header files that you want to include together with these files. | ||||
|  * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef HAVE_BOOLEAN | ||||
| #if defined FALSE || defined TRUE || defined QGLOBAL_H | ||||
| /* Qt3 defines FALSE and TRUE as "const" variables in qglobal.h */ | ||||
| typedef int boolean; | ||||
| #ifndef FALSE			/* in case these macros already exist */ | ||||
| #define FALSE	0		/* values of boolean */ | ||||
| #endif | ||||
| #ifndef TRUE | ||||
| #define TRUE	1 | ||||
| #endif | ||||
| #else | ||||
| typedef enum { FALSE = 0, TRUE = 1 } boolean; | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The remaining options affect code selection within the JPEG library, | ||||
|  * but they don't need to be visible to most applications using the library. | ||||
|  * To minimize application namespace pollution, the symbols won't be | ||||
|  * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef JPEG_INTERNALS | ||||
| #define JPEG_INTERNAL_OPTIONS | ||||
| #endif | ||||
| 
 | ||||
| #ifdef JPEG_INTERNAL_OPTIONS | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These defines indicate whether to include various optional functions. | ||||
|  * Undefining some of these symbols will produce a smaller but less capable | ||||
|  * library.  Note that you can leave certain source files out of the | ||||
|  * compilation/linking process if you've #undef'd the corresponding symbols. | ||||
|  * (You may HAVE to do that if your compiler doesn't like null source files.) | ||||
|  */ | ||||
| 
 | ||||
| /* Capability options common to encoder and decoder: */ | ||||
| 
 | ||||
| #define DCT_ISLOW_SUPPORTED	/* slow but accurate integer algorithm */ | ||||
| #define DCT_IFAST_SUPPORTED	/* faster, less accurate integer method */ | ||||
| #define DCT_FLOAT_SUPPORTED	/* floating-point: accurate, fast on fast HW */ | ||||
| 
 | ||||
| /* Encoder capability options: */ | ||||
| 
 | ||||
| #define C_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */ | ||||
| #define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ | ||||
| #define C_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN) */ | ||||
| #define DCT_SCALING_SUPPORTED	/* Input rescaling via DCT? (Requires DCT_ISLOW) */ | ||||
| #define ENTROPY_OPT_SUPPORTED	    /* Optimization of entropy coding parms? */ | ||||
| /* Note: if you selected more than 8-bit data precision, it is dangerous to
 | ||||
|  * turn off ENTROPY_OPT_SUPPORTED.  The standard Huffman tables are only | ||||
|  * good for 8-bit precision, so arithmetic coding is recommended for higher | ||||
|  * precision.  The Huffman encoder normally uses entropy optimization to | ||||
|  * compute usable tables for higher precision.  Otherwise, you'll have to | ||||
|  * supply different default Huffman tables. | ||||
|  * The exact same statements apply for progressive JPEG: the default tables | ||||
|  * don't work for progressive mode.  (This may get fixed, however.) | ||||
|  */ | ||||
| #define INPUT_SMOOTHING_SUPPORTED   /* Input image smoothing option? */ | ||||
| 
 | ||||
| /* Decoder capability options: */ | ||||
| 
 | ||||
| #define D_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */ | ||||
| #define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ | ||||
| #define D_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN) */ | ||||
| #define IDCT_SCALING_SUPPORTED	/* Output rescaling via IDCT? (Requires DCT_ISLOW) */ | ||||
| #define SAVE_MARKERS_SUPPORTED	    /* jpeg_save_markers() needed? */ | ||||
| #define BLOCK_SMOOTHING_SUPPORTED   /* Block smoothing? (Progressive only) */ | ||||
| #undef  UPSAMPLE_SCALING_SUPPORTED  /* Output rescaling at upsample stage? */ | ||||
| #define UPSAMPLE_MERGING_SUPPORTED  /* Fast path for sloppy upsampling? */ | ||||
| #define QUANT_1PASS_SUPPORTED	    /* 1-pass color quantization? */ | ||||
| #define QUANT_2PASS_SUPPORTED	    /* 2-pass color quantization? */ | ||||
| 
 | ||||
| /* more capability options later, no doubt */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Ordering of RGB data in scanlines passed to or from the application. | ||||
|  * If your application wants to deal with data in the order B,G,R, just | ||||
|  * #define JPEG_USE_RGB_CUSTOM in jconfig.h, or define your own custom | ||||
|  * order in jconfig.h and #define JPEG_HAVE_RGB_CUSTOM. | ||||
|  * You can also deal with formats such as R,G,B,X (one extra byte per pixel) | ||||
|  * by changing RGB_PIXELSIZE. | ||||
|  * Note that changing the offsets will also change | ||||
|  * the order in which colormap data is organized. | ||||
|  * RESTRICTIONS: | ||||
|  * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. | ||||
|  * 2. The color quantizer modules will not behave desirably if RGB_PIXELSIZE | ||||
|  *    is not 3 (they don't understand about dummy color components!). | ||||
|  *    So you can't use color quantization if you change that value. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef JPEG_HAVE_RGB_CUSTOM | ||||
| #ifdef JPEG_USE_RGB_CUSTOM | ||||
| #define RGB_RED		2	/* Offset of Red in an RGB scanline element */ | ||||
| #define RGB_GREEN	1	/* Offset of Green */ | ||||
| #define RGB_BLUE	0	/* Offset of Blue */ | ||||
| #else | ||||
| #define RGB_RED		0	/* Offset of Red in an RGB scanline element */ | ||||
| #define RGB_GREEN	1	/* Offset of Green */ | ||||
| #define RGB_BLUE	2	/* Offset of Blue */ | ||||
| #endif | ||||
| #define RGB_PIXELSIZE	3	/* JSAMPLEs per RGB scanline element */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Definitions for speed-related optimizations. */ | ||||
| 
 | ||||
| 
 | ||||
| /* If your compiler supports inline functions, define INLINE
 | ||||
|  * as the inline keyword; otherwise define it as empty. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef INLINE | ||||
| #ifdef __GNUC__			/* for instance, GNU C knows about inline */ | ||||
| #define INLINE __inline__ | ||||
| #endif | ||||
| #ifndef INLINE | ||||
| #define INLINE			/* default is to define it as empty */ | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
 | ||||
|  * two 16-bit shorts is faster than multiplying two ints.  Define MULTIPLIER | ||||
|  * as short on such a machine.  MULTIPLIER must be at least 16 bits wide. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef MULTIPLIER | ||||
| #define MULTIPLIER  int		/* type for fastest integer multiply */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* FAST_FLOAT should be either float or double, whichever is done faster
 | ||||
|  * by your compiler.  (Note that this type is only used in the floating point | ||||
|  * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) | ||||
|  * Typically, float is faster in ANSI C compilers, while double is faster in | ||||
|  * pre-ANSI compilers (because they insist on converting to double anyway). | ||||
|  * The code below therefore chooses float if we have ANSI-style prototypes. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef FAST_FLOAT | ||||
| #ifdef HAVE_PROTOTYPES | ||||
| #define FAST_FLOAT  float | ||||
| #else | ||||
| #define FAST_FLOAT  double | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| #endif /* JPEG_INTERNAL_OPTIONS */ | ||||
							
								
								
									
										445
									
								
								dep/libjpeg/include/jpegint.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										445
									
								
								dep/libjpeg/include/jpegint.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,445 @@ | |||
| /*
 | ||||
|  * jpegint.h | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 1997-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file provides common declarations for the various JPEG modules. | ||||
|  * These declarations are considered internal to the JPEG library; most | ||||
|  * applications using the library shouldn't need to include this file. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Declarations for both compression & decompression */ | ||||
| 
 | ||||
| typedef enum {			/* Operating modes for buffer controllers */ | ||||
| 	JBUF_PASS_THRU,		/* Plain stripwise operation */ | ||||
| 	/* Remaining modes require a full-image buffer to have been created */ | ||||
| 	JBUF_SAVE_SOURCE,	/* Run source subobject only, save output */ | ||||
| 	JBUF_CRANK_DEST,	/* Run dest subobject only, using saved data */ | ||||
| 	JBUF_SAVE_AND_PASS	/* Run both subobjects, save output */ | ||||
| } J_BUF_MODE; | ||||
| 
 | ||||
| /* Values of global_state field (jdapi.c has some dependencies on ordering!) */ | ||||
| #define CSTATE_START	100	/* after create_compress */ | ||||
| #define CSTATE_SCANNING	101	/* start_compress done, write_scanlines OK */ | ||||
| #define CSTATE_RAW_OK	102	/* start_compress done, write_raw_data OK */ | ||||
| #define CSTATE_WRCOEFS	103	/* jpeg_write_coefficients done */ | ||||
| #define DSTATE_START	200	/* after create_decompress */ | ||||
| #define DSTATE_INHEADER	201	/* reading header markers, no SOS yet */ | ||||
| #define DSTATE_READY	202	/* found SOS, ready for start_decompress */ | ||||
| #define DSTATE_PRELOAD	203	/* reading multiscan file in start_decompress*/ | ||||
| #define DSTATE_PRESCAN	204	/* performing dummy pass for 2-pass quant */ | ||||
| #define DSTATE_SCANNING	205	/* start_decompress done, read_scanlines OK */ | ||||
| #define DSTATE_RAW_OK	206	/* start_decompress done, read_raw_data OK */ | ||||
| #define DSTATE_BUFIMAGE	207	/* expecting jpeg_start_output */ | ||||
| #define DSTATE_BUFPOST	208	/* looking for SOS/EOI in jpeg_finish_output */ | ||||
| #define DSTATE_RDCOEFS	209	/* reading file in jpeg_read_coefficients */ | ||||
| #define DSTATE_STOPPING	210	/* looking for EOI in jpeg_finish_decompress */ | ||||
| 
 | ||||
| 
 | ||||
| /* Declarations for compression modules */ | ||||
| 
 | ||||
| /* Master control module */ | ||||
| struct jpeg_comp_master { | ||||
|   JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, pass_startup, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); | ||||
| 
 | ||||
|   /* State variables made visible to other modules */ | ||||
|   boolean call_pass_startup;	/* True if pass_startup must be called */ | ||||
|   boolean is_last_pass;		/* True during last pass */ | ||||
| }; | ||||
| 
 | ||||
| /* Main buffer control (downsampled-data buffer) */ | ||||
| struct jpeg_c_main_controller { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); | ||||
|   JMETHOD(void, process_data, (j_compress_ptr cinfo, | ||||
| 			       JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | ||||
| 			       JDIMENSION in_rows_avail)); | ||||
| }; | ||||
| 
 | ||||
| /* Compression preprocessing (downsampling input buffer control) */ | ||||
| struct jpeg_c_prep_controller { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); | ||||
|   JMETHOD(void, pre_process_data, (j_compress_ptr cinfo, | ||||
| 				   JSAMPARRAY input_buf, | ||||
| 				   JDIMENSION *in_row_ctr, | ||||
| 				   JDIMENSION in_rows_avail, | ||||
| 				   JSAMPIMAGE output_buf, | ||||
| 				   JDIMENSION *out_row_group_ctr, | ||||
| 				   JDIMENSION out_row_groups_avail)); | ||||
| }; | ||||
| 
 | ||||
| /* Coefficient buffer control */ | ||||
| struct jpeg_c_coef_controller { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); | ||||
|   JMETHOD(boolean, compress_data, (j_compress_ptr cinfo, | ||||
| 				   JSAMPIMAGE input_buf)); | ||||
| }; | ||||
| 
 | ||||
| /* Colorspace conversion */ | ||||
| struct jpeg_color_converter { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, color_convert, (j_compress_ptr cinfo, | ||||
| 				JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 				JDIMENSION output_row, int num_rows)); | ||||
| }; | ||||
| 
 | ||||
| /* Downsampling */ | ||||
| struct jpeg_downsampler { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, downsample, (j_compress_ptr cinfo, | ||||
| 			     JSAMPIMAGE input_buf, JDIMENSION in_row_index, | ||||
| 			     JSAMPIMAGE output_buf, | ||||
| 			     JDIMENSION out_row_group_index)); | ||||
| 
 | ||||
|   boolean need_context_rows;	/* TRUE if need rows above & below */ | ||||
| }; | ||||
| 
 | ||||
| /* Forward DCT (also controls coefficient quantization) */ | ||||
| typedef JMETHOD(void, forward_DCT_ptr, | ||||
| 		(j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | ||||
| 		 JDIMENSION start_col, JDIMENSION num_blocks)); | ||||
| 
 | ||||
| struct jpeg_forward_dct { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo)); | ||||
|   /* It is useful to allow each component to have a separate FDCT method. */ | ||||
|   forward_DCT_ptr forward_DCT[MAX_COMPONENTS]; | ||||
| }; | ||||
| 
 | ||||
| /* Entropy encoding */ | ||||
| struct jpeg_entropy_encoder { | ||||
|   JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics)); | ||||
|   JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)); | ||||
|   JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); | ||||
| }; | ||||
| 
 | ||||
| /* Marker writing */ | ||||
| struct jpeg_marker_writer { | ||||
|   JMETHOD(void, write_file_header, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, write_frame_header, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, write_scan_header, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo)); | ||||
|   JMETHOD(void, write_tables_only, (j_compress_ptr cinfo)); | ||||
|   /* These routines are exported to allow insertion of extra markers */ | ||||
|   /* Probably only COM and APPn markers should be written this way */ | ||||
|   JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker, | ||||
| 				      unsigned int datalen)); | ||||
|   JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val)); | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /* Declarations for decompression modules */ | ||||
| 
 | ||||
| /* Master control module */ | ||||
| struct jpeg_decomp_master { | ||||
|   JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo)); | ||||
| 
 | ||||
|   /* State variables made visible to other modules */ | ||||
|   boolean is_dummy_pass;	/* True during 1st pass for 2-pass quant */ | ||||
| }; | ||||
| 
 | ||||
| /* Input control module */ | ||||
| struct jpeg_input_controller { | ||||
|   JMETHOD(int, consume_input, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo)); | ||||
| 
 | ||||
|   /* State variables made visible to other modules */ | ||||
|   boolean has_multiple_scans;	/* True if file has multiple scans */ | ||||
|   boolean eoi_reached;		/* True when EOI has been consumed */ | ||||
| }; | ||||
| 
 | ||||
| /* Main buffer control (downsampled-data buffer) */ | ||||
| struct jpeg_d_main_controller { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); | ||||
|   JMETHOD(void, process_data, (j_decompress_ptr cinfo, | ||||
| 			       JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 			       JDIMENSION out_rows_avail)); | ||||
| }; | ||||
| 
 | ||||
| /* Coefficient buffer control */ | ||||
| struct jpeg_d_coef_controller { | ||||
|   JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(int, consume_data, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(int, decompress_data, (j_decompress_ptr cinfo, | ||||
| 				 JSAMPIMAGE output_buf)); | ||||
|   /* Pointer to array of coefficient virtual arrays, or NULL if none */ | ||||
|   jvirt_barray_ptr *coef_arrays; | ||||
| }; | ||||
| 
 | ||||
| /* Decompression postprocessing (color quantization buffer control) */ | ||||
| struct jpeg_d_post_controller { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); | ||||
|   JMETHOD(void, post_process_data, (j_decompress_ptr cinfo, | ||||
| 				    JSAMPIMAGE input_buf, | ||||
| 				    JDIMENSION *in_row_group_ctr, | ||||
| 				    JDIMENSION in_row_groups_avail, | ||||
| 				    JSAMPARRAY output_buf, | ||||
| 				    JDIMENSION *out_row_ctr, | ||||
| 				    JDIMENSION out_rows_avail)); | ||||
| }; | ||||
| 
 | ||||
| /* Marker reading & parsing */ | ||||
| struct jpeg_marker_reader { | ||||
|   JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo)); | ||||
|   /* Read markers until SOS or EOI.
 | ||||
|    * Returns same codes as are defined for jpeg_consume_input: | ||||
|    * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. | ||||
|    */ | ||||
|   JMETHOD(int, read_markers, (j_decompress_ptr cinfo)); | ||||
|   /* Read a restart marker --- exported for use by entropy decoder only */ | ||||
|   jpeg_marker_parser_method read_restart_marker; | ||||
| 
 | ||||
|   /* State of marker reader --- nominally internal, but applications
 | ||||
|    * supplying COM or APPn handlers might like to know the state. | ||||
|    */ | ||||
|   boolean saw_SOI;		/* found SOI? */ | ||||
|   boolean saw_SOF;		/* found SOF? */ | ||||
|   int next_restart_num;		/* next restart number expected (0-7) */ | ||||
|   unsigned int discarded_bytes;	/* # of bytes skipped looking for a marker */ | ||||
| }; | ||||
| 
 | ||||
| /* Entropy decoding */ | ||||
| struct jpeg_entropy_decoder { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)); | ||||
|   JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); | ||||
| }; | ||||
| 
 | ||||
| /* Inverse DCT (also performs dequantization) */ | ||||
| typedef JMETHOD(void, inverse_DCT_method_ptr, | ||||
| 		(j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JCOEFPTR coef_block, | ||||
| 		 JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| 
 | ||||
| struct jpeg_inverse_dct { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | ||||
|   /* It is useful to allow each component to have a separate IDCT method. */ | ||||
|   inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; | ||||
| }; | ||||
| 
 | ||||
| /* Upsampling (note that upsampler must also call color converter) */ | ||||
| struct jpeg_upsampler { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, upsample, (j_decompress_ptr cinfo, | ||||
| 			   JSAMPIMAGE input_buf, | ||||
| 			   JDIMENSION *in_row_group_ctr, | ||||
| 			   JDIMENSION in_row_groups_avail, | ||||
| 			   JSAMPARRAY output_buf, | ||||
| 			   JDIMENSION *out_row_ctr, | ||||
| 			   JDIMENSION out_rows_avail)); | ||||
| 
 | ||||
|   boolean need_context_rows;	/* TRUE if need rows above & below */ | ||||
| }; | ||||
| 
 | ||||
| /* Colorspace conversion */ | ||||
| struct jpeg_color_deconverter { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, color_convert, (j_decompress_ptr cinfo, | ||||
| 				JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 				JSAMPARRAY output_buf, int num_rows)); | ||||
| }; | ||||
| 
 | ||||
| /* Color quantization or color precision reduction */ | ||||
| struct jpeg_color_quantizer { | ||||
|   JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan)); | ||||
|   JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, | ||||
| 				 JSAMPARRAY input_buf, JSAMPARRAY output_buf, | ||||
| 				 int num_rows)); | ||||
|   JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); | ||||
|   JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /* Definition of range extension bits for decompression processes.
 | ||||
|  * See the comments with prepare_range_limit_table (in jdmaster.c) | ||||
|  * for more info. | ||||
|  * The recommended default value for normal applications is 2. | ||||
|  * Applications with special requirements may use a different value. | ||||
|  * For example, Ghostscript wants to use 3 for proper handling of | ||||
|  * wacky images with oversize coefficient values. | ||||
|  */ | ||||
| 
 | ||||
| #define RANGE_BITS	2 | ||||
| #define RANGE_CENTER	(CENTERJSAMPLE << RANGE_BITS) | ||||
| 
 | ||||
| 
 | ||||
| /* Miscellaneous useful macros */ | ||||
| 
 | ||||
| #undef MAX | ||||
| #define MAX(a,b)	((a) > (b) ? (a) : (b)) | ||||
| #undef MIN | ||||
| #define MIN(a,b)	((a) < (b) ? (a) : (b)) | ||||
| 
 | ||||
| 
 | ||||
| /* We assume that right shift corresponds to signed division by 2 with
 | ||||
|  * rounding towards minus infinity.  This is correct for typical "arithmetic | ||||
|  * shift" instructions that shift in copies of the sign bit.  But some | ||||
|  * C compilers implement >> with an unsigned shift.  For these machines you | ||||
|  * must define RIGHT_SHIFT_IS_UNSIGNED. | ||||
|  * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. | ||||
|  * It is only applied with constant shift counts.  SHIFT_TEMPS must be | ||||
|  * included in the variables of any routine using RIGHT_SHIFT. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef RIGHT_SHIFT_IS_UNSIGNED | ||||
| #define SHIFT_TEMPS	INT32 shift_temp; | ||||
| #define RIGHT_SHIFT(x,shft)  \ | ||||
| 	((shift_temp = (x)) < 0 ? \ | ||||
| 	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ | ||||
| 	 (shift_temp >> (shft))) | ||||
| #else | ||||
| #define SHIFT_TEMPS | ||||
| #define RIGHT_SHIFT(x,shft)	((x) >> (shft)) | ||||
| #endif | ||||
| 
 | ||||
| /* Descale and correctly round an INT32 value that's scaled by N bits.
 | ||||
|  * We assume RIGHT_SHIFT rounds towards minus infinity, so adding | ||||
|  * the fudge factor is correct for either sign of X. | ||||
|  */ | ||||
| 
 | ||||
| #define DESCALE(x,n)	RIGHT_SHIFT((x) + ((INT32) 1 << ((n)-1)), n) | ||||
| 
 | ||||
| 
 | ||||
| /* Short forms of external names for systems with brain-damaged linkers. */ | ||||
| 
 | ||||
| #ifdef NEED_SHORT_EXTERNAL_NAMES | ||||
| #define jinit_compress_master	jICompress | ||||
| #define jinit_c_master_control	jICMaster | ||||
| #define jinit_c_main_controller	jICMainC | ||||
| #define jinit_c_prep_controller	jICPrepC | ||||
| #define jinit_c_coef_controller	jICCoefC | ||||
| #define jinit_color_converter	jICColor | ||||
| #define jinit_downsampler	jIDownsampler | ||||
| #define jinit_forward_dct	jIFDCT | ||||
| #define jinit_huff_encoder	jIHEncoder | ||||
| #define jinit_arith_encoder	jIAEncoder | ||||
| #define jinit_marker_writer	jIMWriter | ||||
| #define jinit_master_decompress	jIDMaster | ||||
| #define jinit_d_main_controller	jIDMainC | ||||
| #define jinit_d_coef_controller	jIDCoefC | ||||
| #define jinit_d_post_controller	jIDPostC | ||||
| #define jinit_input_controller	jIInCtlr | ||||
| #define jinit_marker_reader	jIMReader | ||||
| #define jinit_huff_decoder	jIHDecoder | ||||
| #define jinit_arith_decoder	jIADecoder | ||||
| #define jinit_inverse_dct	jIIDCT | ||||
| #define jinit_upsampler		jIUpsampler | ||||
| #define jinit_color_deconverter	jIDColor | ||||
| #define jinit_1pass_quantizer	jI1Quant | ||||
| #define jinit_2pass_quantizer	jI2Quant | ||||
| #define jinit_merged_upsampler	jIMUpsampler | ||||
| #define jinit_memory_mgr	jIMemMgr | ||||
| #define jdiv_round_up		jDivRound | ||||
| #define jround_up		jRound | ||||
| #define jzero_far		jZeroFar | ||||
| #define jcopy_sample_rows	jCopySamples | ||||
| #define jcopy_block_row		jCopyBlocks | ||||
| #define jpeg_zigzag_order	jZIGTable | ||||
| #define jpeg_natural_order	jZAGTable | ||||
| #define jpeg_natural_order7	jZAG7Table | ||||
| #define jpeg_natural_order6	jZAG6Table | ||||
| #define jpeg_natural_order5	jZAG5Table | ||||
| #define jpeg_natural_order4	jZAG4Table | ||||
| #define jpeg_natural_order3	jZAG3Table | ||||
| #define jpeg_natural_order2	jZAG2Table | ||||
| #define jpeg_aritab		jAriTab | ||||
| #endif /* NEED_SHORT_EXTERNAL_NAMES */ | ||||
| 
 | ||||
| 
 | ||||
| /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
 | ||||
|  * and coefficient-block arrays.  This won't work on 80x86 because the arrays | ||||
|  * are FAR and we're assuming a small-pointer memory model.  However, some | ||||
|  * DOS compilers provide far-pointer versions of memcpy() and memset() even | ||||
|  * in the small-model libraries.  These will be used if USE_FMEM is defined. | ||||
|  * Otherwise, the routines in jutils.c do it the hard way. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef NEED_FAR_POINTERS	/* normal case, same as regular macro */ | ||||
| #define FMEMZERO(target,size)	MEMZERO(target,size) | ||||
| #else				/* 80x86 case */ | ||||
| #ifdef USE_FMEM | ||||
| #define FMEMZERO(target,size)	_fmemset((void FAR *)(target), 0, (size_t)(size)) | ||||
| #else | ||||
| EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero)); | ||||
| #define FMEMZERO(target,size)	jzero_far(target, size) | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Compression module initialization routines */ | ||||
| EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo)); | ||||
| EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo, | ||||
| 					 boolean transcode_only)); | ||||
| EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo, | ||||
| 					  boolean need_full_buffer)); | ||||
| EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo, | ||||
| 					  boolean need_full_buffer)); | ||||
| EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo, | ||||
| 					  boolean need_full_buffer)); | ||||
| EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo)); | ||||
| EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo)); | ||||
| EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo)); | ||||
| EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo)); | ||||
| EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo)); | ||||
| EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo)); | ||||
| /* Decompression module initialization routines */ | ||||
| EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo, | ||||
| 					  boolean need_full_buffer)); | ||||
| EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo, | ||||
| 					  boolean need_full_buffer)); | ||||
| EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo, | ||||
| 					  boolean need_full_buffer)); | ||||
| EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo)); | ||||
| EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo)); | ||||
| /* Memory manager initialization */ | ||||
| EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo)); | ||||
| 
 | ||||
| /* Utility routines in jutils.c */ | ||||
| EXTERN(long) jdiv_round_up JPP((long a, long b)); | ||||
| EXTERN(long) jround_up JPP((long a, long b)); | ||||
| EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, | ||||
| 				    JSAMPARRAY output_array, | ||||
| 				    int num_rows, JDIMENSION num_cols)); | ||||
| EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row, | ||||
| 				  JDIMENSION num_blocks)); | ||||
| /* Constant tables in jutils.c */ | ||||
| #if 0				/* This table is not actually needed in v6a */
 | ||||
| extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ | ||||
| #endif | ||||
| extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ | ||||
| extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */ | ||||
| extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */ | ||||
| extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */ | ||||
| extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */ | ||||
| extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */ | ||||
| extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */ | ||||
| 
 | ||||
| /* Arithmetic coding probability estimation tables in jaricom.c */ | ||||
| extern const INT32 jpeg_aritab[]; | ||||
| 
 | ||||
| /* Suppress undefined-structure complaints if necessary. */ | ||||
| 
 | ||||
| #ifdef INCOMPLETE_TYPES_BROKEN | ||||
| #ifndef AM_MEMORY_MANAGER	/* only jmemmgr.c defines these */ | ||||
| struct jvirt_sarray_control { long dummy; }; | ||||
| struct jvirt_barray_control { long dummy; }; | ||||
| #endif | ||||
| #endif /* INCOMPLETE_TYPES_BROKEN */ | ||||
							
								
								
									
										1183
									
								
								dep/libjpeg/include/jpeglib.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1183
									
								
								dep/libjpeg/include/jpeglib.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										76
									
								
								dep/libjpeg/libjpeg.vcxproj
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								dep/libjpeg/libjpeg.vcxproj
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,76 @@ | |||
| <?xml version="1.0" encoding="utf-8"?> | ||||
| <Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> | ||||
|   <Import Project="..\msvc\vsprops\Configurations.props" /> | ||||
|   <PropertyGroup Label="Globals"> | ||||
|     <ProjectGuid>{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}</ProjectGuid> | ||||
|   </PropertyGroup> | ||||
|   <ItemGroup> | ||||
|     <ClInclude Include="include\jconfig.h" /> | ||||
|     <ClInclude Include="include\jerror.h" /> | ||||
|     <ClInclude Include="include\jmorecfg.h" /> | ||||
|     <ClInclude Include="include\jpegint.h" /> | ||||
|     <ClInclude Include="include\jpeglib.h" /> | ||||
|     <ClInclude Include="src\jdct.h" /> | ||||
|     <ClInclude Include="src\jinclude.h" /> | ||||
|     <ClInclude Include="src\jmemsys.h" /> | ||||
|     <ClInclude Include="src\jversion.h" /> | ||||
|     <ClInclude Include="src\transupp.h" /> | ||||
|   </ItemGroup> | ||||
|   <ItemGroup> | ||||
|     <ClCompile Include="src\jaricom.c" /> | ||||
|     <ClCompile Include="src\jcapimin.c" /> | ||||
|     <ClCompile Include="src\jcapistd.c" /> | ||||
|     <ClCompile Include="src\jcarith.c" /> | ||||
|     <ClCompile Include="src\jccoefct.c" /> | ||||
|     <ClCompile Include="src\jccolor.c" /> | ||||
|     <ClCompile Include="src\jcdctmgr.c" /> | ||||
|     <ClCompile Include="src\jchuff.c" /> | ||||
|     <ClCompile Include="src\jcinit.c" /> | ||||
|     <ClCompile Include="src\jcmainct.c" /> | ||||
|     <ClCompile Include="src\jcmarker.c" /> | ||||
|     <ClCompile Include="src\jcmaster.c" /> | ||||
|     <ClCompile Include="src\jcomapi.c" /> | ||||
|     <ClCompile Include="src\jcparam.c" /> | ||||
|     <ClCompile Include="src\jcprepct.c" /> | ||||
|     <ClCompile Include="src\jcsample.c" /> | ||||
|     <ClCompile Include="src\jctrans.c" /> | ||||
|     <ClCompile Include="src\jdapimin.c" /> | ||||
|     <ClCompile Include="src\jdapistd.c" /> | ||||
|     <ClCompile Include="src\jdarith.c" /> | ||||
|     <ClCompile Include="src\jdatadst.c" /> | ||||
|     <ClCompile Include="src\jdatasrc.c" /> | ||||
|     <ClCompile Include="src\jdcoefct.c" /> | ||||
|     <ClCompile Include="src\jdcolor.c" /> | ||||
|     <ClCompile Include="src\jddctmgr.c" /> | ||||
|     <ClCompile Include="src\jdhuff.c" /> | ||||
|     <ClCompile Include="src\jdinput.c" /> | ||||
|     <ClCompile Include="src\jdmainct.c" /> | ||||
|     <ClCompile Include="src\jdmarker.c" /> | ||||
|     <ClCompile Include="src\jdmaster.c" /> | ||||
|     <ClCompile Include="src\jdmerge.c" /> | ||||
|     <ClCompile Include="src\jdpostct.c" /> | ||||
|     <ClCompile Include="src\jdsample.c" /> | ||||
|     <ClCompile Include="src\jdtrans.c" /> | ||||
|     <ClCompile Include="src\jerror.c" /> | ||||
|     <ClCompile Include="src\jfdctflt.c" /> | ||||
|     <ClCompile Include="src\jfdctfst.c" /> | ||||
|     <ClCompile Include="src\jfdctint.c" /> | ||||
|     <ClCompile Include="src\jidctflt.c" /> | ||||
|     <ClCompile Include="src\jidctfst.c" /> | ||||
|     <ClCompile Include="src\jidctint.c" /> | ||||
|     <ClCompile Include="src\jmemmgr.c" /> | ||||
|     <ClCompile Include="src\jmemnobs.c" /> | ||||
|     <ClCompile Include="src\jquant1.c" /> | ||||
|     <ClCompile Include="src\jquant2.c" /> | ||||
|     <ClCompile Include="src\jutils.c" /> | ||||
|     <ClCompile Include="src\transupp.c" /> | ||||
|   </ItemGroup> | ||||
|   <Import Project="..\msvc\vsprops\StaticLibrary.props" /> | ||||
|   <ItemDefinitionGroup> | ||||
|     <ClCompile> | ||||
|       <WarningLevel>TurnOffAllWarnings</WarningLevel> | ||||
|       <AdditionalIncludeDirectories>$(ProjectDir)include;$(ProjectDir)src;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> | ||||
|     </ClCompile> | ||||
|   </ItemDefinitionGroup> | ||||
|   <Import Project="..\msvc\vsprops\Targets.props" /> | ||||
| </Project> | ||||
							
								
								
									
										52
									
								
								dep/libjpeg/libjpeg.vcxproj.filters
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								dep/libjpeg/libjpeg.vcxproj.filters
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,52 @@ | |||
| <?xml version="1.0" encoding="utf-8"?> | ||||
| <Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> | ||||
|   <ItemGroup> | ||||
|     <ClInclude Include="include\pngconf.h" /> | ||||
|     <ClInclude Include="include\png.h" /> | ||||
|     <ClInclude Include="src\pngdebug.h" /> | ||||
|     <ClInclude Include="src\pnginfo.h" /> | ||||
|     <ClInclude Include="src\pngpriv.h" /> | ||||
|     <ClInclude Include="src\pngstruct.h" /> | ||||
|     <ClInclude Include="include\pnglibconf.h" /> | ||||
|   </ItemGroup> | ||||
|   <ItemGroup> | ||||
|     <ClCompile Include="src\png.c" /> | ||||
|     <ClCompile Include="src\pngerror.c" /> | ||||
|     <ClCompile Include="src\pngget.c" /> | ||||
|     <ClCompile Include="src\pngmem.c" /> | ||||
|     <ClCompile Include="src\pngpread.c" /> | ||||
|     <ClCompile Include="src\pngread.c" /> | ||||
|     <ClCompile Include="src\pngrio.c" /> | ||||
|     <ClCompile Include="src\pngrtran.c" /> | ||||
|     <ClCompile Include="src\pngrutil.c" /> | ||||
|     <ClCompile Include="src\pngset.c" /> | ||||
|     <ClCompile Include="src\pngtrans.c" /> | ||||
|     <ClCompile Include="src\pngwio.c" /> | ||||
|     <ClCompile Include="src\pngwrite.c" /> | ||||
|     <ClCompile Include="src\pngwtran.c" /> | ||||
|     <ClCompile Include="src\pngwutil.c" /> | ||||
|     <ClCompile Include="src\intel\intel_init.c"> | ||||
|       <Filter>intel</Filter> | ||||
|     </ClCompile> | ||||
|     <ClCompile Include="src\intel\filter_sse2_intrinsics.c"> | ||||
|       <Filter>intel</Filter> | ||||
|     </ClCompile> | ||||
|     <ClCompile Include="src\arm\filter_neon_intrinsics.c"> | ||||
|       <Filter>arm</Filter> | ||||
|     </ClCompile> | ||||
|     <ClCompile Include="src\arm\palette_neon_intrinsics.c"> | ||||
|       <Filter>arm</Filter> | ||||
|     </ClCompile> | ||||
|     <ClCompile Include="src\arm\arm_init.c"> | ||||
|       <Filter>arm</Filter> | ||||
|     </ClCompile> | ||||
|   </ItemGroup> | ||||
|   <ItemGroup> | ||||
|     <Filter Include="arm"> | ||||
|       <UniqueIdentifier>{9f24e95e-025d-4ed8-8c41-2fb1c7a36026}</UniqueIdentifier> | ||||
|     </Filter> | ||||
|     <Filter Include="intel"> | ||||
|       <UniqueIdentifier>{8316b9c1-8c00-4bc8-ace7-c9b864890f2d}</UniqueIdentifier> | ||||
|     </Filter> | ||||
|   </ItemGroup> | ||||
| </Project> | ||||
							
								
								
									
										153
									
								
								dep/libjpeg/src/jaricom.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										153
									
								
								dep/libjpeg/src/jaricom.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,153 @@ | |||
| /*
 | ||||
|  * jaricom.c | ||||
|  * | ||||
|  * Developed 1997-2011 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains probability estimation tables for common use in | ||||
|  * arithmetic entropy encoding and decoding routines. | ||||
|  * | ||||
|  * This data represents Table D.3 in the JPEG spec (D.2 in the draft), | ||||
|  * ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81, and Table 24 | ||||
|  * in the JBIG spec, ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| /* The following #define specifies the packing of the four components
 | ||||
|  * into the compact INT32 representation. | ||||
|  * Note that this formula must match the actual arithmetic encoder | ||||
|  * and decoder implementation.  The implementation has to be changed | ||||
|  * if this formula is changed. | ||||
|  * The current organization is leaned on Markus Kuhn's JBIG | ||||
|  * implementation (jbig_tab.c). | ||||
|  */ | ||||
| 
 | ||||
| #define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b) | ||||
| 
 | ||||
| const INT32 jpeg_aritab[113+1] = { | ||||
| /*
 | ||||
|  * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS | ||||
|  */ | ||||
|   V(   0, 0x5a1d,   1,   1, 1 ), | ||||
|   V(   1, 0x2586,  14,   2, 0 ), | ||||
|   V(   2, 0x1114,  16,   3, 0 ), | ||||
|   V(   3, 0x080b,  18,   4, 0 ), | ||||
|   V(   4, 0x03d8,  20,   5, 0 ), | ||||
|   V(   5, 0x01da,  23,   6, 0 ), | ||||
|   V(   6, 0x00e5,  25,   7, 0 ), | ||||
|   V(   7, 0x006f,  28,   8, 0 ), | ||||
|   V(   8, 0x0036,  30,   9, 0 ), | ||||
|   V(   9, 0x001a,  33,  10, 0 ), | ||||
|   V(  10, 0x000d,  35,  11, 0 ), | ||||
|   V(  11, 0x0006,   9,  12, 0 ), | ||||
|   V(  12, 0x0003,  10,  13, 0 ), | ||||
|   V(  13, 0x0001,  12,  13, 0 ), | ||||
|   V(  14, 0x5a7f,  15,  15, 1 ), | ||||
|   V(  15, 0x3f25,  36,  16, 0 ), | ||||
|   V(  16, 0x2cf2,  38,  17, 0 ), | ||||
|   V(  17, 0x207c,  39,  18, 0 ), | ||||
|   V(  18, 0x17b9,  40,  19, 0 ), | ||||
|   V(  19, 0x1182,  42,  20, 0 ), | ||||
|   V(  20, 0x0cef,  43,  21, 0 ), | ||||
|   V(  21, 0x09a1,  45,  22, 0 ), | ||||
|   V(  22, 0x072f,  46,  23, 0 ), | ||||
|   V(  23, 0x055c,  48,  24, 0 ), | ||||
|   V(  24, 0x0406,  49,  25, 0 ), | ||||
|   V(  25, 0x0303,  51,  26, 0 ), | ||||
|   V(  26, 0x0240,  52,  27, 0 ), | ||||
|   V(  27, 0x01b1,  54,  28, 0 ), | ||||
|   V(  28, 0x0144,  56,  29, 0 ), | ||||
|   V(  29, 0x00f5,  57,  30, 0 ), | ||||
|   V(  30, 0x00b7,  59,  31, 0 ), | ||||
|   V(  31, 0x008a,  60,  32, 0 ), | ||||
|   V(  32, 0x0068,  62,  33, 0 ), | ||||
|   V(  33, 0x004e,  63,  34, 0 ), | ||||
|   V(  34, 0x003b,  32,  35, 0 ), | ||||
|   V(  35, 0x002c,  33,   9, 0 ), | ||||
|   V(  36, 0x5ae1,  37,  37, 1 ), | ||||
|   V(  37, 0x484c,  64,  38, 0 ), | ||||
|   V(  38, 0x3a0d,  65,  39, 0 ), | ||||
|   V(  39, 0x2ef1,  67,  40, 0 ), | ||||
|   V(  40, 0x261f,  68,  41, 0 ), | ||||
|   V(  41, 0x1f33,  69,  42, 0 ), | ||||
|   V(  42, 0x19a8,  70,  43, 0 ), | ||||
|   V(  43, 0x1518,  72,  44, 0 ), | ||||
|   V(  44, 0x1177,  73,  45, 0 ), | ||||
|   V(  45, 0x0e74,  74,  46, 0 ), | ||||
|   V(  46, 0x0bfb,  75,  47, 0 ), | ||||
|   V(  47, 0x09f8,  77,  48, 0 ), | ||||
|   V(  48, 0x0861,  78,  49, 0 ), | ||||
|   V(  49, 0x0706,  79,  50, 0 ), | ||||
|   V(  50, 0x05cd,  48,  51, 0 ), | ||||
|   V(  51, 0x04de,  50,  52, 0 ), | ||||
|   V(  52, 0x040f,  50,  53, 0 ), | ||||
|   V(  53, 0x0363,  51,  54, 0 ), | ||||
|   V(  54, 0x02d4,  52,  55, 0 ), | ||||
|   V(  55, 0x025c,  53,  56, 0 ), | ||||
|   V(  56, 0x01f8,  54,  57, 0 ), | ||||
|   V(  57, 0x01a4,  55,  58, 0 ), | ||||
|   V(  58, 0x0160,  56,  59, 0 ), | ||||
|   V(  59, 0x0125,  57,  60, 0 ), | ||||
|   V(  60, 0x00f6,  58,  61, 0 ), | ||||
|   V(  61, 0x00cb,  59,  62, 0 ), | ||||
|   V(  62, 0x00ab,  61,  63, 0 ), | ||||
|   V(  63, 0x008f,  61,  32, 0 ), | ||||
|   V(  64, 0x5b12,  65,  65, 1 ), | ||||
|   V(  65, 0x4d04,  80,  66, 0 ), | ||||
|   V(  66, 0x412c,  81,  67, 0 ), | ||||
|   V(  67, 0x37d8,  82,  68, 0 ), | ||||
|   V(  68, 0x2fe8,  83,  69, 0 ), | ||||
|   V(  69, 0x293c,  84,  70, 0 ), | ||||
|   V(  70, 0x2379,  86,  71, 0 ), | ||||
|   V(  71, 0x1edf,  87,  72, 0 ), | ||||
|   V(  72, 0x1aa9,  87,  73, 0 ), | ||||
|   V(  73, 0x174e,  72,  74, 0 ), | ||||
|   V(  74, 0x1424,  72,  75, 0 ), | ||||
|   V(  75, 0x119c,  74,  76, 0 ), | ||||
|   V(  76, 0x0f6b,  74,  77, 0 ), | ||||
|   V(  77, 0x0d51,  75,  78, 0 ), | ||||
|   V(  78, 0x0bb6,  77,  79, 0 ), | ||||
|   V(  79, 0x0a40,  77,  48, 0 ), | ||||
|   V(  80, 0x5832,  80,  81, 1 ), | ||||
|   V(  81, 0x4d1c,  88,  82, 0 ), | ||||
|   V(  82, 0x438e,  89,  83, 0 ), | ||||
|   V(  83, 0x3bdd,  90,  84, 0 ), | ||||
|   V(  84, 0x34ee,  91,  85, 0 ), | ||||
|   V(  85, 0x2eae,  92,  86, 0 ), | ||||
|   V(  86, 0x299a,  93,  87, 0 ), | ||||
|   V(  87, 0x2516,  86,  71, 0 ), | ||||
|   V(  88, 0x5570,  88,  89, 1 ), | ||||
|   V(  89, 0x4ca9,  95,  90, 0 ), | ||||
|   V(  90, 0x44d9,  96,  91, 0 ), | ||||
|   V(  91, 0x3e22,  97,  92, 0 ), | ||||
|   V(  92, 0x3824,  99,  93, 0 ), | ||||
|   V(  93, 0x32b4,  99,  94, 0 ), | ||||
|   V(  94, 0x2e17,  93,  86, 0 ), | ||||
|   V(  95, 0x56a8,  95,  96, 1 ), | ||||
|   V(  96, 0x4f46, 101,  97, 0 ), | ||||
|   V(  97, 0x47e5, 102,  98, 0 ), | ||||
|   V(  98, 0x41cf, 103,  99, 0 ), | ||||
|   V(  99, 0x3c3d, 104, 100, 0 ), | ||||
|   V( 100, 0x375e,  99,  93, 0 ), | ||||
|   V( 101, 0x5231, 105, 102, 0 ), | ||||
|   V( 102, 0x4c0f, 106, 103, 0 ), | ||||
|   V( 103, 0x4639, 107, 104, 0 ), | ||||
|   V( 104, 0x415e, 103,  99, 0 ), | ||||
|   V( 105, 0x5627, 105, 106, 1 ), | ||||
|   V( 106, 0x50e7, 108, 107, 0 ), | ||||
|   V( 107, 0x4b85, 109, 103, 0 ), | ||||
|   V( 108, 0x5597, 110, 109, 0 ), | ||||
|   V( 109, 0x504f, 111, 107, 0 ), | ||||
|   V( 110, 0x5a10, 110, 111, 1 ), | ||||
|   V( 111, 0x5522, 112, 109, 0 ), | ||||
|   V( 112, 0x59eb, 112, 111, 1 ), | ||||
| /*
 | ||||
|  * This last entry is used for fixed probability estimate of 0.5 | ||||
|  * as suggested in Section 10.3 Table 5 of ITU-T Rec. T.851. | ||||
|  */ | ||||
|   V( 113, 0x5a1d, 113, 113, 0 ) | ||||
| }; | ||||
							
								
								
									
										288
									
								
								dep/libjpeg/src/jcapimin.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										288
									
								
								dep/libjpeg/src/jcapimin.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,288 @@ | |||
| /*
 | ||||
|  * jcapimin.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1998, Thomas G. Lane. | ||||
|  * Modified 2003-2010 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains application interface code for the compression half | ||||
|  * of the JPEG library.  These are the "minimum" API routines that may be | ||||
|  * needed in either the normal full-compression case or the transcoding-only | ||||
|  * case. | ||||
|  * | ||||
|  * Most of the routines intended to be called directly by an application | ||||
|  * are in this file or in jcapistd.c.  But also see jcparam.c for | ||||
|  * parameter-setup helper routines, jcomapi.c for routines shared by | ||||
|  * compression and decompression, and jctrans.c for the transcoding case. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialization of a JPEG compression object. | ||||
|  * The error manager must already be set up (in case memory manager fails). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) | ||||
| { | ||||
|   int i; | ||||
| 
 | ||||
|   /* Guard against version mismatches between library and caller. */ | ||||
|   cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */ | ||||
|   if (version != JPEG_LIB_VERSION) | ||||
|     ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); | ||||
|   if (structsize != SIZEOF(struct jpeg_compress_struct)) | ||||
|     ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,  | ||||
| 	     (int) SIZEOF(struct jpeg_compress_struct), (int) structsize); | ||||
| 
 | ||||
|   /* For debugging purposes, we zero the whole master structure.
 | ||||
|    * But the application has already set the err pointer, and may have set | ||||
|    * client_data, so we have to save and restore those fields. | ||||
|    * Note: if application hasn't set client_data, tools like Purify may | ||||
|    * complain here. | ||||
|    */ | ||||
|   { | ||||
|     struct jpeg_error_mgr * err = cinfo->err; | ||||
|     void * client_data = cinfo->client_data; /* ignore Purify complaint here */ | ||||
|     MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct)); | ||||
|     cinfo->err = err; | ||||
|     cinfo->client_data = client_data; | ||||
|   } | ||||
|   cinfo->is_decompressor = FALSE; | ||||
| 
 | ||||
|   /* Initialize a memory manager instance for this object */ | ||||
|   jinit_memory_mgr((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   /* Zero out pointers to permanent structures. */ | ||||
|   cinfo->progress = NULL; | ||||
|   cinfo->dest = NULL; | ||||
| 
 | ||||
|   cinfo->comp_info = NULL; | ||||
| 
 | ||||
|   for (i = 0; i < NUM_QUANT_TBLS; i++) { | ||||
|     cinfo->quant_tbl_ptrs[i] = NULL; | ||||
|     cinfo->q_scale_factor[i] = 100; | ||||
|   } | ||||
| 
 | ||||
|   for (i = 0; i < NUM_HUFF_TBLS; i++) { | ||||
|     cinfo->dc_huff_tbl_ptrs[i] = NULL; | ||||
|     cinfo->ac_huff_tbl_ptrs[i] = NULL; | ||||
|   } | ||||
| 
 | ||||
|   /* Must do it here for emit_dqt in case jpeg_write_tables is used */ | ||||
|   cinfo->block_size = DCTSIZE; | ||||
|   cinfo->natural_order = jpeg_natural_order; | ||||
|   cinfo->lim_Se = DCTSIZE2-1; | ||||
| 
 | ||||
|   cinfo->script_space = NULL; | ||||
| 
 | ||||
|   cinfo->input_gamma = 1.0;	/* in case application forgets */ | ||||
| 
 | ||||
|   /* OK, I'm ready */ | ||||
|   cinfo->global_state = CSTATE_START; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Destruction of a JPEG compression object | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_destroy_compress (j_compress_ptr cinfo) | ||||
| { | ||||
|   jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Abort processing of a JPEG compression operation, | ||||
|  * but don't destroy the object itself. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_abort_compress (j_compress_ptr cinfo) | ||||
| { | ||||
|   jpeg_abort((j_common_ptr) cinfo); /* use common routine */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Forcibly suppress or un-suppress all quantization and Huffman tables. | ||||
|  * Marks all currently defined tables as already written (if suppress) | ||||
|  * or not written (if !suppress).  This will control whether they get emitted | ||||
|  * by a subsequent jpeg_start_compress call. | ||||
|  * | ||||
|  * This routine is exported for use by applications that want to produce | ||||
|  * abbreviated JPEG datastreams.  It logically belongs in jcparam.c, but | ||||
|  * since it is called by jpeg_start_compress, we put it here --- otherwise | ||||
|  * jcparam.o would be linked whether the application used it or not. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) | ||||
| { | ||||
|   int i; | ||||
|   JQUANT_TBL * qtbl; | ||||
|   JHUFF_TBL * htbl; | ||||
| 
 | ||||
|   for (i = 0; i < NUM_QUANT_TBLS; i++) { | ||||
|     if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) | ||||
|       qtbl->sent_table = suppress; | ||||
|   } | ||||
| 
 | ||||
|   for (i = 0; i < NUM_HUFF_TBLS; i++) { | ||||
|     if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) | ||||
|       htbl->sent_table = suppress; | ||||
|     if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) | ||||
|       htbl->sent_table = suppress; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish JPEG compression. | ||||
|  * | ||||
|  * If a multipass operating mode was selected, this may do a great deal of | ||||
|  * work including most of the actual output. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_finish_compress (j_compress_ptr cinfo) | ||||
| { | ||||
|   JDIMENSION iMCU_row; | ||||
| 
 | ||||
|   if (cinfo->global_state == CSTATE_SCANNING || | ||||
|       cinfo->global_state == CSTATE_RAW_OK) { | ||||
|     /* Terminate first pass */ | ||||
|     if (cinfo->next_scanline < cinfo->image_height) | ||||
|       ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); | ||||
|     (*cinfo->master->finish_pass) (cinfo); | ||||
|   } else if (cinfo->global_state != CSTATE_WRCOEFS) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   /* Perform any remaining passes */ | ||||
|   while (! cinfo->master->is_last_pass) { | ||||
|     (*cinfo->master->prepare_for_pass) (cinfo); | ||||
|     for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { | ||||
|       if (cinfo->progress != NULL) { | ||||
| 	cinfo->progress->pass_counter = (long) iMCU_row; | ||||
| 	cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; | ||||
| 	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|       } | ||||
|       /* We bypass the main controller and invoke coef controller directly;
 | ||||
|        * all work is being done from the coefficient buffer. | ||||
|        */ | ||||
|       if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) | ||||
| 	ERREXIT(cinfo, JERR_CANT_SUSPEND); | ||||
|     } | ||||
|     (*cinfo->master->finish_pass) (cinfo); | ||||
|   } | ||||
|   /* Write EOI, do final cleanup */ | ||||
|   (*cinfo->marker->write_file_trailer) (cinfo); | ||||
|   (*cinfo->dest->term_destination) (cinfo); | ||||
|   /* We can use jpeg_abort to release memory and reset global_state */ | ||||
|   jpeg_abort((j_common_ptr) cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write a special marker. | ||||
|  * This is only recommended for writing COM or APPn markers. | ||||
|  * Must be called after jpeg_start_compress() and before | ||||
|  * first call to jpeg_write_scanlines() or jpeg_write_raw_data(). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_write_marker (j_compress_ptr cinfo, int marker, | ||||
| 		   const JOCTET *dataptr, unsigned int datalen) | ||||
| { | ||||
|   JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val)); | ||||
| 
 | ||||
|   if (cinfo->next_scanline != 0 || | ||||
|       (cinfo->global_state != CSTATE_SCANNING && | ||||
|        cinfo->global_state != CSTATE_RAW_OK && | ||||
|        cinfo->global_state != CSTATE_WRCOEFS)) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); | ||||
|   write_marker_byte = cinfo->marker->write_marker_byte;	/* copy for speed */ | ||||
|   while (datalen--) { | ||||
|     (*write_marker_byte) (cinfo, *dataptr); | ||||
|     dataptr++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* Same, but piecemeal. */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) | ||||
| { | ||||
|   if (cinfo->next_scanline != 0 || | ||||
|       (cinfo->global_state != CSTATE_SCANNING && | ||||
|        cinfo->global_state != CSTATE_RAW_OK && | ||||
|        cinfo->global_state != CSTATE_WRCOEFS)) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); | ||||
| } | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_write_m_byte (j_compress_ptr cinfo, int val) | ||||
| { | ||||
|   (*cinfo->marker->write_marker_byte) (cinfo, val); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Alternate compression function: just write an abbreviated table file. | ||||
|  * Before calling this, all parameters and a data destination must be set up. | ||||
|  * | ||||
|  * To produce a pair of files containing abbreviated tables and abbreviated | ||||
|  * image data, one would proceed as follows: | ||||
|  * | ||||
|  *		initialize JPEG object | ||||
|  *		set JPEG parameters | ||||
|  *		set destination to table file | ||||
|  *		jpeg_write_tables(cinfo); | ||||
|  *		set destination to image file | ||||
|  *		jpeg_start_compress(cinfo, FALSE); | ||||
|  *		write data... | ||||
|  *		jpeg_finish_compress(cinfo); | ||||
|  * | ||||
|  * jpeg_write_tables has the side effect of marking all tables written | ||||
|  * (same as jpeg_suppress_tables(..., TRUE)).  Thus a subsequent start_compress | ||||
|  * will not re-emit the tables unless it is passed write_all_tables=TRUE. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_write_tables (j_compress_ptr cinfo) | ||||
| { | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   /* (Re)initialize error mgr and destination modules */ | ||||
|   (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | ||||
|   (*cinfo->dest->init_destination) (cinfo); | ||||
|   /* Initialize the marker writer ... bit of a crock to do it here. */ | ||||
|   jinit_marker_writer(cinfo); | ||||
|   /* Write them tables! */ | ||||
|   (*cinfo->marker->write_tables_only) (cinfo); | ||||
|   /* And clean up. */ | ||||
|   (*cinfo->dest->term_destination) (cinfo); | ||||
|   /*
 | ||||
|    * In library releases up through v6a, we called jpeg_abort() here to free | ||||
|    * any working memory allocated by the destination manager and marker | ||||
|    * writer.  Some applications had a problem with that: they allocated space | ||||
|    * of their own from the library memory manager, and didn't want it to go | ||||
|    * away during write_tables.  So now we do nothing.  This will cause a | ||||
|    * memory leak if an app calls write_tables repeatedly without doing a full | ||||
|    * compression cycle or otherwise resetting the JPEG object.  However, that | ||||
|    * seems less bad than unexpectedly freeing memory in the normal case. | ||||
|    * An app that prefers the old behavior can call jpeg_abort for itself after | ||||
|    * each call to jpeg_write_tables(). | ||||
|    */ | ||||
| } | ||||
							
								
								
									
										162
									
								
								dep/libjpeg/src/jcapistd.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										162
									
								
								dep/libjpeg/src/jcapistd.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,162 @@ | |||
| /*
 | ||||
|  * jcapistd.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2013 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains application interface code for the compression half | ||||
|  * of the JPEG library.  These are the "standard" API routines that are | ||||
|  * used in the normal full-compression case.  They are not used by a | ||||
|  * transcoding-only application.  Note that if an application links in | ||||
|  * jpeg_start_compress, it will end up linking in the entire compressor. | ||||
|  * We thus must separate this file from jcapimin.c to avoid linking the | ||||
|  * whole compression library into a transcoder. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Compression initialization. | ||||
|  * Before calling this, all parameters and a data destination must be set up. | ||||
|  * | ||||
|  * We require a write_all_tables parameter as a failsafe check when writing | ||||
|  * multiple datastreams from the same compression object.  Since prior runs | ||||
|  * will have left all the tables marked sent_table=TRUE, a subsequent run | ||||
|  * would emit an abbreviated stream (no tables) by default.  This may be what | ||||
|  * is wanted, but for safety's sake it should not be the default behavior: | ||||
|  * programmers should have to make a deliberate choice to emit abbreviated | ||||
|  * images.  Therefore the documentation and examples should encourage people | ||||
|  * to pass write_all_tables=TRUE; then it will take active thought to do the | ||||
|  * wrong thing. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) | ||||
| { | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   if (write_all_tables) | ||||
|     jpeg_suppress_tables(cinfo, FALSE);	/* mark all tables to be written */ | ||||
| 
 | ||||
|   /* (Re)initialize error mgr and destination modules */ | ||||
|   (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | ||||
|   (*cinfo->dest->init_destination) (cinfo); | ||||
|   /* Perform master selection of active modules */ | ||||
|   jinit_compress_master(cinfo); | ||||
|   /* Set up for the first pass */ | ||||
|   (*cinfo->master->prepare_for_pass) (cinfo); | ||||
|   /* Ready for application to drive first pass through jpeg_write_scanlines
 | ||||
|    * or jpeg_write_raw_data. | ||||
|    */ | ||||
|   cinfo->next_scanline = 0; | ||||
|   cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write some scanlines of data to the JPEG compressor. | ||||
|  * | ||||
|  * The return value will be the number of lines actually written. | ||||
|  * This should be less than the supplied num_lines only in case that | ||||
|  * the data destination module has requested suspension of the compressor, | ||||
|  * or if more than image_height scanlines are passed in. | ||||
|  * | ||||
|  * Note: we warn about excess calls to jpeg_write_scanlines() since | ||||
|  * this likely signals an application programmer error.  However, | ||||
|  * excess scanlines passed in the last valid call are *silently* ignored, | ||||
|  * so that the application need not adjust num_lines for end-of-image | ||||
|  * when using a multiple-scanline buffer. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(JDIMENSION) | ||||
| jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, | ||||
| 		      JDIMENSION num_lines) | ||||
| { | ||||
|   JDIMENSION row_ctr, rows_left; | ||||
| 
 | ||||
|   if (cinfo->global_state != CSTATE_SCANNING) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   if (cinfo->next_scanline >= cinfo->image_height) | ||||
|     WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | ||||
| 
 | ||||
|   /* Call progress monitor hook if present */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     cinfo->progress->pass_counter = (long) cinfo->next_scanline; | ||||
|     cinfo->progress->pass_limit = (long) cinfo->image_height; | ||||
|     (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Give master control module another chance if this is first call to
 | ||||
|    * jpeg_write_scanlines.  This lets output of the frame/scan headers be | ||||
|    * delayed so that application can write COM, etc, markers between | ||||
|    * jpeg_start_compress and jpeg_write_scanlines. | ||||
|    */ | ||||
|   if (cinfo->master->call_pass_startup) | ||||
|     (*cinfo->master->pass_startup) (cinfo); | ||||
| 
 | ||||
|   /* Ignore any extra scanlines at bottom of image. */ | ||||
|   rows_left = cinfo->image_height - cinfo->next_scanline; | ||||
|   if (num_lines > rows_left) | ||||
|     num_lines = rows_left; | ||||
| 
 | ||||
|   row_ctr = 0; | ||||
|   (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); | ||||
|   cinfo->next_scanline += row_ctr; | ||||
|   return row_ctr; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Alternate entry point to write raw data. | ||||
|  * Processes exactly one iMCU row per call, unless suspended. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(JDIMENSION) | ||||
| jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, | ||||
| 		     JDIMENSION num_lines) | ||||
| { | ||||
|   JDIMENSION lines_per_iMCU_row; | ||||
| 
 | ||||
|   if (cinfo->global_state != CSTATE_RAW_OK) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   if (cinfo->next_scanline >= cinfo->image_height) { | ||||
|     WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | ||||
|     return 0; | ||||
|   } | ||||
| 
 | ||||
|   /* Call progress monitor hook if present */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     cinfo->progress->pass_counter = (long) cinfo->next_scanline; | ||||
|     cinfo->progress->pass_limit = (long) cinfo->image_height; | ||||
|     (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Give master control module another chance if this is first call to
 | ||||
|    * jpeg_write_raw_data.  This lets output of the frame/scan headers be | ||||
|    * delayed so that application can write COM, etc, markers between | ||||
|    * jpeg_start_compress and jpeg_write_raw_data. | ||||
|    */ | ||||
|   if (cinfo->master->call_pass_startup) | ||||
|     (*cinfo->master->pass_startup) (cinfo); | ||||
| 
 | ||||
|   /* Verify that at least one iMCU row has been passed. */ | ||||
|   lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; | ||||
|   if (num_lines < lines_per_iMCU_row) | ||||
|     ERREXIT(cinfo, JERR_BUFFER_SIZE); | ||||
| 
 | ||||
|   /* Directly compress the row. */ | ||||
|   if (! (*cinfo->coef->compress_data) (cinfo, data)) { | ||||
|     /* If compressor did not consume the whole row, suspend processing. */ | ||||
|     return 0; | ||||
|   } | ||||
| 
 | ||||
|   /* OK, we processed one iMCU row. */ | ||||
|   cinfo->next_scanline += lines_per_iMCU_row; | ||||
|   return lines_per_iMCU_row; | ||||
| } | ||||
							
								
								
									
										945
									
								
								dep/libjpeg/src/jcarith.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										945
									
								
								dep/libjpeg/src/jcarith.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,945 @@ | |||
| /*
 | ||||
|  * jcarith.c | ||||
|  * | ||||
|  * Developed 1997-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains portable arithmetic entropy encoding routines for JPEG | ||||
|  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | ||||
|  * | ||||
|  * Both sequential and progressive modes are supported in this single module. | ||||
|  * | ||||
|  * Suspension is not currently supported in this module. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Expanded entropy encoder object for arithmetic encoding. */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_entropy_encoder pub; /* public fields */ | ||||
| 
 | ||||
|   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ | ||||
|   INT32 a;               /* A register, normalized size of coding interval */ | ||||
|   INT32 sc;        /* counter for stacked 0xFF values which might overflow */ | ||||
|   INT32 zc;          /* counter for pending 0x00 output values which might *
 | ||||
|                           * be discarded at the end ("Pacman" termination) */ | ||||
|   int ct;  /* bit shift counter, determines when next byte will be written */ | ||||
|   int buffer;                /* buffer for most recent output byte != 0xFF */ | ||||
| 
 | ||||
|   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | ||||
|   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | ||||
| 
 | ||||
|   unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | ||||
|   int next_restart_num;		/* next restart number to write (0-7) */ | ||||
| 
 | ||||
|   /* Pointers to statistics areas (these workspaces have image lifespan) */ | ||||
|   unsigned char * dc_stats[NUM_ARITH_TBLS]; | ||||
|   unsigned char * ac_stats[NUM_ARITH_TBLS]; | ||||
| 
 | ||||
|   /* Statistics bin for coding with fixed probability 0.5 */ | ||||
|   unsigned char fixed_bin[4]; | ||||
| } arith_entropy_encoder; | ||||
| 
 | ||||
| typedef arith_entropy_encoder * arith_entropy_ptr; | ||||
| 
 | ||||
| /* The following two definitions specify the allocation chunk size
 | ||||
|  * for the statistics area. | ||||
|  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | ||||
|  * 49 statistics bins for DC, and 245 statistics bins for AC coding. | ||||
|  * | ||||
|  * We use a compact representation with 1 byte per statistics bin, | ||||
|  * thus the numbers directly represent byte sizes. | ||||
|  * This 1 byte per statistics bin contains the meaning of the MPS | ||||
|  * (more probable symbol) in the highest bit (mask 0x80), and the | ||||
|  * index into the probability estimation state machine table | ||||
|  * in the lower bits (mask 0x7F). | ||||
|  */ | ||||
| 
 | ||||
| #define DC_STAT_BINS 64 | ||||
| #define AC_STAT_BINS 256 | ||||
| 
 | ||||
| /* NOTE: Uncomment the following #define if you want to use the
 | ||||
|  * given formula for calculating the AC conditioning parameter Kx | ||||
|  * for spectral selection progressive coding in section G.1.3.2 | ||||
|  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). | ||||
|  * Although the spec and P&M authors claim that this "has proven | ||||
|  * to give good results for 8 bit precision samples", I'm not | ||||
|  * convinced yet that this is really beneficial. | ||||
|  * Early tests gave only very marginal compression enhancements | ||||
|  * (a few - around 5 or so - bytes even for very large files), | ||||
|  * which would turn out rather negative if we'd suppress the | ||||
|  * DAC (Define Arithmetic Conditioning) marker segments for | ||||
|  * the default parameters in the future. | ||||
|  * Note that currently the marker writing module emits 12-byte | ||||
|  * DAC segments for a full-component scan in a color image. | ||||
|  * This is not worth worrying about IMHO. However, since the | ||||
|  * spec defines the default values to be used if the tables | ||||
|  * are omitted (unlike Huffman tables, which are required | ||||
|  * anyway), one might optimize this behaviour in the future, | ||||
|  * and then it would be disadvantageous to use custom tables if | ||||
|  * they don't provide sufficient gain to exceed the DAC size. | ||||
|  * | ||||
|  * On the other hand, I'd consider it as a reasonable result | ||||
|  * that the conditioning has no significant influence on the | ||||
|  * compression performance. This means that the basic | ||||
|  * statistical model is already rather stable. | ||||
|  * | ||||
|  * Thus, at the moment, we use the default conditioning values | ||||
|  * anyway, and do not use the custom formula. | ||||
|  * | ||||
| #define CALCULATE_SPECTRAL_CONDITIONING | ||||
|  */ | ||||
| 
 | ||||
| /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
 | ||||
|  * We assume that int right shift is unsigned if INT32 right shift is, | ||||
|  * which should be safe. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef RIGHT_SHIFT_IS_UNSIGNED | ||||
| #define ISHIFT_TEMPS	int ishift_temp; | ||||
| #define IRIGHT_SHIFT(x,shft)  \ | ||||
| 	((ishift_temp = (x)) < 0 ? \ | ||||
| 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ | ||||
| 	 (ishift_temp >> (shft))) | ||||
| #else | ||||
| #define ISHIFT_TEMPS | ||||
| #define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_byte (int val, j_compress_ptr cinfo) | ||||
| /* Write next output byte; we do not support suspension in this module. */ | ||||
| { | ||||
|   struct jpeg_destination_mgr * dest = cinfo->dest; | ||||
| 
 | ||||
|   *dest->next_output_byte++ = (JOCTET) val; | ||||
|   if (--dest->free_in_buffer == 0) | ||||
|     if (! (*dest->empty_output_buffer) (cinfo)) | ||||
|       ERREXIT(cinfo, JERR_CANT_SUSPEND); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up at the end of an arithmetic-compressed scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| finish_pass (j_compress_ptr cinfo) | ||||
| { | ||||
|   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | ||||
|   INT32 temp; | ||||
| 
 | ||||
|   /* Section D.1.8: Termination of encoding */ | ||||
| 
 | ||||
|   /* Find the e->c in the coding interval with the largest
 | ||||
|    * number of trailing zero bits */ | ||||
|   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) | ||||
|     e->c = temp + 0x8000L; | ||||
|   else | ||||
|     e->c = temp; | ||||
|   /* Send remaining bytes to output */ | ||||
|   e->c <<= e->ct; | ||||
|   if (e->c & 0xF8000000L) { | ||||
|     /* One final overflow has to be handled */ | ||||
|     if (e->buffer >= 0) { | ||||
|       if (e->zc) | ||||
| 	do emit_byte(0x00, cinfo); | ||||
| 	while (--e->zc); | ||||
|       emit_byte(e->buffer + 1, cinfo); | ||||
|       if (e->buffer + 1 == 0xFF) | ||||
| 	emit_byte(0x00, cinfo); | ||||
|     } | ||||
|     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ | ||||
|     e->sc = 0; | ||||
|   } else { | ||||
|     if (e->buffer == 0) | ||||
|       ++e->zc; | ||||
|     else if (e->buffer >= 0) { | ||||
|       if (e->zc) | ||||
| 	do emit_byte(0x00, cinfo); | ||||
| 	while (--e->zc); | ||||
|       emit_byte(e->buffer, cinfo); | ||||
|     } | ||||
|     if (e->sc) { | ||||
|       if (e->zc) | ||||
| 	do emit_byte(0x00, cinfo); | ||||
| 	while (--e->zc); | ||||
|       do { | ||||
| 	emit_byte(0xFF, cinfo); | ||||
| 	emit_byte(0x00, cinfo); | ||||
|       } while (--e->sc); | ||||
|     } | ||||
|   } | ||||
|   /* Output final bytes only if they are not 0x00 */ | ||||
|   if (e->c & 0x7FFF800L) { | ||||
|     if (e->zc)  /* output final pending zero bytes */ | ||||
|       do emit_byte(0x00, cinfo); | ||||
|       while (--e->zc); | ||||
|     emit_byte((int) ((e->c >> 19) & 0xFF), cinfo); | ||||
|     if (((e->c >> 19) & 0xFF) == 0xFF) | ||||
|       emit_byte(0x00, cinfo); | ||||
|     if (e->c & 0x7F800L) { | ||||
|       emit_byte((int) ((e->c >> 11) & 0xFF), cinfo); | ||||
|       if (((e->c >> 11) & 0xFF) == 0xFF) | ||||
| 	emit_byte(0x00, cinfo); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The core arithmetic encoding routine (common in JPEG and JBIG). | ||||
|  * This needs to go as fast as possible. | ||||
|  * Machine-dependent optimization facilities | ||||
|  * are not utilized in this portable implementation. | ||||
|  * However, this code should be fairly efficient and | ||||
|  * may be a good base for further optimizations anyway. | ||||
|  * | ||||
|  * Parameter 'val' to be encoded may be 0 or 1 (binary decision). | ||||
|  * | ||||
|  * Note: I've added full "Pacman" termination support to the | ||||
|  * byte output routines, which is equivalent to the optional | ||||
|  * Discard_final_zeros procedure (Figure D.15) in the spec. | ||||
|  * Thus, we always produce the shortest possible output | ||||
|  * stream compliant to the spec (no trailing zero bytes, | ||||
|  * except for FF stuffing). | ||||
|  * | ||||
|  * I've also introduced a new scheme for accessing | ||||
|  * the probability estimation state machine table, | ||||
|  * derived from Markus Kuhn's JBIG implementation. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)  | ||||
| { | ||||
|   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | ||||
|   register unsigned char nl, nm; | ||||
|   register INT32 qe, temp; | ||||
|   register int sv; | ||||
| 
 | ||||
|   /* Fetch values from our compact representation of Table D.3(D.2):
 | ||||
|    * Qe values and probability estimation state machine | ||||
|    */ | ||||
|   sv = *st; | ||||
|   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */ | ||||
|   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */ | ||||
|   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */ | ||||
| 
 | ||||
|   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ | ||||
|   e->a -= qe; | ||||
|   if (val != (sv >> 7)) { | ||||
|     /* Encode the less probable symbol */ | ||||
|     if (e->a >= qe) { | ||||
|       /* If the interval size (qe) for the less probable symbol (LPS)
 | ||||
|        * is larger than the interval size for the MPS, then exchange | ||||
|        * the two symbols for coding efficiency, otherwise code the LPS | ||||
|        * as usual: */ | ||||
|       e->c += e->a; | ||||
|       e->a = qe; | ||||
|     } | ||||
|     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */ | ||||
|   } else { | ||||
|     /* Encode the more probable symbol */ | ||||
|     if (e->a >= 0x8000L) | ||||
|       return;  /* A >= 0x8000 -> ready, no renormalization required */ | ||||
|     if (e->a < qe) { | ||||
|       /* If the interval size (qe) for the less probable symbol (LPS)
 | ||||
|        * is larger than the interval size for the MPS, then exchange | ||||
|        * the two symbols for coding efficiency: */ | ||||
|       e->c += e->a; | ||||
|       e->a = qe; | ||||
|     } | ||||
|     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */ | ||||
|   } | ||||
| 
 | ||||
|   /* Renormalization & data output per section D.1.6 */ | ||||
|   do { | ||||
|     e->a <<= 1; | ||||
|     e->c <<= 1; | ||||
|     if (--e->ct == 0) { | ||||
|       /* Another byte is ready for output */ | ||||
|       temp = e->c >> 19; | ||||
|       if (temp > 0xFF) { | ||||
| 	/* Handle overflow over all stacked 0xFF bytes */ | ||||
| 	if (e->buffer >= 0) { | ||||
| 	  if (e->zc) | ||||
| 	    do emit_byte(0x00, cinfo); | ||||
| 	    while (--e->zc); | ||||
| 	  emit_byte(e->buffer + 1, cinfo); | ||||
| 	  if (e->buffer + 1 == 0xFF) | ||||
| 	    emit_byte(0x00, cinfo); | ||||
| 	} | ||||
| 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ | ||||
| 	e->sc = 0; | ||||
| 	/* Note: The 3 spacer bits in the C register guarantee
 | ||||
| 	 * that the new buffer byte can't be 0xFF here | ||||
| 	 * (see page 160 in the P&M JPEG book). */ | ||||
| 	/* New output byte, might overflow later */ | ||||
| 	e->buffer = (int) (temp & 0xFF); | ||||
|       } else if (temp == 0xFF) { | ||||
| 	++e->sc;  /* stack 0xFF byte (which might overflow later) */ | ||||
|       } else { | ||||
| 	/* Output all stacked 0xFF bytes, they will not overflow any more */ | ||||
| 	if (e->buffer == 0) | ||||
| 	  ++e->zc; | ||||
| 	else if (e->buffer >= 0) { | ||||
| 	  if (e->zc) | ||||
| 	    do emit_byte(0x00, cinfo); | ||||
| 	    while (--e->zc); | ||||
| 	  emit_byte(e->buffer, cinfo); | ||||
| 	} | ||||
| 	if (e->sc) { | ||||
| 	  if (e->zc) | ||||
| 	    do emit_byte(0x00, cinfo); | ||||
| 	    while (--e->zc); | ||||
| 	  do { | ||||
| 	    emit_byte(0xFF, cinfo); | ||||
| 	    emit_byte(0x00, cinfo); | ||||
| 	  } while (--e->sc); | ||||
| 	} | ||||
| 	/* New output byte (can still overflow) */ | ||||
| 	e->buffer = (int) (temp & 0xFF); | ||||
|       } | ||||
|       e->c &= 0x7FFFFL; | ||||
|       e->ct += 8; | ||||
|     } | ||||
|   } while (e->a < 0x8000L); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Emit a restart marker & resynchronize predictions. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_restart (j_compress_ptr cinfo, int restart_num) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   finish_pass(cinfo); | ||||
| 
 | ||||
|   emit_byte(0xFF, cinfo); | ||||
|   emit_byte(JPEG_RST0 + restart_num, cinfo); | ||||
| 
 | ||||
|   /* Re-initialize statistics areas */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     /* DC needs no table for refinement scan */ | ||||
|     if (cinfo->Ss == 0 && cinfo->Ah == 0) { | ||||
|       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | ||||
|       /* Reset DC predictions to 0 */ | ||||
|       entropy->last_dc_val[ci] = 0; | ||||
|       entropy->dc_context[ci] = 0; | ||||
|     } | ||||
|     /* AC needs no table when not present */ | ||||
|     if (cinfo->Se) { | ||||
|       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Reset arithmetic encoding variables */ | ||||
|   entropy->c = 0; | ||||
|   entropy->a = 0x10000L; | ||||
|   entropy->sc = 0; | ||||
|   entropy->zc = 0; | ||||
|   entropy->ct = 11; | ||||
|   entropy->buffer = -1;  /* empty */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU encoding for DC initial scan (either spectral selection, | ||||
|  * or first pass of successive approximation). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   unsigned char *st; | ||||
|   int blkn, ci, tbl; | ||||
|   int v, v2, m; | ||||
|   ISHIFT_TEMPS | ||||
| 
 | ||||
|   /* Emit restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) { | ||||
|       emit_restart(cinfo, entropy->next_restart_num); | ||||
|       entropy->restarts_to_go = cinfo->restart_interval; | ||||
|       entropy->next_restart_num++; | ||||
|       entropy->next_restart_num &= 7; | ||||
|     } | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   /* Encode the MCU data blocks */ | ||||
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | ||||
|     ci = cinfo->MCU_membership[blkn]; | ||||
|     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | ||||
| 
 | ||||
|     /* Compute the DC value after the required point transform by Al.
 | ||||
|      * This is simply an arithmetic right shift. | ||||
|      */ | ||||
|     m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); | ||||
| 
 | ||||
|     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | ||||
| 
 | ||||
|     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | ||||
|     st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | ||||
| 
 | ||||
|     /* Figure F.4: Encode_DC_DIFF */ | ||||
|     if ((v = m - entropy->last_dc_val[ci]) == 0) { | ||||
|       arith_encode(cinfo, st, 0); | ||||
|       entropy->dc_context[ci] = 0;	/* zero diff category */ | ||||
|     } else { | ||||
|       entropy->last_dc_val[ci] = m; | ||||
|       arith_encode(cinfo, st, 1); | ||||
|       /* Figure F.6: Encoding nonzero value v */ | ||||
|       /* Figure F.7: Encoding the sign of v */ | ||||
|       if (v > 0) { | ||||
| 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */ | ||||
| 	st += 2;			/* Table F.4: SP = S0 + 2 */ | ||||
| 	entropy->dc_context[ci] = 4;	/* small positive diff category */ | ||||
|       } else { | ||||
| 	v = -v; | ||||
| 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */ | ||||
| 	st += 3;			/* Table F.4: SN = S0 + 3 */ | ||||
| 	entropy->dc_context[ci] = 8;	/* small negative diff category */ | ||||
|       } | ||||
|       /* Figure F.8: Encoding the magnitude category of v */ | ||||
|       m = 0; | ||||
|       if (v -= 1) { | ||||
| 	arith_encode(cinfo, st, 1); | ||||
| 	m = 1; | ||||
| 	v2 = v; | ||||
| 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | ||||
| 	while (v2 >>= 1) { | ||||
| 	  arith_encode(cinfo, st, 1); | ||||
| 	  m <<= 1; | ||||
| 	  st += 1; | ||||
| 	} | ||||
|       } | ||||
|       arith_encode(cinfo, st, 0); | ||||
|       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | ||||
|       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] = 0;	/* zero diff category */ | ||||
|       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] += 8;	/* large diff category */ | ||||
|       /* Figure F.9: Encoding the magnitude bit pattern of v */ | ||||
|       st += 14; | ||||
|       while (m >>= 1) | ||||
| 	arith_encode(cinfo, st, (m & v) ? 1 : 0); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU encoding for AC initial scan (either spectral selection, | ||||
|  * or first pass of successive approximation). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   const int * natural_order; | ||||
|   JBLOCKROW block; | ||||
|   unsigned char *st; | ||||
|   int tbl, k, ke; | ||||
|   int v, v2, m; | ||||
| 
 | ||||
|   /* Emit restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) { | ||||
|       emit_restart(cinfo, entropy->next_restart_num); | ||||
|       entropy->restarts_to_go = cinfo->restart_interval; | ||||
|       entropy->next_restart_num++; | ||||
|       entropy->next_restart_num &= 7; | ||||
|     } | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   natural_order = cinfo->natural_order; | ||||
| 
 | ||||
|   /* Encode the MCU data block */ | ||||
|   block = MCU_data[0]; | ||||
|   tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | ||||
| 
 | ||||
|   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | ||||
| 
 | ||||
|   /* Establish EOB (end-of-block) index */ | ||||
|   ke = cinfo->Se; | ||||
|   do { | ||||
|     /* We must apply the point transform by Al.  For AC coefficients this
 | ||||
|      * is an integer division with rounding towards 0.  To do this portably | ||||
|      * in C, we shift after obtaining the absolute value. | ||||
|      */ | ||||
|     if ((v = (*block)[natural_order[ke]]) >= 0) { | ||||
|       if (v >>= cinfo->Al) break; | ||||
|     } else { | ||||
|       v = -v; | ||||
|       if (v >>= cinfo->Al) break; | ||||
|     } | ||||
|   } while (--ke); | ||||
| 
 | ||||
|   /* Figure F.5: Encode_AC_Coefficients */ | ||||
|   for (k = cinfo->Ss - 1; k < ke;) { | ||||
|     st = entropy->ac_stats[tbl] + 3 * k; | ||||
|     arith_encode(cinfo, st, 0);		/* EOB decision */ | ||||
|     for (;;) { | ||||
|       if ((v = (*block)[natural_order[++k]]) >= 0) { | ||||
| 	if (v >>= cinfo->Al) { | ||||
| 	  arith_encode(cinfo, st + 1, 1); | ||||
| 	  arith_encode(cinfo, entropy->fixed_bin, 0); | ||||
| 	  break; | ||||
| 	} | ||||
|       } else { | ||||
| 	v = -v; | ||||
| 	if (v >>= cinfo->Al) { | ||||
| 	  arith_encode(cinfo, st + 1, 1); | ||||
| 	  arith_encode(cinfo, entropy->fixed_bin, 1); | ||||
| 	  break; | ||||
| 	} | ||||
|       } | ||||
|       arith_encode(cinfo, st + 1, 0); | ||||
|       st += 3; | ||||
|     } | ||||
|     st += 2; | ||||
|     /* Figure F.8: Encoding the magnitude category of v */ | ||||
|     m = 0; | ||||
|     if (v -= 1) { | ||||
|       arith_encode(cinfo, st, 1); | ||||
|       m = 1; | ||||
|       v2 = v; | ||||
|       if (v2 >>= 1) { | ||||
| 	arith_encode(cinfo, st, 1); | ||||
| 	m <<= 1; | ||||
| 	st = entropy->ac_stats[tbl] + | ||||
| 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | ||||
| 	while (v2 >>= 1) { | ||||
| 	  arith_encode(cinfo, st, 1); | ||||
| 	  m <<= 1; | ||||
| 	  st += 1; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     arith_encode(cinfo, st, 0); | ||||
|     /* Figure F.9: Encoding the magnitude bit pattern of v */ | ||||
|     st += 14; | ||||
|     while (m >>= 1) | ||||
|       arith_encode(cinfo, st, (m & v) ? 1 : 0); | ||||
|   } | ||||
|   /* Encode EOB decision only if k < cinfo->Se */ | ||||
|   if (k < cinfo->Se) { | ||||
|     st = entropy->ac_stats[tbl] + 3 * k; | ||||
|     arith_encode(cinfo, st, 1); | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU encoding for DC successive approximation refinement scan. | ||||
|  * Note: we assume such scans can be multi-component, | ||||
|  * although the spec is not very clear on the point. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   unsigned char *st; | ||||
|   int Al, blkn; | ||||
| 
 | ||||
|   /* Emit restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) { | ||||
|       emit_restart(cinfo, entropy->next_restart_num); | ||||
|       entropy->restarts_to_go = cinfo->restart_interval; | ||||
|       entropy->next_restart_num++; | ||||
|       entropy->next_restart_num &= 7; | ||||
|     } | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   st = entropy->fixed_bin;	/* use fixed probability estimation */ | ||||
|   Al = cinfo->Al; | ||||
| 
 | ||||
|   /* Encode the MCU data blocks */ | ||||
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | ||||
|     /* We simply emit the Al'th bit of the DC coefficient value. */ | ||||
|     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU encoding for AC successive approximation refinement scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   const int * natural_order; | ||||
|   JBLOCKROW block; | ||||
|   unsigned char *st; | ||||
|   int tbl, k, ke, kex; | ||||
|   int v; | ||||
| 
 | ||||
|   /* Emit restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) { | ||||
|       emit_restart(cinfo, entropy->next_restart_num); | ||||
|       entropy->restarts_to_go = cinfo->restart_interval; | ||||
|       entropy->next_restart_num++; | ||||
|       entropy->next_restart_num &= 7; | ||||
|     } | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   natural_order = cinfo->natural_order; | ||||
| 
 | ||||
|   /* Encode the MCU data block */ | ||||
|   block = MCU_data[0]; | ||||
|   tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | ||||
| 
 | ||||
|   /* Section G.1.3.3: Encoding of AC coefficients */ | ||||
| 
 | ||||
|   /* Establish EOB (end-of-block) index */ | ||||
|   ke = cinfo->Se; | ||||
|   do { | ||||
|     /* We must apply the point transform by Al.  For AC coefficients this
 | ||||
|      * is an integer division with rounding towards 0.  To do this portably | ||||
|      * in C, we shift after obtaining the absolute value. | ||||
|      */ | ||||
|     if ((v = (*block)[natural_order[ke]]) >= 0) { | ||||
|       if (v >>= cinfo->Al) break; | ||||
|     } else { | ||||
|       v = -v; | ||||
|       if (v >>= cinfo->Al) break; | ||||
|     } | ||||
|   } while (--ke); | ||||
| 
 | ||||
|   /* Establish EOBx (previous stage end-of-block) index */ | ||||
|   for (kex = ke; kex > 0; kex--) | ||||
|     if ((v = (*block)[natural_order[kex]]) >= 0) { | ||||
|       if (v >>= cinfo->Ah) break; | ||||
|     } else { | ||||
|       v = -v; | ||||
|       if (v >>= cinfo->Ah) break; | ||||
|     } | ||||
| 
 | ||||
|   /* Figure G.10: Encode_AC_Coefficients_SA */ | ||||
|   for (k = cinfo->Ss - 1; k < ke;) { | ||||
|     st = entropy->ac_stats[tbl] + 3 * k; | ||||
|     if (k >= kex) | ||||
|       arith_encode(cinfo, st, 0);	/* EOB decision */ | ||||
|     for (;;) { | ||||
|       if ((v = (*block)[natural_order[++k]]) >= 0) { | ||||
| 	if (v >>= cinfo->Al) { | ||||
| 	  if (v >> 1)			/* previously nonzero coef */ | ||||
| 	    arith_encode(cinfo, st + 2, (v & 1)); | ||||
| 	  else {			/* newly nonzero coef */ | ||||
| 	    arith_encode(cinfo, st + 1, 1); | ||||
| 	    arith_encode(cinfo, entropy->fixed_bin, 0); | ||||
| 	  } | ||||
| 	  break; | ||||
| 	} | ||||
|       } else { | ||||
| 	v = -v; | ||||
| 	if (v >>= cinfo->Al) { | ||||
| 	  if (v >> 1)			/* previously nonzero coef */ | ||||
| 	    arith_encode(cinfo, st + 2, (v & 1)); | ||||
| 	  else {			/* newly nonzero coef */ | ||||
| 	    arith_encode(cinfo, st + 1, 1); | ||||
| 	    arith_encode(cinfo, entropy->fixed_bin, 1); | ||||
| 	  } | ||||
| 	  break; | ||||
| 	} | ||||
|       } | ||||
|       arith_encode(cinfo, st + 1, 0); | ||||
|       st += 3; | ||||
|     } | ||||
|   } | ||||
|   /* Encode EOB decision only if k < cinfo->Se */ | ||||
|   if (k < cinfo->Se) { | ||||
|     st = entropy->ac_stats[tbl] + 3 * k; | ||||
|     arith_encode(cinfo, st, 1); | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Encode and output one MCU's worth of arithmetic-compressed coefficients. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| encode_mcu (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   const int * natural_order; | ||||
|   JBLOCKROW block; | ||||
|   unsigned char *st; | ||||
|   int tbl, k, ke; | ||||
|   int v, v2, m; | ||||
|   int blkn, ci; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   /* Emit restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) { | ||||
|       emit_restart(cinfo, entropy->next_restart_num); | ||||
|       entropy->restarts_to_go = cinfo->restart_interval; | ||||
|       entropy->next_restart_num++; | ||||
|       entropy->next_restart_num &= 7; | ||||
|     } | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   natural_order = cinfo->natural_order; | ||||
| 
 | ||||
|   /* Encode the MCU data blocks */ | ||||
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | ||||
|     block = MCU_data[blkn]; | ||||
|     ci = cinfo->MCU_membership[blkn]; | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
| 
 | ||||
|     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | ||||
| 
 | ||||
|     tbl = compptr->dc_tbl_no; | ||||
| 
 | ||||
|     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | ||||
|     st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | ||||
| 
 | ||||
|     /* Figure F.4: Encode_DC_DIFF */ | ||||
|     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { | ||||
|       arith_encode(cinfo, st, 0); | ||||
|       entropy->dc_context[ci] = 0;	/* zero diff category */ | ||||
|     } else { | ||||
|       entropy->last_dc_val[ci] = (*block)[0]; | ||||
|       arith_encode(cinfo, st, 1); | ||||
|       /* Figure F.6: Encoding nonzero value v */ | ||||
|       /* Figure F.7: Encoding the sign of v */ | ||||
|       if (v > 0) { | ||||
| 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */ | ||||
| 	st += 2;			/* Table F.4: SP = S0 + 2 */ | ||||
| 	entropy->dc_context[ci] = 4;	/* small positive diff category */ | ||||
|       } else { | ||||
| 	v = -v; | ||||
| 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */ | ||||
| 	st += 3;			/* Table F.4: SN = S0 + 3 */ | ||||
| 	entropy->dc_context[ci] = 8;	/* small negative diff category */ | ||||
|       } | ||||
|       /* Figure F.8: Encoding the magnitude category of v */ | ||||
|       m = 0; | ||||
|       if (v -= 1) { | ||||
| 	arith_encode(cinfo, st, 1); | ||||
| 	m = 1; | ||||
| 	v2 = v; | ||||
| 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | ||||
| 	while (v2 >>= 1) { | ||||
| 	  arith_encode(cinfo, st, 1); | ||||
| 	  m <<= 1; | ||||
| 	  st += 1; | ||||
| 	} | ||||
|       } | ||||
|       arith_encode(cinfo, st, 0); | ||||
|       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | ||||
|       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] = 0;	/* zero diff category */ | ||||
|       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] += 8;	/* large diff category */ | ||||
|       /* Figure F.9: Encoding the magnitude bit pattern of v */ | ||||
|       st += 14; | ||||
|       while (m >>= 1) | ||||
| 	arith_encode(cinfo, st, (m & v) ? 1 : 0); | ||||
|     } | ||||
| 
 | ||||
|     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | ||||
| 
 | ||||
|     if ((ke = cinfo->lim_Se) == 0) continue; | ||||
|     tbl = compptr->ac_tbl_no; | ||||
| 
 | ||||
|     /* Establish EOB (end-of-block) index */ | ||||
|     do { | ||||
|       if ((*block)[natural_order[ke]]) break; | ||||
|     } while (--ke); | ||||
| 
 | ||||
|     /* Figure F.5: Encode_AC_Coefficients */ | ||||
|     for (k = 0; k < ke;) { | ||||
|       st = entropy->ac_stats[tbl] + 3 * k; | ||||
|       arith_encode(cinfo, st, 0);	/* EOB decision */ | ||||
|       while ((v = (*block)[natural_order[++k]]) == 0) { | ||||
| 	arith_encode(cinfo, st + 1, 0); | ||||
| 	st += 3; | ||||
|       } | ||||
|       arith_encode(cinfo, st + 1, 1); | ||||
|       /* Figure F.6: Encoding nonzero value v */ | ||||
|       /* Figure F.7: Encoding the sign of v */ | ||||
|       if (v > 0) { | ||||
| 	arith_encode(cinfo, entropy->fixed_bin, 0); | ||||
|       } else { | ||||
| 	v = -v; | ||||
| 	arith_encode(cinfo, entropy->fixed_bin, 1); | ||||
|       } | ||||
|       st += 2; | ||||
|       /* Figure F.8: Encoding the magnitude category of v */ | ||||
|       m = 0; | ||||
|       if (v -= 1) { | ||||
| 	arith_encode(cinfo, st, 1); | ||||
| 	m = 1; | ||||
| 	v2 = v; | ||||
| 	if (v2 >>= 1) { | ||||
| 	  arith_encode(cinfo, st, 1); | ||||
| 	  m <<= 1; | ||||
| 	  st = entropy->ac_stats[tbl] + | ||||
| 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | ||||
| 	  while (v2 >>= 1) { | ||||
| 	    arith_encode(cinfo, st, 1); | ||||
| 	    m <<= 1; | ||||
| 	    st += 1; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       arith_encode(cinfo, st, 0); | ||||
|       /* Figure F.9: Encoding the magnitude bit pattern of v */ | ||||
|       st += 14; | ||||
|       while (m >>= 1) | ||||
| 	arith_encode(cinfo, st, (m & v) ? 1 : 0); | ||||
|     } | ||||
|     /* Encode EOB decision only if k < cinfo->lim_Se */ | ||||
|     if (k < cinfo->lim_Se) { | ||||
|       st = entropy->ac_stats[tbl] + 3 * k; | ||||
|       arith_encode(cinfo, st, 1); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an arithmetic-compressed scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass (j_compress_ptr cinfo, boolean gather_statistics) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   int ci, tbl; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   if (gather_statistics) | ||||
|     /* Make sure to avoid that in the master control logic!
 | ||||
|      * We are fully adaptive here and need no extra | ||||
|      * statistics gathering pass! | ||||
|      */ | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| 
 | ||||
|   /* We assume jcmaster.c already validated the progressive scan parameters. */ | ||||
| 
 | ||||
|   /* Select execution routines */ | ||||
|   if (cinfo->progressive_mode) { | ||||
|     if (cinfo->Ah == 0) { | ||||
|       if (cinfo->Ss == 0) | ||||
| 	entropy->pub.encode_mcu = encode_mcu_DC_first; | ||||
|       else | ||||
| 	entropy->pub.encode_mcu = encode_mcu_AC_first; | ||||
|     } else { | ||||
|       if (cinfo->Ss == 0) | ||||
| 	entropy->pub.encode_mcu = encode_mcu_DC_refine; | ||||
|       else | ||||
| 	entropy->pub.encode_mcu = encode_mcu_AC_refine; | ||||
|     } | ||||
|   } else | ||||
|     entropy->pub.encode_mcu = encode_mcu; | ||||
| 
 | ||||
|   /* Allocate & initialize requested statistics areas */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     /* DC needs no table for refinement scan */ | ||||
|     if (cinfo->Ss == 0 && cinfo->Ah == 0) { | ||||
|       tbl = compptr->dc_tbl_no; | ||||
|       if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | ||||
| 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | ||||
|       if (entropy->dc_stats[tbl] == NULL) | ||||
| 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | ||||
| 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); | ||||
|       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | ||||
|       /* Initialize DC predictions to 0 */ | ||||
|       entropy->last_dc_val[ci] = 0; | ||||
|       entropy->dc_context[ci] = 0; | ||||
|     } | ||||
|     /* AC needs no table when not present */ | ||||
|     if (cinfo->Se) { | ||||
|       tbl = compptr->ac_tbl_no; | ||||
|       if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | ||||
| 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | ||||
|       if (entropy->ac_stats[tbl] == NULL) | ||||
| 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | ||||
| 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); | ||||
|       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | ||||
| #ifdef CALCULATE_SPECTRAL_CONDITIONING | ||||
|       if (cinfo->progressive_mode) | ||||
| 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ | ||||
| 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize arithmetic encoding variables */ | ||||
|   entropy->c = 0; | ||||
|   entropy->a = 0x10000L; | ||||
|   entropy->sc = 0; | ||||
|   entropy->zc = 0; | ||||
|   entropy->ct = 11; | ||||
|   entropy->buffer = -1;  /* empty */ | ||||
| 
 | ||||
|   /* Initialize restart stuff */ | ||||
|   entropy->restarts_to_go = cinfo->restart_interval; | ||||
|   entropy->next_restart_num = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for arithmetic entropy encoding. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_arith_encoder (j_compress_ptr cinfo) | ||||
| { | ||||
|   arith_entropy_ptr entropy; | ||||
|   int i; | ||||
| 
 | ||||
|   entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder)); | ||||
|   cinfo->entropy = &entropy->pub; | ||||
|   entropy->pub.start_pass = start_pass; | ||||
|   entropy->pub.finish_pass = finish_pass; | ||||
| 
 | ||||
|   /* Mark tables unallocated */ | ||||
|   for (i = 0; i < NUM_ARITH_TBLS; i++) { | ||||
|     entropy->dc_stats[i] = NULL; | ||||
|     entropy->ac_stats[i] = NULL; | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize index for fixed probability estimation */ | ||||
|   entropy->fixed_bin[0] = 113; | ||||
| } | ||||
							
								
								
									
										456
									
								
								dep/libjpeg/src/jccoefct.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										456
									
								
								dep/libjpeg/src/jccoefct.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,456 @@ | |||
| /*
 | ||||
|  * jccoefct.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1997, Thomas G. Lane. | ||||
|  * Modified 2003-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the coefficient buffer controller for compression. | ||||
|  * This controller is the top level of the JPEG compressor proper. | ||||
|  * The coefficient buffer lies between forward-DCT and entropy encoding steps. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* We use a full-image coefficient buffer when doing Huffman optimization,
 | ||||
|  * and also for writing multiple-scan JPEG files.  In all cases, the DCT | ||||
|  * step is run during the first pass, and subsequent passes need only read | ||||
|  * the buffered coefficients. | ||||
|  */ | ||||
| #ifdef ENTROPY_OPT_SUPPORTED | ||||
| #define FULL_COEF_BUFFER_SUPPORTED | ||||
| #else | ||||
| #ifdef C_MULTISCAN_FILES_SUPPORTED | ||||
| #define FULL_COEF_BUFFER_SUPPORTED | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_c_coef_controller pub; /* public fields */ | ||||
| 
 | ||||
|   JDIMENSION iMCU_row_num;	/* iMCU row # within image */ | ||||
|   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */ | ||||
|   int MCU_vert_offset;		/* counts MCU rows within iMCU row */ | ||||
|   int MCU_rows_per_iMCU_row;	/* number of such rows needed */ | ||||
| 
 | ||||
|   /* For single-pass compression, it's sufficient to buffer just one MCU
 | ||||
|    * (although this may prove a bit slow in practice). | ||||
|    * We append a workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, | ||||
|    * and reuse it for each MCU constructed and sent. | ||||
|    * In multi-pass modes, this array points to the current MCU's blocks | ||||
|    * within the virtual arrays. | ||||
|    */ | ||||
|   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | ||||
| 
 | ||||
|   /* In multi-pass modes, we need a virtual block array for each component. */ | ||||
|   jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   /* Workspace for single-pass compression (omitted otherwise). */ | ||||
|   JBLOCK blk_buffer[C_MAX_BLOCKS_IN_MCU]; | ||||
| } my_coef_controller; | ||||
| 
 | ||||
| typedef my_coef_controller * my_coef_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| METHODDEF(boolean) compress_data | ||||
|     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | ||||
| #ifdef FULL_COEF_BUFFER_SUPPORTED | ||||
| METHODDEF(boolean) compress_first_pass | ||||
|     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | ||||
| METHODDEF(boolean) compress_output | ||||
|     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| start_iMCU_row (j_compress_ptr cinfo) | ||||
| /* Reset within-iMCU-row counters for a new row */ | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
| 
 | ||||
|   /* In an interleaved scan, an MCU row is the same as an iMCU row.
 | ||||
|    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | ||||
|    * But at the bottom of the image, process only what's left. | ||||
|    */ | ||||
|   if (cinfo->comps_in_scan > 1) { | ||||
|     coef->MCU_rows_per_iMCU_row = 1; | ||||
|   } else { | ||||
|     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | ||||
|       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | ||||
|     else | ||||
|       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | ||||
|   } | ||||
| 
 | ||||
|   coef->MCU_ctr = 0; | ||||
|   coef->MCU_vert_offset = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
| 
 | ||||
|   coef->iMCU_row_num = 0; | ||||
|   start_iMCU_row(cinfo); | ||||
| 
 | ||||
|   switch (pass_mode) { | ||||
|   case JBUF_PASS_THRU: | ||||
|     if (coef->whole_image[0] != NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     coef->pub.compress_data = compress_data; | ||||
|     break; | ||||
| #ifdef FULL_COEF_BUFFER_SUPPORTED | ||||
|   case JBUF_SAVE_AND_PASS: | ||||
|     if (coef->whole_image[0] == NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     coef->pub.compress_data = compress_first_pass; | ||||
|     break; | ||||
|   case JBUF_CRANK_DEST: | ||||
|     if (coef->whole_image[0] == NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     coef->pub.compress_data = compress_output; | ||||
|     break; | ||||
| #endif | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the single-pass case. | ||||
|  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||||
|  * per call, ie, v_samp_factor block rows for each component in the image. | ||||
|  * Returns TRUE if the iMCU row is completed, FALSE if suspended. | ||||
|  * | ||||
|  * NB: input_buf contains a plane for each component in image, | ||||
|  * which we index according to the component's SOF position. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION MCU_col_num;	/* index of current MCU within row */ | ||||
|   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | ||||
|   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||||
|   int ci, xindex, yindex, yoffset, blockcnt; | ||||
|   JBLOCKROW blkp; | ||||
|   JSAMPARRAY input_ptr; | ||||
|   JDIMENSION xpos; | ||||
|   jpeg_component_info *compptr; | ||||
|   forward_DCT_ptr forward_DCT; | ||||
| 
 | ||||
|   /* Loop to write as much as one whole iMCU row */ | ||||
|   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||||
|        yoffset++) { | ||||
|     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | ||||
| 	 MCU_col_num++) { | ||||
|       /* Determine where data comes from in input_buf and do the DCT thing.
 | ||||
|        * Each call on forward_DCT processes a horizontal row of DCT blocks as | ||||
|        * wide as an MCU.  Dummy blocks at the right or bottom edge are filled in | ||||
|        * specially.  The data in them does not matter for image reconstruction, | ||||
|        * so we fill them with values that will encode to the smallest amount of | ||||
|        * data, viz: all zeroes in the AC entries, DC entries equal to previous | ||||
|        * block's DC value.  (Thanks to Thomas Kinsman for this idea.) | ||||
|        */ | ||||
|       blkp = coef->blk_buffer;	/* pointer to current DCT block within MCU */ | ||||
|       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
| 	compptr = cinfo->cur_comp_info[ci]; | ||||
| 	forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; | ||||
| 	input_ptr = input_buf[compptr->component_index] + | ||||
| 	  yoffset * compptr->DCT_v_scaled_size; | ||||
| 	/* ypos == (yoffset + yindex) * compptr->DCT_v_scaled_size */ | ||||
| 	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | ||||
| 						: compptr->last_col_width; | ||||
| 	xpos = MCU_col_num * compptr->MCU_sample_width; | ||||
| 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||||
| 	  if (coef->iMCU_row_num < last_iMCU_row || | ||||
| 	      yoffset + yindex < compptr->last_row_height) { | ||||
| 	    (*forward_DCT) (cinfo, compptr, input_ptr, blkp, | ||||
| 			    xpos, (JDIMENSION) blockcnt); | ||||
| 	    input_ptr += compptr->DCT_v_scaled_size; | ||||
| 	    blkp += blockcnt; | ||||
| 	    /* Dummy blocks at right edge */ | ||||
| 	    if ((xindex = compptr->MCU_width - blockcnt) == 0) | ||||
| 	      continue; | ||||
| 	  } else { | ||||
| 	    /* At bottom of image, need a whole row of dummy blocks */ | ||||
| 	    xindex = compptr->MCU_width; | ||||
| 	  } | ||||
| 	  /* Fill in any dummy blocks needed in this row */ | ||||
| 	  MEMZERO(blkp, xindex * SIZEOF(JBLOCK)); | ||||
| 	  do { | ||||
| 	    blkp[0][0] = blkp[-1][0]; | ||||
| 	    blkp++; | ||||
| 	  } while (--xindex); | ||||
| 	} | ||||
|       } | ||||
|       /* Try to write the MCU.  In event of a suspension failure, we will
 | ||||
|        * re-DCT the MCU on restart (a bit inefficient, could be fixed...) | ||||
|        */ | ||||
|       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | ||||
| 	/* Suspension forced; update state counters and exit */ | ||||
| 	coef->MCU_vert_offset = yoffset; | ||||
| 	coef->MCU_ctr = MCU_col_num; | ||||
| 	return FALSE; | ||||
|       } | ||||
|     } | ||||
|     /* Completed an MCU row, but perhaps not an iMCU row */ | ||||
|     coef->MCU_ctr = 0; | ||||
|   } | ||||
|   /* Completed the iMCU row, advance counters for next one */ | ||||
|   coef->iMCU_row_num++; | ||||
|   start_iMCU_row(cinfo); | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef FULL_COEF_BUFFER_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the first pass of a multi-pass case. | ||||
|  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||||
|  * per call, ie, v_samp_factor block rows for each component in the image. | ||||
|  * This amount of data is read from the source buffer, DCT'd and quantized, | ||||
|  * and saved into the virtual arrays.  We also generate suitable dummy blocks | ||||
|  * as needed at the right and lower edges.  (The dummy blocks are constructed | ||||
|  * in the virtual arrays, which have been padded appropriately.)  This makes | ||||
|  * it possible for subsequent passes not to worry about real vs. dummy blocks. | ||||
|  * | ||||
|  * We must also emit the data to the entropy encoder.  This is conveniently | ||||
|  * done by calling compress_output() after we've loaded the current strip | ||||
|  * of the virtual arrays. | ||||
|  * | ||||
|  * NB: input_buf contains a plane for each component in image.  All | ||||
|  * components are DCT'd and loaded into the virtual arrays in this pass. | ||||
|  * However, it may be that only a subset of the components are emitted to | ||||
|  * the entropy encoder during this first pass; be careful about looking | ||||
|  * at the scan-dependent variables (MCU dimensions, etc). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||||
|   JDIMENSION blocks_across, MCUs_across, MCUindex; | ||||
|   int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | ||||
|   JCOEF lastDC; | ||||
|   jpeg_component_info *compptr; | ||||
|   JBLOCKARRAY buffer; | ||||
|   JBLOCKROW thisblockrow, lastblockrow; | ||||
|   JSAMPARRAY input_ptr; | ||||
|   forward_DCT_ptr forward_DCT; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Align the virtual buffer for this component. */ | ||||
|     buffer = (*cinfo->mem->access_virt_barray) | ||||
|       ((j_common_ptr) cinfo, coef->whole_image[ci], | ||||
|        coef->iMCU_row_num * compptr->v_samp_factor, | ||||
|        (JDIMENSION) compptr->v_samp_factor, TRUE); | ||||
|     /* Count non-dummy DCT block rows in this iMCU row. */ | ||||
|     if (coef->iMCU_row_num < last_iMCU_row) | ||||
|       block_rows = compptr->v_samp_factor; | ||||
|     else { | ||||
|       /* NB: can't use last_row_height here, since may not be set! */ | ||||
|       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||||
|       if (block_rows == 0) block_rows = compptr->v_samp_factor; | ||||
|     } | ||||
|     blocks_across = compptr->width_in_blocks; | ||||
|     h_samp_factor = compptr->h_samp_factor; | ||||
|     /* Count number of dummy blocks to be added at the right margin. */ | ||||
|     ndummy = (int) (blocks_across % h_samp_factor); | ||||
|     if (ndummy > 0) | ||||
|       ndummy = h_samp_factor - ndummy; | ||||
|     forward_DCT = cinfo->fdct->forward_DCT[ci]; | ||||
|     input_ptr = input_buf[ci]; | ||||
|     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
 | ||||
|      * on forward_DCT processes a complete horizontal row of DCT blocks. | ||||
|      */ | ||||
|     for (block_row = 0; block_row < block_rows; block_row++) { | ||||
|       thisblockrow = buffer[block_row]; | ||||
|       (*forward_DCT) (cinfo, compptr, input_ptr, thisblockrow, | ||||
| 		      (JDIMENSION) 0, blocks_across); | ||||
|       input_ptr += compptr->DCT_v_scaled_size; | ||||
|       if (ndummy > 0) { | ||||
| 	/* Create dummy blocks at the right edge of the image. */ | ||||
| 	thisblockrow += blocks_across; /* => first dummy block */ | ||||
| 	FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); | ||||
| 	lastDC = thisblockrow[-1][0]; | ||||
| 	for (bi = 0; bi < ndummy; bi++) { | ||||
| 	  thisblockrow[bi][0] = lastDC; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     /* If at end of image, create dummy block rows as needed.
 | ||||
|      * The tricky part here is that within each MCU, we want the DC values | ||||
|      * of the dummy blocks to match the last real block's DC value. | ||||
|      * This squeezes a few more bytes out of the resulting file... | ||||
|      */ | ||||
|     if (block_row < compptr->v_samp_factor) { | ||||
|       blocks_across += ndummy;	/* include lower right corner */ | ||||
|       MCUs_across = blocks_across / h_samp_factor; | ||||
|       do { | ||||
| 	thisblockrow = buffer[block_row]; | ||||
| 	lastblockrow = buffer[block_row-1]; | ||||
| 	FMEMZERO((void FAR *) thisblockrow, | ||||
| 		 (size_t) blocks_across * SIZEOF(JBLOCK)); | ||||
| 	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | ||||
| 	  lastDC = lastblockrow[h_samp_factor-1][0]; | ||||
| 	  for (bi = 0; bi < h_samp_factor; bi++) { | ||||
| 	    thisblockrow[bi][0] = lastDC; | ||||
| 	  } | ||||
| 	  thisblockrow += h_samp_factor; /* advance to next MCU in row */ | ||||
| 	  lastblockrow += h_samp_factor; | ||||
| 	} | ||||
|       } while (++block_row < compptr->v_samp_factor); | ||||
|     } | ||||
|   } | ||||
|   /* NB: compress_output will increment iMCU_row_num if successful.
 | ||||
|    * A suspension return will result in redoing all the work above next time. | ||||
|    */ | ||||
| 
 | ||||
|   /* Emit data to the entropy encoder, sharing code with subsequent passes */ | ||||
|   return compress_output(cinfo, input_buf); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in subsequent passes of a multi-pass case. | ||||
|  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||||
|  * per call, ie, v_samp_factor block rows for each component in the scan. | ||||
|  * The data is obtained from the virtual arrays and fed to the entropy coder. | ||||
|  * Returns TRUE if the iMCU row is completed, FALSE if suspended. | ||||
|  * | ||||
|  * NB: input_buf is ignored; it is likely to be a NULL pointer. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION MCU_col_num;	/* index of current MCU within row */ | ||||
|   int ci, xindex, yindex, yoffset; | ||||
|   JDIMENSION start_col; | ||||
|   JBLOCKARRAY blkp; | ||||
|   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | ||||
|   JBLOCKROW buffer_ptr; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Align the virtual buffers for the components used in this scan.
 | ||||
|    * NB: during first pass, this is safe only because the buffers will | ||||
|    * already be aligned properly, so jmemmgr.c won't need to do any I/O. | ||||
|    */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     buffer[ci] = (*cinfo->mem->access_virt_barray) | ||||
|       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | ||||
|        coef->iMCU_row_num * compptr->v_samp_factor, | ||||
|        (JDIMENSION) compptr->v_samp_factor, FALSE); | ||||
|   } | ||||
| 
 | ||||
|   /* Loop to process one whole iMCU row */ | ||||
|   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||||
|        yoffset++) { | ||||
|     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | ||||
| 	 MCU_col_num++) { | ||||
|       /* Construct list of pointers to DCT blocks belonging to this MCU */ | ||||
|       blkp = coef->MCU_buffer;	/* pointer to current DCT block within MCU */ | ||||
|       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
| 	compptr = cinfo->cur_comp_info[ci]; | ||||
| 	start_col = MCU_col_num * compptr->MCU_width; | ||||
| 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||||
| 	  buffer_ptr = buffer[ci][yoffset + yindex] + start_col; | ||||
| 	  xindex = compptr->MCU_width; | ||||
| 	  do { | ||||
| 	    *blkp++ = buffer_ptr++; | ||||
| 	  } while (--xindex); | ||||
| 	} | ||||
|       } | ||||
|       /* Try to write the MCU. */ | ||||
|       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | ||||
| 	/* Suspension forced; update state counters and exit */ | ||||
| 	coef->MCU_vert_offset = yoffset; | ||||
| 	coef->MCU_ctr = MCU_col_num; | ||||
| 	return FALSE; | ||||
|       } | ||||
|     } | ||||
|     /* Completed an MCU row, but perhaps not an iMCU row */ | ||||
|     coef->MCU_ctr = 0; | ||||
|   } | ||||
|   /* Completed the iMCU row, advance counters for next one */ | ||||
|   coef->iMCU_row_num++; | ||||
|   start_iMCU_row(cinfo); | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| #endif /* FULL_COEF_BUFFER_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize coefficient buffer controller. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) | ||||
| { | ||||
|   my_coef_ptr coef; | ||||
| 
 | ||||
|   if (need_full_buffer) { | ||||
| #ifdef FULL_COEF_BUFFER_SUPPORTED | ||||
|     /* Allocate a full-image virtual array for each component, */ | ||||
|     /* padded to a multiple of samp_factor DCT blocks in each direction. */ | ||||
|     int ci; | ||||
|     jpeg_component_info *compptr; | ||||
| 
 | ||||
|     coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer)); | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | ||||
| 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks, | ||||
| 				(long) compptr->h_samp_factor), | ||||
| 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, | ||||
| 				(long) compptr->v_samp_factor), | ||||
| 	 (JDIMENSION) compptr->v_samp_factor); | ||||
|     } | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| #endif | ||||
|   } else { | ||||
|     /* We only need a single-MCU buffer. */ | ||||
|     JBLOCKARRAY blkp; | ||||
|     JBLOCKROW buffer_ptr; | ||||
|     int bi; | ||||
| 
 | ||||
|     coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); | ||||
|     blkp = coef->MCU_buffer; | ||||
|     buffer_ptr = coef->blk_buffer; | ||||
|     bi = C_MAX_BLOCKS_IN_MCU; | ||||
|     do { | ||||
|       *blkp++ = buffer_ptr++; | ||||
|     } while (--bi); | ||||
|     coef->whole_image[0] = NULL; /* flag for no virtual arrays */ | ||||
|   } | ||||
| 
 | ||||
|   coef->pub.start_pass = start_pass_coef; | ||||
|   cinfo->coef = &coef->pub; | ||||
| } | ||||
							
								
								
									
										598
									
								
								dep/libjpeg/src/jccolor.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										598
									
								
								dep/libjpeg/src/jccolor.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,598 @@ | |||
| /*
 | ||||
|  * jccolor.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1996, Thomas G. Lane. | ||||
|  * Modified 2011-2023 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains input colorspace conversion routines. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Private subobject */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_color_converter pub; /* public fields */ | ||||
| 
 | ||||
|   /* Private state for RGB->YCC conversion */ | ||||
|   INT32 * rgb_ycc_tab;		/* => table for RGB to YCbCr conversion */ | ||||
| } my_color_converter; | ||||
| 
 | ||||
| typedef my_color_converter * my_cconvert_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /**************** RGB -> YCbCr conversion: most common case **************/ | ||||
| 
 | ||||
| /*
 | ||||
|  * YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), | ||||
|  * previously known as Recommendation CCIR 601-1, except that Cb and Cr | ||||
|  * are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. | ||||
|  * sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. | ||||
|  * sYCC (standard luma-chroma-chroma color space with extended gamut) | ||||
|  * is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. | ||||
|  * bg-sRGB and bg-sYCC (big gamut standard color spaces) | ||||
|  * are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. | ||||
|  * Note that the derived conversion coefficients given in some of these | ||||
|  * documents are imprecise.  The general conversion equations are | ||||
|  *	Y  = Kr * R + (1 - Kr - Kb) * G + Kb * B | ||||
|  *	Cb = (B - Y) / (1 - Kb) / K | ||||
|  *	Cr = (R - Y) / (1 - Kr) / K | ||||
|  * With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 | ||||
|  * from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, | ||||
|  * the conversion equations to be implemented are therefore | ||||
|  *	Y  =  0.299 * R + 0.587 * G + 0.114 * B | ||||
|  *	Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE | ||||
|  *	Cr =  0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE | ||||
|  * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, | ||||
|  * rather than CENTERJSAMPLE, for Cb and Cr.  This gave equal positive and | ||||
|  * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) | ||||
|  * were not represented exactly.  Now we sacrifice exact representation of | ||||
|  * maximum red and maximum blue in order to get exact grayscales. | ||||
|  * | ||||
|  * To avoid floating-point arithmetic, we represent the fractional constants | ||||
|  * as integers scaled up by 2^16 (about 4 digits precision); we have to divide | ||||
|  * the products by 2^16, with appropriate rounding, to get the correct answer. | ||||
|  * | ||||
|  * For even more speed, we avoid doing any multiplications in the inner loop | ||||
|  * by precalculating the constants times R,G,B for all possible values. | ||||
|  * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); | ||||
|  * for 9-bit to 12-bit samples it is still acceptable.  It's not very | ||||
|  * reasonable for 16-bit samples, but if you want lossless storage | ||||
|  * you shouldn't be changing colorspace anyway. | ||||
|  * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included | ||||
|  * in the tables to save adding them separately in the inner loop. | ||||
|  */ | ||||
| 
 | ||||
| #define SCALEBITS	16	/* speediest right-shift on some machines */ | ||||
| #define CBCR_OFFSET	((INT32) CENTERJSAMPLE << SCALEBITS) | ||||
| #define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) | ||||
| #define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | ||||
| 
 | ||||
| /* We allocate one big table and divide it up into eight parts, instead of
 | ||||
|  * doing eight alloc_small requests.  This lets us use a single table base | ||||
|  * address, which can be held in a register in the inner loops on many | ||||
|  * machines (more than can hold all eight addresses, anyway). | ||||
|  */ | ||||
| 
 | ||||
| #define R_Y_OFF		0			/* offset to R => Y section */ | ||||
| #define G_Y_OFF		(1*(MAXJSAMPLE+1))	/* offset to G => Y section */ | ||||
| #define B_Y_OFF		(2*(MAXJSAMPLE+1))	/* etc. */ | ||||
| #define R_CB_OFF	(3*(MAXJSAMPLE+1)) | ||||
| #define G_CB_OFF	(4*(MAXJSAMPLE+1)) | ||||
| #define B_CB_OFF	(5*(MAXJSAMPLE+1)) | ||||
| #define R_CR_OFF	B_CB_OFF		/* B=>Cb, R=>Cr are the same */ | ||||
| #define G_CR_OFF	(6*(MAXJSAMPLE+1)) | ||||
| #define B_CR_OFF	(7*(MAXJSAMPLE+1)) | ||||
| #define TABLE_SIZE	(8*(MAXJSAMPLE+1)) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for RGB->YCC colorspace conversion. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_ycc_start (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   INT32 * rgb_ycc_tab; | ||||
|   INT32 i; | ||||
| 
 | ||||
|   /* Allocate and fill in the conversion tables. */ | ||||
|   cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) | ||||
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 				TABLE_SIZE * SIZEOF(INT32)); | ||||
| 
 | ||||
|   for (i = 0; i <= MAXJSAMPLE; i++) { | ||||
|     rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i; | ||||
|     rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i; | ||||
|     rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF; | ||||
|     rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i; | ||||
|     rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i; | ||||
|     /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
 | ||||
|      * This ensures that the maximum output will round to MAXJSAMPLE | ||||
|      * not MAXJSAMPLE+1, and thus that we don't have to range-limit. | ||||
|      */ | ||||
|     rgb_ycc_tab[i+B_CB_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1; | ||||
| /*  B=>Cb and R=>Cr tables are the same
 | ||||
|     rgb_ycc_tab[i+R_CR_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1; | ||||
| */ | ||||
|     rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i; | ||||
|     rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * | ||||
|  * Note that we change from the application's interleaved-pixel format | ||||
|  * to our internal noninterleaved, one-plane-per-component format.  The | ||||
|  * input buffer is therefore three times as wide as the output buffer. | ||||
|  * | ||||
|  * A starting row offset is provided only for the output buffer.  The | ||||
|  * caller can easily adjust the passed input_buf value to accommodate | ||||
|  * any row offset required on that side. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_ycc_convert (j_compress_ptr cinfo, | ||||
| 		 JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 		 JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register int r, g, b; | ||||
|   register INT32 * ctab = cconvert->rgb_ycc_tab; | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr0, outptr1, outptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = *input_buf++; | ||||
|     outptr0 = output_buf[0][output_row]; | ||||
|     outptr1 = output_buf[1][output_row]; | ||||
|     outptr2 = output_buf[2][output_row]; | ||||
|     output_row++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       r = GETJSAMPLE(inptr[RGB_RED]); | ||||
|       g = GETJSAMPLE(inptr[RGB_GREEN]); | ||||
|       b = GETJSAMPLE(inptr[RGB_BLUE]); | ||||
|       inptr += RGB_PIXELSIZE; | ||||
|       /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
 | ||||
|        * must be too; we do not need an explicit range-limiting operation. | ||||
|        * Hence the value being shifted is never negative, and we don't | ||||
|        * need the general RIGHT_SHIFT macro. | ||||
|        */ | ||||
|       /* Y */ | ||||
|       outptr0[col] = (JSAMPLE) | ||||
| 		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | ||||
| 		 >> SCALEBITS); | ||||
|       /* Cb */ | ||||
|       outptr1[col] = (JSAMPLE) | ||||
| 		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) | ||||
| 		 >> SCALEBITS); | ||||
|       /* Cr */ | ||||
|       outptr2[col] = (JSAMPLE) | ||||
| 		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) | ||||
| 		 >> SCALEBITS); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /**************** Cases other than RGB -> YCbCr **************/ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * This version handles RGB->grayscale conversion, | ||||
|  * which is the same as the RGB->Y portion of RGB->YCbCr. | ||||
|  * We assume rgb_ycc_start has been called (we only use the Y tables). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_gray_convert (j_compress_ptr cinfo, | ||||
| 		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 		  JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register INT32 y; | ||||
|   register INT32 * ctab = cconvert->rgb_ycc_tab; | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = *input_buf++; | ||||
|     outptr = output_buf[0][output_row++]; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       y  = ctab[R_Y_OFF + GETJSAMPLE(inptr[RGB_RED])]; | ||||
|       y += ctab[G_Y_OFF + GETJSAMPLE(inptr[RGB_GREEN])]; | ||||
|       y += ctab[B_Y_OFF + GETJSAMPLE(inptr[RGB_BLUE])]; | ||||
|       inptr += RGB_PIXELSIZE; | ||||
|       outptr[col] = (JSAMPLE) (y >> SCALEBITS); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * This version handles Adobe-style CMYK->YCCK conversion, | ||||
|  * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the | ||||
|  * same conversion as above, while passing K (black) unchanged. | ||||
|  * We assume rgb_ycc_start has been called. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| cmyk_ycck_convert (j_compress_ptr cinfo, | ||||
| 		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 		   JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register int r, g, b; | ||||
|   register INT32 * ctab = cconvert->rgb_ycc_tab; | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr0, outptr1, outptr2, outptr3; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = *input_buf++; | ||||
|     outptr0 = output_buf[0][output_row]; | ||||
|     outptr1 = output_buf[1][output_row]; | ||||
|     outptr2 = output_buf[2][output_row]; | ||||
|     outptr3 = output_buf[3][output_row]; | ||||
|     output_row++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); | ||||
|       g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); | ||||
|       b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); | ||||
|       /* K passes through as-is */ | ||||
|       outptr3[col] = inptr[3];	/* don't need GETJSAMPLE here */ | ||||
|       inptr += 4; | ||||
|       /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
 | ||||
|        * must be too; we do not need an explicit range-limiting operation. | ||||
|        * Hence the value being shifted is never negative, and we don't | ||||
|        * need the general RIGHT_SHIFT macro. | ||||
|        */ | ||||
|       /* Y */ | ||||
|       outptr0[col] = (JSAMPLE) | ||||
| 		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | ||||
| 		 >> SCALEBITS); | ||||
|       /* Cb */ | ||||
|       outptr1[col] = (JSAMPLE) | ||||
| 		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) | ||||
| 		 >> SCALEBITS); | ||||
|       /* Cr */ | ||||
|       outptr2[col] = (JSAMPLE) | ||||
| 		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) | ||||
| 		 >> SCALEBITS); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * [R,G,B] to [R-G,G,B-G] conversion with modulo calculation | ||||
|  * (forward reversible color transform). | ||||
|  * This can be seen as an adaption of the general RGB->YCbCr | ||||
|  * conversion equation with Kr = Kb = 0, while replacing the | ||||
|  * normalization by modulo calculation. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_rgb1_convert (j_compress_ptr cinfo, | ||||
| 		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 		  JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   register int r, g, b; | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr0, outptr1, outptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = *input_buf++; | ||||
|     outptr0 = output_buf[0][output_row]; | ||||
|     outptr1 = output_buf[1][output_row]; | ||||
|     outptr2 = output_buf[2][output_row]; | ||||
|     output_row++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       r = GETJSAMPLE(inptr[RGB_RED]); | ||||
|       g = GETJSAMPLE(inptr[RGB_GREEN]); | ||||
|       b = GETJSAMPLE(inptr[RGB_BLUE]); | ||||
|       inptr += RGB_PIXELSIZE; | ||||
|       /* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
 | ||||
|        * (modulo) operator is equivalent to the bitmask operator AND. | ||||
|        */ | ||||
|       outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE); | ||||
|       outptr1[col] = (JSAMPLE) g; | ||||
|       outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * This version handles grayscale output with no conversion. | ||||
|  * The source can be either plain grayscale or YCC (since Y == gray). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| grayscale_convert (j_compress_ptr cinfo, | ||||
| 		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 		   JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr; | ||||
|   register JDIMENSION count; | ||||
|   register int instride = cinfo->input_components; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = *input_buf++; | ||||
|     outptr = output_buf[0][output_row++]; | ||||
|     for (count = num_cols; count > 0; count--) { | ||||
|       *outptr++ = *inptr;	/* don't need GETJSAMPLE() here */ | ||||
|       inptr += instride; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * No colorspace conversion, but change from interleaved | ||||
|  * to separate-planes representation. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_convert (j_compress_ptr cinfo, | ||||
| 	     JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 	     JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr0, outptr1, outptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = *input_buf++; | ||||
|     outptr0 = output_buf[0][output_row]; | ||||
|     outptr1 = output_buf[1][output_row]; | ||||
|     outptr2 = output_buf[2][output_row]; | ||||
|     output_row++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       /* We can dispense with GETJSAMPLE() here */ | ||||
|       outptr0[col] = inptr[RGB_RED]; | ||||
|       outptr1[col] = inptr[RGB_GREEN]; | ||||
|       outptr2[col] = inptr[RGB_BLUE]; | ||||
|       inptr += RGB_PIXELSIZE; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the JPEG colorspace. | ||||
|  * This version handles multi-component colorspaces without conversion. | ||||
|  * We assume input_components == num_components. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| null_convert (j_compress_ptr cinfo, | ||||
| 	      JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | ||||
| 	      JDIMENSION output_row, int num_rows) | ||||
| { | ||||
|   register JSAMPROW inptr; | ||||
|   register JSAMPROW outptr; | ||||
|   register JDIMENSION count; | ||||
|   register int num_comps = cinfo->num_components; | ||||
|   JDIMENSION num_cols = cinfo->image_width; | ||||
|   int ci; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     /* It seems fastest to make a separate pass for each component. */ | ||||
|     for (ci = 0; ci < num_comps; ci++) { | ||||
|       inptr = input_buf[0] + ci; | ||||
|       outptr = output_buf[ci][output_row]; | ||||
|       for (count = num_cols; count > 0; count--) { | ||||
| 	*outptr++ = *inptr;	/* don't need GETJSAMPLE() here */ | ||||
| 	inptr += num_comps; | ||||
|       } | ||||
|     } | ||||
|     input_buf++; | ||||
|     output_row++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Empty method for start_pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| null_method (j_compress_ptr cinfo) | ||||
| { | ||||
|   /* no work needed */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for input colorspace conversion. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_color_converter (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_cconvert_ptr cconvert; | ||||
| 
 | ||||
|   cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter)); | ||||
|   cinfo->cconvert = &cconvert->pub; | ||||
|   /* set start_pass to null method until we find out differently */ | ||||
|   cconvert->pub.start_pass = null_method; | ||||
| 
 | ||||
|   /* Make sure input_components agrees with in_color_space */ | ||||
|   switch (cinfo->in_color_space) { | ||||
|   case JCS_GRAYSCALE: | ||||
|     if (cinfo->input_components != 1) | ||||
|       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_RGB: | ||||
|   case JCS_BG_RGB: | ||||
| #if RGB_PIXELSIZE != 3 | ||||
|     if (cinfo->input_components != RGB_PIXELSIZE) | ||||
|       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | ||||
|     break; | ||||
| #endif /* else share code with YCbCr */ | ||||
| 
 | ||||
|   case JCS_YCbCr: | ||||
|   case JCS_BG_YCC: | ||||
|     if (cinfo->input_components != 3) | ||||
|       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_CMYK: | ||||
|   case JCS_YCCK: | ||||
|     if (cinfo->input_components != 4) | ||||
|       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | ||||
|     break; | ||||
| 
 | ||||
|   default:			/* JCS_UNKNOWN can be anything */ | ||||
|     if (cinfo->input_components < 1) | ||||
|       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | ||||
|   } | ||||
| 
 | ||||
|   /* Support color transform only for RGB colorspaces */ | ||||
|   if (cinfo->color_transform && | ||||
|       cinfo->jpeg_color_space != JCS_RGB && | ||||
|       cinfo->jpeg_color_space != JCS_BG_RGB) | ||||
|     ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
| 
 | ||||
|   /* Check num_components, set conversion method based on requested space */ | ||||
|   switch (cinfo->jpeg_color_space) { | ||||
|   case JCS_GRAYSCALE: | ||||
|     if (cinfo->num_components != 1) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     switch (cinfo->in_color_space) { | ||||
|     case JCS_GRAYSCALE: | ||||
|     case JCS_YCbCr: | ||||
|     case JCS_BG_YCC: | ||||
|       cconvert->pub.color_convert = grayscale_convert; | ||||
|       break; | ||||
|     case JCS_RGB: | ||||
|       cconvert->pub.start_pass = rgb_ycc_start; | ||||
|       cconvert->pub.color_convert = rgb_gray_convert; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_RGB: | ||||
|   case JCS_BG_RGB: | ||||
|     if (cinfo->num_components != 3) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     if (cinfo->in_color_space != cinfo->jpeg_color_space) | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     switch (cinfo->color_transform) { | ||||
|     case JCT_NONE: | ||||
|       cconvert->pub.color_convert = rgb_convert; | ||||
|       break; | ||||
|     case JCT_SUBTRACT_GREEN: | ||||
|       cconvert->pub.color_convert = rgb_rgb1_convert; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_YCbCr: | ||||
|     if (cinfo->num_components != 3) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     switch (cinfo->in_color_space) { | ||||
|     case JCS_RGB: | ||||
|       cconvert->pub.start_pass = rgb_ycc_start; | ||||
|       cconvert->pub.color_convert = rgb_ycc_convert; | ||||
|       break; | ||||
|     case JCS_YCbCr: | ||||
|       cconvert->pub.color_convert = null_convert; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_BG_YCC: | ||||
|     if (cinfo->num_components != 3) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     switch (cinfo->in_color_space) { | ||||
|     case JCS_RGB: | ||||
|       /* For conversion from normal RGB input to BG_YCC representation,
 | ||||
|        * the Cb/Cr values are first computed as usual, and then | ||||
|        * quantized further after DCT processing by a factor of | ||||
|        * 2 in reference to the nominal quantization factor. | ||||
|        */ | ||||
|       /* need quantization scale by factor of 2 after DCT */ | ||||
|       cinfo->comp_info[1].component_needed = TRUE; | ||||
|       cinfo->comp_info[2].component_needed = TRUE; | ||||
|       /* compute normal YCC first */ | ||||
|       cconvert->pub.start_pass = rgb_ycc_start; | ||||
|       cconvert->pub.color_convert = rgb_ycc_convert; | ||||
|       break; | ||||
|     case JCS_YCbCr: | ||||
|       /* need quantization scale by factor of 2 after DCT */ | ||||
|       cinfo->comp_info[1].component_needed = TRUE; | ||||
|       cinfo->comp_info[2].component_needed = TRUE; | ||||
|       /*FALLTHROUGH*/ | ||||
|     case JCS_BG_YCC: | ||||
|       /* Pass through for BG_YCC input */ | ||||
|       cconvert->pub.color_convert = null_convert; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_CMYK: | ||||
|     if (cinfo->num_components != 4) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     if (cinfo->in_color_space != JCS_CMYK) | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     cconvert->pub.color_convert = null_convert; | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_YCCK: | ||||
|     if (cinfo->num_components != 4) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     switch (cinfo->in_color_space) { | ||||
|     case JCS_CMYK: | ||||
|       cconvert->pub.start_pass = rgb_ycc_start; | ||||
|       cconvert->pub.color_convert = cmyk_ycck_convert; | ||||
|       break; | ||||
|     case JCS_YCCK: | ||||
|       cconvert->pub.color_convert = null_convert; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   default:			/* allow null conversion of JCS_UNKNOWN */ | ||||
|     if (cinfo->jpeg_color_space != cinfo->in_color_space || | ||||
| 	cinfo->num_components != cinfo->input_components) | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     cconvert->pub.color_convert = null_convert; | ||||
|   } | ||||
| } | ||||
							
								
								
									
										466
									
								
								dep/libjpeg/src/jcdctmgr.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										466
									
								
								dep/libjpeg/src/jcdctmgr.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,466 @@ | |||
| /*
 | ||||
|  * jcdctmgr.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2003-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the forward-DCT management logic. | ||||
|  * This code selects a particular DCT implementation to be used, | ||||
|  * and it performs related housekeeping chores including coefficient | ||||
|  * quantization. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jdct.h"		/* Private declarations for DCT subsystem */ | ||||
| 
 | ||||
| 
 | ||||
| /* Private subobject for this module */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_forward_dct pub;	/* public fields */ | ||||
| 
 | ||||
|   /* Pointer to the DCT routine actually in use */ | ||||
|   forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; | ||||
| 
 | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|   /* Same as above for the floating-point case. */ | ||||
|   float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; | ||||
| #endif | ||||
| } my_fdct_controller; | ||||
| 
 | ||||
| typedef my_fdct_controller * my_fdct_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* The allocated post-DCT divisor tables -- big enough for any
 | ||||
|  * supported variant and not identical to the quant table entries, | ||||
|  * because of scaling (especially for an unnormalized DCT) -- | ||||
|  * are pointed to by dct_table in the per-component comp_info | ||||
|  * structures.  Each table is given in normal array order. | ||||
|  */ | ||||
| 
 | ||||
| typedef union { | ||||
|   DCTELEM int_array[DCTSIZE2]; | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|   FAST_FLOAT float_array[DCTSIZE2]; | ||||
| #endif | ||||
| } divisor_table; | ||||
| 
 | ||||
| 
 | ||||
| /* The current scaled-DCT routines require ISLOW-style divisor tables,
 | ||||
|  * so be sure to compile that code if either ISLOW or SCALING is requested. | ||||
|  */ | ||||
| #ifdef DCT_ISLOW_SUPPORTED | ||||
| #define PROVIDE_ISLOW_TABLES | ||||
| #else | ||||
| #ifdef DCT_SCALING_SUPPORTED | ||||
| #define PROVIDE_ISLOW_TABLES | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Perform forward DCT on one or more blocks of a component. | ||||
|  * | ||||
|  * The input samples are taken from the sample_data[] array starting at | ||||
|  * position start_col, and moving to the right for any additional blocks. | ||||
|  * The quantized coefficients are returned in coef_blocks[]. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | ||||
| 	     JDIMENSION start_col, JDIMENSION num_blocks) | ||||
| /* This version is used for integer DCT implementations. */ | ||||
| { | ||||
|   /* This routine is heavily used, so it's worth coding it tightly. */ | ||||
|   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | ||||
|   forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; | ||||
|   DCTELEM * divisors = (DCTELEM *) compptr->dct_table; | ||||
|   DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */ | ||||
|   JDIMENSION bi; | ||||
| 
 | ||||
|   for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | ||||
|     /* Perform the DCT */ | ||||
|     (*do_dct) (workspace, sample_data, start_col); | ||||
| 
 | ||||
|     /* Quantize/descale the coefficients, and store into coef_blocks[] */ | ||||
|     { register DCTELEM temp, qval; | ||||
|       register int i; | ||||
|       register JCOEFPTR output_ptr = coef_blocks[bi]; | ||||
| 
 | ||||
|       for (i = 0; i < DCTSIZE2; i++) { | ||||
| 	qval = divisors[i]; | ||||
| 	temp = workspace[i]; | ||||
| 	/* Divide the coefficient value by qval, ensuring proper rounding.
 | ||||
| 	 * Since C does not specify the direction of rounding for negative | ||||
| 	 * quotients, we have to force the dividend positive for portability. | ||||
| 	 * | ||||
| 	 * In most files, at least half of the output values will be zero | ||||
| 	 * (at default quantization settings, more like three-quarters...) | ||||
| 	 * so we should ensure that this case is fast.  On many machines, | ||||
| 	 * a comparison is enough cheaper than a divide to make a special test | ||||
| 	 * a win.  Since both inputs will be nonnegative, we need only test | ||||
| 	 * for a < b to discover whether a/b is 0. | ||||
| 	 * If your machine's division is fast enough, define FAST_DIVIDE. | ||||
| 	 */ | ||||
| #ifdef FAST_DIVIDE | ||||
| #define DIVIDE_BY(a,b)	a /= b | ||||
| #else | ||||
| #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0 | ||||
| #endif | ||||
| 	if (temp < 0) { | ||||
| 	  temp = -temp; | ||||
| 	  temp += qval>>1;	/* for rounding */ | ||||
| 	  DIVIDE_BY(temp, qval); | ||||
| 	  temp = -temp; | ||||
| 	} else { | ||||
| 	  temp += qval>>1;	/* for rounding */ | ||||
| 	  DIVIDE_BY(temp, qval); | ||||
| 	} | ||||
| 	output_ptr[i] = (JCOEF) temp; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | ||||
| 		   JDIMENSION start_col, JDIMENSION num_blocks) | ||||
| /* This version is used for floating-point DCT implementations. */ | ||||
| { | ||||
|   /* This routine is heavily used, so it's worth coding it tightly. */ | ||||
|   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | ||||
|   float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; | ||||
|   FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table; | ||||
|   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | ||||
|   JDIMENSION bi; | ||||
| 
 | ||||
|   for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | ||||
|     /* Perform the DCT */ | ||||
|     (*do_dct) (workspace, sample_data, start_col); | ||||
| 
 | ||||
|     /* Quantize/descale the coefficients, and store into coef_blocks[] */ | ||||
|     { register FAST_FLOAT temp; | ||||
|       register int i; | ||||
|       register JCOEFPTR output_ptr = coef_blocks[bi]; | ||||
| 
 | ||||
|       for (i = 0; i < DCTSIZE2; i++) { | ||||
| 	/* Apply the quantization and scaling factor */ | ||||
| 	temp = workspace[i] * divisors[i]; | ||||
| 	/* Round to nearest integer.
 | ||||
| 	 * Since C does not specify the direction of rounding for negative | ||||
| 	 * quotients, we have to force the dividend positive for portability. | ||||
| 	 * The maximum coefficient size is +-16K (for 12-bit data), so this | ||||
| 	 * code should work for either 16-bit or 32-bit ints. | ||||
| 	 */ | ||||
| 	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* DCT_FLOAT_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  * Verify that all referenced Q-tables are present, and set up | ||||
|  * the divisor table for each one. | ||||
|  * In the current implementation, DCT of all components is done during | ||||
|  * the first pass, even if only some components will be output in the | ||||
|  * first scan.  Hence all components should be examined here. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_fdctmgr (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | ||||
|   int ci, qtblno, i; | ||||
|   jpeg_component_info *compptr; | ||||
|   int method = 0; | ||||
|   JQUANT_TBL * qtbl; | ||||
|   DCTELEM * dtbl; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Select the proper DCT routine for this component's scaling */ | ||||
|     switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | ||||
| #ifdef DCT_SCALING_SUPPORTED | ||||
|     case ((1 << 8) + 1): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_1x1; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((2 << 8) + 2): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_2x2; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((3 << 8) + 3): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_3x3; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((4 << 8) + 4): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_4x4; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((5 << 8) + 5): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_5x5; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((6 << 8) + 6): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_6x6; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((7 << 8) + 7): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_7x7; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((9 << 8) + 9): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_9x9; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((10 << 8) + 10): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_10x10; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((11 << 8) + 11): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_11x11; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((12 << 8) + 12): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_12x12; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((13 << 8) + 13): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_13x13; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((14 << 8) + 14): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_14x14; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((15 << 8) + 15): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_15x15; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((16 << 8) + 16): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_16x16; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((16 << 8) + 8): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_16x8; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((14 << 8) + 7): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_14x7; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((12 << 8) + 6): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_12x6; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((10 << 8) + 5): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_10x5; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((8 << 8) + 4): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_8x4; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((6 << 8) + 3): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_6x3; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((4 << 8) + 2): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_4x2; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((2 << 8) + 1): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_2x1; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((8 << 8) + 16): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_8x16; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((7 << 8) + 14): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_7x14; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((6 << 8) + 12): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_6x12; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((5 << 8) + 10): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_5x10; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((4 << 8) + 8): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_4x8; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((3 << 8) + 6): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_3x6; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((2 << 8) + 4): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_2x4; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((1 << 8) + 2): | ||||
|       fdct->do_dct[ci] = jpeg_fdct_1x2; | ||||
|       method = JDCT_ISLOW;	/* jfdctint uses islow-style table */ | ||||
|       break; | ||||
| #endif | ||||
|     case ((DCTSIZE << 8) + DCTSIZE): | ||||
|       switch (cinfo->dct_method) { | ||||
| #ifdef DCT_ISLOW_SUPPORTED | ||||
|       case JDCT_ISLOW: | ||||
| 	fdct->do_dct[ci] = jpeg_fdct_islow; | ||||
| 	method = JDCT_ISLOW; | ||||
| 	break; | ||||
| #endif | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
|       case JDCT_IFAST: | ||||
| 	fdct->do_dct[ci] = jpeg_fdct_ifast; | ||||
| 	method = JDCT_IFAST; | ||||
| 	break; | ||||
| #endif | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|       case JDCT_FLOAT: | ||||
| 	fdct->do_float_dct[ci] = jpeg_fdct_float; | ||||
| 	method = JDCT_FLOAT; | ||||
| 	break; | ||||
| #endif | ||||
|       default: | ||||
| 	ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
|       } | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | ||||
| 	       compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | ||||
|     } | ||||
|     qtblno = compptr->quant_tbl_no; | ||||
|     /* Make sure specified quantization table is present */ | ||||
|     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | ||||
| 	cinfo->quant_tbl_ptrs[qtblno] == NULL) | ||||
|       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | ||||
|     qtbl = cinfo->quant_tbl_ptrs[qtblno]; | ||||
|     /* Create divisor table from quant table */ | ||||
|     switch (method) { | ||||
| #ifdef PROVIDE_ISLOW_TABLES | ||||
|     case JDCT_ISLOW: | ||||
|       /* For LL&M IDCT method, divisors are equal to raw quantization
 | ||||
|        * coefficients multiplied by 8 (to counteract scaling). | ||||
|        */ | ||||
|       dtbl = (DCTELEM *) compptr->dct_table; | ||||
|       for (i = 0; i < DCTSIZE2; i++) { | ||||
| 	dtbl[i] = | ||||
| 	  ((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3); | ||||
|       } | ||||
|       fdct->pub.forward_DCT[ci] = forward_DCT; | ||||
|       break; | ||||
| #endif | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
|     case JDCT_IFAST: | ||||
|       { | ||||
| 	/* For AA&N IDCT method, divisors are equal to quantization
 | ||||
| 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | ||||
| 	 *   scalefactor[0] = 1 | ||||
| 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | ||||
| 	 * We apply a further scale factor of 8. | ||||
| 	 */ | ||||
| #define CONST_BITS 14 | ||||
| 	static const INT16 aanscales[DCTSIZE2] = { | ||||
| 	  /* precomputed values scaled up by 14 bits */ | ||||
| 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | ||||
| 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, | ||||
| 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, | ||||
| 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, | ||||
| 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | ||||
| 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, | ||||
| 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, | ||||
| 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 | ||||
| 	}; | ||||
| 	SHIFT_TEMPS | ||||
| 
 | ||||
| 	dtbl = (DCTELEM *) compptr->dct_table; | ||||
| 	for (i = 0; i < DCTSIZE2; i++) { | ||||
| 	  dtbl[i] = (DCTELEM) | ||||
| 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | ||||
| 				  (INT32) aanscales[i]), | ||||
| 		    compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3); | ||||
| 	} | ||||
|       } | ||||
|       fdct->pub.forward_DCT[ci] = forward_DCT; | ||||
|       break; | ||||
| #endif | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|     case JDCT_FLOAT: | ||||
|       { | ||||
| 	/* For float AA&N IDCT method, divisors are equal to quantization
 | ||||
| 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | ||||
| 	 *   scalefactor[0] = 1 | ||||
| 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | ||||
| 	 * We apply a further scale factor of 8. | ||||
| 	 * What's actually stored is 1/divisor so that the inner loop can | ||||
| 	 * use a multiplication rather than a division. | ||||
| 	 */ | ||||
| 	FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table; | ||||
| 	int row, col; | ||||
| 	static const double aanscalefactor[DCTSIZE] = { | ||||
| 	  1.0, 1.387039845, 1.306562965, 1.175875602, | ||||
| 	  1.0, 0.785694958, 0.541196100, 0.275899379 | ||||
| 	}; | ||||
| 
 | ||||
| 	i = 0; | ||||
| 	for (row = 0; row < DCTSIZE; row++) { | ||||
| 	  for (col = 0; col < DCTSIZE; col++) { | ||||
| 	    fdtbl[i] = (FAST_FLOAT) | ||||
| 	      (1.0 / ((double) qtbl->quantval[i] * | ||||
| 		      aanscalefactor[row] * aanscalefactor[col] * | ||||
| 		      (compptr->component_needed ? 16.0 : 8.0))); | ||||
| 	    i++; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       fdct->pub.forward_DCT[ci] = forward_DCT_float; | ||||
|       break; | ||||
| #endif | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize FDCT manager. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_forward_dct (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_fdct_ptr fdct; | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller)); | ||||
|   cinfo->fdct = &fdct->pub; | ||||
|   fdct->pub.start_pass = start_pass_fdctmgr; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Allocate a divisor table for each component */ | ||||
|     compptr->dct_table = (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(divisor_table)); | ||||
|   } | ||||
| } | ||||
							
								
								
									
										1656
									
								
								dep/libjpeg/src/jchuff.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1656
									
								
								dep/libjpeg/src/jchuff.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										249
									
								
								dep/libjpeg/src/jcinit.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										249
									
								
								dep/libjpeg/src/jcinit.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,249 @@ | |||
| /*
 | ||||
|  * jcinit.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 2003-2017 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains initialization logic for the JPEG compressor. | ||||
|  * This routine is in charge of selecting the modules to be executed and | ||||
|  * making an initialization call to each one. | ||||
|  * | ||||
|  * Logically, this code belongs in jcmaster.c.  It's split out because | ||||
|  * linking this routine implies linking the entire compression library. | ||||
|  * For a transcoding-only application, we want to be able to use jcmaster.c | ||||
|  * without linking in the whole library. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Compute JPEG image dimensions and related values. | ||||
|  * NOTE: this is exported for possible use by application. | ||||
|  * Hence it mustn't do anything that can't be done twice. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) | ||||
| /* Do computations that are needed before master selection phase */ | ||||
| { | ||||
|   /* Sanity check on input image dimensions to prevent overflow in
 | ||||
|    * following calculations. | ||||
|    * We do check jpeg_width and jpeg_height in initial_setup in jcmaster.c, | ||||
|    * but image_width and image_height can come from arbitrary data, | ||||
|    * and we need some space for multiplication by block_size. | ||||
|    */ | ||||
|   if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24)) | ||||
|     ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); | ||||
| 
 | ||||
| #ifdef DCT_SCALING_SUPPORTED | ||||
| 
 | ||||
|   /* Compute actual JPEG image dimensions and DCT scaling choices. */ | ||||
|   if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/1 scaling */ | ||||
|     cinfo->jpeg_width = cinfo->image_width * cinfo->block_size; | ||||
|     cinfo->jpeg_height = cinfo->image_height * cinfo->block_size; | ||||
|     cinfo->min_DCT_h_scaled_size = 1; | ||||
|     cinfo->min_DCT_v_scaled_size = 1; | ||||
|   } else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/2 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L); | ||||
|     cinfo->min_DCT_h_scaled_size = 2; | ||||
|     cinfo->min_DCT_v_scaled_size = 2; | ||||
|   } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/3 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L); | ||||
|     cinfo->min_DCT_h_scaled_size = 3; | ||||
|     cinfo->min_DCT_v_scaled_size = 3; | ||||
|   } else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/4 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L); | ||||
|     cinfo->min_DCT_h_scaled_size = 4; | ||||
|     cinfo->min_DCT_v_scaled_size = 4; | ||||
|   } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/5 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L); | ||||
|     cinfo->min_DCT_h_scaled_size = 5; | ||||
|     cinfo->min_DCT_v_scaled_size = 5; | ||||
|   } else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/6 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L); | ||||
|     cinfo->min_DCT_h_scaled_size = 6; | ||||
|     cinfo->min_DCT_v_scaled_size = 6; | ||||
|   } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/7 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L); | ||||
|     cinfo->min_DCT_h_scaled_size = 7; | ||||
|     cinfo->min_DCT_v_scaled_size = 7; | ||||
|   } else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/8 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L); | ||||
|     cinfo->min_DCT_h_scaled_size = 8; | ||||
|     cinfo->min_DCT_v_scaled_size = 8; | ||||
|   } else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/9 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L); | ||||
|     cinfo->min_DCT_h_scaled_size = 9; | ||||
|     cinfo->min_DCT_v_scaled_size = 9; | ||||
|   } else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/10 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L); | ||||
|     cinfo->min_DCT_h_scaled_size = 10; | ||||
|     cinfo->min_DCT_v_scaled_size = 10; | ||||
|   } else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/11 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L); | ||||
|     cinfo->min_DCT_h_scaled_size = 11; | ||||
|     cinfo->min_DCT_v_scaled_size = 11; | ||||
|   } else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/12 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L); | ||||
|     cinfo->min_DCT_h_scaled_size = 12; | ||||
|     cinfo->min_DCT_v_scaled_size = 12; | ||||
|   } else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/13 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L); | ||||
|     cinfo->min_DCT_h_scaled_size = 13; | ||||
|     cinfo->min_DCT_v_scaled_size = 13; | ||||
|   } else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/14 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L); | ||||
|     cinfo->min_DCT_h_scaled_size = 14; | ||||
|     cinfo->min_DCT_v_scaled_size = 14; | ||||
|   } else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) { | ||||
|     /* Provide block_size/15 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L); | ||||
|     cinfo->min_DCT_h_scaled_size = 15; | ||||
|     cinfo->min_DCT_v_scaled_size = 15; | ||||
|   } else { | ||||
|     /* Provide block_size/16 scaling */ | ||||
|     cinfo->jpeg_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L); | ||||
|     cinfo->jpeg_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L); | ||||
|     cinfo->min_DCT_h_scaled_size = 16; | ||||
|     cinfo->min_DCT_v_scaled_size = 16; | ||||
|   } | ||||
| 
 | ||||
| #else /* !DCT_SCALING_SUPPORTED */ | ||||
| 
 | ||||
|   /* Hardwire it to "no scaling" */ | ||||
|   cinfo->jpeg_width = cinfo->image_width; | ||||
|   cinfo->jpeg_height = cinfo->image_height; | ||||
|   cinfo->min_DCT_h_scaled_size = DCTSIZE; | ||||
|   cinfo->min_DCT_v_scaled_size = DCTSIZE; | ||||
| 
 | ||||
| #endif /* DCT_SCALING_SUPPORTED */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Master selection of compression modules. | ||||
|  * This is done once at the start of processing an image.  We determine | ||||
|  * which modules will be used and give them appropriate initialization calls. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_compress_master (j_compress_ptr cinfo) | ||||
| { | ||||
|   long samplesperrow; | ||||
|   JDIMENSION jd_samplesperrow; | ||||
| 
 | ||||
|   /* For now, precision must match compiled-in value... */ | ||||
|   if (cinfo->data_precision != BITS_IN_JSAMPLE) | ||||
|     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | ||||
| 
 | ||||
|   /* Sanity check on input image dimensions */ | ||||
|   if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || | ||||
|       cinfo->input_components <= 0) | ||||
|     ERREXIT(cinfo, JERR_EMPTY_IMAGE); | ||||
| 
 | ||||
|   /* Width of an input scanline must be representable as JDIMENSION. */ | ||||
|   samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; | ||||
|   jd_samplesperrow = (JDIMENSION) samplesperrow; | ||||
|   if ((long) jd_samplesperrow != samplesperrow) | ||||
|     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | ||||
| 
 | ||||
|   /* Compute JPEG image dimensions and related values. */ | ||||
|   jpeg_calc_jpeg_dimensions(cinfo); | ||||
| 
 | ||||
|   /* Initialize master control (includes parameter checking/processing) */ | ||||
|   jinit_c_master_control(cinfo, FALSE /* full compression */); | ||||
| 
 | ||||
|   /* Preprocessing */ | ||||
|   if (! cinfo->raw_data_in) { | ||||
|     jinit_color_converter(cinfo); | ||||
|     jinit_downsampler(cinfo); | ||||
|     jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); | ||||
|   } | ||||
|   /* Forward DCT */ | ||||
|   jinit_forward_dct(cinfo); | ||||
|   /* Entropy encoding: either Huffman or arithmetic coding. */ | ||||
|   if (cinfo->arith_code) | ||||
|     jinit_arith_encoder(cinfo); | ||||
|   else { | ||||
|     jinit_huff_encoder(cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Need a full-image coefficient buffer in any multi-pass mode. */ | ||||
|   jinit_c_coef_controller(cinfo, | ||||
| 		(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); | ||||
|   jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); | ||||
| 
 | ||||
|   jinit_marker_writer(cinfo); | ||||
| 
 | ||||
|   /* We can now tell the memory manager to allocate virtual arrays. */ | ||||
|   (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   /* Write the datastream header (SOI) immediately.
 | ||||
|    * Frame and scan headers are postponed till later. | ||||
|    * This lets application insert special markers after the SOI. | ||||
|    */ | ||||
|   (*cinfo->marker->write_file_header) (cinfo); | ||||
| } | ||||
							
								
								
									
										297
									
								
								dep/libjpeg/src/jcmainct.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										297
									
								
								dep/libjpeg/src/jcmainct.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,297 @@ | |||
| /*
 | ||||
|  * jcmainct.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2003-2012 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the main buffer controller for compression. | ||||
|  * The main buffer lies between the pre-processor and the JPEG | ||||
|  * compressor proper; it holds downsampled data in the JPEG colorspace. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Note: currently, there is no operating mode in which a full-image buffer
 | ||||
|  * is needed at this step.  If there were, that mode could not be used with | ||||
|  * "raw data" input, since this module is bypassed in that case.  However, | ||||
|  * we've left the code here for possible use in special applications. | ||||
|  */ | ||||
| #undef FULL_MAIN_BUFFER_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_c_main_controller pub; /* public fields */ | ||||
| 
 | ||||
|   JDIMENSION cur_iMCU_row;	/* number of current iMCU row */ | ||||
|   JDIMENSION rowgroup_ctr;	/* counts row groups received in iMCU row */ | ||||
|   boolean suspended;		/* remember if we suspended output */ | ||||
|   J_BUF_MODE pass_mode;		/* current operating mode */ | ||||
| 
 | ||||
|   /* If using just a strip buffer, this points to the entire set of buffers
 | ||||
|    * (we allocate one for each component).  In the full-image case, this | ||||
|    * points to the currently accessible strips of the virtual arrays. | ||||
|    */ | ||||
|   JSAMPARRAY buffer[MAX_COMPONENTS]; | ||||
| 
 | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
|   /* If using full-image storage, this array holds pointers to virtual-array
 | ||||
|    * control blocks for each component.  Unused if not full-image storage. | ||||
|    */ | ||||
|   jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; | ||||
| #endif | ||||
| } my_main_controller; | ||||
| 
 | ||||
| typedef my_main_controller * my_main_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| METHODDEF(void) process_data_simple_main | ||||
| 	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
| METHODDEF(void) process_data_buffer_main | ||||
| 	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
| 
 | ||||
|   /* Do nothing in raw-data mode. */ | ||||
|   if (cinfo->raw_data_in) | ||||
|     return; | ||||
| 
 | ||||
|   mainp->cur_iMCU_row = 0;	/* initialize counters */ | ||||
|   mainp->rowgroup_ctr = 0; | ||||
|   mainp->suspended = FALSE; | ||||
|   mainp->pass_mode = pass_mode;	/* save mode for use by process_data */ | ||||
| 
 | ||||
|   switch (pass_mode) { | ||||
|   case JBUF_PASS_THRU: | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
|     if (mainp->whole_image[0] != NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| #endif | ||||
|     mainp->pub.process_data = process_data_simple_main; | ||||
|     break; | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
|   case JBUF_SAVE_SOURCE: | ||||
|   case JBUF_CRANK_DEST: | ||||
|   case JBUF_SAVE_AND_PASS: | ||||
|     if (mainp->whole_image[0] == NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     mainp->pub.process_data = process_data_buffer_main; | ||||
|     break; | ||||
| #endif | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     break; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data. | ||||
|  * This routine handles the simple pass-through mode, | ||||
|  * where we have only a strip buffer. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| process_data_simple_main (j_compress_ptr cinfo, | ||||
| 			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | ||||
| 			  JDIMENSION in_rows_avail) | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
| 
 | ||||
|   while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) { | ||||
|     /* Read input data if we haven't filled the main buffer yet */ | ||||
|     if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) | ||||
|       (*cinfo->prep->pre_process_data) (cinfo, | ||||
| 					input_buf, in_row_ctr, in_rows_avail, | ||||
| 					mainp->buffer, &mainp->rowgroup_ctr, | ||||
| 					(JDIMENSION) cinfo->min_DCT_v_scaled_size); | ||||
| 
 | ||||
|     /* If we don't have a full iMCU row buffered, return to application for
 | ||||
|      * more data.  Note that preprocessor will always pad to fill the iMCU row | ||||
|      * at the bottom of the image. | ||||
|      */ | ||||
|     if (mainp->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size) | ||||
|       return; | ||||
| 
 | ||||
|     /* Send the completed row to the compressor */ | ||||
|     if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) { | ||||
|       /* If compressor did not consume the whole row, then we must need to
 | ||||
|        * suspend processing and return to the application.  In this situation | ||||
|        * we pretend we didn't yet consume the last input row; otherwise, if | ||||
|        * it happened to be the last row of the image, the application would | ||||
|        * think we were done. | ||||
|        */ | ||||
|       if (! mainp->suspended) { | ||||
| 	(*in_row_ctr)--; | ||||
| 	mainp->suspended = TRUE; | ||||
|       } | ||||
|       return; | ||||
|     } | ||||
|     /* We did finish the row.  Undo our little suspension hack if a previous
 | ||||
|      * call suspended; then mark the main buffer empty. | ||||
|      */ | ||||
|     if (mainp->suspended) { | ||||
|       (*in_row_ctr)++; | ||||
|       mainp->suspended = FALSE; | ||||
|     } | ||||
|     mainp->rowgroup_ctr = 0; | ||||
|     mainp->cur_iMCU_row++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data. | ||||
|  * This routine handles all of the modes that use a full-size buffer. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| process_data_buffer_main (j_compress_ptr cinfo, | ||||
| 			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | ||||
| 			  JDIMENSION in_rows_avail) | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
|   boolean writing = (mainp->pass_mode != JBUF_CRANK_DEST); | ||||
| 
 | ||||
|   while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) { | ||||
|     /* Realign the virtual buffers if at the start of an iMCU row. */ | ||||
|     if (mainp->rowgroup_ctr == 0) { | ||||
|       for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	   ci++, compptr++) { | ||||
| 	mainp->buffer[ci] = (*cinfo->mem->access_virt_sarray) | ||||
| 	  ((j_common_ptr) cinfo, mainp->whole_image[ci], mainp->cur_iMCU_row * | ||||
| 	   ((JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size)), | ||||
| 	   (JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size), | ||||
| 	   writing); | ||||
|       } | ||||
|       /* In a read pass, pretend we just read some source data. */ | ||||
|       if (! writing) { | ||||
| 	*in_row_ctr += (JDIMENSION) | ||||
| 	  (cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size); | ||||
| 	mainp->rowgroup_ctr = (JDIMENSION) cinfo->min_DCT_v_scaled_size; | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     /* If a write pass, read input data until the current iMCU row is full. */ | ||||
|     /* Note: preprocessor will pad if necessary to fill the last iMCU row. */ | ||||
|     if (writing) { | ||||
|       (*cinfo->prep->pre_process_data) (cinfo, | ||||
| 					input_buf, in_row_ctr, in_rows_avail, | ||||
| 					mainp->buffer, &mainp->rowgroup_ctr, | ||||
| 					(JDIMENSION) cinfo->min_DCT_v_scaled_size); | ||||
|       /* Return to application if we need more data to fill the iMCU row. */ | ||||
|       if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) | ||||
| 	return; | ||||
|     } | ||||
| 
 | ||||
|     /* Emit data, unless this is a sink-only pass. */ | ||||
|     if (mainp->pass_mode != JBUF_SAVE_SOURCE) { | ||||
|       if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) { | ||||
| 	/* If compressor did not consume the whole row, then we must need to
 | ||||
| 	 * suspend processing and return to the application.  In this situation | ||||
| 	 * we pretend we didn't yet consume the last input row; otherwise, if | ||||
| 	 * it happened to be the last row of the image, the application would | ||||
| 	 * think we were done. | ||||
| 	 */ | ||||
| 	if (! mainp->suspended) { | ||||
| 	  (*in_row_ctr)--; | ||||
| 	  mainp->suspended = TRUE; | ||||
| 	} | ||||
| 	return; | ||||
|       } | ||||
|       /* We did finish the row.  Undo our little suspension hack if a previous
 | ||||
|        * call suspended; then mark the main buffer empty. | ||||
|        */ | ||||
|       if (mainp->suspended) { | ||||
| 	(*in_row_ctr)++; | ||||
| 	mainp->suspended = FALSE; | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     /* If get here, we are done with this iMCU row.  Mark buffer empty. */ | ||||
|     mainp->rowgroup_ctr = 0; | ||||
|     mainp->cur_iMCU_row++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* FULL_MAIN_BUFFER_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize main buffer controller. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) | ||||
| { | ||||
|   my_main_ptr mainp; | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   mainp = (my_main_ptr) | ||||
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 				SIZEOF(my_main_controller)); | ||||
|   cinfo->main = &mainp->pub; | ||||
|   mainp->pub.start_pass = start_pass_main; | ||||
| 
 | ||||
|   /* We don't need to create a buffer in raw-data mode. */ | ||||
|   if (cinfo->raw_data_in) | ||||
|     return; | ||||
| 
 | ||||
|   /* Create the buffer.  It holds downsampled data, so each component
 | ||||
|    * may be of a different size. | ||||
|    */ | ||||
|   if (need_full_buffer) { | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
|     /* Allocate a full-image virtual array for each component */ | ||||
|     /* Note we pad the bottom to a multiple of the iMCU height */ | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       mainp->whole_image[ci] = (*cinfo->mem->request_virt_sarray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | ||||
| 	 compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), | ||||
| 	 ((JDIMENSION) jround_up((long) compptr->height_in_blocks, | ||||
| 				 (long) compptr->v_samp_factor)) * | ||||
| 	 ((JDIMENSION) cinfo->min_DCT_v_scaled_size), | ||||
| 	 (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); | ||||
|     } | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| #endif | ||||
|   } else { | ||||
| #ifdef FULL_MAIN_BUFFER_SUPPORTED | ||||
|     mainp->whole_image[0] = NULL; /* flag for no virtual arrays */ | ||||
| #endif | ||||
|     /* Allocate a strip buffer for each component */ | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 	 compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), | ||||
| 	 (JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); | ||||
|     } | ||||
|   } | ||||
| } | ||||
							
								
								
									
										717
									
								
								dep/libjpeg/src/jcmarker.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										717
									
								
								dep/libjpeg/src/jcmarker.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,717 @@ | |||
| /*
 | ||||
|  * jcmarker.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1998, Thomas G. Lane. | ||||
|  * Modified 2003-2019 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains routines to write JPEG datastream markers. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| typedef enum {			/* JPEG marker codes */ | ||||
|   M_SOF0  = 0xc0, | ||||
|   M_SOF1  = 0xc1, | ||||
|   M_SOF2  = 0xc2, | ||||
|   M_SOF3  = 0xc3, | ||||
| 
 | ||||
|   M_SOF5  = 0xc5, | ||||
|   M_SOF6  = 0xc6, | ||||
|   M_SOF7  = 0xc7, | ||||
| 
 | ||||
|   M_JPG   = 0xc8, | ||||
|   M_SOF9  = 0xc9, | ||||
|   M_SOF10 = 0xca, | ||||
|   M_SOF11 = 0xcb, | ||||
| 
 | ||||
|   M_SOF13 = 0xcd, | ||||
|   M_SOF14 = 0xce, | ||||
|   M_SOF15 = 0xcf, | ||||
| 
 | ||||
|   M_DHT   = 0xc4, | ||||
| 
 | ||||
|   M_DAC   = 0xcc, | ||||
| 
 | ||||
|   M_RST0  = 0xd0, | ||||
|   M_RST1  = 0xd1, | ||||
|   M_RST2  = 0xd2, | ||||
|   M_RST3  = 0xd3, | ||||
|   M_RST4  = 0xd4, | ||||
|   M_RST5  = 0xd5, | ||||
|   M_RST6  = 0xd6, | ||||
|   M_RST7  = 0xd7, | ||||
| 
 | ||||
|   M_SOI   = 0xd8, | ||||
|   M_EOI   = 0xd9, | ||||
|   M_SOS   = 0xda, | ||||
|   M_DQT   = 0xdb, | ||||
|   M_DNL   = 0xdc, | ||||
|   M_DRI   = 0xdd, | ||||
|   M_DHP   = 0xde, | ||||
|   M_EXP   = 0xdf, | ||||
| 
 | ||||
|   M_APP0  = 0xe0, | ||||
|   M_APP1  = 0xe1, | ||||
|   M_APP2  = 0xe2, | ||||
|   M_APP3  = 0xe3, | ||||
|   M_APP4  = 0xe4, | ||||
|   M_APP5  = 0xe5, | ||||
|   M_APP6  = 0xe6, | ||||
|   M_APP7  = 0xe7, | ||||
|   M_APP8  = 0xe8, | ||||
|   M_APP9  = 0xe9, | ||||
|   M_APP10 = 0xea, | ||||
|   M_APP11 = 0xeb, | ||||
|   M_APP12 = 0xec, | ||||
|   M_APP13 = 0xed, | ||||
|   M_APP14 = 0xee, | ||||
|   M_APP15 = 0xef, | ||||
| 
 | ||||
|   M_JPG0  = 0xf0, | ||||
|   M_JPG8  = 0xf8, | ||||
|   M_JPG13 = 0xfd, | ||||
|   M_COM   = 0xfe, | ||||
| 
 | ||||
|   M_TEM   = 0x01, | ||||
| 
 | ||||
|   M_ERROR = 0x100 | ||||
| } JPEG_MARKER; | ||||
| 
 | ||||
| 
 | ||||
| /* Private state */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_marker_writer pub; /* public fields */ | ||||
| 
 | ||||
|   unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ | ||||
| } my_marker_writer; | ||||
| 
 | ||||
| typedef my_marker_writer * my_marker_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Basic output routines. | ||||
|  * | ||||
|  * Note that we do not support suspension while writing a marker. | ||||
|  * Therefore, an application using suspension must ensure that there is | ||||
|  * enough buffer space for the initial markers (typ. 600-700 bytes) before | ||||
|  * calling jpeg_start_compress, and enough space to write the trailing EOI | ||||
|  * (a few bytes) before calling jpeg_finish_compress.  Multipass compression | ||||
|  * modes are not supported at all with suspension, so those two are the only | ||||
|  * points where markers will be written. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_byte (j_compress_ptr cinfo, int val) | ||||
| /* Emit a byte */ | ||||
| { | ||||
|   struct jpeg_destination_mgr * dest = cinfo->dest; | ||||
| 
 | ||||
|   *(dest->next_output_byte)++ = (JOCTET) val; | ||||
|   if (--dest->free_in_buffer == 0) { | ||||
|     if (! (*dest->empty_output_buffer) (cinfo)) | ||||
|       ERREXIT(cinfo, JERR_CANT_SUSPEND); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) | ||||
| /* Emit a marker code */ | ||||
| { | ||||
|   emit_byte(cinfo, 0xFF); | ||||
|   emit_byte(cinfo, (int) mark); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_2bytes (j_compress_ptr cinfo, int value) | ||||
| /* Emit a 2-byte integer; these are always MSB first in JPEG files */ | ||||
| { | ||||
|   emit_byte(cinfo, (value >> 8) & 0xFF); | ||||
|   emit_byte(cinfo, value & 0xFF); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Routines to write specific marker types. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(int) | ||||
| emit_dqt (j_compress_ptr cinfo, int index) | ||||
| /* Emit a DQT marker */ | ||||
| /* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ | ||||
| { | ||||
|   JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; | ||||
|   int prec; | ||||
|   int i; | ||||
| 
 | ||||
|   if (qtbl == NULL) | ||||
|     ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); | ||||
| 
 | ||||
|   prec = 0; | ||||
|   for (i = 0; i <= cinfo->lim_Se; i++) { | ||||
|     if (qtbl->quantval[cinfo->natural_order[i]] > 255) | ||||
|       prec = 1; | ||||
|   } | ||||
| 
 | ||||
|   if (! qtbl->sent_table) { | ||||
|     emit_marker(cinfo, M_DQT); | ||||
| 
 | ||||
|     emit_2bytes(cinfo, | ||||
|       prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2); | ||||
| 
 | ||||
|     emit_byte(cinfo, index + (prec<<4)); | ||||
| 
 | ||||
|     for (i = 0; i <= cinfo->lim_Se; i++) { | ||||
|       /* The table entries must be emitted in zigzag order. */ | ||||
|       unsigned int qval = qtbl->quantval[cinfo->natural_order[i]]; | ||||
|       if (prec) | ||||
| 	emit_byte(cinfo, (int) (qval >> 8)); | ||||
|       emit_byte(cinfo, (int) (qval & 0xFF)); | ||||
|     } | ||||
| 
 | ||||
|     qtbl->sent_table = TRUE; | ||||
|   } | ||||
| 
 | ||||
|   return prec; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) | ||||
| /* Emit a DHT marker */ | ||||
| { | ||||
|   JHUFF_TBL * htbl; | ||||
|   int length, i; | ||||
|    | ||||
|   if (is_ac) { | ||||
|     htbl = cinfo->ac_huff_tbl_ptrs[index]; | ||||
|     index += 0x10;		/* output index has AC bit set */ | ||||
|   } else { | ||||
|     htbl = cinfo->dc_huff_tbl_ptrs[index]; | ||||
|   } | ||||
| 
 | ||||
|   if (htbl == NULL) | ||||
|     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); | ||||
|    | ||||
|   if (! htbl->sent_table) { | ||||
|     emit_marker(cinfo, M_DHT); | ||||
|      | ||||
|     length = 0; | ||||
|     for (i = 1; i <= 16; i++) | ||||
|       length += htbl->bits[i]; | ||||
|      | ||||
|     emit_2bytes(cinfo, length + 2 + 1 + 16); | ||||
|     emit_byte(cinfo, index); | ||||
|      | ||||
|     for (i = 1; i <= 16; i++) | ||||
|       emit_byte(cinfo, htbl->bits[i]); | ||||
|      | ||||
|     for (i = 0; i < length; i++) | ||||
|       emit_byte(cinfo, htbl->huffval[i]); | ||||
|      | ||||
|     htbl->sent_table = TRUE; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_dac (j_compress_ptr cinfo) | ||||
| /* Emit a DAC marker */ | ||||
| /* Since the useful info is so small, we want to emit all the tables in */ | ||||
| /* one DAC marker.  Therefore this routine does its own scan of the table. */ | ||||
| { | ||||
| #ifdef C_ARITH_CODING_SUPPORTED | ||||
|   char dc_in_use[NUM_ARITH_TBLS]; | ||||
|   char ac_in_use[NUM_ARITH_TBLS]; | ||||
|   int length, i; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   for (i = 0; i < NUM_ARITH_TBLS; i++) | ||||
|     dc_in_use[i] = ac_in_use[i] = 0; | ||||
| 
 | ||||
|   for (i = 0; i < cinfo->comps_in_scan; i++) { | ||||
|     compptr = cinfo->cur_comp_info[i]; | ||||
|     /* DC needs no table for refinement scan */ | ||||
|     if (cinfo->Ss == 0 && cinfo->Ah == 0) | ||||
|       dc_in_use[compptr->dc_tbl_no] = 1; | ||||
|     /* AC needs no table when not present */ | ||||
|     if (cinfo->Se) | ||||
|       ac_in_use[compptr->ac_tbl_no] = 1; | ||||
|   } | ||||
| 
 | ||||
|   length = 0; | ||||
|   for (i = 0; i < NUM_ARITH_TBLS; i++) | ||||
|     length += dc_in_use[i] + ac_in_use[i]; | ||||
| 
 | ||||
|   if (length) { | ||||
|     emit_marker(cinfo, M_DAC); | ||||
| 
 | ||||
|     emit_2bytes(cinfo, length*2 + 2); | ||||
| 
 | ||||
|     for (i = 0; i < NUM_ARITH_TBLS; i++) { | ||||
|       if (dc_in_use[i]) { | ||||
| 	emit_byte(cinfo, i); | ||||
| 	emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); | ||||
|       } | ||||
|       if (ac_in_use[i]) { | ||||
| 	emit_byte(cinfo, i + 0x10); | ||||
| 	emit_byte(cinfo, cinfo->arith_ac_K[i]); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| #endif /* C_ARITH_CODING_SUPPORTED */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_dri (j_compress_ptr cinfo) | ||||
| /* Emit a DRI marker */ | ||||
| { | ||||
|   emit_marker(cinfo, M_DRI); | ||||
|    | ||||
|   emit_2bytes(cinfo, 4);	/* fixed length */ | ||||
| 
 | ||||
|   emit_2bytes(cinfo, (int) cinfo->restart_interval); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_lse_ict (j_compress_ptr cinfo) | ||||
| /* Emit an LSE inverse color transform specification marker */ | ||||
| { | ||||
|   /* Support only 1 transform */ | ||||
|   if (cinfo->color_transform != JCT_SUBTRACT_GREEN || | ||||
|       cinfo->num_components < 3) | ||||
|     ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
| 
 | ||||
|   emit_marker(cinfo, M_JPG8); | ||||
|    | ||||
|   emit_2bytes(cinfo, 24);	/* fixed length */ | ||||
| 
 | ||||
|   emit_byte(cinfo, 0x0D);	/* ID inverse transform specification */ | ||||
|   emit_2bytes(cinfo, MAXJSAMPLE);	/* MAXTRANS */ | ||||
|   emit_byte(cinfo, 3);		/* Nt=3 */ | ||||
|   emit_byte(cinfo, cinfo->comp_info[1].component_id); | ||||
|   emit_byte(cinfo, cinfo->comp_info[0].component_id); | ||||
|   emit_byte(cinfo, cinfo->comp_info[2].component_id); | ||||
|   emit_byte(cinfo, 0x80);	/* F1: CENTER1=1, NORM1=0 */ | ||||
|   emit_2bytes(cinfo, 0);	/* A(1,1)=0 */ | ||||
|   emit_2bytes(cinfo, 0);	/* A(1,2)=0 */ | ||||
|   emit_byte(cinfo, 0);		/* F2: CENTER2=0, NORM2=0 */ | ||||
|   emit_2bytes(cinfo, 1);	/* A(2,1)=1 */ | ||||
|   emit_2bytes(cinfo, 0);	/* A(2,2)=0 */ | ||||
|   emit_byte(cinfo, 0);		/* F3: CENTER3=0, NORM3=0 */ | ||||
|   emit_2bytes(cinfo, 1);	/* A(3,1)=1 */ | ||||
|   emit_2bytes(cinfo, 0);	/* A(3,2)=0 */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) | ||||
| /* Emit a SOF marker */ | ||||
| { | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
|    | ||||
|   emit_marker(cinfo, code); | ||||
|    | ||||
|   emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ | ||||
| 
 | ||||
|   /* Make sure image isn't bigger than SOF field can handle */ | ||||
|   if ((long) cinfo->jpeg_height > 65535L || | ||||
|       (long) cinfo->jpeg_width > 65535L) | ||||
|     ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); | ||||
| 
 | ||||
|   emit_byte(cinfo, cinfo->data_precision); | ||||
|   emit_2bytes(cinfo, (int) cinfo->jpeg_height); | ||||
|   emit_2bytes(cinfo, (int) cinfo->jpeg_width); | ||||
| 
 | ||||
|   emit_byte(cinfo, cinfo->num_components); | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     emit_byte(cinfo, compptr->component_id); | ||||
|     emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); | ||||
|     emit_byte(cinfo, compptr->quant_tbl_no); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_sos (j_compress_ptr cinfo) | ||||
| /* Emit a SOS marker */ | ||||
| { | ||||
|   int i, td, ta; | ||||
|   jpeg_component_info *compptr; | ||||
|    | ||||
|   emit_marker(cinfo, M_SOS); | ||||
|    | ||||
|   emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ | ||||
|    | ||||
|   emit_byte(cinfo, cinfo->comps_in_scan); | ||||
|    | ||||
|   for (i = 0; i < cinfo->comps_in_scan; i++) { | ||||
|     compptr = cinfo->cur_comp_info[i]; | ||||
|     emit_byte(cinfo, compptr->component_id); | ||||
| 
 | ||||
|     /* We emit 0 for unused field(s); this is recommended by the P&M text
 | ||||
|      * but does not seem to be specified in the standard. | ||||
|      */ | ||||
| 
 | ||||
|     /* DC needs no table for refinement scan */ | ||||
|     td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; | ||||
|     /* AC needs no table when not present */ | ||||
|     ta = cinfo->Se ? compptr->ac_tbl_no : 0; | ||||
| 
 | ||||
|     emit_byte(cinfo, (td << 4) + ta); | ||||
|   } | ||||
| 
 | ||||
|   emit_byte(cinfo, cinfo->Ss); | ||||
|   emit_byte(cinfo, cinfo->Se); | ||||
|   emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_pseudo_sos (j_compress_ptr cinfo) | ||||
| /* Emit a pseudo SOS marker */ | ||||
| { | ||||
|   emit_marker(cinfo, M_SOS); | ||||
|    | ||||
|   emit_2bytes(cinfo, 2 + 1 + 3); /* length */ | ||||
|    | ||||
|   emit_byte(cinfo, 0); /* Ns */ | ||||
| 
 | ||||
|   emit_byte(cinfo, 0); /* Ss */ | ||||
|   emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */ | ||||
|   emit_byte(cinfo, 0); /* Ah/Al */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_jfif_app0 (j_compress_ptr cinfo) | ||||
| /* Emit a JFIF-compliant APP0 marker */ | ||||
| { | ||||
|   /*
 | ||||
|    * Length of APP0 block	(2 bytes) | ||||
|    * Block ID			(4 bytes - ASCII "JFIF") | ||||
|    * Zero byte			(1 byte to terminate the ID string) | ||||
|    * Version Major, Minor	(2 bytes - major first) | ||||
|    * Units			(1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) | ||||
|    * Xdpu			(2 bytes - dots per unit horizontal) | ||||
|    * Ydpu			(2 bytes - dots per unit vertical) | ||||
|    * Thumbnail X size		(1 byte) | ||||
|    * Thumbnail Y size		(1 byte) | ||||
|    */ | ||||
|    | ||||
|   emit_marker(cinfo, M_APP0); | ||||
|    | ||||
|   emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ | ||||
| 
 | ||||
|   emit_byte(cinfo, 0x4A);	/* Identifier: ASCII "JFIF" */ | ||||
|   emit_byte(cinfo, 0x46); | ||||
|   emit_byte(cinfo, 0x49); | ||||
|   emit_byte(cinfo, 0x46); | ||||
|   emit_byte(cinfo, 0); | ||||
|   emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ | ||||
|   emit_byte(cinfo, cinfo->JFIF_minor_version); | ||||
|   emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ | ||||
|   emit_2bytes(cinfo, (int) cinfo->X_density); | ||||
|   emit_2bytes(cinfo, (int) cinfo->Y_density); | ||||
|   emit_byte(cinfo, 0);		/* No thumbnail image */ | ||||
|   emit_byte(cinfo, 0); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| emit_adobe_app14 (j_compress_ptr cinfo) | ||||
| /* Emit an Adobe APP14 marker */ | ||||
| { | ||||
|   /*
 | ||||
|    * Length of APP14 block	(2 bytes) | ||||
|    * Block ID			(5 bytes - ASCII "Adobe") | ||||
|    * Version Number		(2 bytes - currently 100) | ||||
|    * Flags0			(2 bytes - currently 0) | ||||
|    * Flags1			(2 bytes - currently 0) | ||||
|    * Color transform		(1 byte) | ||||
|    * | ||||
|    * Although Adobe TN 5116 mentions Version = 101, all the Adobe files | ||||
|    * now in circulation seem to use Version = 100, so that's what we write. | ||||
|    * | ||||
|    * We write the color transform byte as 1 if the JPEG color space is | ||||
|    * YCbCr, 2 if it's YCCK, 0 otherwise.  Adobe's definition has to do with | ||||
|    * whether the encoder performed a transformation, which is pretty useless. | ||||
|    */ | ||||
|    | ||||
|   emit_marker(cinfo, M_APP14); | ||||
|    | ||||
|   emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ | ||||
| 
 | ||||
|   emit_byte(cinfo, 0x41);	/* Identifier: ASCII "Adobe" */ | ||||
|   emit_byte(cinfo, 0x64); | ||||
|   emit_byte(cinfo, 0x6F); | ||||
|   emit_byte(cinfo, 0x62); | ||||
|   emit_byte(cinfo, 0x65); | ||||
|   emit_2bytes(cinfo, 100);	/* Version */ | ||||
|   emit_2bytes(cinfo, 0);	/* Flags0 */ | ||||
|   emit_2bytes(cinfo, 0);	/* Flags1 */ | ||||
|   switch (cinfo->jpeg_color_space) { | ||||
|   case JCS_YCbCr: | ||||
|     emit_byte(cinfo, 1);	/* Color transform = 1 */ | ||||
|     break; | ||||
|   case JCS_YCCK: | ||||
|     emit_byte(cinfo, 2);	/* Color transform = 2 */ | ||||
|     break; | ||||
|   default: | ||||
|     emit_byte(cinfo, 0);	/* Color transform = 0 */ | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These routines allow writing an arbitrary marker with parameters. | ||||
|  * The only intended use is to emit COM or APPn markers after calling | ||||
|  * write_file_header and before calling write_frame_header. | ||||
|  * Other uses are not guaranteed to produce desirable results. | ||||
|  * Counting the parameter bytes properly is the caller's responsibility. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) | ||||
| /* Emit an arbitrary marker header */ | ||||
| { | ||||
|   if (datalen > (unsigned int) 65533)		/* safety check */ | ||||
|     ERREXIT(cinfo, JERR_BAD_LENGTH); | ||||
| 
 | ||||
|   emit_marker(cinfo, (JPEG_MARKER) marker); | ||||
| 
 | ||||
|   emit_2bytes(cinfo, (int) (datalen + 2));	/* total length */ | ||||
| } | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_marker_byte (j_compress_ptr cinfo, int val) | ||||
| /* Emit one byte of marker parameters following write_marker_header */ | ||||
| { | ||||
|   emit_byte(cinfo, val); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write datastream header. | ||||
|  * This consists of an SOI and optional APPn markers. | ||||
|  * We recommend use of the JFIF marker, but not the Adobe marker, | ||||
|  * when using YCbCr or grayscale data.  The JFIF marker is also used | ||||
|  * for other standard JPEG colorspaces.  The Adobe marker is helpful | ||||
|  * to distinguish RGB, CMYK, and YCCK colorspaces. | ||||
|  * Note that an application can write additional header markers after | ||||
|  * jpeg_start_compress returns. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_file_header (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_marker_ptr marker = (my_marker_ptr) cinfo->marker; | ||||
| 
 | ||||
|   emit_marker(cinfo, M_SOI);	/* first the SOI */ | ||||
| 
 | ||||
|   /* SOI is defined to reset restart interval to 0 */ | ||||
|   marker->last_restart_interval = 0; | ||||
| 
 | ||||
|   if (cinfo->write_JFIF_header)	/* next an optional JFIF APP0 */ | ||||
|     emit_jfif_app0(cinfo); | ||||
|   if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ | ||||
|     emit_adobe_app14(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write frame header. | ||||
|  * This consists of DQT and SOFn markers, | ||||
|  * a conditional LSE marker and a conditional pseudo SOS marker. | ||||
|  * Note that we do not emit the SOF until we have emitted the DQT(s). | ||||
|  * This avoids compatibility problems with incorrect implementations that | ||||
|  * try to error-check the quant table numbers as soon as they see the SOF. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_frame_header (j_compress_ptr cinfo) | ||||
| { | ||||
|   int ci, prec; | ||||
|   boolean is_baseline; | ||||
|   jpeg_component_info *compptr; | ||||
|    | ||||
|   /* Emit DQT for each quantization table.
 | ||||
|    * Note that emit_dqt() suppresses any duplicate tables. | ||||
|    */ | ||||
|   prec = 0; | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     prec += emit_dqt(cinfo, compptr->quant_tbl_no); | ||||
|   } | ||||
|   /* now prec is nonzero iff there are any 16-bit quant tables. */ | ||||
| 
 | ||||
|   /* Check for a non-baseline specification.
 | ||||
|    * Note we assume that Huffman table numbers won't be changed later. | ||||
|    */ | ||||
|   if (cinfo->arith_code || cinfo->progressive_mode || | ||||
|       cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) { | ||||
|     is_baseline = FALSE; | ||||
|   } else { | ||||
|     is_baseline = TRUE; | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) | ||||
| 	is_baseline = FALSE; | ||||
|     } | ||||
|     if (prec && is_baseline) { | ||||
|       is_baseline = FALSE; | ||||
|       /* If it's baseline except for quantizer size, warn the user */ | ||||
|       TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Emit the proper SOF marker */ | ||||
|   if (cinfo->arith_code) { | ||||
|     if (cinfo->progressive_mode) | ||||
|       emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ | ||||
|     else | ||||
|       emit_sof(cinfo, M_SOF9);  /* SOF code for sequential arithmetic */ | ||||
|   } else { | ||||
|     if (cinfo->progressive_mode) | ||||
|       emit_sof(cinfo, M_SOF2);	/* SOF code for progressive Huffman */ | ||||
|     else if (is_baseline) | ||||
|       emit_sof(cinfo, M_SOF0);	/* SOF code for baseline implementation */ | ||||
|     else | ||||
|       emit_sof(cinfo, M_SOF1);	/* SOF code for non-baseline Huffman file */ | ||||
|   } | ||||
| 
 | ||||
|   /* Check to emit LSE inverse color transform specification marker */ | ||||
|   if (cinfo->color_transform) | ||||
|     emit_lse_ict(cinfo); | ||||
| 
 | ||||
|   /* Check to emit pseudo SOS marker */ | ||||
|   if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE) | ||||
|     emit_pseudo_sos(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write scan header. | ||||
|  * This consists of DHT or DAC markers, optional DRI, and SOS. | ||||
|  * Compressed data will be written following the SOS. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_scan_header (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_marker_ptr marker = (my_marker_ptr) cinfo->marker; | ||||
|   int i; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   if (cinfo->arith_code) { | ||||
|     /* Emit arith conditioning info.  We may have some duplication
 | ||||
|      * if the file has multiple scans, but it's so small it's hardly | ||||
|      * worth worrying about. | ||||
|      */ | ||||
|     emit_dac(cinfo); | ||||
|   } else { | ||||
|     /* Emit Huffman tables.
 | ||||
|      * Note that emit_dht() suppresses any duplicate tables. | ||||
|      */ | ||||
|     for (i = 0; i < cinfo->comps_in_scan; i++) { | ||||
|       compptr = cinfo->cur_comp_info[i]; | ||||
|       /* DC needs no table for refinement scan */ | ||||
|       if (cinfo->Ss == 0 && cinfo->Ah == 0) | ||||
| 	emit_dht(cinfo, compptr->dc_tbl_no, FALSE); | ||||
|       /* AC needs no table when not present */ | ||||
|       if (cinfo->Se) | ||||
| 	emit_dht(cinfo, compptr->ac_tbl_no, TRUE); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Emit DRI if required --- note that DRI value could change for each scan.
 | ||||
|    * We avoid wasting space with unnecessary DRIs, however. | ||||
|    */ | ||||
|   if (cinfo->restart_interval != marker->last_restart_interval) { | ||||
|     emit_dri(cinfo); | ||||
|     marker->last_restart_interval = cinfo->restart_interval; | ||||
|   } | ||||
| 
 | ||||
|   emit_sos(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write datastream trailer. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_file_trailer (j_compress_ptr cinfo) | ||||
| { | ||||
|   emit_marker(cinfo, M_EOI); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Write an abbreviated table-specification datastream. | ||||
|  * This consists of SOI, DQT and DHT tables, and EOI. | ||||
|  * Any table that is defined and not marked sent_table = TRUE will be | ||||
|  * emitted.  Note that all tables will be marked sent_table = TRUE at exit. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| write_tables_only (j_compress_ptr cinfo) | ||||
| { | ||||
|   int i; | ||||
| 
 | ||||
|   emit_marker(cinfo, M_SOI); | ||||
| 
 | ||||
|   for (i = 0; i < NUM_QUANT_TBLS; i++) { | ||||
|     if (cinfo->quant_tbl_ptrs[i] != NULL) | ||||
|       (void) emit_dqt(cinfo, i); | ||||
|   } | ||||
| 
 | ||||
|   if (! cinfo->arith_code) { | ||||
|     for (i = 0; i < NUM_HUFF_TBLS; i++) { | ||||
|       if (cinfo->dc_huff_tbl_ptrs[i] != NULL) | ||||
| 	emit_dht(cinfo, i, FALSE); | ||||
|       if (cinfo->ac_huff_tbl_ptrs[i] != NULL) | ||||
| 	emit_dht(cinfo, i, TRUE); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   emit_marker(cinfo, M_EOI); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize the marker writer module. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_marker_writer (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_marker_ptr marker; | ||||
| 
 | ||||
|   /* Create the subobject */ | ||||
|   marker = (my_marker_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_marker_writer)); | ||||
|   cinfo->marker = &marker->pub; | ||||
|   /* Initialize method pointers */ | ||||
|   marker->pub.write_file_header = write_file_header; | ||||
|   marker->pub.write_frame_header = write_frame_header; | ||||
|   marker->pub.write_scan_header = write_scan_header; | ||||
|   marker->pub.write_file_trailer = write_file_trailer; | ||||
|   marker->pub.write_tables_only = write_tables_only; | ||||
|   marker->pub.write_marker_header = write_marker_header; | ||||
|   marker->pub.write_marker_byte = write_marker_byte; | ||||
|   /* Initialize private state */ | ||||
|   marker->last_restart_interval = 0; | ||||
| } | ||||
							
								
								
									
										675
									
								
								dep/libjpeg/src/jcmaster.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										675
									
								
								dep/libjpeg/src/jcmaster.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,675 @@ | |||
| /*
 | ||||
|  * jcmaster.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 2003-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains master control logic for the JPEG compressor. | ||||
|  * These routines are concerned with parameter validation, initial setup, | ||||
|  * and inter-pass control (determining the number of passes and the work  | ||||
|  * to be done in each pass). | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Private state */ | ||||
| 
 | ||||
| typedef enum { | ||||
| 	main_pass,		/* input data, also do first output step */ | ||||
| 	huff_opt_pass,		/* Huffman code optimization pass */ | ||||
| 	output_pass		/* data output pass */ | ||||
| } c_pass_type; | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_comp_master pub;	/* public fields */ | ||||
| 
 | ||||
|   c_pass_type pass_type;	/* the type of the current pass */ | ||||
| 
 | ||||
|   int pass_number;		/* # of passes completed */ | ||||
|   int total_passes;		/* total # of passes needed */ | ||||
| 
 | ||||
|   int scan_number;		/* current index in scan_info[] */ | ||||
| } my_comp_master; | ||||
| 
 | ||||
| typedef my_comp_master * my_master_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Support routines that do various essential calculations. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| initial_setup (j_compress_ptr cinfo) | ||||
| /* Do computations that are needed before master selection phase */ | ||||
| { | ||||
|   int ci, ssize; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Sanity check on block_size */ | ||||
|   if (cinfo->block_size < 1 || cinfo->block_size > 16) | ||||
|     ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size); | ||||
| 
 | ||||
|   /* Derive natural_order from block_size */ | ||||
|   switch (cinfo->block_size) { | ||||
|   case 2: cinfo->natural_order = jpeg_natural_order2; break; | ||||
|   case 3: cinfo->natural_order = jpeg_natural_order3; break; | ||||
|   case 4: cinfo->natural_order = jpeg_natural_order4; break; | ||||
|   case 5: cinfo->natural_order = jpeg_natural_order5; break; | ||||
|   case 6: cinfo->natural_order = jpeg_natural_order6; break; | ||||
|   case 7: cinfo->natural_order = jpeg_natural_order7; break; | ||||
|   default: cinfo->natural_order = jpeg_natural_order; | ||||
|   } | ||||
| 
 | ||||
|   /* Derive lim_Se from block_size */ | ||||
|   cinfo->lim_Se = cinfo->block_size < DCTSIZE ? | ||||
|     cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1; | ||||
| 
 | ||||
|   /* Sanity check on image dimensions */ | ||||
|   if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || | ||||
|       cinfo->num_components <= 0) | ||||
|     ERREXIT(cinfo, JERR_EMPTY_IMAGE); | ||||
| 
 | ||||
|   /* Make sure image isn't bigger than I can handle */ | ||||
|   if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || | ||||
|       (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) | ||||
|     ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); | ||||
| 
 | ||||
|   /* Only 8 to 12 bits data precision are supported for DCT based JPEG */ | ||||
|   if (cinfo->data_precision < 8 || cinfo->data_precision > 12) | ||||
|     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | ||||
| 
 | ||||
|   /* Check that number of components won't exceed internal array sizes */ | ||||
|   if (cinfo->num_components > MAX_COMPONENTS) | ||||
|     ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | ||||
| 	     MAX_COMPONENTS); | ||||
| 
 | ||||
|   /* Compute maximum sampling factors; check factor validity */ | ||||
|   cinfo->max_h_samp_factor = 1; | ||||
|   cinfo->max_v_samp_factor = 1; | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || | ||||
| 	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) | ||||
|       ERREXIT(cinfo, JERR_BAD_SAMPLING); | ||||
|     cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, | ||||
| 				   compptr->h_samp_factor); | ||||
|     cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, | ||||
| 				   compptr->v_samp_factor); | ||||
|   } | ||||
| 
 | ||||
|   /* Compute dimensions of components */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Fill in the correct component_index value; don't rely on application */ | ||||
|     compptr->component_index = ci; | ||||
|     /* In selecting the actual DCT scaling for each component, we try to
 | ||||
|      * scale down the chroma components via DCT scaling rather than downsampling. | ||||
|      * This saves time if the downsampler gets to use 1:1 scaling. | ||||
|      * Note this code adapts subsampling ratios which are powers of 2. | ||||
|      */ | ||||
|     ssize = 1; | ||||
| #ifdef DCT_SCALING_SUPPORTED | ||||
|     if (! cinfo->raw_data_in) | ||||
|       while (cinfo->min_DCT_h_scaled_size * ssize <= | ||||
| 	     (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && | ||||
| 	     (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == | ||||
| 	     0) { | ||||
| 	ssize = ssize * 2; | ||||
|       } | ||||
| #endif | ||||
|     compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; | ||||
|     ssize = 1; | ||||
| #ifdef DCT_SCALING_SUPPORTED | ||||
|     if (! cinfo->raw_data_in) | ||||
|       while (cinfo->min_DCT_v_scaled_size * ssize <= | ||||
| 	     (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && | ||||
| 	     (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == | ||||
| 	     0) { | ||||
| 	ssize = ssize * 2; | ||||
|       } | ||||
| #endif | ||||
|     compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; | ||||
| 
 | ||||
|     /* We don't support DCT ratios larger than 2. */ | ||||
|     if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) | ||||
| 	compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; | ||||
|     else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) | ||||
| 	compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; | ||||
| 
 | ||||
|     /* Size in DCT blocks */ | ||||
|     compptr->width_in_blocks = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, | ||||
| 		    (long) (cinfo->max_h_samp_factor * cinfo->block_size)); | ||||
|     compptr->height_in_blocks = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, | ||||
| 		    (long) (cinfo->max_v_samp_factor * cinfo->block_size)); | ||||
|     /* Size in samples */ | ||||
|     compptr->downsampled_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->jpeg_width * | ||||
| 		    (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), | ||||
| 		    (long) (cinfo->max_h_samp_factor * cinfo->block_size)); | ||||
|     compptr->downsampled_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->jpeg_height * | ||||
| 		    (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), | ||||
| 		    (long) (cinfo->max_v_samp_factor * cinfo->block_size)); | ||||
|     /* Don't need quantization scale after DCT,
 | ||||
|      * until color conversion says otherwise. | ||||
|      */ | ||||
|     compptr->component_needed = FALSE; | ||||
|   } | ||||
| 
 | ||||
|   /* Compute number of fully interleaved MCU rows (number of times that
 | ||||
|    * main controller will call coefficient controller). | ||||
|    */ | ||||
|   cinfo->total_iMCU_rows = (JDIMENSION) | ||||
|     jdiv_round_up((long) cinfo->jpeg_height, | ||||
| 		  (long) (cinfo->max_v_samp_factor * cinfo->block_size)); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef C_MULTISCAN_FILES_SUPPORTED | ||||
| 
 | ||||
| LOCAL(void) | ||||
| validate_script (j_compress_ptr cinfo) | ||||
| /* Verify that the scan script in cinfo->scan_info[] is valid; also
 | ||||
|  * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. | ||||
|  */ | ||||
| { | ||||
|   const jpeg_scan_info * scanptr; | ||||
|   int scanno, ncomps, ci, coefi, thisi; | ||||
|   int Ss, Se, Ah, Al; | ||||
|   boolean component_sent[MAX_COMPONENTS]; | ||||
| #ifdef C_PROGRESSIVE_SUPPORTED | ||||
|   int * last_bitpos_ptr; | ||||
|   int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; | ||||
|   /* -1 until that coefficient has been seen; then last Al for it */ | ||||
| #endif | ||||
| 
 | ||||
|   if (cinfo->num_scans <= 0) | ||||
|     ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); | ||||
| 
 | ||||
|   /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
 | ||||
|    * for progressive JPEG, no scan can have this. | ||||
|    */ | ||||
|   scanptr = cinfo->scan_info; | ||||
|   if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { | ||||
| #ifdef C_PROGRESSIVE_SUPPORTED | ||||
|     cinfo->progressive_mode = TRUE; | ||||
|     last_bitpos_ptr = & last_bitpos[0][0]; | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++)  | ||||
|       for (coefi = 0; coefi < DCTSIZE2; coefi++) | ||||
| 	*last_bitpos_ptr++ = -1; | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|   } else { | ||||
|     cinfo->progressive_mode = FALSE; | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++)  | ||||
|       component_sent[ci] = FALSE; | ||||
|   } | ||||
| 
 | ||||
|   for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { | ||||
|     /* Validate component indexes */ | ||||
|     ncomps = scanptr->comps_in_scan; | ||||
|     if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) | ||||
|       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); | ||||
|     for (ci = 0; ci < ncomps; ci++) { | ||||
|       thisi = scanptr->component_index[ci]; | ||||
|       if (thisi < 0 || thisi >= cinfo->num_components) | ||||
| 	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); | ||||
|       /* Components must appear in SOF order within each scan */ | ||||
|       if (ci > 0 && thisi <= scanptr->component_index[ci-1]) | ||||
| 	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); | ||||
|     } | ||||
|     /* Validate progression parameters */ | ||||
|     Ss = scanptr->Ss; | ||||
|     Se = scanptr->Se; | ||||
|     Ah = scanptr->Ah; | ||||
|     Al = scanptr->Al; | ||||
|     if (cinfo->progressive_mode) { | ||||
| #ifdef C_PROGRESSIVE_SUPPORTED | ||||
|       /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
 | ||||
|        * seems wrong: the upper bound ought to depend on data precision. | ||||
|        * Perhaps they really meant 0..N+1 for N-bit precision. | ||||
|        * Here we allow 0..10 for 8-bit data; Al larger than 10 results in | ||||
|        * out-of-range reconstructed DC values during the first DC scan, | ||||
|        * which might cause problems for some decoders. | ||||
|        */ | ||||
|       if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || | ||||
| 	  Ah < 0 || Ah > (cinfo->data_precision > 8 ? 13 : 10) || | ||||
| 	  Al < 0 || Al > (cinfo->data_precision > 8 ? 13 : 10)) | ||||
| 	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
|       if (Ss == 0) { | ||||
| 	if (Se != 0)		/* DC and AC together not OK */ | ||||
| 	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
|       } else { | ||||
| 	if (ncomps != 1)	/* AC scans must be for only one component */ | ||||
| 	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
|       } | ||||
|       for (ci = 0; ci < ncomps; ci++) { | ||||
| 	last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; | ||||
| 	if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ | ||||
| 	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
| 	for (coefi = Ss; coefi <= Se; coefi++) { | ||||
| 	  if (last_bitpos_ptr[coefi] < 0) { | ||||
| 	    /* first scan of this coefficient */ | ||||
| 	    if (Ah != 0) | ||||
| 	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
| 	  } else { | ||||
| 	    /* not first scan */ | ||||
| 	    if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) | ||||
| 	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
| 	  } | ||||
| 	  last_bitpos_ptr[coefi] = Al; | ||||
| 	} | ||||
|       } | ||||
| #endif | ||||
|     } else { | ||||
|       /* For sequential JPEG, all progression parameters must be these: */ | ||||
|       if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) | ||||
| 	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | ||||
|       /* Make sure components are not sent twice */ | ||||
|       for (ci = 0; ci < ncomps; ci++) { | ||||
| 	thisi = scanptr->component_index[ci]; | ||||
| 	if (component_sent[thisi]) | ||||
| 	  ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); | ||||
| 	component_sent[thisi] = TRUE; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Now verify that everything got sent. */ | ||||
|   if (cinfo->progressive_mode) { | ||||
| #ifdef C_PROGRESSIVE_SUPPORTED | ||||
|     /* For progressive mode, we only check that at least some DC data
 | ||||
|      * got sent for each component; the spec does not require that all bits | ||||
|      * of all coefficients be transmitted.  Would it be wiser to enforce | ||||
|      * transmission of all coefficient bits?? | ||||
|      */ | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
|       if (last_bitpos[ci][0] < 0) | ||||
| 	ERREXIT(cinfo, JERR_MISSING_DATA); | ||||
|     } | ||||
| #endif | ||||
|   } else { | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
|       if (! component_sent[ci]) | ||||
| 	ERREXIT(cinfo, JERR_MISSING_DATA); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| reduce_script (j_compress_ptr cinfo) | ||||
| /* Adapt scan script for use with reduced block size;
 | ||||
|  * assume that script has been validated before. | ||||
|  */ | ||||
| { | ||||
|   jpeg_scan_info * scanptr; | ||||
|   int idxout, idxin; | ||||
| 
 | ||||
|   /* Circumvent const declaration for this function */ | ||||
|   scanptr = (jpeg_scan_info *) cinfo->scan_info; | ||||
|   idxout = 0; | ||||
| 
 | ||||
|   for (idxin = 0; idxin < cinfo->num_scans; idxin++) { | ||||
|     /* After skipping, idxout becomes smaller than idxin */ | ||||
|     if (idxin != idxout) | ||||
|       /* Copy rest of data;
 | ||||
|        * note we stay in given chunk of allocated memory. | ||||
|        */ | ||||
|       scanptr[idxout] = scanptr[idxin]; | ||||
|     if (scanptr[idxout].Ss > cinfo->lim_Se) | ||||
|       /* Entire scan out of range - skip this entry */ | ||||
|       continue; | ||||
|     if (scanptr[idxout].Se > cinfo->lim_Se) | ||||
|       /* Limit scan to end of block */ | ||||
|       scanptr[idxout].Se = cinfo->lim_Se; | ||||
|     idxout++; | ||||
|   } | ||||
| 
 | ||||
|   cinfo->num_scans = idxout; | ||||
| } | ||||
| 
 | ||||
| #endif /* C_MULTISCAN_FILES_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| select_scan_parameters (j_compress_ptr cinfo) | ||||
| /* Set up the scan parameters for the current scan */ | ||||
| { | ||||
|   int ci; | ||||
| 
 | ||||
| #ifdef C_MULTISCAN_FILES_SUPPORTED | ||||
|   if (cinfo->scan_info != NULL) { | ||||
|     /* Prepare for current scan --- the script is already validated */ | ||||
|     my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
|     const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; | ||||
| 
 | ||||
|     cinfo->comps_in_scan = scanptr->comps_in_scan; | ||||
|     for (ci = 0; ci < scanptr->comps_in_scan; ci++) { | ||||
|       cinfo->cur_comp_info[ci] = | ||||
| 	&cinfo->comp_info[scanptr->component_index[ci]]; | ||||
|     } | ||||
|     if (cinfo->progressive_mode) { | ||||
|       cinfo->Ss = scanptr->Ss; | ||||
|       cinfo->Se = scanptr->Se; | ||||
|       cinfo->Ah = scanptr->Ah; | ||||
|       cinfo->Al = scanptr->Al; | ||||
|       return; | ||||
|     } | ||||
|   } | ||||
|   else | ||||
| #endif | ||||
|   { | ||||
|     /* Prepare for single sequential-JPEG scan containing all components */ | ||||
|     if (cinfo->num_components > MAX_COMPS_IN_SCAN) | ||||
|       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | ||||
| 	       MAX_COMPS_IN_SCAN); | ||||
|     cinfo->comps_in_scan = cinfo->num_components; | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
|       cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; | ||||
|     } | ||||
|   } | ||||
|   cinfo->Ss = 0; | ||||
|   cinfo->Se = cinfo->block_size * cinfo->block_size - 1; | ||||
|   cinfo->Ah = 0; | ||||
|   cinfo->Al = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| per_scan_setup (j_compress_ptr cinfo) | ||||
| /* Do computations that are needed before processing a JPEG scan */ | ||||
| /* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ | ||||
| { | ||||
|   int ci, mcublks, tmp; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   if (cinfo->comps_in_scan == 1) { | ||||
| 
 | ||||
|     /* Noninterleaved (single-component) scan */ | ||||
|     compptr = cinfo->cur_comp_info[0]; | ||||
| 
 | ||||
|     /* Overall image size in MCUs */ | ||||
|     cinfo->MCUs_per_row = compptr->width_in_blocks; | ||||
|     cinfo->MCU_rows_in_scan = compptr->height_in_blocks; | ||||
| 
 | ||||
|     /* For noninterleaved scan, always one block per MCU */ | ||||
|     compptr->MCU_width = 1; | ||||
|     compptr->MCU_height = 1; | ||||
|     compptr->MCU_blocks = 1; | ||||
|     compptr->MCU_sample_width = compptr->DCT_h_scaled_size; | ||||
|     compptr->last_col_width = 1; | ||||
|     /* For noninterleaved scans, it is convenient to define last_row_height
 | ||||
|      * as the number of block rows present in the last iMCU row. | ||||
|      */ | ||||
|     tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||||
|     if (tmp == 0) tmp = compptr->v_samp_factor; | ||||
|     compptr->last_row_height = tmp; | ||||
| 
 | ||||
|     /* Prepare array describing MCU composition */ | ||||
|     cinfo->blocks_in_MCU = 1; | ||||
|     cinfo->MCU_membership[0] = 0; | ||||
| 
 | ||||
|   } else { | ||||
| 
 | ||||
|     /* Interleaved (multi-component) scan */ | ||||
|     if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) | ||||
|       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, | ||||
| 	       MAX_COMPS_IN_SCAN); | ||||
| 
 | ||||
|     /* Overall image size in MCUs */ | ||||
|     cinfo->MCUs_per_row = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->jpeg_width, | ||||
| 		    (long) (cinfo->max_h_samp_factor * cinfo->block_size)); | ||||
|     cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows; | ||||
| 
 | ||||
|     cinfo->blocks_in_MCU = 0; | ||||
| 
 | ||||
|     for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|       compptr = cinfo->cur_comp_info[ci]; | ||||
|       /* Sampling factors give # of blocks of component in each MCU */ | ||||
|       compptr->MCU_width = compptr->h_samp_factor; | ||||
|       compptr->MCU_height = compptr->v_samp_factor; | ||||
|       compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; | ||||
|       compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; | ||||
|       /* Figure number of non-dummy blocks in last MCU column & row */ | ||||
|       tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); | ||||
|       if (tmp == 0) tmp = compptr->MCU_width; | ||||
|       compptr->last_col_width = tmp; | ||||
|       tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); | ||||
|       if (tmp == 0) tmp = compptr->MCU_height; | ||||
|       compptr->last_row_height = tmp; | ||||
|       /* Prepare array describing MCU composition */ | ||||
|       mcublks = compptr->MCU_blocks; | ||||
|       if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) | ||||
| 	ERREXIT(cinfo, JERR_BAD_MCU_SIZE); | ||||
|       while (mcublks-- > 0) { | ||||
| 	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|   } | ||||
| 
 | ||||
|   /* Convert restart specified in rows to actual MCU count. */ | ||||
|   /* Note that count must fit in 16 bits, so we provide limiting. */ | ||||
|   if (cinfo->restart_in_rows > 0) { | ||||
|     long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; | ||||
|     cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Per-pass setup. | ||||
|  * This is called at the beginning of each pass.  We determine which modules | ||||
|  * will be active during this pass and give them appropriate start_pass calls. | ||||
|  * We also set is_last_pass to indicate whether any more passes will be | ||||
|  * required. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| prepare_for_pass (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
| 
 | ||||
|   switch (master->pass_type) { | ||||
|   case main_pass: | ||||
|     /* Initial pass: will collect input data, and do either Huffman
 | ||||
|      * optimization or data output for the first scan. | ||||
|      */ | ||||
|     select_scan_parameters(cinfo); | ||||
|     per_scan_setup(cinfo); | ||||
|     if (! cinfo->raw_data_in) { | ||||
|       (*cinfo->cconvert->start_pass) (cinfo); | ||||
|       (*cinfo->downsample->start_pass) (cinfo); | ||||
|       (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); | ||||
|     } | ||||
|     (*cinfo->fdct->start_pass) (cinfo); | ||||
|     (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); | ||||
|     (*cinfo->coef->start_pass) (cinfo, | ||||
| 				(master->total_passes > 1 ? | ||||
| 				 JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | ||||
|     (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | ||||
|     if (cinfo->optimize_coding) { | ||||
|       /* No immediate data output; postpone writing frame/scan headers */ | ||||
|       master->pub.call_pass_startup = FALSE; | ||||
|     } else { | ||||
|       /* Will write frame/scan headers at first jpeg_write_scanlines call */ | ||||
|       master->pub.call_pass_startup = TRUE; | ||||
|     } | ||||
|     break; | ||||
| #ifdef ENTROPY_OPT_SUPPORTED | ||||
|   case huff_opt_pass: | ||||
|     /* Do Huffman optimization for a scan after the first one. */ | ||||
|     select_scan_parameters(cinfo); | ||||
|     per_scan_setup(cinfo); | ||||
|     if (cinfo->Ss != 0 || cinfo->Ah == 0) { | ||||
|       (*cinfo->entropy->start_pass) (cinfo, TRUE); | ||||
|       (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); | ||||
|       master->pub.call_pass_startup = FALSE; | ||||
|       break; | ||||
|     } | ||||
|     /* Special case: Huffman DC refinement scans need no Huffman table
 | ||||
|      * and therefore we can skip the optimization pass for them. | ||||
|      */ | ||||
|     master->pass_type = output_pass; | ||||
|     master->pass_number++; | ||||
|     /*FALLTHROUGH*/ | ||||
| #endif | ||||
|   case output_pass: | ||||
|     /* Do a data-output pass. */ | ||||
|     /* We need not repeat per-scan setup if prior optimization pass did it. */ | ||||
|     if (! cinfo->optimize_coding) { | ||||
|       select_scan_parameters(cinfo); | ||||
|       per_scan_setup(cinfo); | ||||
|     } | ||||
|     (*cinfo->entropy->start_pass) (cinfo, FALSE); | ||||
|     (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); | ||||
|     /* We emit frame/scan headers now */ | ||||
|     if (master->scan_number == 0) | ||||
|       (*cinfo->marker->write_frame_header) (cinfo); | ||||
|     (*cinfo->marker->write_scan_header) (cinfo); | ||||
|     master->pub.call_pass_startup = FALSE; | ||||
|     break; | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
|   } | ||||
| 
 | ||||
|   master->pub.is_last_pass = (master->pass_number == master->total_passes-1); | ||||
| 
 | ||||
|   /* Set up progress monitor's pass info if present */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     cinfo->progress->completed_passes = master->pass_number; | ||||
|     cinfo->progress->total_passes = master->total_passes; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Special start-of-pass hook. | ||||
|  * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. | ||||
|  * In single-pass processing, we need this hook because we don't want to | ||||
|  * write frame/scan headers during jpeg_start_compress; we want to let the | ||||
|  * application write COM markers etc. between jpeg_start_compress and the | ||||
|  * jpeg_write_scanlines loop. | ||||
|  * In multi-pass processing, this routine is not used. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| pass_startup (j_compress_ptr cinfo) | ||||
| { | ||||
|   cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ | ||||
| 
 | ||||
|   (*cinfo->marker->write_frame_header) (cinfo); | ||||
|   (*cinfo->marker->write_scan_header) (cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up at end of pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| finish_pass_master (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
| 
 | ||||
|   /* The entropy coder always needs an end-of-pass call,
 | ||||
|    * either to analyze statistics or to flush its output buffer. | ||||
|    */ | ||||
|   (*cinfo->entropy->finish_pass) (cinfo); | ||||
| 
 | ||||
|   /* Update state for next pass */ | ||||
|   switch (master->pass_type) { | ||||
|   case main_pass: | ||||
|     /* next pass is either output of scan 0 (after optimization)
 | ||||
|      * or output of scan 1 (if no optimization). | ||||
|      */ | ||||
|     master->pass_type = output_pass; | ||||
|     if (! cinfo->optimize_coding) | ||||
|       master->scan_number++; | ||||
|     break; | ||||
|   case huff_opt_pass: | ||||
|     /* next pass is always output of current scan */ | ||||
|     master->pass_type = output_pass; | ||||
|     break; | ||||
|   case output_pass: | ||||
|     /* next pass is either optimization or output of next scan */ | ||||
|     if (cinfo->optimize_coding) | ||||
|       master->pass_type = huff_opt_pass; | ||||
|     master->scan_number++; | ||||
|     break; | ||||
|   } | ||||
| 
 | ||||
|   master->pass_number++; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize master compression control. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) | ||||
| { | ||||
|   my_master_ptr master; | ||||
| 
 | ||||
|   master = (my_master_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master)); | ||||
|   cinfo->master = &master->pub; | ||||
|   master->pub.prepare_for_pass = prepare_for_pass; | ||||
|   master->pub.pass_startup = pass_startup; | ||||
|   master->pub.finish_pass = finish_pass_master; | ||||
|   master->pub.is_last_pass = FALSE; | ||||
| 
 | ||||
|   /* Validate parameters, determine derived values */ | ||||
|   initial_setup(cinfo); | ||||
| 
 | ||||
|   if (cinfo->scan_info != NULL) { | ||||
| #ifdef C_MULTISCAN_FILES_SUPPORTED | ||||
|     validate_script(cinfo); | ||||
|     if (cinfo->block_size < DCTSIZE) | ||||
|       reduce_script(cinfo); | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|   } else { | ||||
|     cinfo->progressive_mode = FALSE; | ||||
|     cinfo->num_scans = 1; | ||||
|   } | ||||
| 
 | ||||
|   if (cinfo->optimize_coding) | ||||
|     cinfo->arith_code = FALSE; /* disable arithmetic coding */ | ||||
|   else if (! cinfo->arith_code && | ||||
| 	   (cinfo->progressive_mode || | ||||
| 	    (cinfo->block_size > 1 && cinfo->block_size < DCTSIZE))) | ||||
|     /* TEMPORARY HACK ??? */ | ||||
|     /* assume default tables no good for progressive or reduced AC mode */ | ||||
|     cinfo->optimize_coding = TRUE; /* force Huffman optimization */ | ||||
| 
 | ||||
|   /* Initialize my private state */ | ||||
|   if (transcode_only) { | ||||
|     /* no main pass in transcoding */ | ||||
|     if (cinfo->optimize_coding) | ||||
|       master->pass_type = huff_opt_pass; | ||||
|     else | ||||
|       master->pass_type = output_pass; | ||||
|   } else { | ||||
|     /* for normal compression, first pass is always this type: */ | ||||
|     master->pass_type = main_pass; | ||||
|   } | ||||
|   master->scan_number = 0; | ||||
|   master->pass_number = 0; | ||||
|   if (cinfo->optimize_coding) | ||||
|     master->total_passes = cinfo->num_scans * 2; | ||||
|   else | ||||
|     master->total_passes = cinfo->num_scans; | ||||
| } | ||||
							
								
								
									
										244
									
								
								dep/libjpeg/src/jcomapi.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										244
									
								
								dep/libjpeg/src/jcomapi.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,244 @@ | |||
| /*
 | ||||
|  * jcomapi.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1997, Thomas G. Lane. | ||||
|  * Modified 2019 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains application interface routines that are used for both | ||||
|  * compression and decompression. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Abort processing of a JPEG compression or decompression operation, | ||||
|  * but don't destroy the object itself. | ||||
|  * | ||||
|  * For this, we merely clean up all the nonpermanent memory pools. | ||||
|  * Note that temp files (virtual arrays) are not allowed to belong to | ||||
|  * the permanent pool, so we will be able to close all temp files here. | ||||
|  * Closing a data source or destination, if necessary, is the application's | ||||
|  * responsibility. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_abort (j_common_ptr cinfo) | ||||
| { | ||||
|   int pool; | ||||
| 
 | ||||
|   /* Do nothing if called on a not-initialized or destroyed JPEG object. */ | ||||
|   if (cinfo->mem == NULL) | ||||
|     return; | ||||
| 
 | ||||
|   /* Releasing pools in reverse order might help avoid fragmentation
 | ||||
|    * with some (brain-damaged) malloc libraries. | ||||
|    */ | ||||
|   for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { | ||||
|     (*cinfo->mem->free_pool) (cinfo, pool); | ||||
|   } | ||||
| 
 | ||||
|   /* Reset overall state for possible reuse of object */ | ||||
|   if (cinfo->is_decompressor) { | ||||
|     cinfo->global_state = DSTATE_START; | ||||
|     /* Try to keep application from accessing now-deleted marker list.
 | ||||
|      * A bit kludgy to do it here, but this is the most central place. | ||||
|      */ | ||||
|     ((j_decompress_ptr) cinfo)->marker_list = NULL; | ||||
|   } else { | ||||
|     cinfo->global_state = CSTATE_START; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Destruction of a JPEG object. | ||||
|  * | ||||
|  * Everything gets deallocated except the master jpeg_compress_struct itself | ||||
|  * and the error manager struct.  Both of these are supplied by the application | ||||
|  * and must be freed, if necessary, by the application.  (Often they are on | ||||
|  * the stack and so don't need to be freed anyway.) | ||||
|  * Closing a data source or destination, if necessary, is the application's | ||||
|  * responsibility. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_destroy (j_common_ptr cinfo) | ||||
| { | ||||
|   /* We need only tell the memory manager to release everything. */ | ||||
|   /* NB: mem pointer is NULL if memory mgr failed to initialize. */ | ||||
|   if (cinfo->mem != NULL) | ||||
|     (*cinfo->mem->self_destruct) (cinfo); | ||||
|   cinfo->mem = NULL;		/* be safe if jpeg_destroy is called twice */ | ||||
|   cinfo->global_state = 0;	/* mark it destroyed */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convenience routines for allocating quantization and Huffman tables. | ||||
|  * (Would jutils.c be a more reasonable place to put these?) | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(JQUANT_TBL *) | ||||
| jpeg_alloc_quant_table (j_common_ptr cinfo) | ||||
| { | ||||
|   JQUANT_TBL *tbl; | ||||
| 
 | ||||
|   tbl = (JQUANT_TBL *) | ||||
|     (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL)); | ||||
|   tbl->sent_table = FALSE;	/* make sure this is false in any new table */ | ||||
|   return tbl; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(JHUFF_TBL *) | ||||
| jpeg_alloc_huff_table (j_common_ptr cinfo) | ||||
| { | ||||
|   JHUFF_TBL *tbl; | ||||
| 
 | ||||
|   tbl = (JHUFF_TBL *) | ||||
|     (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL)); | ||||
|   tbl->sent_table = FALSE;	/* make sure this is false in any new table */ | ||||
|   return tbl; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Set up the standard Huffman tables (cf. JPEG standard section K.3). | ||||
|  * IMPORTANT: these are only valid for 8-bit data precision! | ||||
|  * (Would jutils.c be a more reasonable place to put this?) | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(JHUFF_TBL *) | ||||
| jpeg_std_huff_table (j_common_ptr cinfo, boolean isDC, int tblno) | ||||
| { | ||||
|   JHUFF_TBL **htblptr, *htbl; | ||||
|   const UINT8 *bits, *val; | ||||
|   int nsymbols, len; | ||||
| 
 | ||||
|   static const UINT8 bits_dc_luminance[17] = | ||||
|     { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; | ||||
|   static const UINT8 val_dc_luminance[] = | ||||
|     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; | ||||
| 
 | ||||
|   static const UINT8 bits_dc_chrominance[17] = | ||||
|     { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; | ||||
|   static const UINT8 val_dc_chrominance[] = | ||||
|     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; | ||||
| 
 | ||||
|   static const UINT8 bits_ac_luminance[17] = | ||||
|     { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; | ||||
|   static const UINT8 val_ac_luminance[] = | ||||
|     { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, | ||||
|       0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, | ||||
|       0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, | ||||
|       0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, | ||||
|       0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, | ||||
|       0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, | ||||
|       0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, | ||||
|       0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, | ||||
|       0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, | ||||
|       0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, | ||||
|       0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, | ||||
|       0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, | ||||
|       0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, | ||||
|       0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | ||||
|       0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, | ||||
|       0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, | ||||
|       0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, | ||||
|       0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, | ||||
|       0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, | ||||
|       0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | ||||
|       0xf9, 0xfa }; | ||||
| 
 | ||||
|   static const UINT8 bits_ac_chrominance[17] = | ||||
|     { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; | ||||
|   static const UINT8 val_ac_chrominance[] = | ||||
|     { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, | ||||
|       0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, | ||||
|       0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, | ||||
|       0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, | ||||
|       0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, | ||||
|       0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, | ||||
|       0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, | ||||
|       0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, | ||||
|       0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, | ||||
|       0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, | ||||
|       0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, | ||||
|       0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | ||||
|       0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, | ||||
|       0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, | ||||
|       0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, | ||||
|       0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, | ||||
|       0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, | ||||
|       0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, | ||||
|       0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, | ||||
|       0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | ||||
|       0xf9, 0xfa }; | ||||
| 
 | ||||
|   if (cinfo->is_decompressor) { | ||||
|     if (isDC) | ||||
|       htblptr = ((j_decompress_ptr) cinfo)->dc_huff_tbl_ptrs; | ||||
|     else | ||||
|       htblptr = ((j_decompress_ptr) cinfo)->ac_huff_tbl_ptrs; | ||||
|   } else { | ||||
|     if (isDC) | ||||
|       htblptr = ((j_compress_ptr) cinfo)->dc_huff_tbl_ptrs; | ||||
|     else | ||||
|       htblptr = ((j_compress_ptr) cinfo)->ac_huff_tbl_ptrs; | ||||
|   } | ||||
| 
 | ||||
|   switch (tblno) { | ||||
|   case 0: | ||||
|     if (isDC) { | ||||
|       bits = bits_dc_luminance; | ||||
|       val = val_dc_luminance; | ||||
|     } else { | ||||
|       bits = bits_ac_luminance; | ||||
|       val = val_ac_luminance; | ||||
|     } | ||||
|     break; | ||||
|   case 1: | ||||
|     if (isDC) { | ||||
|       bits = bits_dc_chrominance; | ||||
|       val = val_dc_chrominance; | ||||
|     } else { | ||||
|       bits = bits_ac_chrominance; | ||||
|       val = val_ac_chrominance; | ||||
|     } | ||||
|     break; | ||||
|   default: | ||||
|     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | ||||
|     return NULL; /* avoid compiler warnings for uninitialized variables */ | ||||
|   } | ||||
| 
 | ||||
|   if (htblptr[tblno] == NULL) | ||||
|     htblptr[tblno] = jpeg_alloc_huff_table(cinfo); | ||||
| 
 | ||||
|   htbl = htblptr[tblno]; | ||||
| 
 | ||||
|   /* Copy the number-of-symbols-of-each-code-length counts */ | ||||
|   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); | ||||
| 
 | ||||
|   /* Validate the counts.  We do this here mainly so we can copy the right
 | ||||
|    * number of symbols from the val[] array, without risking marching off | ||||
|    * the end of memory.  jxhuff.c will do a more thorough test later. | ||||
|    */ | ||||
|   nsymbols = 0; | ||||
|   for (len = 1; len <= 16; len++) | ||||
|     nsymbols += bits[len]; | ||||
|   if (nsymbols > 256) | ||||
|     ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | ||||
| 
 | ||||
|   if (nsymbols > 0) | ||||
|     MEMCOPY(htbl->huffval, val, nsymbols * SIZEOF(UINT8)); | ||||
| 
 | ||||
|   /* Initialize sent_table FALSE so table will be written to JPEG file. */ | ||||
|   htbl->sent_table = FALSE; | ||||
| 
 | ||||
|   return htbl; | ||||
| } | ||||
							
								
								
									
										591
									
								
								dep/libjpeg/src/jcparam.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										591
									
								
								dep/libjpeg/src/jcparam.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,591 @@ | |||
| /*
 | ||||
|  * jcparam.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1998, Thomas G. Lane. | ||||
|  * Modified 2003-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains optional default-setting code for the JPEG compressor. | ||||
|  * Applications do not have to use this file, but those that don't use it | ||||
|  * must know a lot more about the innards of the JPEG code. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Quantization table setup routines | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, | ||||
| 		      const unsigned int *basic_table, | ||||
| 		      int scale_factor, boolean force_baseline) | ||||
| /* Define a quantization table equal to the basic_table times
 | ||||
|  * a scale factor (given as a percentage). | ||||
|  * If force_baseline is TRUE, the computed quantization table entries | ||||
|  * are limited to 1..255 for JPEG baseline compatibility. | ||||
|  */ | ||||
| { | ||||
|   JQUANT_TBL ** qtblptr; | ||||
|   int i; | ||||
|   long temp; | ||||
| 
 | ||||
|   /* Safety check to ensure start_compress not called yet. */ | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) | ||||
|     ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); | ||||
| 
 | ||||
|   qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; | ||||
| 
 | ||||
|   if (*qtblptr == NULL) | ||||
|     *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   for (i = 0; i < DCTSIZE2; i++) { | ||||
|     temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; | ||||
|     /* limit the values to the valid range */ | ||||
|     if (temp <= 0L) temp = 1L; | ||||
|     if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ | ||||
|     if (force_baseline && temp > 255L) | ||||
|       temp = 255L;		/* limit to baseline range if requested */ | ||||
|     (*qtblptr)->quantval[i] = (UINT16) temp; | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize sent_table FALSE so table will be written to JPEG file. */ | ||||
|   (*qtblptr)->sent_table = FALSE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /* These are the sample quantization tables given in JPEG spec section K.1.
 | ||||
|  * NOTE: chrominance DC value is changed from 17 to 16 for lossless support. | ||||
|  * The spec says that the values given produce "good" quality, | ||||
|  * and when divided by 2, "very good" quality. | ||||
|  */ | ||||
| static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { | ||||
|   16,  11,  10,  16,  24,  40,  51,  61, | ||||
|   12,  12,  14,  19,  26,  58,  60,  55, | ||||
|   14,  13,  16,  24,  40,  57,  69,  56, | ||||
|   14,  17,  22,  29,  51,  87,  80,  62, | ||||
|   18,  22,  37,  56,  68, 109, 103,  77, | ||||
|   24,  35,  55,  64,  81, 104, 113,  92, | ||||
|   49,  64,  78,  87, 103, 121, 120, 101, | ||||
|   72,  92,  95,  98, 112, 100, 103,  99 | ||||
| }; | ||||
| static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { | ||||
|   16,  18,  24,  47,  99,  99,  99,  99, | ||||
|   18,  21,  26,  66,  99,  99,  99,  99, | ||||
|   24,  26,  56,  99,  99,  99,  99,  99, | ||||
|   47,  66,  99,  99,  99,  99,  99,  99, | ||||
|   99,  99,  99,  99,  99,  99,  99,  99, | ||||
|   99,  99,  99,  99,  99,  99,  99,  99, | ||||
|   99,  99,  99,  99,  99,  99,  99,  99, | ||||
|   99,  99,  99,  99,  99,  99,  99,  99 | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) | ||||
| /* Set or change the 'quality' (quantization) setting, using default tables
 | ||||
|  * and straight percentage-scaling quality scales. | ||||
|  * This entry point allows different scalings for luminance and chrominance. | ||||
|  */ | ||||
| { | ||||
|   /* Set up two quantization tables using the specified scaling */ | ||||
|   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, | ||||
| 		       cinfo->q_scale_factor[0], force_baseline); | ||||
|   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, | ||||
| 		       cinfo->q_scale_factor[1], force_baseline); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, | ||||
| 			 boolean force_baseline) | ||||
| /* Set or change the 'quality' (quantization) setting, using default tables
 | ||||
|  * and a straight percentage-scaling quality scale.  In most cases it's better | ||||
|  * to use jpeg_set_quality (below); this entry point is provided for | ||||
|  * applications that insist on a linear percentage scaling. | ||||
|  */ | ||||
| { | ||||
|   /* Set up two quantization tables using the specified scaling */ | ||||
|   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, | ||||
| 		       scale_factor, force_baseline); | ||||
|   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, | ||||
| 		       scale_factor, force_baseline); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(int) | ||||
| jpeg_quality_scaling (int quality) | ||||
| /* Convert a user-specified quality rating to a percentage scaling factor
 | ||||
|  * for an underlying quantization table, using our recommended scaling curve. | ||||
|  * The input 'quality' factor should be 0 (terrible) to 100 (very good). | ||||
|  */ | ||||
| { | ||||
|   /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */ | ||||
|   if (quality <= 0) quality = 1; | ||||
|   if (quality > 100) quality = 100; | ||||
| 
 | ||||
|   /* The basic table is used as-is (scaling 100) for a quality of 50.
 | ||||
|    * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; | ||||
|    * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table | ||||
|    * to make all the table entries 1 (hence, minimum quantization loss). | ||||
|    * Qualities 1..50 are converted to scaling percentage 5000/Q. | ||||
|    */ | ||||
|   if (quality < 50) | ||||
|     quality = 5000 / quality; | ||||
|   else | ||||
|     quality = 200 - quality*2; | ||||
| 
 | ||||
|   return quality; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) | ||||
| /* Set or change the 'quality' (quantization) setting, using default tables.
 | ||||
|  * This is the standard quality-adjusting entry point for typical user | ||||
|  * interfaces; only those who want detailed control over quantization tables | ||||
|  * would use the preceding routines directly. | ||||
|  */ | ||||
| { | ||||
|   /* Convert user 0-100 rating to percentage scaling */ | ||||
|   quality = jpeg_quality_scaling(quality); | ||||
| 
 | ||||
|   /* Set up standard quality tables */ | ||||
|   jpeg_set_linear_quality(cinfo, quality, force_baseline); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Reset standard Huffman tables | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| std_huff_tables (j_compress_ptr cinfo) | ||||
| { | ||||
|   if (cinfo->dc_huff_tbl_ptrs[0] != NULL) | ||||
|     (void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 0); | ||||
| 
 | ||||
|   if (cinfo->ac_huff_tbl_ptrs[0] != NULL) | ||||
|     (void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 0); | ||||
| 
 | ||||
|   if (cinfo->dc_huff_tbl_ptrs[1] != NULL) | ||||
|     (void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 1); | ||||
| 
 | ||||
|   if (cinfo->ac_huff_tbl_ptrs[1] != NULL) | ||||
|     (void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 1); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Default parameter setup for compression. | ||||
|  * | ||||
|  * Applications that don't choose to use this routine must do their | ||||
|  * own setup of all these parameters.  Alternately, you can call this | ||||
|  * to establish defaults and then alter parameters selectively.  This | ||||
|  * is the recommended approach since, if we add any new parameters, | ||||
|  * your code will still work (they'll be set to reasonable defaults). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_set_defaults (j_compress_ptr cinfo) | ||||
| { | ||||
|   int i; | ||||
| 
 | ||||
|   /* Safety check to ensure start_compress not called yet. */ | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   /* Allocate comp_info array large enough for maximum component count.
 | ||||
|    * Array is made permanent in case application wants to compress | ||||
|    * multiple images at same param settings. | ||||
|    */ | ||||
|   if (cinfo->comp_info == NULL) | ||||
|     cinfo->comp_info = (jpeg_component_info *) | ||||
|       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | ||||
| 				  MAX_COMPONENTS * SIZEOF(jpeg_component_info)); | ||||
| 
 | ||||
|   /* Initialize everything not dependent on the color space */ | ||||
| 
 | ||||
|   cinfo->scale_num = 1;		/* 1:1 scaling */ | ||||
|   cinfo->scale_denom = 1; | ||||
|   cinfo->data_precision = BITS_IN_JSAMPLE; | ||||
|   /* Set up two quantization tables using default quality of 75 */ | ||||
|   jpeg_set_quality(cinfo, 75, TRUE); | ||||
|   /* Reset standard Huffman tables */ | ||||
|   std_huff_tables(cinfo); | ||||
| 
 | ||||
|   /* Initialize default arithmetic coding conditioning */ | ||||
|   for (i = 0; i < NUM_ARITH_TBLS; i++) { | ||||
|     cinfo->arith_dc_L[i] = 0; | ||||
|     cinfo->arith_dc_U[i] = 1; | ||||
|     cinfo->arith_ac_K[i] = 5; | ||||
|   } | ||||
| 
 | ||||
|   /* Default is no multiple-scan output */ | ||||
|   cinfo->scan_info = NULL; | ||||
|   cinfo->num_scans = 0; | ||||
| 
 | ||||
|   /* Expect normal source image, not raw downsampled data */ | ||||
|   cinfo->raw_data_in = FALSE; | ||||
| 
 | ||||
|   /* The standard Huffman tables are only valid for 8-bit data precision.
 | ||||
|    * If the precision is higher, use arithmetic coding. | ||||
|    * (Alternatively, using Huffman coding would be possible with forcing | ||||
|    * optimization on so that usable tables will be computed, or by | ||||
|    * supplying default tables that are valid for the desired precision.) | ||||
|    * Otherwise, use Huffman coding by default. | ||||
|    */ | ||||
|   cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE; | ||||
| 
 | ||||
|   /* By default, don't do extra passes to optimize entropy coding */ | ||||
|   cinfo->optimize_coding = FALSE; | ||||
| 
 | ||||
|   /* By default, use the simpler non-cosited sampling alignment */ | ||||
|   cinfo->CCIR601_sampling = FALSE; | ||||
| 
 | ||||
|   /* By default, apply fancy downsampling */ | ||||
|   cinfo->do_fancy_downsampling = TRUE; | ||||
| 
 | ||||
|   /* No input smoothing */ | ||||
|   cinfo->smoothing_factor = 0; | ||||
| 
 | ||||
|   /* DCT algorithm preference */ | ||||
|   cinfo->dct_method = JDCT_DEFAULT; | ||||
| 
 | ||||
|   /* No restart markers */ | ||||
|   cinfo->restart_interval = 0; | ||||
|   cinfo->restart_in_rows = 0; | ||||
| 
 | ||||
|   /* Fill in default JFIF marker parameters.  Note that whether the marker
 | ||||
|    * will actually be written is determined by jpeg_set_colorspace. | ||||
|    * | ||||
|    * By default, the library emits JFIF version code 1.01. | ||||
|    * An application that wants to emit JFIF 1.02 extension markers should set | ||||
|    * JFIF_minor_version to 2.  We could probably get away with just defaulting | ||||
|    * to 1.02, but there may still be some decoders in use that will complain | ||||
|    * about that; saying 1.01 should minimize compatibility problems. | ||||
|    * | ||||
|    * For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be | ||||
|    * overridden by jpeg_set_colorspace and set to 2. | ||||
|    */ | ||||
|   cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ | ||||
|   cinfo->JFIF_minor_version = 1; | ||||
|   cinfo->density_unit = 0;	/* Pixel size is unknown by default */ | ||||
|   cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */ | ||||
|   cinfo->Y_density = 1; | ||||
| 
 | ||||
|   /* No color transform */ | ||||
|   cinfo->color_transform = JCT_NONE; | ||||
| 
 | ||||
|   /* Choose JPEG colorspace based on input space, set defaults accordingly */ | ||||
| 
 | ||||
|   jpeg_default_colorspace(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Select an appropriate JPEG colorspace for in_color_space. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_default_colorspace (j_compress_ptr cinfo) | ||||
| { | ||||
|   switch (cinfo->in_color_space) { | ||||
|   case JCS_UNKNOWN: | ||||
|     jpeg_set_colorspace(cinfo, JCS_UNKNOWN); | ||||
|     break; | ||||
|   case JCS_GRAYSCALE: | ||||
|     jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); | ||||
|     break; | ||||
|   case JCS_RGB: | ||||
|     jpeg_set_colorspace(cinfo, JCS_YCbCr); | ||||
|     break; | ||||
|   case JCS_YCbCr: | ||||
|     jpeg_set_colorspace(cinfo, JCS_YCbCr); | ||||
|     break; | ||||
|   case JCS_CMYK: | ||||
|     jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ | ||||
|     break; | ||||
|   case JCS_YCCK: | ||||
|     jpeg_set_colorspace(cinfo, JCS_YCCK); | ||||
|     break; | ||||
|   case JCS_BG_RGB: | ||||
|     /* No translation for now -- conversion to BG_YCC not yet supportet */ | ||||
|     jpeg_set_colorspace(cinfo, JCS_BG_RGB); | ||||
|     break; | ||||
|   case JCS_BG_YCC: | ||||
|     jpeg_set_colorspace(cinfo, JCS_BG_YCC); | ||||
|     break; | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Set the JPEG colorspace, and choose colorspace-dependent default values. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) | ||||
| { | ||||
|   jpeg_component_info * compptr; | ||||
|   int ci; | ||||
| 
 | ||||
| #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \ | ||||
|   (compptr = &cinfo->comp_info[index], \ | ||||
|    compptr->component_id = (id), \ | ||||
|    compptr->h_samp_factor = (hsamp), \ | ||||
|    compptr->v_samp_factor = (vsamp), \ | ||||
|    compptr->quant_tbl_no = (quant), \ | ||||
|    compptr->dc_tbl_no = (dctbl), \ | ||||
|    compptr->ac_tbl_no = (actbl) ) | ||||
| 
 | ||||
|   /* Safety check to ensure start_compress not called yet. */ | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
 | ||||
|    * tables 1 for chrominance components. | ||||
|    */ | ||||
| 
 | ||||
|   cinfo->jpeg_color_space = colorspace; | ||||
| 
 | ||||
|   cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ | ||||
|   cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ | ||||
| 
 | ||||
|   switch (colorspace) { | ||||
|   case JCS_UNKNOWN: | ||||
|     cinfo->num_components = cinfo->input_components; | ||||
|     if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) | ||||
|       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | ||||
| 	       MAX_COMPONENTS); | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
|       SET_COMP(ci, ci, 1,1, 0, 0,0); | ||||
|     } | ||||
|     break; | ||||
|   case JCS_GRAYSCALE: | ||||
|     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | ||||
|     cinfo->num_components = 1; | ||||
|     /* JFIF specifies component ID 1 */ | ||||
|     SET_COMP(0, 0x01, 1,1, 0, 0,0); | ||||
|     break; | ||||
|   case JCS_RGB: | ||||
|     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ | ||||
|     cinfo->num_components = 3; | ||||
|     SET_COMP(0, 0x52 /* 'R' */, 1,1, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); | ||||
|     SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); | ||||
|     SET_COMP(2, 0x42 /* 'B' */, 1,1, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); | ||||
|     break; | ||||
|   case JCS_YCbCr: | ||||
|     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | ||||
|     cinfo->num_components = 3; | ||||
|     /* JFIF specifies component IDs 1,2,3 */ | ||||
|     /* We default to 2x2 subsamples of chrominance */ | ||||
|     SET_COMP(0, 0x01, 2,2, 0, 0,0); | ||||
|     SET_COMP(1, 0x02, 1,1, 1, 1,1); | ||||
|     SET_COMP(2, 0x03, 1,1, 1, 1,1); | ||||
|     break; | ||||
|   case JCS_CMYK: | ||||
|     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ | ||||
|     cinfo->num_components = 4; | ||||
|     SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); | ||||
|     SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); | ||||
|     SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); | ||||
|     SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); | ||||
|     break; | ||||
|   case JCS_YCCK: | ||||
|     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ | ||||
|     cinfo->num_components = 4; | ||||
|     SET_COMP(0, 0x01, 2,2, 0, 0,0); | ||||
|     SET_COMP(1, 0x02, 1,1, 1, 1,1); | ||||
|     SET_COMP(2, 0x03, 1,1, 1, 1,1); | ||||
|     SET_COMP(3, 0x04, 2,2, 0, 0,0); | ||||
|     break; | ||||
|   case JCS_BG_RGB: | ||||
|     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | ||||
|     cinfo->JFIF_major_version = 2;   /* Set JFIF major version = 2 */ | ||||
|     cinfo->num_components = 3; | ||||
|     /* Add offset 0x20 to the normal R/G/B component IDs */ | ||||
|     SET_COMP(0, 0x72 /* 'r' */, 1,1, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); | ||||
|     SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0); | ||||
|     SET_COMP(2, 0x62 /* 'b' */, 1,1, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0, | ||||
| 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0); | ||||
|     break; | ||||
|   case JCS_BG_YCC: | ||||
|     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | ||||
|     cinfo->JFIF_major_version = 2;   /* Set JFIF major version = 2 */ | ||||
|     cinfo->num_components = 3; | ||||
|     /* Add offset 0x20 to the normal Cb/Cr component IDs */ | ||||
|     /* We default to 2x2 subsamples of chrominance */ | ||||
|     SET_COMP(0, 0x01, 2,2, 0, 0,0); | ||||
|     SET_COMP(1, 0x22, 1,1, 1, 1,1); | ||||
|     SET_COMP(2, 0x23, 1,1, 1, 1,1); | ||||
|     break; | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef C_PROGRESSIVE_SUPPORTED | ||||
| 
 | ||||
| LOCAL(jpeg_scan_info *) | ||||
| fill_a_scan (jpeg_scan_info * scanptr, int ci, | ||||
| 	     int Ss, int Se, int Ah, int Al) | ||||
| /* Support routine: generate one scan for specified component */ | ||||
| { | ||||
|   scanptr->comps_in_scan = 1; | ||||
|   scanptr->component_index[0] = ci; | ||||
|   scanptr->Ss = Ss; | ||||
|   scanptr->Se = Se; | ||||
|   scanptr->Ah = Ah; | ||||
|   scanptr->Al = Al; | ||||
|   scanptr++; | ||||
|   return scanptr; | ||||
| } | ||||
| 
 | ||||
| LOCAL(jpeg_scan_info *) | ||||
| fill_scans (jpeg_scan_info * scanptr, int ncomps, | ||||
| 	    int Ss, int Se, int Ah, int Al) | ||||
| /* Support routine: generate one scan for each component */ | ||||
| { | ||||
|   int ci; | ||||
| 
 | ||||
|   for (ci = 0; ci < ncomps; ci++) { | ||||
|     scanptr->comps_in_scan = 1; | ||||
|     scanptr->component_index[0] = ci; | ||||
|     scanptr->Ss = Ss; | ||||
|     scanptr->Se = Se; | ||||
|     scanptr->Ah = Ah; | ||||
|     scanptr->Al = Al; | ||||
|     scanptr++; | ||||
|   } | ||||
|   return scanptr; | ||||
| } | ||||
| 
 | ||||
| LOCAL(jpeg_scan_info *) | ||||
| fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) | ||||
| /* Support routine: generate interleaved DC scan if possible, else N scans */ | ||||
| { | ||||
|   int ci; | ||||
| 
 | ||||
|   if (ncomps <= MAX_COMPS_IN_SCAN) { | ||||
|     /* Single interleaved DC scan */ | ||||
|     scanptr->comps_in_scan = ncomps; | ||||
|     for (ci = 0; ci < ncomps; ci++) | ||||
|       scanptr->component_index[ci] = ci; | ||||
|     scanptr->Ss = scanptr->Se = 0; | ||||
|     scanptr->Ah = Ah; | ||||
|     scanptr->Al = Al; | ||||
|     scanptr++; | ||||
|   } else { | ||||
|     /* Noninterleaved DC scan for each component */ | ||||
|     scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); | ||||
|   } | ||||
|   return scanptr; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create a recommended progressive-JPEG script. | ||||
|  * cinfo->num_components and cinfo->jpeg_color_space must be correct. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_simple_progression (j_compress_ptr cinfo) | ||||
| { | ||||
|   int ncomps = cinfo->num_components; | ||||
|   int nscans; | ||||
|   jpeg_scan_info * scanptr; | ||||
| 
 | ||||
|   /* Safety check to ensure start_compress not called yet. */ | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   /* Figure space needed for script.  Calculation must match code below! */ | ||||
|   if (ncomps == 3 && | ||||
|       (cinfo->jpeg_color_space == JCS_YCbCr || | ||||
|        cinfo->jpeg_color_space == JCS_BG_YCC)) { | ||||
|     /* Custom script for YCC color images. */ | ||||
|     nscans = 10; | ||||
|   } else { | ||||
|     /* All-purpose script for other color spaces. */ | ||||
|     if (ncomps > MAX_COMPS_IN_SCAN) | ||||
|       nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */ | ||||
|     else | ||||
|       nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */ | ||||
|   } | ||||
| 
 | ||||
|   /* Allocate space for script.
 | ||||
|    * We need to put it in the permanent pool in case the application performs | ||||
|    * multiple compressions without changing the settings.  To avoid a memory | ||||
|    * leak if jpeg_simple_progression is called repeatedly for the same JPEG | ||||
|    * object, we try to re-use previously allocated space, and we allocate | ||||
|    * enough space to handle YCC even if initially asked for grayscale. | ||||
|    */ | ||||
|   if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { | ||||
|     cinfo->script_space_size = MAX(nscans, 10); | ||||
|     cinfo->script_space = (jpeg_scan_info *) | ||||
|       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | ||||
| 			cinfo->script_space_size * SIZEOF(jpeg_scan_info)); | ||||
|   } | ||||
|   scanptr = cinfo->script_space; | ||||
|   cinfo->scan_info = scanptr; | ||||
|   cinfo->num_scans = nscans; | ||||
| 
 | ||||
|   if (ncomps == 3 && | ||||
|       (cinfo->jpeg_color_space == JCS_YCbCr || | ||||
|        cinfo->jpeg_color_space == JCS_BG_YCC)) { | ||||
|     /* Custom script for YCC color images. */ | ||||
|     /* Initial DC scan */ | ||||
|     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); | ||||
|     /* Initial AC scan: get some luma data out in a hurry */ | ||||
|     scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); | ||||
|     /* Chroma data is too small to be worth expending many scans on */ | ||||
|     scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); | ||||
|     scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); | ||||
|     /* Complete spectral selection for luma AC */ | ||||
|     scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); | ||||
|     /* Refine next bit of luma AC */ | ||||
|     scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); | ||||
|     /* Finish DC successive approximation */ | ||||
|     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); | ||||
|     /* Finish AC successive approximation */ | ||||
|     scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); | ||||
|     scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); | ||||
|     /* Luma bottom bit comes last since it's usually largest scan */ | ||||
|     scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); | ||||
|   } else { | ||||
|     /* All-purpose script for other color spaces. */ | ||||
|     /* Successive approximation first pass */ | ||||
|     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); | ||||
|     scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); | ||||
|     scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); | ||||
|     /* Successive approximation second pass */ | ||||
|     scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); | ||||
|     /* Successive approximation final pass */ | ||||
|     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); | ||||
|     scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* C_PROGRESSIVE_SUPPORTED */ | ||||
							
								
								
									
										358
									
								
								dep/libjpeg/src/jcprepct.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										358
									
								
								dep/libjpeg/src/jcprepct.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,358 @@ | |||
| /*
 | ||||
|  * jcprepct.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2003-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the compression preprocessing controller. | ||||
|  * This controller manages the color conversion, downsampling, | ||||
|  * and edge expansion steps. | ||||
|  * | ||||
|  * Most of the complexity here is associated with buffering input rows | ||||
|  * as required by the downsampler.  See the comments at the head of | ||||
|  * jcsample.c for the downsampler's needs. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* At present, jcsample.c can request context rows only for smoothing.
 | ||||
|  * In the future, we might also need context rows for CCIR601 sampling | ||||
|  * or other more-complex downsampling procedures.  The code to support | ||||
|  * context rows should be compiled only if needed. | ||||
|  */ | ||||
| #ifdef INPUT_SMOOTHING_SUPPORTED | ||||
| #define CONTEXT_ROWS_SUPPORTED | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * For the simple (no-context-row) case, we just need to buffer one | ||||
|  * row group's worth of pixels for the downsampling step.  At the bottom of | ||||
|  * the image, we pad to a full row group by replicating the last pixel row. | ||||
|  * The downsampler's last output row is then replicated if needed to pad | ||||
|  * out to a full iMCU row. | ||||
|  * | ||||
|  * When providing context rows, we must buffer three row groups' worth of | ||||
|  * pixels.  Three row groups are physically allocated, but the row pointer | ||||
|  * arrays are made five row groups high, with the extra pointers above and | ||||
|  * below "wrapping around" to point to the last and first real row groups. | ||||
|  * This allows the downsampler to access the proper context rows. | ||||
|  * At the top and bottom of the image, we create dummy context rows by | ||||
|  * copying the first or last real pixel row.  This copying could be avoided | ||||
|  * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the | ||||
|  * trouble on the compression side. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_c_prep_controller pub; /* public fields */ | ||||
| 
 | ||||
|   /* Downsampling input buffer.  This buffer holds color-converted data
 | ||||
|    * until we have enough to do a downsample step. | ||||
|    */ | ||||
|   JSAMPARRAY color_buf[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   JDIMENSION rows_to_go;	/* counts rows remaining in source image */ | ||||
|   int next_buf_row;		/* index of next row to store in color_buf */ | ||||
| 
 | ||||
| #ifdef CONTEXT_ROWS_SUPPORTED	/* only needed for context case */ | ||||
|   int this_row_group;		/* starting row index of group to process */ | ||||
|   int next_buf_stop;		/* downsample when we reach this index */ | ||||
| #endif | ||||
| } my_prep_controller; | ||||
| 
 | ||||
| typedef my_prep_controller * my_prep_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | ||||
| { | ||||
|   my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | ||||
| 
 | ||||
|   if (pass_mode != JBUF_PASS_THRU) | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| 
 | ||||
|   /* Initialize total-height counter for detecting bottom of image */ | ||||
|   prep->rows_to_go = cinfo->image_height; | ||||
|   /* Mark the conversion buffer empty */ | ||||
|   prep->next_buf_row = 0; | ||||
| #ifdef CONTEXT_ROWS_SUPPORTED | ||||
|   /* Preset additional state variables for context mode.
 | ||||
|    * These aren't used in non-context mode, so we needn't test which mode. | ||||
|    */ | ||||
|   prep->this_row_group = 0; | ||||
|   /* Set next_buf_stop to stop after two row groups have been read in. */ | ||||
|   prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Expand an image vertically from height input_rows to height output_rows, | ||||
|  * by duplicating the bottom row. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, | ||||
| 		    int input_rows, int output_rows) | ||||
| { | ||||
|   register int row; | ||||
| 
 | ||||
|   for (row = input_rows; row < output_rows; row++) { | ||||
|     jcopy_sample_rows(image_data + input_rows - 1, | ||||
| 		      image_data + row, | ||||
| 		      1, num_cols); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the simple no-context case. | ||||
|  * | ||||
|  * Preprocessor output data is counted in "row groups".  A row group | ||||
|  * is defined to be v_samp_factor sample rows of each component. | ||||
|  * Downsampling will produce this much data from each max_v_samp_factor | ||||
|  * input rows. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| pre_process_data (j_compress_ptr cinfo, | ||||
| 		  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | ||||
| 		  JDIMENSION in_rows_avail, | ||||
| 		  JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, | ||||
| 		  JDIMENSION out_row_groups_avail) | ||||
| { | ||||
|   my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | ||||
|   int numrows, ci; | ||||
|   JDIMENSION inrows; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   while (*in_row_ctr < in_rows_avail && | ||||
| 	 *out_row_group_ctr < out_row_groups_avail) { | ||||
|     /* Do color conversion to fill the conversion buffer. */ | ||||
|     inrows = in_rows_avail - *in_row_ctr; | ||||
|     numrows = cinfo->max_v_samp_factor - prep->next_buf_row; | ||||
|     numrows = (int) MIN((JDIMENSION) numrows, inrows); | ||||
|     (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, | ||||
| 				       prep->color_buf, | ||||
| 				       (JDIMENSION) prep->next_buf_row, | ||||
| 				       numrows); | ||||
|     *in_row_ctr += numrows; | ||||
|     prep->next_buf_row += numrows; | ||||
|     prep->rows_to_go -= numrows; | ||||
|     /* If at bottom of image, pad to fill the conversion buffer. */ | ||||
|     if (prep->rows_to_go == 0 && | ||||
| 	prep->next_buf_row < cinfo->max_v_samp_factor) { | ||||
|       for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
| 	expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, | ||||
| 			   prep->next_buf_row, cinfo->max_v_samp_factor); | ||||
|       } | ||||
|       prep->next_buf_row = cinfo->max_v_samp_factor; | ||||
|     } | ||||
|     /* If we've filled the conversion buffer, empty it. */ | ||||
|     if (prep->next_buf_row == cinfo->max_v_samp_factor) { | ||||
|       (*cinfo->downsample->downsample) (cinfo, | ||||
| 					prep->color_buf, (JDIMENSION) 0, | ||||
| 					output_buf, *out_row_group_ctr); | ||||
|       prep->next_buf_row = 0; | ||||
|       (*out_row_group_ctr)++; | ||||
|     } | ||||
|     /* If at bottom of image, pad the output to a full iMCU height.
 | ||||
|      * Note we assume the caller is providing a one-iMCU-height output buffer! | ||||
|      */ | ||||
|     if (prep->rows_to_go == 0 && | ||||
| 	*out_row_group_ctr < out_row_groups_avail) { | ||||
|       for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	   ci++, compptr++) { | ||||
| 	numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
| 		  cinfo->min_DCT_v_scaled_size; | ||||
| 	expand_bottom_edge(output_buf[ci], | ||||
| 			   compptr->width_in_blocks * compptr->DCT_h_scaled_size, | ||||
| 			   (int) (*out_row_group_ctr * numrows), | ||||
| 			   (int) (out_row_groups_avail * numrows)); | ||||
|       } | ||||
|       *out_row_group_ctr = out_row_groups_avail; | ||||
|       break;			/* can exit outer loop without test */ | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef CONTEXT_ROWS_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the context case. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| pre_process_context (j_compress_ptr cinfo, | ||||
| 		     JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | ||||
| 		     JDIMENSION in_rows_avail, | ||||
| 		     JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, | ||||
| 		     JDIMENSION out_row_groups_avail) | ||||
| { | ||||
|   my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | ||||
|   int numrows, ci; | ||||
|   int buf_height = cinfo->max_v_samp_factor * 3; | ||||
|   JDIMENSION inrows; | ||||
| 
 | ||||
|   while (*out_row_group_ctr < out_row_groups_avail) { | ||||
|     if (*in_row_ctr < in_rows_avail) { | ||||
|       /* Do color conversion to fill the conversion buffer. */ | ||||
|       inrows = in_rows_avail - *in_row_ctr; | ||||
|       numrows = prep->next_buf_stop - prep->next_buf_row; | ||||
|       numrows = (int) MIN((JDIMENSION) numrows, inrows); | ||||
|       (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, | ||||
| 					 prep->color_buf, | ||||
| 					 (JDIMENSION) prep->next_buf_row, | ||||
| 					 numrows); | ||||
|       /* Pad at top of image, if first time through */ | ||||
|       if (prep->rows_to_go == cinfo->image_height) { | ||||
| 	for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
| 	  int row; | ||||
| 	  for (row = 1; row <= cinfo->max_v_samp_factor; row++) { | ||||
| 	    jcopy_sample_rows(prep->color_buf[ci], | ||||
| 			      prep->color_buf[ci] - row, | ||||
| 			      1, cinfo->image_width); | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       *in_row_ctr += numrows; | ||||
|       prep->next_buf_row += numrows; | ||||
|       prep->rows_to_go -= numrows; | ||||
|     } else { | ||||
|       /* Return for more data, unless we are at the bottom of the image. */ | ||||
|       if (prep->rows_to_go != 0) | ||||
| 	break; | ||||
|       /* When at bottom of image, pad to fill the conversion buffer. */ | ||||
|       if (prep->next_buf_row < prep->next_buf_stop) { | ||||
| 	for (ci = 0; ci < cinfo->num_components; ci++) { | ||||
| 	  expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, | ||||
| 			     prep->next_buf_row, prep->next_buf_stop); | ||||
| 	} | ||||
| 	prep->next_buf_row = prep->next_buf_stop; | ||||
|       } | ||||
|     } | ||||
|     /* If we've gotten enough data, downsample a row group. */ | ||||
|     if (prep->next_buf_row == prep->next_buf_stop) { | ||||
|       (*cinfo->downsample->downsample) (cinfo, | ||||
| 					prep->color_buf, | ||||
| 					(JDIMENSION) prep->this_row_group, | ||||
| 					output_buf, *out_row_group_ctr); | ||||
|       (*out_row_group_ctr)++; | ||||
|       /* Advance pointers with wraparound as necessary. */ | ||||
|       prep->this_row_group += cinfo->max_v_samp_factor; | ||||
|       if (prep->this_row_group >= buf_height) | ||||
| 	prep->this_row_group = 0; | ||||
|       if (prep->next_buf_row >= buf_height) | ||||
| 	prep->next_buf_row = 0; | ||||
|       prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create the wrapped-around downsampling input buffer needed for context mode. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| create_context_buffer (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | ||||
|   int rgroup_height = cinfo->max_v_samp_factor; | ||||
|   int ci, i; | ||||
|   jpeg_component_info * compptr; | ||||
|   JSAMPARRAY true_buffer, fake_buffer; | ||||
| 
 | ||||
|   /* Grab enough space for fake row pointers for all the components;
 | ||||
|    * we need five row groups' worth of pointers for each component. | ||||
|    */ | ||||
|   fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|      (cinfo->num_components * 5 * rgroup_height) * SIZEOF(JSAMPROW)); | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Allocate the actual buffer space (3 row groups) for this component.
 | ||||
|      * We make the buffer wide enough to allow the downsampler to edge-expand | ||||
|      * horizontally within the buffer, if it so chooses. | ||||
|      */ | ||||
|     true_buffer = (*cinfo->mem->alloc_sarray) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        (JDIMENSION) (((long) compptr->width_in_blocks * | ||||
| 		      cinfo->min_DCT_h_scaled_size * | ||||
| 		      cinfo->max_h_samp_factor) / compptr->h_samp_factor), | ||||
|        (JDIMENSION) (3 * rgroup_height)); | ||||
|     /* Copy true buffer row pointers into the middle of the fake row array */ | ||||
|     MEMCOPY(fake_buffer + rgroup_height, true_buffer, | ||||
| 	    3 * rgroup_height * SIZEOF(JSAMPROW)); | ||||
|     /* Fill in the above and below wraparound pointers */ | ||||
|     for (i = 0; i < rgroup_height; i++) { | ||||
|       fake_buffer[i] = true_buffer[2 * rgroup_height + i]; | ||||
|       fake_buffer[4 * rgroup_height + i] = true_buffer[i]; | ||||
|     } | ||||
|     prep->color_buf[ci] = fake_buffer + rgroup_height; | ||||
|     fake_buffer += 5 * rgroup_height; /* point to space for next component */ | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* CONTEXT_ROWS_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize preprocessing controller. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) | ||||
| { | ||||
|   my_prep_ptr prep; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   if (need_full_buffer)		/* safety check */ | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| 
 | ||||
|   prep = (my_prep_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_prep_controller)); | ||||
|   cinfo->prep = &prep->pub; | ||||
|   prep->pub.start_pass = start_pass_prep; | ||||
| 
 | ||||
|   /* Allocate the color conversion buffer.
 | ||||
|    * We make the buffer wide enough to allow the downsampler to edge-expand | ||||
|    * horizontally within the buffer, if it so chooses. | ||||
|    */ | ||||
|   if (cinfo->downsample->need_context_rows) { | ||||
|     /* Set up to provide context rows */ | ||||
| #ifdef CONTEXT_ROWS_SUPPORTED | ||||
|     prep->pub.pre_process_data = pre_process_context; | ||||
|     create_context_buffer(cinfo); | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|   } else { | ||||
|     /* No context, just make it tall enough for one row group */ | ||||
|     prep->pub.pre_process_data = pre_process_data; | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 	 (JDIMENSION) (((long) compptr->width_in_blocks * | ||||
| 			cinfo->min_DCT_h_scaled_size * | ||||
| 			cinfo->max_h_samp_factor) / compptr->h_samp_factor), | ||||
| 	 (JDIMENSION) cinfo->max_v_samp_factor); | ||||
|     } | ||||
|   } | ||||
| } | ||||
							
								
								
									
										545
									
								
								dep/libjpeg/src/jcsample.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										545
									
								
								dep/libjpeg/src/jcsample.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,545 @@ | |||
| /*
 | ||||
|  * jcsample.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1996, Thomas G. Lane. | ||||
|  * Modified 2003-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains downsampling routines. | ||||
|  * | ||||
|  * Downsampling input data is counted in "row groups".  A row group | ||||
|  * is defined to be max_v_samp_factor pixel rows of each component, | ||||
|  * from which the downsampler produces v_samp_factor sample rows. | ||||
|  * A single row group is processed in each call to the downsampler module. | ||||
|  * | ||||
|  * The downsampler is responsible for edge-expansion of its output data | ||||
|  * to fill an integral number of DCT blocks horizontally.  The source buffer | ||||
|  * may be modified if it is helpful for this purpose (the source buffer is | ||||
|  * allocated wide enough to correspond to the desired output width). | ||||
|  * The caller (the prep controller) is responsible for vertical padding. | ||||
|  * | ||||
|  * The downsampler may request "context rows" by setting need_context_rows | ||||
|  * during startup.  In this case, the input arrays will contain at least | ||||
|  * one row group's worth of pixels above and below the passed-in data; | ||||
|  * the caller will create dummy rows at image top and bottom by replicating | ||||
|  * the first or last real pixel row. | ||||
|  * | ||||
|  * An excellent reference for image resampling is | ||||
|  *   Digital Image Warping, George Wolberg, 1990. | ||||
|  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | ||||
|  * | ||||
|  * The downsampling algorithm used here is a simple average of the source | ||||
|  * pixels covered by the output pixel.  The hi-falutin sampling literature | ||||
|  * refers to this as a "box filter".  In general the characteristics of a box | ||||
|  * filter are not very good, but for the specific cases we normally use (1:1 | ||||
|  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not | ||||
|  * nearly so bad.  If you intend to use other sampling ratios, you'd be well | ||||
|  * advised to improve this code. | ||||
|  * | ||||
|  * A simple input-smoothing capability is provided.  This is mainly intended | ||||
|  * for cleaning up color-dithered GIF input files (if you find it inadequate, | ||||
|  * we suggest using an external filtering program such as pnmconvol).  When | ||||
|  * enabled, each input pixel P is replaced by a weighted sum of itself and its | ||||
|  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF, | ||||
|  * where SF = (smoothing_factor / 1024). | ||||
|  * Currently, smoothing is only supported for 2h2v sampling factors. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Pointer to routine to downsample a single component */ | ||||
| typedef JMETHOD(void, downsample1_ptr, | ||||
| 		(j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JSAMPARRAY input_data, JSAMPARRAY output_data)); | ||||
| 
 | ||||
| /* Private subobject */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_downsampler pub;	/* public fields */ | ||||
| 
 | ||||
|   /* Downsampling method pointers, one per component */ | ||||
|   downsample1_ptr methods[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   /* Height of an output row group for each component. */ | ||||
|   int rowgroup_height[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   /* These arrays save pixel expansion factors so that int_downsample need not
 | ||||
|    * recompute them each time.  They are unused for other downsampling methods. | ||||
|    */ | ||||
|   UINT8 h_expand[MAX_COMPONENTS]; | ||||
|   UINT8 v_expand[MAX_COMPONENTS]; | ||||
| } my_downsampler; | ||||
| 
 | ||||
| typedef my_downsampler * my_downsample_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a downsampling pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_downsample (j_compress_ptr cinfo) | ||||
| { | ||||
|   /* no work for now */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Expand a component horizontally from width input_cols to width output_cols, | ||||
|  * by duplicating the rightmost samples. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| expand_right_edge (JSAMPARRAY image_data, int num_rows, | ||||
| 		   JDIMENSION input_cols, JDIMENSION output_cols) | ||||
| { | ||||
|   register JSAMPROW ptr; | ||||
|   register JSAMPLE pixval; | ||||
|   register int count; | ||||
|   int row; | ||||
|   int numcols = (int) (output_cols - input_cols); | ||||
| 
 | ||||
|   if (numcols > 0) { | ||||
|     for (row = 0; row < num_rows; row++) { | ||||
|       ptr = image_data[row] + input_cols; | ||||
|       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */ | ||||
|       for (count = numcols; count > 0; count--) | ||||
| 	*ptr++ = pixval; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Do downsampling for a whole row group (all components). | ||||
|  * | ||||
|  * In this version we simply downsample each component independently. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| sep_downsample (j_compress_ptr cinfo, | ||||
| 		JSAMPIMAGE input_buf, JDIMENSION in_row_index, | ||||
| 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) | ||||
| { | ||||
|   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
|   JSAMPARRAY in_ptr, out_ptr; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     in_ptr = input_buf[ci] + in_row_index; | ||||
|     out_ptr = output_buf[ci] + | ||||
| 	      (out_row_group_index * downsample->rowgroup_height[ci]); | ||||
|     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Downsample pixel values of a single component. | ||||
|  * One row group is processed per call. | ||||
|  * This version handles arbitrary integral sampling ratios, without smoothing. | ||||
|  * Note that this version is not actually used for customary sampling ratios. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		JSAMPARRAY input_data, JSAMPARRAY output_data) | ||||
| { | ||||
|   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | ||||
|   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; | ||||
|   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */ | ||||
|   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | ||||
|   JSAMPROW inptr, outptr; | ||||
|   INT32 outvalue; | ||||
| 
 | ||||
|   h_expand = downsample->h_expand[compptr->component_index]; | ||||
|   v_expand = downsample->v_expand[compptr->component_index]; | ||||
|   numpix = h_expand * v_expand; | ||||
|   numpix2 = numpix/2; | ||||
| 
 | ||||
|   /* Expand input data enough to let all the output samples be generated
 | ||||
|    * by the standard loop.  Special-casing padded output would be more | ||||
|    * efficient. | ||||
|    */ | ||||
|   expand_right_edge(input_data, cinfo->max_v_samp_factor, | ||||
| 		    cinfo->image_width, output_cols * h_expand); | ||||
| 
 | ||||
|   inrow = outrow = 0; | ||||
|   while (inrow < cinfo->max_v_samp_factor) { | ||||
|     outptr = output_data[outrow]; | ||||
|     for (outcol = 0, outcol_h = 0; outcol < output_cols; | ||||
| 	 outcol++, outcol_h += h_expand) { | ||||
|       outvalue = 0; | ||||
|       for (v = 0; v < v_expand; v++) { | ||||
| 	inptr = input_data[inrow+v] + outcol_h; | ||||
| 	for (h = 0; h < h_expand; h++) { | ||||
| 	  outvalue += (INT32) GETJSAMPLE(*inptr++); | ||||
| 	} | ||||
|       } | ||||
|       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); | ||||
|     } | ||||
|     inrow += v_expand; | ||||
|     outrow++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Downsample pixel values of a single component. | ||||
|  * This version handles the special case of a full-size component, | ||||
|  * without smoothing. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		     JSAMPARRAY input_data, JSAMPARRAY output_data) | ||||
| { | ||||
|   /* Copy the data */ | ||||
|   jcopy_sample_rows(input_data, output_data, | ||||
| 		    cinfo->max_v_samp_factor, cinfo->image_width); | ||||
|   /* Edge-expand */ | ||||
|   expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, | ||||
| 		    compptr->width_in_blocks * compptr->DCT_h_scaled_size); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Downsample pixel values of a single component. | ||||
|  * This version handles the common case of 2:1 horizontal and 1:1 vertical, | ||||
|  * without smoothing. | ||||
|  * | ||||
|  * A note about the "bias" calculations: when rounding fractional values to | ||||
|  * integer, we do not want to always round 0.5 up to the next integer. | ||||
|  * If we did that, we'd introduce a noticeable bias towards larger values. | ||||
|  * Instead, this code is arranged so that 0.5 will be rounded up or down at | ||||
|  * alternate pixel locations (a simple ordered dither pattern). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JSAMPARRAY input_data, JSAMPARRAY output_data) | ||||
| { | ||||
|   int inrow; | ||||
|   JDIMENSION outcol; | ||||
|   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | ||||
|   register JSAMPROW inptr, outptr; | ||||
|   register int bias; | ||||
| 
 | ||||
|   /* Expand input data enough to let all the output samples be generated
 | ||||
|    * by the standard loop.  Special-casing padded output would be more | ||||
|    * efficient. | ||||
|    */ | ||||
|   expand_right_edge(input_data, cinfo->max_v_samp_factor, | ||||
| 		    cinfo->image_width, output_cols * 2); | ||||
| 
 | ||||
|   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | ||||
|     outptr = output_data[inrow]; | ||||
|     inptr = input_data[inrow]; | ||||
|     bias = 0;			/* bias = 0,1,0,1,... for successive samples */ | ||||
|     for (outcol = 0; outcol < output_cols; outcol++) { | ||||
|       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) | ||||
| 			      + bias) >> 1); | ||||
|       bias ^= 1;		/* 0=>1, 1=>0 */ | ||||
|       inptr += 2; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Downsample pixel values of a single component. | ||||
|  * This version handles the standard case of 2:1 horizontal and 2:1 vertical, | ||||
|  * without smoothing. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JSAMPARRAY input_data, JSAMPARRAY output_data) | ||||
| { | ||||
|   int inrow, outrow; | ||||
|   JDIMENSION outcol; | ||||
|   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | ||||
|   register JSAMPROW inptr0, inptr1, outptr; | ||||
|   register int bias; | ||||
| 
 | ||||
|   /* Expand input data enough to let all the output samples be generated
 | ||||
|    * by the standard loop.  Special-casing padded output would be more | ||||
|    * efficient. | ||||
|    */ | ||||
|   expand_right_edge(input_data, cinfo->max_v_samp_factor, | ||||
| 		    cinfo->image_width, output_cols * 2); | ||||
| 
 | ||||
|   inrow = outrow = 0; | ||||
|   while (inrow < cinfo->max_v_samp_factor) { | ||||
|     outptr = output_data[outrow]; | ||||
|     inptr0 = input_data[inrow]; | ||||
|     inptr1 = input_data[inrow+1]; | ||||
|     bias = 1;			/* bias = 1,2,1,2,... for successive samples */ | ||||
|     for (outcol = 0; outcol < output_cols; outcol++) { | ||||
|       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | ||||
| 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) | ||||
| 			      + bias) >> 2); | ||||
|       bias ^= 3;		/* 1=>2, 2=>1 */ | ||||
|       inptr0 += 2; inptr1 += 2; | ||||
|     } | ||||
|     inrow += 2; | ||||
|     outrow++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef INPUT_SMOOTHING_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Downsample pixel values of a single component. | ||||
|  * This version handles the standard case of 2:1 horizontal and 2:1 vertical, | ||||
|  * with smoothing.  One row of context is required. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 			JSAMPARRAY input_data, JSAMPARRAY output_data) | ||||
| { | ||||
|   int inrow, outrow; | ||||
|   JDIMENSION colctr; | ||||
|   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | ||||
|   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; | ||||
|   INT32 membersum, neighsum, memberscale, neighscale; | ||||
| 
 | ||||
|   /* Expand input data enough to let all the output samples be generated
 | ||||
|    * by the standard loop.  Special-casing padded output would be more | ||||
|    * efficient. | ||||
|    */ | ||||
|   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | ||||
| 		    cinfo->image_width, output_cols * 2); | ||||
| 
 | ||||
|   /* We don't bother to form the individual "smoothed" input pixel values;
 | ||||
|    * we can directly compute the output which is the average of the four | ||||
|    * smoothed values.  Each of the four member pixels contributes a fraction | ||||
|    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three | ||||
|    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final | ||||
|    * output.  The four corner-adjacent neighbor pixels contribute a fraction | ||||
|    * SF to just one smoothed pixel, or SF/4 to the final output; while the | ||||
|    * eight edge-adjacent neighbors contribute SF to each of two smoothed | ||||
|    * pixels, or SF/2 overall.  In order to use integer arithmetic, these | ||||
|    * factors are scaled by 2^16 = 65536. | ||||
|    * Also recall that SF = smoothing_factor / 1024. | ||||
|    */ | ||||
| 
 | ||||
|   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ | ||||
|   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ | ||||
| 
 | ||||
|   inrow = outrow = 0; | ||||
|   while (inrow < cinfo->max_v_samp_factor) { | ||||
|     outptr = output_data[outrow]; | ||||
|     inptr0 = input_data[inrow]; | ||||
|     inptr1 = input_data[inrow+1]; | ||||
|     above_ptr = input_data[inrow-1]; | ||||
|     below_ptr = input_data[inrow+2]; | ||||
| 
 | ||||
|     /* Special case for first column: pretend column -1 is same as column 0 */ | ||||
|     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | ||||
| 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | ||||
|     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | ||||
| 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | ||||
| 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + | ||||
| 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); | ||||
|     neighsum += neighsum; | ||||
|     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + | ||||
| 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); | ||||
|     membersum = membersum * memberscale + neighsum * neighscale; | ||||
|     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | ||||
|     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | ||||
| 
 | ||||
|     for (colctr = output_cols - 2; colctr > 0; colctr--) { | ||||
|       /* sum of pixels directly mapped to this output element */ | ||||
|       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | ||||
| 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | ||||
|       /* sum of edge-neighbor pixels */ | ||||
|       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | ||||
| 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | ||||
| 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + | ||||
| 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); | ||||
|       /* The edge-neighbors count twice as much as corner-neighbors */ | ||||
|       neighsum += neighsum; | ||||
|       /* Add in the corner-neighbors */ | ||||
|       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + | ||||
| 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); | ||||
|       /* form final output scaled up by 2^16 */ | ||||
|       membersum = membersum * memberscale + neighsum * neighscale; | ||||
|       /* round, descale and output it */ | ||||
|       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | ||||
|       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | ||||
|     } | ||||
| 
 | ||||
|     /* Special case for last column */ | ||||
|     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | ||||
| 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | ||||
|     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | ||||
| 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | ||||
| 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + | ||||
| 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); | ||||
|     neighsum += neighsum; | ||||
|     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + | ||||
| 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); | ||||
|     membersum = membersum * memberscale + neighsum * neighscale; | ||||
|     *outptr = (JSAMPLE) ((membersum + 32768) >> 16); | ||||
| 
 | ||||
|     inrow += 2; | ||||
|     outrow++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Downsample pixel values of a single component. | ||||
|  * This version handles the special case of a full-size component, | ||||
|  * with smoothing.  One row of context is required. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, | ||||
| 			    JSAMPARRAY input_data, JSAMPARRAY output_data) | ||||
| { | ||||
|   int inrow; | ||||
|   JDIMENSION colctr; | ||||
|   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | ||||
|   register JSAMPROW inptr, above_ptr, below_ptr, outptr; | ||||
|   INT32 membersum, neighsum, memberscale, neighscale; | ||||
|   int colsum, lastcolsum, nextcolsum; | ||||
| 
 | ||||
|   /* Expand input data enough to let all the output samples be generated
 | ||||
|    * by the standard loop.  Special-casing padded output would be more | ||||
|    * efficient. | ||||
|    */ | ||||
|   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | ||||
| 		    cinfo->image_width, output_cols); | ||||
| 
 | ||||
|   /* Each of the eight neighbor pixels contributes a fraction SF to the
 | ||||
|    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order | ||||
|    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. | ||||
|    * Also recall that SF = smoothing_factor / 1024. | ||||
|    */ | ||||
| 
 | ||||
|   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ | ||||
|   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ | ||||
| 
 | ||||
|   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | ||||
|     outptr = output_data[inrow]; | ||||
|     inptr = input_data[inrow]; | ||||
|     above_ptr = input_data[inrow-1]; | ||||
|     below_ptr = input_data[inrow+1]; | ||||
| 
 | ||||
|     /* Special case for first column */ | ||||
|     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + | ||||
| 	     GETJSAMPLE(*inptr); | ||||
|     membersum = GETJSAMPLE(*inptr++); | ||||
|     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | ||||
| 		 GETJSAMPLE(*inptr); | ||||
|     neighsum = colsum + (colsum - membersum) + nextcolsum; | ||||
|     membersum = membersum * memberscale + neighsum * neighscale; | ||||
|     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | ||||
|     lastcolsum = colsum; colsum = nextcolsum; | ||||
| 
 | ||||
|     for (colctr = output_cols - 2; colctr > 0; colctr--) { | ||||
|       membersum = GETJSAMPLE(*inptr++); | ||||
|       above_ptr++; below_ptr++; | ||||
|       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | ||||
| 		   GETJSAMPLE(*inptr); | ||||
|       neighsum = lastcolsum + (colsum - membersum) + nextcolsum; | ||||
|       membersum = membersum * memberscale + neighsum * neighscale; | ||||
|       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | ||||
|       lastcolsum = colsum; colsum = nextcolsum; | ||||
|     } | ||||
| 
 | ||||
|     /* Special case for last column */ | ||||
|     membersum = GETJSAMPLE(*inptr); | ||||
|     neighsum = lastcolsum + (colsum - membersum) + colsum; | ||||
|     membersum = membersum * memberscale + neighsum * neighscale; | ||||
|     *outptr = (JSAMPLE) ((membersum + 32768) >> 16); | ||||
| 
 | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* INPUT_SMOOTHING_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for downsampling. | ||||
|  * Note that we must select a routine for each component. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_downsampler (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_downsample_ptr downsample; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
|   boolean smoothok = TRUE; | ||||
|   int h_in_group, v_in_group, h_out_group, v_out_group; | ||||
| 
 | ||||
|   downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler)); | ||||
|   cinfo->downsample = &downsample->pub; | ||||
|   downsample->pub.start_pass = start_pass_downsample; | ||||
|   downsample->pub.downsample = sep_downsample; | ||||
|   downsample->pub.need_context_rows = FALSE; | ||||
| 
 | ||||
|   if (cinfo->CCIR601_sampling) | ||||
|     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | ||||
| 
 | ||||
|   /* Verify we can handle the sampling factors, and set up method pointers */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Compute size of an "output group" for DCT scaling.  This many samples
 | ||||
|      * are to be converted from max_h_samp_factor * max_v_samp_factor pixels. | ||||
|      */ | ||||
|     h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / | ||||
| 		  cinfo->min_DCT_h_scaled_size; | ||||
|     v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
| 		  cinfo->min_DCT_v_scaled_size; | ||||
|     h_in_group = cinfo->max_h_samp_factor; | ||||
|     v_in_group = cinfo->max_v_samp_factor; | ||||
|     downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ | ||||
|     if (h_in_group == h_out_group && v_in_group == v_out_group) { | ||||
| #ifdef INPUT_SMOOTHING_SUPPORTED | ||||
|       if (cinfo->smoothing_factor) { | ||||
| 	downsample->methods[ci] = fullsize_smooth_downsample; | ||||
| 	downsample->pub.need_context_rows = TRUE; | ||||
|       } else | ||||
| #endif | ||||
| 	downsample->methods[ci] = fullsize_downsample; | ||||
|     } else if (h_in_group == h_out_group * 2 && | ||||
| 	       v_in_group == v_out_group) { | ||||
|       smoothok = FALSE; | ||||
|       downsample->methods[ci] = h2v1_downsample; | ||||
|     } else if (h_in_group == h_out_group * 2 && | ||||
| 	       v_in_group == v_out_group * 2) { | ||||
| #ifdef INPUT_SMOOTHING_SUPPORTED | ||||
|       if (cinfo->smoothing_factor) { | ||||
| 	downsample->methods[ci] = h2v2_smooth_downsample; | ||||
| 	downsample->pub.need_context_rows = TRUE; | ||||
|       } else | ||||
| #endif | ||||
| 	downsample->methods[ci] = h2v2_downsample; | ||||
|     } else if ((h_in_group % h_out_group) == 0 && | ||||
| 	       (v_in_group % v_out_group) == 0) { | ||||
|       smoothok = FALSE; | ||||
|       downsample->methods[ci] = int_downsample; | ||||
|       downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); | ||||
|       downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); | ||||
|     } else | ||||
|       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | ||||
|   } | ||||
| 
 | ||||
| #ifdef INPUT_SMOOTHING_SUPPORTED | ||||
|   if (cinfo->smoothing_factor && !smoothok) | ||||
|     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); | ||||
| #endif | ||||
| } | ||||
							
								
								
									
										399
									
								
								dep/libjpeg/src/jctrans.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										399
									
								
								dep/libjpeg/src/jctrans.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,399 @@ | |||
| /*
 | ||||
|  * jctrans.c | ||||
|  * | ||||
|  * Copyright (C) 1995-1998, Thomas G. Lane. | ||||
|  * Modified 2000-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains library routines for transcoding compression, | ||||
|  * that is, writing raw DCT coefficient arrays to an output JPEG file. | ||||
|  * The routines in jcapimin.c will also be needed by a transcoder. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| LOCAL(void) transencode_master_selection | ||||
| 	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); | ||||
| LOCAL(void) transencode_coef_controller | ||||
| 	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Compression initialization for writing raw-coefficient data. | ||||
|  * Before calling this, all parameters and a data destination must be set up. | ||||
|  * Call jpeg_finish_compress() to actually write the data. | ||||
|  * | ||||
|  * The number of passed virtual arrays must match cinfo->num_components. | ||||
|  * Note that the virtual arrays need not be filled or even realized at | ||||
|  * the time write_coefficients is called; indeed, if the virtual arrays | ||||
|  * were requested from this compression object's memory manager, they | ||||
|  * typically will be realized during this routine and filled afterwards. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) | ||||
| { | ||||
|   if (cinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   /* Mark all tables to be written */ | ||||
|   jpeg_suppress_tables(cinfo, FALSE); | ||||
|   /* (Re)initialize error mgr and destination modules */ | ||||
|   (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | ||||
|   (*cinfo->dest->init_destination) (cinfo); | ||||
|   /* Perform master selection of active modules */ | ||||
|   transencode_master_selection(cinfo, coef_arrays); | ||||
|   /* Wait for jpeg_finish_compress() call */ | ||||
|   cinfo->next_scanline = 0;	/* so jpeg_write_marker works */ | ||||
|   cinfo->global_state = CSTATE_WRCOEFS; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize the compression object with default parameters, | ||||
|  * then copy from the source object all parameters needed for lossless | ||||
|  * transcoding.  Parameters that can be varied without loss (such as | ||||
|  * scan script and Huffman optimization) are left in their default states. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, | ||||
| 			       j_compress_ptr dstinfo) | ||||
| { | ||||
|   JQUANT_TBL ** qtblptr; | ||||
|   jpeg_component_info *incomp, *outcomp; | ||||
|   JQUANT_TBL *c_quant, *slot_quant; | ||||
|   int tblno, ci, coefi; | ||||
| 
 | ||||
|   /* Safety check to ensure start_compress not called yet. */ | ||||
|   if (dstinfo->global_state != CSTATE_START) | ||||
|     ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); | ||||
|   /* Copy fundamental image dimensions */ | ||||
|   dstinfo->image_width = srcinfo->image_width; | ||||
|   dstinfo->image_height = srcinfo->image_height; | ||||
|   dstinfo->input_components = srcinfo->num_components; | ||||
|   dstinfo->in_color_space = srcinfo->jpeg_color_space; | ||||
|   dstinfo->jpeg_width = srcinfo->output_width; | ||||
|   dstinfo->jpeg_height = srcinfo->output_height; | ||||
|   dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; | ||||
|   dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; | ||||
|   /* Initialize all parameters to default values */ | ||||
|   jpeg_set_defaults(dstinfo); | ||||
|   /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
 | ||||
|    * Fix it to get the right header markers for the image colorspace. | ||||
|    * Note: Entropy table assignment in jpeg_set_colorspace | ||||
|    * depends on color_transform. | ||||
|    * Adaption is also required for setting the appropriate | ||||
|    * entropy coding mode dependent on image data precision. | ||||
|    */ | ||||
|   dstinfo->color_transform = srcinfo->color_transform; | ||||
|   jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); | ||||
|   dstinfo->data_precision = srcinfo->data_precision; | ||||
|   dstinfo->arith_code = srcinfo->data_precision > 8 ? TRUE : FALSE; | ||||
|   dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; | ||||
|   /* Copy the source's quantization tables. */ | ||||
|   for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { | ||||
|     if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { | ||||
|       qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; | ||||
|       if (*qtblptr == NULL) | ||||
| 	*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); | ||||
|       MEMCOPY((*qtblptr)->quantval, | ||||
| 	      srcinfo->quant_tbl_ptrs[tblno]->quantval, | ||||
| 	      SIZEOF((*qtblptr)->quantval)); | ||||
|       (*qtblptr)->sent_table = FALSE; | ||||
|     } | ||||
|   } | ||||
|   /* Copy the source's per-component info.
 | ||||
|    * Note we assume jpeg_set_defaults has allocated the dest comp_info array. | ||||
|    */ | ||||
|   dstinfo->num_components = srcinfo->num_components; | ||||
|   if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) | ||||
|     ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, | ||||
| 	     MAX_COMPONENTS); | ||||
|   for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; | ||||
|        ci < dstinfo->num_components; ci++, incomp++, outcomp++) { | ||||
|     outcomp->component_id = incomp->component_id; | ||||
|     outcomp->h_samp_factor = incomp->h_samp_factor; | ||||
|     outcomp->v_samp_factor = incomp->v_samp_factor; | ||||
|     outcomp->quant_tbl_no = incomp->quant_tbl_no; | ||||
|     /* Make sure saved quantization table for component matches the qtable
 | ||||
|      * slot.  If not, the input file re-used this qtable slot. | ||||
|      * IJG encoder currently cannot duplicate this. | ||||
|      */ | ||||
|     tblno = outcomp->quant_tbl_no; | ||||
|     if (tblno < 0 || tblno >= NUM_QUANT_TBLS || | ||||
| 	srcinfo->quant_tbl_ptrs[tblno] == NULL) | ||||
|       ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); | ||||
|     slot_quant = srcinfo->quant_tbl_ptrs[tblno]; | ||||
|     c_quant = incomp->quant_table; | ||||
|     if (c_quant != NULL) { | ||||
|       for (coefi = 0; coefi < DCTSIZE2; coefi++) { | ||||
| 	if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) | ||||
| 	  ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); | ||||
|       } | ||||
|     } | ||||
|     /* Note: we do not copy the source's entropy table assignments;
 | ||||
|      * instead we rely on jpeg_set_colorspace to have made a suitable choice. | ||||
|      */ | ||||
|   } | ||||
|   /* Also copy JFIF version and resolution information, if available.
 | ||||
|    * Strictly speaking this isn't "critical" info, but it's nearly | ||||
|    * always appropriate to copy it if available.  In particular, | ||||
|    * if the application chooses to copy JFIF 1.02 extension markers from | ||||
|    * the source file, we need to copy the version to make sure we don't | ||||
|    * emit a file that has 1.02 extensions but a claimed version of 1.01. | ||||
|    */ | ||||
|   if (srcinfo->saw_JFIF_marker) { | ||||
|     if (srcinfo->JFIF_major_version == 1 || | ||||
| 	srcinfo->JFIF_major_version == 2) { | ||||
|       dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; | ||||
|       dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; | ||||
|     } | ||||
|     dstinfo->density_unit = srcinfo->density_unit; | ||||
|     dstinfo->X_density = srcinfo->X_density; | ||||
|     dstinfo->Y_density = srcinfo->Y_density; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| jpeg_calc_trans_dimensions (j_compress_ptr cinfo) | ||||
| /* Do computations that are needed before master selection phase */ | ||||
| { | ||||
|   if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size) | ||||
|     ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | ||||
| 	     cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size); | ||||
| 
 | ||||
|   cinfo->block_size = cinfo->min_DCT_h_scaled_size; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Master selection of compression modules for transcoding. | ||||
|  * This substitutes for jcinit.c's initialization of the full compressor. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| transencode_master_selection (j_compress_ptr cinfo, | ||||
| 			      jvirt_barray_ptr * coef_arrays) | ||||
| { | ||||
|   /* Do computations that are needed before master selection phase */ | ||||
|   jpeg_calc_trans_dimensions(cinfo); | ||||
| 
 | ||||
|   /* Initialize master control (includes parameter checking/processing) */ | ||||
|   jinit_c_master_control(cinfo, TRUE /* transcode only */); | ||||
| 
 | ||||
|   /* Entropy encoding: either Huffman or arithmetic coding. */ | ||||
|   if (cinfo->arith_code) | ||||
|     jinit_arith_encoder(cinfo); | ||||
|   else { | ||||
|     jinit_huff_encoder(cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* We need a special coefficient buffer controller. */ | ||||
|   transencode_coef_controller(cinfo, coef_arrays); | ||||
| 
 | ||||
|   jinit_marker_writer(cinfo); | ||||
| 
 | ||||
|   /* We can now tell the memory manager to allocate virtual arrays. */ | ||||
|   (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   /* Write the datastream header (SOI, JFIF) immediately.
 | ||||
|    * Frame and scan headers are postponed till later. | ||||
|    * This lets application insert special markers after the SOI. | ||||
|    */ | ||||
|   (*cinfo->marker->write_file_header) (cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The rest of this file is a special implementation of the coefficient | ||||
|  * buffer controller.  This is similar to jccoefct.c, but it handles only | ||||
|  * output from presupplied virtual arrays.  Furthermore, we generate any | ||||
|  * dummy padding blocks on-the-fly rather than expecting them to be present | ||||
|  * in the arrays. | ||||
|  */ | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_c_coef_controller pub; /* public fields */ | ||||
| 
 | ||||
|   JDIMENSION iMCU_row_num;	/* iMCU row # within image */ | ||||
|   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */ | ||||
|   int MCU_vert_offset;		/* counts MCU rows within iMCU row */ | ||||
|   int MCU_rows_per_iMCU_row;	/* number of such rows needed */ | ||||
| 
 | ||||
|   /* Virtual block array for each component. */ | ||||
|   jvirt_barray_ptr * whole_image; | ||||
| 
 | ||||
|   /* Workspace for constructing dummy blocks at right/bottom edges. */ | ||||
|   JBLOCK dummy_buffer[C_MAX_BLOCKS_IN_MCU]; | ||||
| } my_coef_controller; | ||||
| 
 | ||||
| typedef my_coef_controller * my_coef_ptr; | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| start_iMCU_row (j_compress_ptr cinfo) | ||||
| /* Reset within-iMCU-row counters for a new row */ | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
| 
 | ||||
|   /* In an interleaved scan, an MCU row is the same as an iMCU row.
 | ||||
|    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | ||||
|    * But at the bottom of the image, process only what's left. | ||||
|    */ | ||||
|   if (cinfo->comps_in_scan > 1) { | ||||
|     coef->MCU_rows_per_iMCU_row = 1; | ||||
|   } else { | ||||
|     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | ||||
|       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | ||||
|     else | ||||
|       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | ||||
|   } | ||||
| 
 | ||||
|   coef->MCU_ctr = 0; | ||||
|   coef->MCU_vert_offset = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
| 
 | ||||
|   if (pass_mode != JBUF_CRANK_DEST) | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| 
 | ||||
|   coef->iMCU_row_num = 0; | ||||
|   start_iMCU_row(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data. | ||||
|  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | ||||
|  * per call, ie, v_samp_factor block rows for each component in the scan. | ||||
|  * The data is obtained from the virtual arrays and fed to the entropy coder. | ||||
|  * Returns TRUE if the iMCU row is completed, FALSE if suspended. | ||||
|  * | ||||
|  * NB: input_buf is ignored; it is likely to be a NULL pointer. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION MCU_col_num;	/* index of current MCU within row */ | ||||
|   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | ||||
|   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||||
|   int blkn, ci, xindex, yindex, yoffset, blockcnt; | ||||
|   JDIMENSION start_col; | ||||
|   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | ||||
|   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | ||||
|   JBLOCKROW buffer_ptr; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Align the virtual buffers for the components used in this scan. */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     buffer[ci] = (*cinfo->mem->access_virt_barray) | ||||
|       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | ||||
|        coef->iMCU_row_num * compptr->v_samp_factor, | ||||
|        (JDIMENSION) compptr->v_samp_factor, FALSE); | ||||
|   } | ||||
| 
 | ||||
|   /* Loop to process one whole iMCU row */ | ||||
|   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||||
|        yoffset++) { | ||||
|     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | ||||
| 	 MCU_col_num++) { | ||||
|       /* Construct list of pointers to DCT blocks belonging to this MCU */ | ||||
|       blkn = 0;			/* index of current DCT block within MCU */ | ||||
|       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
| 	compptr = cinfo->cur_comp_info[ci]; | ||||
| 	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | ||||
| 						: compptr->last_col_width; | ||||
| 	start_col = MCU_col_num * compptr->MCU_width; | ||||
| 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||||
| 	  if (coef->iMCU_row_num < last_iMCU_row || | ||||
| 	      yoffset + yindex < compptr->last_row_height) { | ||||
| 	    /* Fill in pointers to real blocks in this row */ | ||||
| 	    buffer_ptr = buffer[ci][yoffset + yindex] + start_col; | ||||
| 	    xindex = blockcnt; | ||||
| 	    do { | ||||
| 	      MCU_buffer[blkn++] = buffer_ptr++; | ||||
| 	    } while (--xindex); | ||||
| 	    /* Dummy blocks at right edge */ | ||||
| 	    if ((xindex = compptr->MCU_width - blockcnt) == 0) | ||||
| 	      continue; | ||||
| 	  } else { | ||||
| 	    /* At bottom of image, need a whole row of dummy blocks */ | ||||
| 	    xindex = compptr->MCU_width; | ||||
| 	  } | ||||
| 	  /* Fill in any dummy blocks needed in this row.
 | ||||
| 	   * Dummy blocks are filled in the same way as in jccoefct.c: | ||||
| 	   * all zeroes in the AC entries, DC entries equal to previous | ||||
| 	   * block's DC value.  The init routine has already zeroed the | ||||
| 	   * AC entries, so we need only set the DC entries correctly. | ||||
| 	   */ | ||||
| 	  buffer_ptr = coef->dummy_buffer + blkn; | ||||
| 	  do { | ||||
| 	    buffer_ptr[0][0] = MCU_buffer[blkn-1][0][0]; | ||||
| 	    MCU_buffer[blkn++] = buffer_ptr++; | ||||
| 	  } while (--xindex); | ||||
| 	} | ||||
|       } | ||||
|       /* Try to write the MCU. */ | ||||
|       if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { | ||||
| 	/* Suspension forced; update state counters and exit */ | ||||
| 	coef->MCU_vert_offset = yoffset; | ||||
| 	coef->MCU_ctr = MCU_col_num; | ||||
| 	return FALSE; | ||||
|       } | ||||
|     } | ||||
|     /* Completed an MCU row, but perhaps not an iMCU row */ | ||||
|     coef->MCU_ctr = 0; | ||||
|   } | ||||
|   /* Completed the iMCU row, advance counters for next one */ | ||||
|   coef->iMCU_row_num++; | ||||
|   start_iMCU_row(cinfo); | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize coefficient buffer controller. | ||||
|  * | ||||
|  * Each passed coefficient array must be the right size for that | ||||
|  * coefficient: width_in_blocks wide and height_in_blocks high, | ||||
|  * with unitheight at least v_samp_factor. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| transencode_coef_controller (j_compress_ptr cinfo, | ||||
| 			     jvirt_barray_ptr * coef_arrays) | ||||
| { | ||||
|   my_coef_ptr coef; | ||||
| 
 | ||||
|   coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); | ||||
|   cinfo->coef = &coef->pub; | ||||
|   coef->pub.start_pass = start_pass_coef; | ||||
|   coef->pub.compress_data = compress_output; | ||||
| 
 | ||||
|   /* Save pointer to virtual arrays */ | ||||
|   coef->whole_image = coef_arrays; | ||||
| 
 | ||||
|   /* Pre-zero space for dummy DCT blocks */ | ||||
|   MEMZERO(coef->dummy_buffer, SIZEOF(coef->dummy_buffer)); | ||||
| } | ||||
							
								
								
									
										412
									
								
								dep/libjpeg/src/jdapimin.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										412
									
								
								dep/libjpeg/src/jdapimin.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,412 @@ | |||
| /*
 | ||||
|  * jdapimin.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1998, Thomas G. Lane. | ||||
|  * Modified 2009-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains application interface code for the decompression half | ||||
|  * of the JPEG library.  These are the "minimum" API routines that may be | ||||
|  * needed in either the normal full-decompression case or the | ||||
|  * transcoding-only case. | ||||
|  * | ||||
|  * Most of the routines intended to be called directly by an application | ||||
|  * are in this file or in jdapistd.c.  But also see jcomapi.c for routines | ||||
|  * shared by compression and decompression, and jdtrans.c for the transcoding | ||||
|  * case. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialization of a JPEG decompression object. | ||||
|  * The error manager must already be set up (in case memory manager fails). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) | ||||
| { | ||||
|   int i; | ||||
| 
 | ||||
|   /* Guard against version mismatches between library and caller. */ | ||||
|   cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */ | ||||
|   if (version != JPEG_LIB_VERSION) | ||||
|     ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); | ||||
|   if (structsize != SIZEOF(struct jpeg_decompress_struct)) | ||||
|     ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,  | ||||
| 	     (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize); | ||||
| 
 | ||||
|   /* For debugging purposes, we zero the whole master structure.
 | ||||
|    * But the application has already set the err pointer, and may have set | ||||
|    * client_data, so we have to save and restore those fields. | ||||
|    * Note: if application hasn't set client_data, tools like Purify may | ||||
|    * complain here. | ||||
|    */ | ||||
|   { | ||||
|     struct jpeg_error_mgr * err = cinfo->err; | ||||
|     void * client_data = cinfo->client_data; /* ignore Purify complaint here */ | ||||
|     MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct)); | ||||
|     cinfo->err = err; | ||||
|     cinfo->client_data = client_data; | ||||
|   } | ||||
|   cinfo->is_decompressor = TRUE; | ||||
| 
 | ||||
|   /* Initialize a memory manager instance for this object */ | ||||
|   jinit_memory_mgr((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   /* Zero out pointers to permanent structures. */ | ||||
|   cinfo->progress = NULL; | ||||
|   cinfo->src = NULL; | ||||
| 
 | ||||
|   for (i = 0; i < NUM_QUANT_TBLS; i++) | ||||
|     cinfo->quant_tbl_ptrs[i] = NULL; | ||||
| 
 | ||||
|   for (i = 0; i < NUM_HUFF_TBLS; i++) { | ||||
|     cinfo->dc_huff_tbl_ptrs[i] = NULL; | ||||
|     cinfo->ac_huff_tbl_ptrs[i] = NULL; | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize marker processor so application can override methods
 | ||||
|    * for COM, APPn markers before calling jpeg_read_header. | ||||
|    */ | ||||
|   cinfo->marker_list = NULL; | ||||
|   jinit_marker_reader(cinfo); | ||||
| 
 | ||||
|   /* And initialize the overall input controller. */ | ||||
|   jinit_input_controller(cinfo); | ||||
| 
 | ||||
|   /* OK, I'm ready */ | ||||
|   cinfo->global_state = DSTATE_START; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Destruction of a JPEG decompression object | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_destroy_decompress (j_decompress_ptr cinfo) | ||||
| { | ||||
|   jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Abort processing of a JPEG decompression operation, | ||||
|  * but don't destroy the object itself. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_abort_decompress (j_decompress_ptr cinfo) | ||||
| { | ||||
|   jpeg_abort((j_common_ptr) cinfo); /* use common routine */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Set default decompression parameters. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| default_decompress_parms (j_decompress_ptr cinfo) | ||||
| { | ||||
|   int cid0, cid1, cid2, cid3; | ||||
| 
 | ||||
|   /* Guess the input colorspace, and set output colorspace accordingly. */ | ||||
|   /* Note application may override our guesses. */ | ||||
|   switch (cinfo->num_components) { | ||||
|   case 1: | ||||
|     cinfo->jpeg_color_space = JCS_GRAYSCALE; | ||||
|     cinfo->out_color_space = JCS_GRAYSCALE; | ||||
|     break; | ||||
| 
 | ||||
|   case 3: | ||||
|     cid0 = cinfo->comp_info[0].component_id; | ||||
|     cid1 = cinfo->comp_info[1].component_id; | ||||
|     cid2 = cinfo->comp_info[2].component_id; | ||||
| 
 | ||||
|     /* For robust detection of standard colorspaces
 | ||||
|      * regardless of the presence of special markers, | ||||
|      * check component IDs from SOF marker first. | ||||
|      */ | ||||
|     if      (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03) | ||||
|       cinfo->jpeg_color_space = JCS_YCbCr; | ||||
|     else if (cid0 == 0x01 && cid1 == 0x22 && cid2 == 0x23) | ||||
|       cinfo->jpeg_color_space = JCS_BG_YCC; | ||||
|     else if (cid0 == 0x52 && cid1 == 0x47 && cid2 == 0x42) | ||||
|       cinfo->jpeg_color_space = JCS_RGB;	/* ASCII 'R', 'G', 'B' */ | ||||
|     else if (cid0 == 0x72 && cid1 == 0x67 && cid2 == 0x62) | ||||
|       cinfo->jpeg_color_space = JCS_BG_RGB;	/* ASCII 'r', 'g', 'b' */ | ||||
|     else if (cinfo->saw_JFIF_marker) | ||||
|       cinfo->jpeg_color_space = JCS_YCbCr;	/* assume it's YCbCr */ | ||||
|     else if (cinfo->saw_Adobe_marker) { | ||||
|       switch (cinfo->Adobe_transform) { | ||||
|       case 0: | ||||
| 	cinfo->jpeg_color_space = JCS_RGB; | ||||
| 	break; | ||||
|       case 1: | ||||
| 	cinfo->jpeg_color_space = JCS_YCbCr; | ||||
| 	break; | ||||
|       default: | ||||
| 	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); | ||||
| 	cinfo->jpeg_color_space = JCS_YCbCr;	/* assume it's YCbCr */ | ||||
|       } | ||||
|     } else { | ||||
|       TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); | ||||
|       cinfo->jpeg_color_space = JCS_YCbCr;	/* assume it's YCbCr */ | ||||
|     } | ||||
|     /* Always guess RGB is proper output colorspace. */ | ||||
|     cinfo->out_color_space = JCS_RGB; | ||||
|     break; | ||||
| 
 | ||||
|   case 4: | ||||
|     cid0 = cinfo->comp_info[0].component_id; | ||||
|     cid1 = cinfo->comp_info[1].component_id; | ||||
|     cid2 = cinfo->comp_info[2].component_id; | ||||
|     cid3 = cinfo->comp_info[3].component_id; | ||||
| 
 | ||||
|     /* For robust detection of standard colorspaces
 | ||||
|      * regardless of the presence of special markers, | ||||
|      * check component IDs from SOF marker first. | ||||
|      */ | ||||
|     if      (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03 && cid3 == 0x04) | ||||
|       cinfo->jpeg_color_space = JCS_YCCK; | ||||
|     else if (cid0 == 0x43 && cid1 == 0x4D && cid2 == 0x59 && cid3 == 0x4B) | ||||
|       cinfo->jpeg_color_space = JCS_CMYK;   /* ASCII 'C', 'M', 'Y', 'K' */ | ||||
|     else if (cinfo->saw_Adobe_marker) { | ||||
|       switch (cinfo->Adobe_transform) { | ||||
|       case 0: | ||||
| 	cinfo->jpeg_color_space = JCS_CMYK; | ||||
| 	break; | ||||
|       case 2: | ||||
| 	cinfo->jpeg_color_space = JCS_YCCK; | ||||
| 	break; | ||||
|       default: | ||||
| 	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); | ||||
| 	cinfo->jpeg_color_space = JCS_YCCK;	/* assume it's YCCK */ | ||||
|       } | ||||
|     } else { | ||||
|       /* Unknown IDs and no special markers, assume straight CMYK. */ | ||||
|       cinfo->jpeg_color_space = JCS_CMYK; | ||||
|     } | ||||
|     cinfo->out_color_space = JCS_CMYK; | ||||
|     break; | ||||
| 
 | ||||
|   default: | ||||
|     cinfo->jpeg_color_space = JCS_UNKNOWN; | ||||
|     cinfo->out_color_space = JCS_UNKNOWN; | ||||
|   } | ||||
| 
 | ||||
|   /* Set defaults for other decompression parameters. */ | ||||
|   cinfo->scale_num = cinfo->block_size;		/* 1:1 scaling */ | ||||
|   cinfo->scale_denom = cinfo->block_size; | ||||
|   cinfo->output_gamma = 1.0; | ||||
|   cinfo->buffered_image = FALSE; | ||||
|   cinfo->raw_data_out = FALSE; | ||||
|   cinfo->dct_method = JDCT_DEFAULT; | ||||
|   cinfo->do_fancy_upsampling = TRUE; | ||||
|   cinfo->do_block_smoothing = TRUE; | ||||
|   cinfo->quantize_colors = FALSE; | ||||
|   /* We set these in case application only sets quantize_colors. */ | ||||
|   cinfo->dither_mode = JDITHER_FS; | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|   cinfo->two_pass_quantize = TRUE; | ||||
| #else | ||||
|   cinfo->two_pass_quantize = FALSE; | ||||
| #endif | ||||
|   cinfo->desired_number_of_colors = 256; | ||||
|   cinfo->colormap = NULL; | ||||
|   /* Initialize for no mode change in buffered-image mode. */ | ||||
|   cinfo->enable_1pass_quant = FALSE; | ||||
|   cinfo->enable_external_quant = FALSE; | ||||
|   cinfo->enable_2pass_quant = FALSE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Decompression startup: read start of JPEG datastream to see what's there. | ||||
|  * Need only initialize JPEG object and supply a data source before calling. | ||||
|  * | ||||
|  * This routine will read as far as the first SOS marker (ie, actual start of | ||||
|  * compressed data), and will save all tables and parameters in the JPEG | ||||
|  * object.  It will also initialize the decompression parameters to default | ||||
|  * values, and finally return JPEG_HEADER_OK.  On return, the application may | ||||
|  * adjust the decompression parameters and then call jpeg_start_decompress. | ||||
|  * (Or, if the application only wanted to determine the image parameters, | ||||
|  * the data need not be decompressed.  In that case, call jpeg_abort or | ||||
|  * jpeg_destroy to release any temporary space.) | ||||
|  * If an abbreviated (tables only) datastream is presented, the routine will | ||||
|  * return JPEG_HEADER_TABLES_ONLY upon reaching EOI.  The application may then | ||||
|  * re-use the JPEG object to read the abbreviated image datastream(s). | ||||
|  * It is unnecessary (but OK) to call jpeg_abort in this case. | ||||
|  * The JPEG_SUSPENDED return code only occurs if the data source module | ||||
|  * requests suspension of the decompressor.  In this case the application | ||||
|  * should load more source data and then re-call jpeg_read_header to resume | ||||
|  * processing. | ||||
|  * If a non-suspending data source is used and require_image is TRUE, then the | ||||
|  * return code need not be inspected since only JPEG_HEADER_OK is possible. | ||||
|  * | ||||
|  * This routine is now just a front end to jpeg_consume_input, with some | ||||
|  * extra error checking. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(int) | ||||
| jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) | ||||
| { | ||||
|   int retcode; | ||||
| 
 | ||||
|   if (cinfo->global_state != DSTATE_START && | ||||
|       cinfo->global_state != DSTATE_INHEADER) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   retcode = jpeg_consume_input(cinfo); | ||||
| 
 | ||||
|   switch (retcode) { | ||||
|   case JPEG_REACHED_SOS: | ||||
|     retcode = JPEG_HEADER_OK; | ||||
|     break; | ||||
|   case JPEG_REACHED_EOI: | ||||
|     if (require_image)		/* Complain if application wanted an image */ | ||||
|       ERREXIT(cinfo, JERR_NO_IMAGE); | ||||
|     /* Reset to start state; it would be safer to require the application to
 | ||||
|      * call jpeg_abort, but we can't change it now for compatibility reasons. | ||||
|      * A side effect is to free any temporary memory (there shouldn't be any). | ||||
|      */ | ||||
|     jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ | ||||
|     retcode = JPEG_HEADER_TABLES_ONLY; | ||||
|     break; | ||||
|   case JPEG_SUSPENDED: | ||||
|     /* no work */ | ||||
|     break; | ||||
|   } | ||||
| 
 | ||||
|   return retcode; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Consume data in advance of what the decompressor requires. | ||||
|  * This can be called at any time once the decompressor object has | ||||
|  * been created and a data source has been set up. | ||||
|  * | ||||
|  * This routine is essentially a state machine that handles a couple | ||||
|  * of critical state-transition actions, namely initial setup and | ||||
|  * transition from header scanning to ready-for-start_decompress. | ||||
|  * All the actual input is done via the input controller's consume_input | ||||
|  * method. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(int) | ||||
| jpeg_consume_input (j_decompress_ptr cinfo) | ||||
| { | ||||
|   int retcode = JPEG_SUSPENDED; | ||||
| 
 | ||||
|   /* NB: every possible DSTATE value should be listed in this switch */ | ||||
|   switch (cinfo->global_state) { | ||||
|   case DSTATE_START: | ||||
|     /* Start-of-datastream actions: reset appropriate modules */ | ||||
|     (*cinfo->inputctl->reset_input_controller) (cinfo); | ||||
|     /* Initialize application's data source module */ | ||||
|     (*cinfo->src->init_source) (cinfo); | ||||
|     cinfo->global_state = DSTATE_INHEADER; | ||||
|     /*FALLTHROUGH*/ | ||||
|   case DSTATE_INHEADER: | ||||
|     retcode = (*cinfo->inputctl->consume_input) (cinfo); | ||||
|     if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ | ||||
|       /* Set up default parameters based on header data */ | ||||
|       default_decompress_parms(cinfo); | ||||
|       /* Set global state: ready for start_decompress */ | ||||
|       cinfo->global_state = DSTATE_READY; | ||||
|     } | ||||
|     break; | ||||
|   case DSTATE_READY: | ||||
|     /* Can't advance past first SOS until start_decompress is called */ | ||||
|     retcode = JPEG_REACHED_SOS; | ||||
|     break; | ||||
|   case DSTATE_PRELOAD: | ||||
|   case DSTATE_PRESCAN: | ||||
|   case DSTATE_SCANNING: | ||||
|   case DSTATE_RAW_OK: | ||||
|   case DSTATE_BUFIMAGE: | ||||
|   case DSTATE_BUFPOST: | ||||
|   case DSTATE_STOPPING: | ||||
|     retcode = (*cinfo->inputctl->consume_input) (cinfo); | ||||
|     break; | ||||
|   default: | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   } | ||||
|   return retcode; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Have we finished reading the input file? | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(boolean) | ||||
| jpeg_input_complete (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* Check for valid jpeg object */ | ||||
|   if (cinfo->global_state < DSTATE_START || | ||||
|       cinfo->global_state > DSTATE_STOPPING) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   return cinfo->inputctl->eoi_reached; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Is there more than one scan? | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(boolean) | ||||
| jpeg_has_multiple_scans (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* Only valid after jpeg_read_header completes */ | ||||
|   if (cinfo->global_state < DSTATE_READY || | ||||
|       cinfo->global_state > DSTATE_STOPPING) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   return cinfo->inputctl->has_multiple_scans; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish JPEG decompression. | ||||
|  * | ||||
|  * This will normally just verify the file trailer and release temp storage. | ||||
|  * | ||||
|  * Returns FALSE if suspended.  The return value need be inspected only if | ||||
|  * a suspending data source is used. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(boolean) | ||||
| jpeg_finish_decompress (j_decompress_ptr cinfo) | ||||
| { | ||||
|   if ((cinfo->global_state == DSTATE_SCANNING || | ||||
|        cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { | ||||
|     /* Terminate final pass of non-buffered mode */ | ||||
|     if (cinfo->output_scanline < cinfo->output_height) | ||||
|       ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); | ||||
|     (*cinfo->master->finish_output_pass) (cinfo); | ||||
|     cinfo->global_state = DSTATE_STOPPING; | ||||
|   } else if (cinfo->global_state == DSTATE_BUFIMAGE) { | ||||
|     /* Finishing after a buffered-image operation */ | ||||
|     cinfo->global_state = DSTATE_STOPPING; | ||||
|   } else if (cinfo->global_state != DSTATE_STOPPING) { | ||||
|     /* STOPPING = repeat call after a suspension, anything else is error */ | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   } | ||||
|   /* Read until EOI */ | ||||
|   while (! cinfo->inputctl->eoi_reached) { | ||||
|     if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) | ||||
|       return FALSE;		/* Suspend, come back later */ | ||||
|   } | ||||
|   /* Do final cleanup */ | ||||
|   (*cinfo->src->term_source) (cinfo); | ||||
|   /* We can use jpeg_abort to release memory and reset global_state */ | ||||
|   jpeg_abort((j_common_ptr) cinfo); | ||||
|   return TRUE; | ||||
| } | ||||
							
								
								
									
										276
									
								
								dep/libjpeg/src/jdapistd.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										276
									
								
								dep/libjpeg/src/jdapistd.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,276 @@ | |||
| /*
 | ||||
|  * jdapistd.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2002-2013 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains application interface code for the decompression half | ||||
|  * of the JPEG library.  These are the "standard" API routines that are | ||||
|  * used in the normal full-decompression case.  They are not used by a | ||||
|  * transcoding-only application.  Note that if an application links in | ||||
|  * jpeg_start_decompress, it will end up linking in the entire decompressor. | ||||
|  * We thus must separate this file from jdapimin.c to avoid linking the | ||||
|  * whole decompression library into a transcoder. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Decompression initialization. | ||||
|  * jpeg_read_header must be completed before calling this. | ||||
|  * | ||||
|  * If a multipass operating mode was selected, this will do all but the | ||||
|  * last pass, and thus may take a great deal of time. | ||||
|  * | ||||
|  * Returns FALSE if suspended.  The return value need be inspected only if | ||||
|  * a suspending data source is used. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(boolean) | ||||
| jpeg_start_decompress (j_decompress_ptr cinfo) | ||||
| { | ||||
|   if (cinfo->global_state == DSTATE_READY) { | ||||
|     /* First call: initialize master control, select active modules */ | ||||
|     jinit_master_decompress(cinfo); | ||||
|     if (cinfo->buffered_image) { | ||||
|       /* No more work here; expecting jpeg_start_output next */ | ||||
|       cinfo->global_state = DSTATE_BUFIMAGE; | ||||
|       return TRUE; | ||||
|     } | ||||
|     cinfo->global_state = DSTATE_PRELOAD; | ||||
|   } | ||||
|   if (cinfo->global_state == DSTATE_PRELOAD) { | ||||
|     /* If file has multiple scans, absorb them all into the coef buffer */ | ||||
|     if (cinfo->inputctl->has_multiple_scans) { | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
|       for (;;) { | ||||
| 	int retcode; | ||||
| 	/* Call progress monitor hook if present */ | ||||
| 	if (cinfo->progress != NULL) | ||||
| 	  (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
| 	/* Absorb some more input */ | ||||
| 	retcode = (*cinfo->inputctl->consume_input) (cinfo); | ||||
| 	if (retcode == JPEG_SUSPENDED) | ||||
| 	  return FALSE; | ||||
| 	if (retcode == JPEG_REACHED_EOI) | ||||
| 	  break; | ||||
| 	/* Advance progress counter if appropriate */ | ||||
| 	if (cinfo->progress != NULL && | ||||
| 	    (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { | ||||
| 	  if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { | ||||
| 	    /* jdmaster underestimated number of scans; ratchet up one scan */ | ||||
| 	    cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
| #else | ||||
|       ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif /* D_MULTISCAN_FILES_SUPPORTED */ | ||||
|     } | ||||
|     cinfo->output_scan_number = cinfo->input_scan_number; | ||||
|   } else if (cinfo->global_state != DSTATE_PRESCAN) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   /* Perform any dummy output passes, and set up for the final pass */ | ||||
|   return output_pass_setup(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Set up for an output pass, and perform any dummy pass(es) needed. | ||||
|  * Common subroutine for jpeg_start_decompress and jpeg_start_output. | ||||
|  * Entry: global_state = DSTATE_PRESCAN only if previously suspended. | ||||
|  * Exit: If done, returns TRUE and sets global_state for proper output mode. | ||||
|  *       If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(boolean) | ||||
| output_pass_setup (j_decompress_ptr cinfo) | ||||
| { | ||||
|   if (cinfo->global_state != DSTATE_PRESCAN) { | ||||
|     /* First call: do pass setup */ | ||||
|     (*cinfo->master->prepare_for_output_pass) (cinfo); | ||||
|     cinfo->output_scanline = 0; | ||||
|     cinfo->global_state = DSTATE_PRESCAN; | ||||
|   } | ||||
|   /* Loop over any required dummy passes */ | ||||
|   while (cinfo->master->is_dummy_pass) { | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|     /* Crank through the dummy pass */ | ||||
|     while (cinfo->output_scanline < cinfo->output_height) { | ||||
|       JDIMENSION last_scanline; | ||||
|       /* Call progress monitor hook if present */ | ||||
|       if (cinfo->progress != NULL) { | ||||
| 	cinfo->progress->pass_counter = (long) cinfo->output_scanline; | ||||
| 	cinfo->progress->pass_limit = (long) cinfo->output_height; | ||||
| 	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|       } | ||||
|       /* Process some data */ | ||||
|       last_scanline = cinfo->output_scanline; | ||||
|       (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, | ||||
| 				    &cinfo->output_scanline, (JDIMENSION) 0); | ||||
|       if (cinfo->output_scanline == last_scanline) | ||||
| 	return FALSE;		/* No progress made, must suspend */ | ||||
|     } | ||||
|     /* Finish up dummy pass, and set up for another one */ | ||||
|     (*cinfo->master->finish_output_pass) (cinfo); | ||||
|     (*cinfo->master->prepare_for_output_pass) (cinfo); | ||||
|     cinfo->output_scanline = 0; | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif /* QUANT_2PASS_SUPPORTED */ | ||||
|   } | ||||
|   /* Ready for application to drive output pass through
 | ||||
|    * jpeg_read_scanlines or jpeg_read_raw_data. | ||||
|    */ | ||||
|   cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Read some scanlines of data from the JPEG decompressor. | ||||
|  * | ||||
|  * The return value will be the number of lines actually read. | ||||
|  * This may be less than the number requested in several cases, | ||||
|  * including bottom of image, data source suspension, and operating | ||||
|  * modes that emit multiple scanlines at a time. | ||||
|  * | ||||
|  * Note: we warn about excess calls to jpeg_read_scanlines() since | ||||
|  * this likely signals an application programmer error.  However, | ||||
|  * an oversize buffer (max_lines > scanlines remaining) is not an error. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(JDIMENSION) | ||||
| jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, | ||||
| 		     JDIMENSION max_lines) | ||||
| { | ||||
|   JDIMENSION row_ctr; | ||||
| 
 | ||||
|   if (cinfo->global_state != DSTATE_SCANNING) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   if (cinfo->output_scanline >= cinfo->output_height) { | ||||
|     WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | ||||
|     return 0; | ||||
|   } | ||||
| 
 | ||||
|   /* Call progress monitor hook if present */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     cinfo->progress->pass_counter = (long) cinfo->output_scanline; | ||||
|     cinfo->progress->pass_limit = (long) cinfo->output_height; | ||||
|     (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Process some data */ | ||||
|   row_ctr = 0; | ||||
|   (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); | ||||
|   cinfo->output_scanline += row_ctr; | ||||
|   return row_ctr; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Alternate entry point to read raw data. | ||||
|  * Processes exactly one iMCU row per call, unless suspended. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(JDIMENSION) | ||||
| jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, | ||||
| 		    JDIMENSION max_lines) | ||||
| { | ||||
|   JDIMENSION lines_per_iMCU_row; | ||||
| 
 | ||||
|   if (cinfo->global_state != DSTATE_RAW_OK) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   if (cinfo->output_scanline >= cinfo->output_height) { | ||||
|     WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | ||||
|     return 0; | ||||
|   } | ||||
| 
 | ||||
|   /* Call progress monitor hook if present */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     cinfo->progress->pass_counter = (long) cinfo->output_scanline; | ||||
|     cinfo->progress->pass_limit = (long) cinfo->output_height; | ||||
|     (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Verify that at least one iMCU row can be returned. */ | ||||
|   lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; | ||||
|   if (max_lines < lines_per_iMCU_row) | ||||
|     ERREXIT(cinfo, JERR_BUFFER_SIZE); | ||||
| 
 | ||||
|   /* Decompress directly into user's buffer. */ | ||||
|   if (! (*cinfo->coef->decompress_data) (cinfo, data)) | ||||
|     return 0;			/* suspension forced, can do nothing more */ | ||||
| 
 | ||||
|   /* OK, we processed one iMCU row. */ | ||||
|   cinfo->output_scanline += lines_per_iMCU_row; | ||||
|   return lines_per_iMCU_row; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /* Additional entry points for buffered-image mode. */ | ||||
| 
 | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an output pass in buffered-image mode. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(boolean) | ||||
| jpeg_start_output (j_decompress_ptr cinfo, int scan_number) | ||||
| { | ||||
|   if (cinfo->global_state != DSTATE_BUFIMAGE && | ||||
|       cinfo->global_state != DSTATE_PRESCAN) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   /* Limit scan number to valid range */ | ||||
|   if (scan_number <= 0) | ||||
|     scan_number = 1; | ||||
|   if (cinfo->inputctl->eoi_reached && | ||||
|       scan_number > cinfo->input_scan_number) | ||||
|     scan_number = cinfo->input_scan_number; | ||||
|   cinfo->output_scan_number = scan_number; | ||||
|   /* Perform any dummy output passes, and set up for the real pass */ | ||||
|   return output_pass_setup(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up after an output pass in buffered-image mode. | ||||
|  * | ||||
|  * Returns FALSE if suspended.  The return value need be inspected only if | ||||
|  * a suspending data source is used. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(boolean) | ||||
| jpeg_finish_output (j_decompress_ptr cinfo) | ||||
| { | ||||
|   if ((cinfo->global_state == DSTATE_SCANNING || | ||||
|        cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { | ||||
|     /* Terminate this pass. */ | ||||
|     /* We do not require the whole pass to have been completed. */ | ||||
|     (*cinfo->master->finish_output_pass) (cinfo); | ||||
|     cinfo->global_state = DSTATE_BUFPOST; | ||||
|   } else if (cinfo->global_state != DSTATE_BUFPOST) { | ||||
|     /* BUFPOST = repeat call after a suspension, anything else is error */ | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   } | ||||
|   /* Read markers looking for SOS or EOI */ | ||||
|   while (cinfo->input_scan_number <= cinfo->output_scan_number && | ||||
| 	 ! cinfo->inputctl->eoi_reached) { | ||||
|     if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) | ||||
|       return FALSE;		/* Suspend, come back later */ | ||||
|   } | ||||
|   cinfo->global_state = DSTATE_BUFIMAGE; | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| #endif /* D_MULTISCAN_FILES_SUPPORTED */ | ||||
							
								
								
									
										796
									
								
								dep/libjpeg/src/jdarith.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										796
									
								
								dep/libjpeg/src/jdarith.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,796 @@ | |||
| /*
 | ||||
|  * jdarith.c | ||||
|  * | ||||
|  * Developed 1997-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains portable arithmetic entropy decoding routines for JPEG | ||||
|  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | ||||
|  * | ||||
|  * Both sequential and progressive modes are supported in this single module. | ||||
|  * | ||||
|  * Suspension is not currently supported in this module. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Expanded entropy decoder object for arithmetic decoding. */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_entropy_decoder pub; /* public fields */ | ||||
| 
 | ||||
|   INT32 c;       /* C register, base of coding interval + input bit buffer */ | ||||
|   INT32 a;               /* A register, normalized size of coding interval */ | ||||
|   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */ | ||||
|                                                          /* init: ct = -16 */ | ||||
|                                                          /* run: ct = 0..7 */ | ||||
|                                                          /* error: ct = -1 */ | ||||
|   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | ||||
|   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | ||||
| 
 | ||||
|   unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | ||||
| 
 | ||||
|   /* Pointers to statistics areas (these workspaces have image lifespan) */ | ||||
|   unsigned char * dc_stats[NUM_ARITH_TBLS]; | ||||
|   unsigned char * ac_stats[NUM_ARITH_TBLS]; | ||||
| 
 | ||||
|   /* Statistics bin for coding with fixed probability 0.5 */ | ||||
|   unsigned char fixed_bin[4]; | ||||
| } arith_entropy_decoder; | ||||
| 
 | ||||
| typedef arith_entropy_decoder * arith_entropy_ptr; | ||||
| 
 | ||||
| /* The following two definitions specify the allocation chunk size
 | ||||
|  * for the statistics area. | ||||
|  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | ||||
|  * 49 statistics bins for DC, and 245 statistics bins for AC coding. | ||||
|  * | ||||
|  * We use a compact representation with 1 byte per statistics bin, | ||||
|  * thus the numbers directly represent byte sizes. | ||||
|  * This 1 byte per statistics bin contains the meaning of the MPS | ||||
|  * (more probable symbol) in the highest bit (mask 0x80), and the | ||||
|  * index into the probability estimation state machine table | ||||
|  * in the lower bits (mask 0x7F). | ||||
|  */ | ||||
| 
 | ||||
| #define DC_STAT_BINS 64 | ||||
| #define AC_STAT_BINS 256 | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(int) | ||||
| get_byte (j_decompress_ptr cinfo) | ||||
| /* Read next input byte; we do not support suspension in this module. */ | ||||
| { | ||||
|   struct jpeg_source_mgr * src = cinfo->src; | ||||
| 
 | ||||
|   if (src->bytes_in_buffer == 0) | ||||
|     if (! (*src->fill_input_buffer) (cinfo)) | ||||
|       ERREXIT(cinfo, JERR_CANT_SUSPEND); | ||||
|   src->bytes_in_buffer--; | ||||
|   return GETJOCTET(*src->next_input_byte++); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The core arithmetic decoding routine (common in JPEG and JBIG). | ||||
|  * This needs to go as fast as possible. | ||||
|  * Machine-dependent optimization facilities | ||||
|  * are not utilized in this portable implementation. | ||||
|  * However, this code should be fairly efficient and | ||||
|  * may be a good base for further optimizations anyway. | ||||
|  * | ||||
|  * Return value is 0 or 1 (binary decision). | ||||
|  * | ||||
|  * Note: I've changed the handling of the code base & bit | ||||
|  * buffer register C compared to other implementations | ||||
|  * based on the standards layout & procedures. | ||||
|  * While it also contains both the actual base of the | ||||
|  * coding interval (16 bits) and the next-bits buffer, | ||||
|  * the cut-point between these two parts is floating | ||||
|  * (instead of fixed) with the bit shift counter CT. | ||||
|  * Thus, we also need only one (variable instead of | ||||
|  * fixed size) shift for the LPS/MPS decision, and | ||||
|  * we can do away with any renormalization update | ||||
|  * of C (except for new data insertion, of course). | ||||
|  * | ||||
|  * I've also introduced a new scheme for accessing | ||||
|  * the probability estimation state machine table, | ||||
|  * derived from Markus Kuhn's JBIG implementation. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(int) | ||||
| arith_decode (j_decompress_ptr cinfo, unsigned char *st) | ||||
| { | ||||
|   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | ||||
|   register unsigned char nl, nm; | ||||
|   register INT32 qe, temp; | ||||
|   register int sv, data; | ||||
| 
 | ||||
|   /* Renormalization & data input per section D.2.6 */ | ||||
|   while (e->a < 0x8000L) { | ||||
|     if (--e->ct < 0) { | ||||
|       /* Need to fetch next data byte */ | ||||
|       if (cinfo->unread_marker) | ||||
| 	data = 0;		/* stuff zero data */ | ||||
|       else { | ||||
| 	data = get_byte(cinfo);	/* read next input byte */ | ||||
| 	if (data == 0xFF) {	/* zero stuff or marker code */ | ||||
| 	  do data = get_byte(cinfo); | ||||
| 	  while (data == 0xFF);	/* swallow extra 0xFF bytes */ | ||||
| 	  if (data == 0) | ||||
| 	    data = 0xFF;	/* discard stuffed zero byte */ | ||||
| 	  else { | ||||
| 	    /* Note: Different from the Huffman decoder, hitting
 | ||||
| 	     * a marker while processing the compressed data | ||||
| 	     * segment is legal in arithmetic coding. | ||||
| 	     * The convention is to supply zero data | ||||
| 	     * then until decoding is complete. | ||||
| 	     */ | ||||
| 	    cinfo->unread_marker = data; | ||||
| 	    data = 0; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       e->c = (e->c << 8) | data; /* insert data into C register */ | ||||
|       if ((e->ct += 8) < 0)	 /* update bit shift counter */ | ||||
| 	/* Need more initial bytes */ | ||||
| 	if (++e->ct == 0) | ||||
| 	  /* Got 2 initial bytes -> re-init A and exit loop */ | ||||
| 	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ | ||||
|     } | ||||
|     e->a <<= 1; | ||||
|   } | ||||
| 
 | ||||
|   /* Fetch values from our compact representation of Table D.3(D.2):
 | ||||
|    * Qe values and probability estimation state machine | ||||
|    */ | ||||
|   sv = *st; | ||||
|   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */ | ||||
|   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */ | ||||
|   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */ | ||||
| 
 | ||||
|   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ | ||||
|   temp = e->a - qe; | ||||
|   e->a = temp; | ||||
|   temp <<= e->ct; | ||||
|   if (e->c >= temp) { | ||||
|     e->c -= temp; | ||||
|     /* Conditional LPS (less probable symbol) exchange */ | ||||
|     if (e->a < qe) { | ||||
|       e->a = qe; | ||||
|       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */ | ||||
|     } else { | ||||
|       e->a = qe; | ||||
|       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */ | ||||
|       sv ^= 0x80;		/* Exchange LPS/MPS */ | ||||
|     } | ||||
|   } else if (e->a < 0x8000L) { | ||||
|     /* Conditional MPS (more probable symbol) exchange */ | ||||
|     if (e->a < qe) { | ||||
|       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */ | ||||
|       sv ^= 0x80;		/* Exchange LPS/MPS */ | ||||
|     } else { | ||||
|       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */ | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   return sv >> 7; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Check for a restart marker & resynchronize decoder. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| process_restart (j_decompress_ptr cinfo) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   /* Advance past the RSTn marker */ | ||||
|   if (! (*cinfo->marker->read_restart_marker) (cinfo)) | ||||
|     ERREXIT(cinfo, JERR_CANT_SUSPEND); | ||||
| 
 | ||||
|   /* Re-initialize statistics areas */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | ||||
|       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | ||||
|       /* Reset DC predictions to 0 */ | ||||
|       entropy->last_dc_val[ci] = 0; | ||||
|       entropy->dc_context[ci] = 0; | ||||
|     } | ||||
|     if ((! cinfo->progressive_mode && cinfo->lim_Se) || | ||||
| 	(cinfo->progressive_mode && cinfo->Ss)) { | ||||
|       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Reset arithmetic decoding variables */ | ||||
|   entropy->c = 0; | ||||
|   entropy->a = 0; | ||||
|   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */ | ||||
| 
 | ||||
|   /* Reset restart counter */ | ||||
|   entropy->restarts_to_go = cinfo->restart_interval; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Arithmetic MCU decoding. | ||||
|  * Each of these routines decodes and returns one MCU's worth of | ||||
|  * arithmetic-compressed coefficients. | ||||
|  * The coefficients are reordered from zigzag order into natural array order, | ||||
|  * but are not dequantized. | ||||
|  * | ||||
|  * The i'th block of the MCU is stored into the block pointed to by | ||||
|  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | ||||
|  */ | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU decoding for DC initial scan (either spectral selection, | ||||
|  * or first pass of successive approximation). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   JBLOCKROW block; | ||||
|   unsigned char *st; | ||||
|   int blkn, ci, tbl, sign; | ||||
|   int v, m; | ||||
| 
 | ||||
|   /* Process restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) | ||||
|       process_restart(cinfo); | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | ||||
| 
 | ||||
|   /* Outer loop handles each block in the MCU */ | ||||
| 
 | ||||
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | ||||
|     block = MCU_data[blkn]; | ||||
|     ci = cinfo->MCU_membership[blkn]; | ||||
|     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | ||||
| 
 | ||||
|     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | ||||
| 
 | ||||
|     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | ||||
|     st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | ||||
| 
 | ||||
|     /* Figure F.19: Decode_DC_DIFF */ | ||||
|     if (arith_decode(cinfo, st) == 0) | ||||
|       entropy->dc_context[ci] = 0; | ||||
|     else { | ||||
|       /* Figure F.21: Decoding nonzero value v */ | ||||
|       /* Figure F.22: Decoding the sign of v */ | ||||
|       sign = arith_decode(cinfo, st + 1); | ||||
|       st += 2; st += sign; | ||||
|       /* Figure F.23: Decoding the magnitude category of v */ | ||||
|       if ((m = arith_decode(cinfo, st)) != 0) { | ||||
| 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */ | ||||
| 	while (arith_decode(cinfo, st)) { | ||||
| 	  if ((m <<= 1) == (int) 0x8000U) { | ||||
| 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	    entropy->ct = -1;			/* magnitude overflow */ | ||||
| 	    return TRUE; | ||||
| 	  } | ||||
| 	  st += 1; | ||||
| 	} | ||||
|       } | ||||
|       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | ||||
|       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] = 0;		   /* zero diff category */ | ||||
|       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | ||||
|       else | ||||
| 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */ | ||||
|       v = m; | ||||
|       /* Figure F.24: Decoding the magnitude bit pattern of v */ | ||||
|       st += 14; | ||||
|       while (m >>= 1) | ||||
| 	if (arith_decode(cinfo, st)) v |= m; | ||||
|       v += 1; if (sign) v = -v; | ||||
|       entropy->last_dc_val[ci] += v; | ||||
|     } | ||||
| 
 | ||||
|     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ | ||||
|     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU decoding for AC initial scan (either spectral selection, | ||||
|  * or first pass of successive approximation). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   JBLOCKROW block; | ||||
|   unsigned char *st; | ||||
|   int tbl, sign, k; | ||||
|   int v, m; | ||||
|   const int * natural_order; | ||||
| 
 | ||||
|   /* Process restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) | ||||
|       process_restart(cinfo); | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | ||||
| 
 | ||||
|   natural_order = cinfo->natural_order; | ||||
| 
 | ||||
|   /* There is always only one block per MCU */ | ||||
|   block = MCU_data[0]; | ||||
|   tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | ||||
| 
 | ||||
|   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | ||||
| 
 | ||||
|   /* Figure F.20: Decode_AC_coefficients */ | ||||
|   k = cinfo->Ss - 1; | ||||
|   do { | ||||
|     st = entropy->ac_stats[tbl] + 3 * k; | ||||
|     if (arith_decode(cinfo, st)) break;		/* EOB flag */ | ||||
|     for (;;) { | ||||
|       k++; | ||||
|       if (arith_decode(cinfo, st + 1)) break; | ||||
|       st += 3; | ||||
|       if (k >= cinfo->Se) { | ||||
| 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	entropy->ct = -1;			/* spectral overflow */ | ||||
| 	return TRUE; | ||||
|       } | ||||
|     } | ||||
|     /* Figure F.21: Decoding nonzero value v */ | ||||
|     /* Figure F.22: Decoding the sign of v */ | ||||
|     sign = arith_decode(cinfo, entropy->fixed_bin); | ||||
|     st += 2; | ||||
|     /* Figure F.23: Decoding the magnitude category of v */ | ||||
|     if ((m = arith_decode(cinfo, st)) != 0) { | ||||
|       if (arith_decode(cinfo, st)) { | ||||
| 	m <<= 1; | ||||
| 	st = entropy->ac_stats[tbl] + | ||||
| 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | ||||
| 	while (arith_decode(cinfo, st)) { | ||||
| 	  if ((m <<= 1) == (int) 0x8000U) { | ||||
| 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	    entropy->ct = -1;			/* magnitude overflow */ | ||||
| 	    return TRUE; | ||||
| 	  } | ||||
| 	  st += 1; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     v = m; | ||||
|     /* Figure F.24: Decoding the magnitude bit pattern of v */ | ||||
|     st += 14; | ||||
|     while (m >>= 1) | ||||
|       if (arith_decode(cinfo, st)) v |= m; | ||||
|     v += 1; if (sign) v = -v; | ||||
|     /* Scale and output coefficient in natural (dezigzagged) order */ | ||||
|     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); | ||||
|   } while (k < cinfo->Se); | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU decoding for DC successive approximation refinement scan. | ||||
|  * Note: we assume such scans can be multi-component, | ||||
|  * although the spec is not very clear on the point. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   unsigned char *st; | ||||
|   JCOEF p1; | ||||
|   int blkn; | ||||
| 
 | ||||
|   /* Process restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) | ||||
|       process_restart(cinfo); | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   st = entropy->fixed_bin;	/* use fixed probability estimation */ | ||||
|   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */ | ||||
| 
 | ||||
|   /* Outer loop handles each block in the MCU */ | ||||
| 
 | ||||
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | ||||
|     /* Encoded data is simply the next bit of the two's-complement DC value */ | ||||
|     if (arith_decode(cinfo, st)) | ||||
|       MCU_data[blkn][0][0] |= p1; | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * MCU decoding for AC successive approximation refinement scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   JBLOCKROW block; | ||||
|   JCOEFPTR thiscoef; | ||||
|   unsigned char *st; | ||||
|   int tbl, k, kex; | ||||
|   JCOEF p1, m1; | ||||
|   const int * natural_order; | ||||
| 
 | ||||
|   /* Process restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) | ||||
|       process_restart(cinfo); | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | ||||
| 
 | ||||
|   natural_order = cinfo->natural_order; | ||||
| 
 | ||||
|   /* There is always only one block per MCU */ | ||||
|   block = MCU_data[0]; | ||||
|   tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | ||||
| 
 | ||||
|   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */ | ||||
|   m1 = -p1;			/* -1 in the bit position being coded */ | ||||
| 
 | ||||
|   /* Establish EOBx (previous stage end-of-block) index */ | ||||
|   kex = cinfo->Se; | ||||
|   do { | ||||
|     if ((*block)[natural_order[kex]]) break; | ||||
|   } while (--kex); | ||||
| 
 | ||||
|   k = cinfo->Ss - 1; | ||||
|   do { | ||||
|     st = entropy->ac_stats[tbl] + 3 * k; | ||||
|     if (k >= kex) | ||||
|       if (arith_decode(cinfo, st)) break;	/* EOB flag */ | ||||
|     for (;;) { | ||||
|       thiscoef = *block + natural_order[++k]; | ||||
|       if (*thiscoef) {				/* previously nonzero coef */ | ||||
| 	if (arith_decode(cinfo, st + 2)) { | ||||
| 	  if (*thiscoef < 0) | ||||
| 	    *thiscoef += m1; | ||||
| 	  else | ||||
| 	    *thiscoef += p1; | ||||
| 	} | ||||
| 	break; | ||||
|       } | ||||
|       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */ | ||||
| 	if (arith_decode(cinfo, entropy->fixed_bin)) | ||||
| 	  *thiscoef = m1; | ||||
| 	else | ||||
| 	  *thiscoef = p1; | ||||
| 	break; | ||||
|       } | ||||
|       st += 3; | ||||
|       if (k >= cinfo->Se) { | ||||
| 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	entropy->ct = -1;			/* spectral overflow */ | ||||
| 	return TRUE; | ||||
|       } | ||||
|     } | ||||
|   } while (k < cinfo->Se); | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Decode one MCU's worth of arithmetic-compressed coefficients. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   jpeg_component_info * compptr; | ||||
|   JBLOCKROW block; | ||||
|   unsigned char *st; | ||||
|   int blkn, ci, tbl, sign, k; | ||||
|   int v, m; | ||||
|   const int * natural_order; | ||||
| 
 | ||||
|   /* Process restart marker if needed */ | ||||
|   if (cinfo->restart_interval) { | ||||
|     if (entropy->restarts_to_go == 0) | ||||
|       process_restart(cinfo); | ||||
|     entropy->restarts_to_go--; | ||||
|   } | ||||
| 
 | ||||
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */ | ||||
| 
 | ||||
|   natural_order = cinfo->natural_order; | ||||
| 
 | ||||
|   /* Outer loop handles each block in the MCU */ | ||||
| 
 | ||||
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | ||||
|     block = MCU_data[blkn]; | ||||
|     ci = cinfo->MCU_membership[blkn]; | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
| 
 | ||||
|     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | ||||
| 
 | ||||
|     tbl = compptr->dc_tbl_no; | ||||
| 
 | ||||
|     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | ||||
|     st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | ||||
| 
 | ||||
|     /* Figure F.19: Decode_DC_DIFF */ | ||||
|     if (arith_decode(cinfo, st) == 0) | ||||
|       entropy->dc_context[ci] = 0; | ||||
|     else { | ||||
|       /* Figure F.21: Decoding nonzero value v */ | ||||
|       /* Figure F.22: Decoding the sign of v */ | ||||
|       sign = arith_decode(cinfo, st + 1); | ||||
|       st += 2; st += sign; | ||||
|       /* Figure F.23: Decoding the magnitude category of v */ | ||||
|       if ((m = arith_decode(cinfo, st)) != 0) { | ||||
| 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */ | ||||
| 	while (arith_decode(cinfo, st)) { | ||||
| 	  if ((m <<= 1) == (int) 0x8000U) { | ||||
| 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	    entropy->ct = -1;			/* magnitude overflow */ | ||||
| 	    return TRUE; | ||||
| 	  } | ||||
| 	  st += 1; | ||||
| 	} | ||||
|       } | ||||
|       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | ||||
|       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] = 0;		   /* zero diff category */ | ||||
|       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | ||||
| 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | ||||
|       else | ||||
| 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */ | ||||
|       v = m; | ||||
|       /* Figure F.24: Decoding the magnitude bit pattern of v */ | ||||
|       st += 14; | ||||
|       while (m >>= 1) | ||||
| 	if (arith_decode(cinfo, st)) v |= m; | ||||
|       v += 1; if (sign) v = -v; | ||||
|       entropy->last_dc_val[ci] += v; | ||||
|     } | ||||
| 
 | ||||
|     (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; | ||||
| 
 | ||||
|     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | ||||
| 
 | ||||
|     if (cinfo->lim_Se == 0) continue; | ||||
|     tbl = compptr->ac_tbl_no; | ||||
|     k = 0; | ||||
| 
 | ||||
|     /* Figure F.20: Decode_AC_coefficients */ | ||||
|     do { | ||||
|       st = entropy->ac_stats[tbl] + 3 * k; | ||||
|       if (arith_decode(cinfo, st)) break;	/* EOB flag */ | ||||
|       for (;;) { | ||||
| 	k++; | ||||
| 	if (arith_decode(cinfo, st + 1)) break; | ||||
| 	st += 3; | ||||
| 	if (k >= cinfo->lim_Se) { | ||||
| 	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	  entropy->ct = -1;			/* spectral overflow */ | ||||
| 	  return TRUE; | ||||
| 	} | ||||
|       } | ||||
|       /* Figure F.21: Decoding nonzero value v */ | ||||
|       /* Figure F.22: Decoding the sign of v */ | ||||
|       sign = arith_decode(cinfo, entropy->fixed_bin); | ||||
|       st += 2; | ||||
|       /* Figure F.23: Decoding the magnitude category of v */ | ||||
|       if ((m = arith_decode(cinfo, st)) != 0) { | ||||
| 	if (arith_decode(cinfo, st)) { | ||||
| 	  m <<= 1; | ||||
| 	  st = entropy->ac_stats[tbl] + | ||||
| 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | ||||
| 	  while (arith_decode(cinfo, st)) { | ||||
| 	    if ((m <<= 1) == (int) 0x8000U) { | ||||
| 	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | ||||
| 	      entropy->ct = -1;			/* magnitude overflow */ | ||||
| 	      return TRUE; | ||||
| 	    } | ||||
| 	    st += 1; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       v = m; | ||||
|       /* Figure F.24: Decoding the magnitude bit pattern of v */ | ||||
|       st += 14; | ||||
|       while (m >>= 1) | ||||
| 	if (arith_decode(cinfo, st)) v |= m; | ||||
|       v += 1; if (sign) v = -v; | ||||
|       (*block)[natural_order[k]] = (JCOEF) v; | ||||
|     } while (k < cinfo->lim_Se); | ||||
|   } | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an arithmetic-compressed scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | ||||
|   int ci, tbl; | ||||
|   jpeg_component_info * compptr; | ||||
| 
 | ||||
|   if (cinfo->progressive_mode) { | ||||
|     /* Validate progressive scan parameters */ | ||||
|     if (cinfo->Ss == 0) { | ||||
|       if (cinfo->Se != 0) | ||||
| 	goto bad; | ||||
|     } else { | ||||
|       /* need not check Ss/Se < 0 since they came from unsigned bytes */ | ||||
|       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) | ||||
| 	goto bad; | ||||
|       /* AC scans may have only one component */ | ||||
|       if (cinfo->comps_in_scan != 1) | ||||
| 	goto bad; | ||||
|     } | ||||
|     if (cinfo->Ah != 0) { | ||||
|       /* Successive approximation refinement scan: must have Al = Ah-1. */ | ||||
|       if (cinfo->Ah-1 != cinfo->Al) | ||||
| 	goto bad; | ||||
|     } | ||||
|     if (cinfo->Al > 13) {	/* need not check for < 0 */ | ||||
|       bad: | ||||
|       ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | ||||
| 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | ||||
|     } | ||||
|     /* Update progression status, and verify that scan order is legal.
 | ||||
|      * Note that inter-scan inconsistencies are treated as warnings | ||||
|      * not fatal errors ... not clear if this is right way to behave. | ||||
|      */ | ||||
|     for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; | ||||
|       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | ||||
|       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | ||||
| 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | ||||
|       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | ||||
| 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | ||||
| 	if (cinfo->Ah != expected) | ||||
| 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | ||||
| 	coef_bit_ptr[coefi] = cinfo->Al; | ||||
|       } | ||||
|     } | ||||
|     /* Select MCU decoding routine */ | ||||
|     if (cinfo->Ah == 0) { | ||||
|       if (cinfo->Ss == 0) | ||||
| 	entropy->pub.decode_mcu = decode_mcu_DC_first; | ||||
|       else | ||||
| 	entropy->pub.decode_mcu = decode_mcu_AC_first; | ||||
|     } else { | ||||
|       if (cinfo->Ss == 0) | ||||
| 	entropy->pub.decode_mcu = decode_mcu_DC_refine; | ||||
|       else | ||||
| 	entropy->pub.decode_mcu = decode_mcu_AC_refine; | ||||
|     } | ||||
|   } else { | ||||
|     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
 | ||||
|      * This ought to be an error condition, but we make it a warning. | ||||
|      */ | ||||
|     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || | ||||
| 	(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) | ||||
|       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | ||||
|     /* Select MCU decoding routine */ | ||||
|     entropy->pub.decode_mcu = decode_mcu; | ||||
|   } | ||||
| 
 | ||||
|   /* Allocate & initialize requested statistics areas */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | ||||
|       tbl = compptr->dc_tbl_no; | ||||
|       if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | ||||
| 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | ||||
|       if (entropy->dc_stats[tbl] == NULL) | ||||
| 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | ||||
| 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); | ||||
|       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | ||||
|       /* Initialize DC predictions to 0 */ | ||||
|       entropy->last_dc_val[ci] = 0; | ||||
|       entropy->dc_context[ci] = 0; | ||||
|     } | ||||
|     if ((! cinfo->progressive_mode && cinfo->lim_Se) || | ||||
| 	(cinfo->progressive_mode && cinfo->Ss)) { | ||||
|       tbl = compptr->ac_tbl_no; | ||||
|       if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | ||||
| 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | ||||
|       if (entropy->ac_stats[tbl] == NULL) | ||||
| 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | ||||
| 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); | ||||
|       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize arithmetic decoding variables */ | ||||
|   entropy->c = 0; | ||||
|   entropy->a = 0; | ||||
|   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */ | ||||
| 
 | ||||
|   /* Initialize restart counter */ | ||||
|   entropy->restarts_to_go = cinfo->restart_interval; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up at the end of an arithmetic-compressed scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| finish_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* no work necessary here */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for arithmetic entropy decoding. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_arith_decoder (j_decompress_ptr cinfo) | ||||
| { | ||||
|   arith_entropy_ptr entropy; | ||||
|   int i; | ||||
| 
 | ||||
|   entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder)); | ||||
|   cinfo->entropy = &entropy->pub; | ||||
|   entropy->pub.start_pass = start_pass; | ||||
|   entropy->pub.finish_pass = finish_pass; | ||||
| 
 | ||||
|   /* Mark tables unallocated */ | ||||
|   for (i = 0; i < NUM_ARITH_TBLS; i++) { | ||||
|     entropy->dc_stats[i] = NULL; | ||||
|     entropy->ac_stats[i] = NULL; | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize index for fixed probability estimation */ | ||||
|   entropy->fixed_bin[0] = 113; | ||||
| 
 | ||||
|   if (cinfo->progressive_mode) { | ||||
|     /* Create progression status table */ | ||||
|     int *coef_bit_ptr, ci; | ||||
|     cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        cinfo->num_components * DCTSIZE2 * SIZEOF(int)); | ||||
|     coef_bit_ptr = & cinfo->coef_bits[0][0]; | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++)  | ||||
|       for (i = 0; i < DCTSIZE2; i++) | ||||
| 	*coef_bit_ptr++ = -1; | ||||
|   } | ||||
| } | ||||
							
								
								
									
										263
									
								
								dep/libjpeg/src/jdatadst.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										263
									
								
								dep/libjpeg/src/jdatadst.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,263 @@ | |||
| /*
 | ||||
|  * jdatadst.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2009-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains compression data destination routines for the case of | ||||
|  * emitting JPEG data to memory or to a file (or any stdio stream). | ||||
|  * While these routines are sufficient for most applications, | ||||
|  * some will want to use a different destination manager. | ||||
|  * IMPORTANT: we assume that fwrite() will correctly transcribe an array of | ||||
|  * JOCTETs into 8-bit-wide elements on external storage.  If char is wider | ||||
|  * than 8 bits on your machine, you may need to do some tweaking. | ||||
|  */ | ||||
| 
 | ||||
| /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jerror.h" | ||||
| 
 | ||||
| #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */ | ||||
| extern void * malloc JPP((size_t size)); | ||||
| extern void free JPP((void *ptr)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Expanded data destination object for stdio output */ | ||||
| 
 | ||||
| #define OUTPUT_BUF_SIZE  4096	/* choose an efficiently fwrite'able size */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_destination_mgr pub; /* public fields */ | ||||
| 
 | ||||
|   FILE * outfile;		/* target stream */ | ||||
|   JOCTET buffer[OUTPUT_BUF_SIZE]; /* output buffer */ | ||||
| } my_destination_mgr; | ||||
| 
 | ||||
| typedef my_destination_mgr * my_dest_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Expanded data destination object for memory output */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_destination_mgr pub; /* public fields */ | ||||
| 
 | ||||
|   unsigned char ** outbuffer;	/* target buffer */ | ||||
|   size_t * outsize; | ||||
|   unsigned char * newbuffer;	/* newly allocated buffer */ | ||||
|   JOCTET * buffer;		/* start of buffer */ | ||||
|   size_t bufsize; | ||||
| } my_mem_destination_mgr; | ||||
| 
 | ||||
| typedef my_mem_destination_mgr * my_mem_dest_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize destination --- called by jpeg_start_compress | ||||
|  * before any data is actually written. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| init_destination (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_dest_ptr dest = (my_dest_ptr) cinfo->dest; | ||||
| 
 | ||||
|   dest->pub.next_output_byte = dest->buffer; | ||||
|   dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; | ||||
| } | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| init_mem_destination (j_compress_ptr cinfo) | ||||
| { | ||||
|   /* no work necessary here */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Empty the output buffer --- called whenever buffer fills up. | ||||
|  * | ||||
|  * In typical applications, this should write the entire output buffer | ||||
|  * (ignoring the current state of next_output_byte & free_in_buffer), | ||||
|  * reset the pointer & count to the start of the buffer, and return TRUE | ||||
|  * indicating that the buffer has been dumped. | ||||
|  * | ||||
|  * In applications that need to be able to suspend compression due to output | ||||
|  * overrun, a FALSE return indicates that the buffer cannot be emptied now. | ||||
|  * In this situation, the compressor will return to its caller (possibly with | ||||
|  * an indication that it has not accepted all the supplied scanlines).  The | ||||
|  * application should resume compression after it has made more room in the | ||||
|  * output buffer.  Note that there are substantial restrictions on the use of | ||||
|  * suspension --- see the documentation. | ||||
|  * | ||||
|  * When suspending, the compressor will back up to a convenient restart point | ||||
|  * (typically the start of the current MCU). next_output_byte & free_in_buffer | ||||
|  * indicate where the restart point will be if the current call returns FALSE. | ||||
|  * Data beyond this point will be regenerated after resumption, so do not | ||||
|  * write it out when emptying the buffer externally. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| empty_output_buffer (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_dest_ptr dest = (my_dest_ptr) cinfo->dest; | ||||
| 
 | ||||
|   if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != | ||||
|       (size_t) OUTPUT_BUF_SIZE) | ||||
|     ERREXIT(cinfo, JERR_FILE_WRITE); | ||||
| 
 | ||||
|   dest->pub.next_output_byte = dest->buffer; | ||||
|   dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| empty_mem_output_buffer (j_compress_ptr cinfo) | ||||
| { | ||||
|   size_t nextsize; | ||||
|   JOCTET * nextbuffer; | ||||
|   my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; | ||||
| 
 | ||||
|   /* Try to allocate new buffer with double size */ | ||||
|   nextsize = dest->bufsize * 2; | ||||
|   nextbuffer = (JOCTET *) malloc(nextsize); | ||||
| 
 | ||||
|   if (nextbuffer == NULL) | ||||
|     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 11); | ||||
| 
 | ||||
|   MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); | ||||
| 
 | ||||
|   if (dest->newbuffer != NULL) | ||||
|     free(dest->newbuffer); | ||||
| 
 | ||||
|   dest->newbuffer = nextbuffer; | ||||
| 
 | ||||
|   dest->pub.next_output_byte = nextbuffer + dest->bufsize; | ||||
|   dest->pub.free_in_buffer = dest->bufsize; | ||||
| 
 | ||||
|   dest->buffer = nextbuffer; | ||||
|   dest->bufsize = nextsize; | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Terminate destination --- called by jpeg_finish_compress | ||||
|  * after all data has been written.  Usually needs to flush buffer. | ||||
|  * | ||||
|  * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding | ||||
|  * application must deal with any cleanup that should happen even | ||||
|  * for error exit. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| term_destination (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_dest_ptr dest = (my_dest_ptr) cinfo->dest; | ||||
|   size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; | ||||
| 
 | ||||
|   /* Write any data remaining in the buffer */ | ||||
|   if (datacount > 0) { | ||||
|     if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) | ||||
|       ERREXIT(cinfo, JERR_FILE_WRITE); | ||||
|   } | ||||
|   JFFLUSH(dest->outfile); | ||||
|   /* Make sure we wrote the output file OK */ | ||||
|   if (JFERROR(dest->outfile)) | ||||
|     ERREXIT(cinfo, JERR_FILE_WRITE); | ||||
| } | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| term_mem_destination (j_compress_ptr cinfo) | ||||
| { | ||||
|   my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; | ||||
| 
 | ||||
|   *dest->outbuffer = dest->buffer; | ||||
|   *dest->outsize = dest->bufsize - dest->pub.free_in_buffer; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Prepare for output to a stdio stream. | ||||
|  * The caller must have already opened the stream, | ||||
|  * and is responsible for closing it after finishing compression. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile) | ||||
| { | ||||
|   my_dest_ptr dest; | ||||
| 
 | ||||
|   /* The destination object is made permanent so that multiple JPEG images
 | ||||
|    * can be written to the same file without re-executing jpeg_stdio_dest. | ||||
|    * This makes it dangerous to use this manager and a different destination | ||||
|    * manager serially with the same JPEG object, because their private object | ||||
|    * sizes may be different.  Caveat programmer. | ||||
|    */ | ||||
|   if (cinfo->dest == NULL) {	/* first time for this JPEG object? */ | ||||
|     cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_destination_mgr)); | ||||
|   } | ||||
| 
 | ||||
|   dest = (my_dest_ptr) cinfo->dest; | ||||
|   dest->pub.init_destination = init_destination; | ||||
|   dest->pub.empty_output_buffer = empty_output_buffer; | ||||
|   dest->pub.term_destination = term_destination; | ||||
|   dest->outfile = outfile; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Prepare for output to a memory buffer. | ||||
|  * The caller may supply an own initial buffer with appropriate size. | ||||
|  * Otherwise, or when the actual data output exceeds the given size, | ||||
|  * the library adapts the buffer size as necessary. | ||||
|  * The standard library functions malloc/free are used for allocating | ||||
|  * larger memory, so the buffer is available to the application after | ||||
|  * finishing compression, and then the application is responsible for | ||||
|  * freeing the requested memory. | ||||
|  * Note:  An initial buffer supplied by the caller is expected to be | ||||
|  * managed by the application.  The library does not free such buffer | ||||
|  * when allocating a larger buffer. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_mem_dest (j_compress_ptr cinfo, | ||||
| 	       unsigned char ** outbuffer, size_t * outsize) | ||||
| { | ||||
|   my_mem_dest_ptr dest; | ||||
| 
 | ||||
|   if (outbuffer == NULL || outsize == NULL)	/* sanity check */ | ||||
|     ERREXIT(cinfo, JERR_BUFFER_SIZE); | ||||
| 
 | ||||
|   /* The destination object is made permanent so that multiple JPEG images
 | ||||
|    * can be written to the same buffer without re-executing jpeg_mem_dest. | ||||
|    */ | ||||
|   if (cinfo->dest == NULL) {	/* first time for this JPEG object? */ | ||||
|     cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_mem_destination_mgr)); | ||||
|   } | ||||
| 
 | ||||
|   dest = (my_mem_dest_ptr) cinfo->dest; | ||||
|   dest->pub.init_destination = init_mem_destination; | ||||
|   dest->pub.empty_output_buffer = empty_mem_output_buffer; | ||||
|   dest->pub.term_destination = term_mem_destination; | ||||
|   dest->outbuffer = outbuffer; | ||||
|   dest->outsize = outsize; | ||||
|   dest->newbuffer = NULL; | ||||
| 
 | ||||
|   if (*outbuffer == NULL || *outsize == 0) { | ||||
|     /* Allocate initial buffer */ | ||||
|     dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE); | ||||
|     if (dest->newbuffer == NULL) | ||||
|       ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); | ||||
|     *outsize = OUTPUT_BUF_SIZE; | ||||
|   } | ||||
| 
 | ||||
|   dest->pub.next_output_byte = dest->buffer = *outbuffer; | ||||
|   dest->pub.free_in_buffer = dest->bufsize = *outsize; | ||||
| } | ||||
							
								
								
									
										271
									
								
								dep/libjpeg/src/jdatasrc.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										271
									
								
								dep/libjpeg/src/jdatasrc.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,271 @@ | |||
| /*
 | ||||
|  * jdatasrc.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2009-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains decompression data source routines for the case of | ||||
|  * reading JPEG data from memory or from a file (or any stdio stream). | ||||
|  * While these routines are sufficient for most applications, | ||||
|  * some will want to use a different source manager. | ||||
|  * IMPORTANT: we assume that fread() will correctly transcribe an array of | ||||
|  * JOCTETs from 8-bit-wide elements on external storage.  If char is wider | ||||
|  * than 8 bits on your machine, you may need to do some tweaking. | ||||
|  */ | ||||
| 
 | ||||
| /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jerror.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Expanded data source object for stdio input */ | ||||
| 
 | ||||
| #define INPUT_BUF_SIZE  4096	/* choose an efficiently fread'able size */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_source_mgr pub;	/* public fields */ | ||||
| 
 | ||||
|   FILE * infile;		/* source stream */ | ||||
|   JOCTET buffer[INPUT_BUF_SIZE]; /* input buffer */ | ||||
|   boolean start_of_file;	/* have we gotten any data yet? */ | ||||
| } my_source_mgr; | ||||
| 
 | ||||
| typedef my_source_mgr * my_src_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize source --- called by jpeg_read_header | ||||
|  * before any data is actually read. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| init_source (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_src_ptr src = (my_src_ptr) cinfo->src; | ||||
| 
 | ||||
|   /* We reset the empty-input-file flag for each image,
 | ||||
|    * but we don't clear the input buffer. | ||||
|    * This is correct behavior for reading a series of images from one source. | ||||
|    */ | ||||
|   src->start_of_file = TRUE; | ||||
| } | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| init_mem_source (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* no work necessary here */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Fill the input buffer --- called whenever buffer is emptied. | ||||
|  * | ||||
|  * In typical applications, this should read fresh data into the buffer | ||||
|  * (ignoring the current state of next_input_byte & bytes_in_buffer), | ||||
|  * reset the pointer & count to the start of the buffer, and return TRUE | ||||
|  * indicating that the buffer has been reloaded.  It is not necessary to | ||||
|  * fill the buffer entirely, only to obtain at least one more byte. | ||||
|  * | ||||
|  * There is no such thing as an EOF return.  If the end of the file has been | ||||
|  * reached, the routine has a choice of ERREXIT() or inserting fake data into | ||||
|  * the buffer.  In most cases, generating a warning message and inserting a | ||||
|  * fake EOI marker is the best course of action --- this will allow the | ||||
|  * decompressor to output however much of the image is there.  However, | ||||
|  * the resulting error message is misleading if the real problem is an empty | ||||
|  * input file, so we handle that case specially. | ||||
|  * | ||||
|  * In applications that need to be able to suspend compression due to input | ||||
|  * not being available yet, a FALSE return indicates that no more data can be | ||||
|  * obtained right now, but more may be forthcoming later.  In this situation, | ||||
|  * the decompressor will return to its caller (with an indication of the | ||||
|  * number of scanlines it has read, if any).  The application should resume | ||||
|  * decompression after it has loaded more data into the input buffer.  Note | ||||
|  * that there are substantial restrictions on the use of suspension --- see | ||||
|  * the documentation. | ||||
|  * | ||||
|  * When suspending, the decompressor will back up to a convenient restart point | ||||
|  * (typically the start of the current MCU). next_input_byte & bytes_in_buffer | ||||
|  * indicate where the restart point will be if the current call returns FALSE. | ||||
|  * Data beyond this point must be rescanned after resumption, so move it to | ||||
|  * the front of the buffer rather than discarding it. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| fill_input_buffer (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_src_ptr src = (my_src_ptr) cinfo->src; | ||||
|   size_t nbytes; | ||||
| 
 | ||||
|   nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); | ||||
| 
 | ||||
|   if (nbytes <= 0) { | ||||
|     if (src->start_of_file)	/* Treat empty input file as fatal error */ | ||||
|       ERREXIT(cinfo, JERR_INPUT_EMPTY); | ||||
|     WARNMS(cinfo, JWRN_JPEG_EOF); | ||||
|     /* Insert a fake EOI marker */ | ||||
|     src->buffer[0] = (JOCTET) 0xFF; | ||||
|     src->buffer[1] = (JOCTET) JPEG_EOI; | ||||
|     nbytes = 2; | ||||
|   } | ||||
| 
 | ||||
|   src->pub.next_input_byte = src->buffer; | ||||
|   src->pub.bytes_in_buffer = nbytes; | ||||
|   src->start_of_file = FALSE; | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| METHODDEF(boolean) | ||||
| fill_mem_input_buffer (j_decompress_ptr cinfo) | ||||
| { | ||||
|   static const JOCTET mybuffer[4] = { | ||||
|     (JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0 | ||||
|   }; | ||||
| 
 | ||||
|   /* The whole JPEG data is expected to reside in the supplied memory
 | ||||
|    * buffer, so any request for more data beyond the given buffer size | ||||
|    * is treated as an error. | ||||
|    */ | ||||
|   WARNMS(cinfo, JWRN_JPEG_EOF); | ||||
| 
 | ||||
|   /* Insert a fake EOI marker */ | ||||
| 
 | ||||
|   cinfo->src->next_input_byte = mybuffer; | ||||
|   cinfo->src->bytes_in_buffer = 2; | ||||
| 
 | ||||
|   return TRUE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Skip data --- used to skip over a potentially large amount of | ||||
|  * uninteresting data (such as an APPn marker). | ||||
|  * | ||||
|  * Writers of suspendable-input applications must note that skip_input_data | ||||
|  * is not granted the right to give a suspension return.  If the skip extends | ||||
|  * beyond the data currently in the buffer, the buffer can be marked empty so | ||||
|  * that the next read will cause a fill_input_buffer call that can suspend. | ||||
|  * Arranging for additional bytes to be discarded before reloading the input | ||||
|  * buffer is the application writer's problem. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| skip_input_data (j_decompress_ptr cinfo, long num_bytes) | ||||
| { | ||||
|   struct jpeg_source_mgr * src = cinfo->src; | ||||
|   size_t nbytes; | ||||
| 
 | ||||
|   /* Just a dumb implementation for now.  Could use fseek() except
 | ||||
|    * it doesn't work on pipes.  Not clear that being smart is worth | ||||
|    * any trouble anyway --- large skips are infrequent. | ||||
|    */ | ||||
|   if (num_bytes > 0) { | ||||
|     nbytes = (size_t) num_bytes; | ||||
|     while (nbytes > src->bytes_in_buffer) { | ||||
|       nbytes -= src->bytes_in_buffer; | ||||
|       (void) (*src->fill_input_buffer) (cinfo); | ||||
|       /* note we assume that fill_input_buffer will never return FALSE,
 | ||||
|        * so suspension need not be handled. | ||||
|        */ | ||||
|     } | ||||
|     src->next_input_byte += nbytes; | ||||
|     src->bytes_in_buffer -= nbytes; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * An additional method that can be provided by data source modules is the | ||||
|  * resync_to_restart method for error recovery in the presence of RST markers. | ||||
|  * For the moment, this source module just uses the default resync method | ||||
|  * provided by the JPEG library.  That method assumes that no backtracking | ||||
|  * is possible. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Terminate source --- called by jpeg_finish_decompress | ||||
|  * after all data has been read.  Often a no-op. | ||||
|  * | ||||
|  * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding | ||||
|  * application must deal with any cleanup that should happen even | ||||
|  * for error exit. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| term_source (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* no work necessary here */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Prepare for input from a stdio stream. | ||||
|  * The caller must have already opened the stream, | ||||
|  * and is responsible for closing it after finishing decompression. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile) | ||||
| { | ||||
|   my_src_ptr src; | ||||
| 
 | ||||
|   /* The source object including the input buffer is made permanent so that
 | ||||
|    * a series of JPEG images can be read from the same file by calling | ||||
|    * jpeg_stdio_src only before the first one.  (If we discarded the buffer | ||||
|    * at the end of one image, we'd likely lose the start of the next one.) | ||||
|    * This makes it unsafe to use this manager and a different source | ||||
|    * manager serially with the same JPEG object.  Caveat programmer. | ||||
|    */ | ||||
|   if (cinfo->src == NULL) {	/* first time for this JPEG object? */ | ||||
|     cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_source_mgr)); | ||||
|   } | ||||
| 
 | ||||
|   src = (my_src_ptr) cinfo->src; | ||||
|   src->pub.init_source = init_source; | ||||
|   src->pub.fill_input_buffer = fill_input_buffer; | ||||
|   src->pub.skip_input_data = skip_input_data; | ||||
|   src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ | ||||
|   src->pub.term_source = term_source; | ||||
|   src->infile = infile; | ||||
|   src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ | ||||
|   src->pub.next_input_byte = NULL; /* until buffer loaded */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Prepare for input from a supplied memory buffer. | ||||
|  * The buffer must contain the whole JPEG data. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_mem_src (j_decompress_ptr cinfo, | ||||
| 	      const unsigned char * inbuffer, size_t insize) | ||||
| { | ||||
|   struct jpeg_source_mgr * src; | ||||
| 
 | ||||
|   if (inbuffer == NULL || insize == 0)	/* Treat empty input as fatal error */ | ||||
|     ERREXIT(cinfo, JERR_INPUT_EMPTY); | ||||
| 
 | ||||
|   /* The source object is made permanent so that a series of JPEG images
 | ||||
|    * can be read from the same buffer by calling jpeg_mem_src only before | ||||
|    * the first one. | ||||
|    */ | ||||
|   if (cinfo->src == NULL) {	/* first time for this JPEG object? */ | ||||
|     cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(struct jpeg_source_mgr)); | ||||
|   } | ||||
| 
 | ||||
|   src = cinfo->src; | ||||
|   src->init_source = init_mem_source; | ||||
|   src->fill_input_buffer = fill_mem_input_buffer; | ||||
|   src->skip_input_data = skip_input_data; | ||||
|   src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ | ||||
|   src->term_source = term_source; | ||||
|   src->bytes_in_buffer = insize; | ||||
|   src->next_input_byte = (const JOCTET *) inbuffer; | ||||
| } | ||||
							
								
								
									
										744
									
								
								dep/libjpeg/src/jdcoefct.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										744
									
								
								dep/libjpeg/src/jdcoefct.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,744 @@ | |||
| /*
 | ||||
|  * jdcoefct.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1997, Thomas G. Lane. | ||||
|  * Modified 2002-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the coefficient buffer controller for decompression. | ||||
|  * This controller is the top level of the JPEG decompressor proper. | ||||
|  * The coefficient buffer lies between entropy decoding and inverse-DCT steps. | ||||
|  * | ||||
|  * In buffered-image mode, this controller is the interface between | ||||
|  * input-oriented processing and output-oriented processing. | ||||
|  * Also, the input side (only) is used when reading a file for transcoding. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Block smoothing is only applicable for progressive JPEG, so: */ | ||||
| #ifndef D_PROGRESSIVE_SUPPORTED | ||||
| #undef BLOCK_SMOOTHING_SUPPORTED | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_d_coef_controller pub; /* public fields */ | ||||
| 
 | ||||
|   /* These variables keep track of the current location of the input side. */ | ||||
|   /* cinfo->input_iMCU_row is also used for this. */ | ||||
|   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */ | ||||
|   int MCU_vert_offset;		/* counts MCU rows within iMCU row */ | ||||
|   int MCU_rows_per_iMCU_row;	/* number of such rows needed */ | ||||
| 
 | ||||
|   /* The output side's location is represented by cinfo->output_iMCU_row. */ | ||||
| 
 | ||||
|   /* In single-pass modes, it's sufficient to buffer just one MCU.
 | ||||
|    * We append a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, | ||||
|    * and let the entropy decoder write into that workspace each time. | ||||
|    * In multi-pass modes, this array points to the current MCU's blocks | ||||
|    * within the virtual arrays; it is used only by the input side. | ||||
|    */ | ||||
|   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; | ||||
| 
 | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
|   /* In multi-pass modes, we need a virtual block array for each component. */ | ||||
|   jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | ||||
| #endif | ||||
| 
 | ||||
| #ifdef BLOCK_SMOOTHING_SUPPORTED | ||||
|   /* When doing block smoothing, we latch coefficient Al values here */ | ||||
|   int * coef_bits_latch; | ||||
| #define SAVED_COEFS  6		/* we save coef_bits[0..5] */ | ||||
| #endif | ||||
| 
 | ||||
|   /* Workspace for single-pass modes (omitted otherwise). */ | ||||
|   JBLOCK blk_buffer[D_MAX_BLOCKS_IN_MCU]; | ||||
| } my_coef_controller; | ||||
| 
 | ||||
| typedef my_coef_controller * my_coef_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| METHODDEF(int) decompress_onepass | ||||
| 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
| METHODDEF(int) decompress_data | ||||
| 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | ||||
| #endif | ||||
| #ifdef BLOCK_SMOOTHING_SUPPORTED | ||||
| LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); | ||||
| METHODDEF(int) decompress_smooth_data | ||||
| 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| start_iMCU_row (j_decompress_ptr cinfo) | ||||
| /* Reset within-iMCU-row counters for a new row (input side) */ | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
| 
 | ||||
|   /* In an interleaved scan, an MCU row is the same as an iMCU row.
 | ||||
|    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | ||||
|    * But at the bottom of the image, process only what's left. | ||||
|    */ | ||||
|   if (cinfo->comps_in_scan > 1) { | ||||
|     coef->MCU_rows_per_iMCU_row = 1; | ||||
|   } else { | ||||
|     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) | ||||
|       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | ||||
|     else | ||||
|       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | ||||
|   } | ||||
| 
 | ||||
|   coef->MCU_ctr = 0; | ||||
|   coef->MCU_vert_offset = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an input processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_input_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   cinfo->input_iMCU_row = 0; | ||||
|   start_iMCU_row(cinfo); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an output processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_output_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
| #ifdef BLOCK_SMOOTHING_SUPPORTED | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
| 
 | ||||
|   /* If multipass, check to see whether to use block smoothing on this pass */ | ||||
|   if (coef->pub.coef_arrays != NULL) { | ||||
|     if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) | ||||
|       coef->pub.decompress_data = decompress_smooth_data; | ||||
|     else | ||||
|       coef->pub.decompress_data = decompress_data; | ||||
|   } | ||||
| #endif | ||||
|   cinfo->output_iMCU_row = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Decompress and return some data in the single-pass case. | ||||
|  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | ||||
|  * Input and output must run in lockstep since we have only a one-MCU buffer. | ||||
|  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | ||||
|  * | ||||
|  * NB: output_buf contains a plane for each component in image, | ||||
|  * which we index according to the component's SOF position. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(int) | ||||
| decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION MCU_col_num;	/* index of current MCU within row */ | ||||
|   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | ||||
|   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||||
|   int ci, xindex, yindex, yoffset, useful_width; | ||||
|   JBLOCKROW blkp; | ||||
|   JSAMPARRAY output_ptr; | ||||
|   JDIMENSION start_col, output_col; | ||||
|   jpeg_component_info *compptr; | ||||
|   inverse_DCT_method_ptr inverse_DCT; | ||||
| 
 | ||||
|   /* Loop to process as much as one whole iMCU row */ | ||||
|   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||||
|        yoffset++) { | ||||
|     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | ||||
| 	 MCU_col_num++) { | ||||
|       blkp = coef->blk_buffer;	/* pointer to current DCT block within MCU */ | ||||
|       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */ | ||||
|       if (cinfo->lim_Se)	/* can bypass in DC only case */ | ||||
| 	MEMZERO(blkp, cinfo->blocks_in_MCU * SIZEOF(JBLOCK)); | ||||
|       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | ||||
| 	/* Suspension forced; update state counters and exit */ | ||||
| 	coef->MCU_vert_offset = yoffset; | ||||
| 	coef->MCU_ctr = MCU_col_num; | ||||
| 	return JPEG_SUSPENDED; | ||||
|       } | ||||
|       /* Determine where data should go in output_buf and do the IDCT thing.
 | ||||
|        * We skip dummy blocks at the right and bottom edges (but blkp gets | ||||
|        * incremented past them!). | ||||
|        */ | ||||
|       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
| 	compptr = cinfo->cur_comp_info[ci]; | ||||
| 	/* Don't bother to IDCT an uninteresting component. */ | ||||
| 	if (! compptr->component_needed) { | ||||
| 	  blkp += compptr->MCU_blocks; | ||||
| 	  continue; | ||||
| 	} | ||||
| 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; | ||||
| 	output_ptr = output_buf[compptr->component_index] + | ||||
| 	  yoffset * compptr->DCT_v_scaled_size; | ||||
| 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | ||||
| 						    : compptr->last_col_width; | ||||
| 	start_col = MCU_col_num * compptr->MCU_sample_width; | ||||
| 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||||
| 	  if (cinfo->input_iMCU_row < last_iMCU_row || | ||||
| 	      yoffset + yindex < compptr->last_row_height) { | ||||
| 	    output_col = start_col; | ||||
| 	    for (xindex = 0; xindex < useful_width; xindex++) { | ||||
| 	      (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) (blkp + xindex), | ||||
| 			      output_ptr, output_col); | ||||
| 	      output_col += compptr->DCT_h_scaled_size; | ||||
| 	    } | ||||
| 	    output_ptr += compptr->DCT_v_scaled_size; | ||||
| 	  } | ||||
| 	  blkp += compptr->MCU_width; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     /* Completed an MCU row, but perhaps not an iMCU row */ | ||||
|     coef->MCU_ctr = 0; | ||||
|   } | ||||
|   /* Completed the iMCU row, advance counters for next one */ | ||||
|   cinfo->output_iMCU_row++; | ||||
|   if (++(cinfo->input_iMCU_row) <= last_iMCU_row) { | ||||
|     start_iMCU_row(cinfo); | ||||
|     return JPEG_ROW_COMPLETED; | ||||
|   } | ||||
|   /* Completed the scan */ | ||||
|   (*cinfo->inputctl->finish_input_pass) (cinfo); | ||||
|   return JPEG_SCAN_COMPLETED; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Dummy consume-input routine for single-pass operation. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(int) | ||||
| dummy_consume_data (j_decompress_ptr cinfo) | ||||
| { | ||||
|   return JPEG_SUSPENDED;	/* Always indicate nothing was done */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Consume input data and store it in the full-image coefficient buffer. | ||||
|  * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | ||||
|  * ie, v_samp_factor block rows for each component in the scan. | ||||
|  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(int) | ||||
| consume_data (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION MCU_col_num;	/* index of current MCU within row */ | ||||
|   int ci, xindex, yindex, yoffset; | ||||
|   JDIMENSION start_col; | ||||
|   JBLOCKARRAY blkp; | ||||
|   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | ||||
|   JBLOCKROW buffer_ptr; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Align the virtual buffers for the components used in this scan. */ | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     buffer[ci] = (*cinfo->mem->access_virt_barray) | ||||
|       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | ||||
|        cinfo->input_iMCU_row * compptr->v_samp_factor, | ||||
|        (JDIMENSION) compptr->v_samp_factor, TRUE); | ||||
|     /* Note: entropy decoder expects buffer to be zeroed,
 | ||||
|      * but this is handled automatically by the memory manager | ||||
|      * because we requested a pre-zeroed array. | ||||
|      */ | ||||
|   } | ||||
| 
 | ||||
|   /* Loop to process one whole iMCU row */ | ||||
|   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||||
|        yoffset++) { | ||||
|     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | ||||
| 	 MCU_col_num++) { | ||||
|       /* Construct list of pointers to DCT blocks belonging to this MCU */ | ||||
|       blkp = coef->MCU_buffer;	/* pointer to current DCT block within MCU */ | ||||
|       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
| 	compptr = cinfo->cur_comp_info[ci]; | ||||
| 	start_col = MCU_col_num * compptr->MCU_width; | ||||
| 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||||
| 	  buffer_ptr = buffer[ci][yoffset + yindex] + start_col; | ||||
| 	  xindex = compptr->MCU_width; | ||||
| 	  do { | ||||
| 	    *blkp++ = buffer_ptr++; | ||||
| 	  } while (--xindex); | ||||
| 	} | ||||
|       } | ||||
|       /* Try to fetch the MCU. */ | ||||
|       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | ||||
| 	/* Suspension forced; update state counters and exit */ | ||||
| 	coef->MCU_vert_offset = yoffset; | ||||
| 	coef->MCU_ctr = MCU_col_num; | ||||
| 	return JPEG_SUSPENDED; | ||||
|       } | ||||
|     } | ||||
|     /* Completed an MCU row, but perhaps not an iMCU row */ | ||||
|     coef->MCU_ctr = 0; | ||||
|   } | ||||
|   /* Completed the iMCU row, advance counters for next one */ | ||||
|   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | ||||
|     start_iMCU_row(cinfo); | ||||
|     return JPEG_ROW_COMPLETED; | ||||
|   } | ||||
|   /* Completed the scan */ | ||||
|   (*cinfo->inputctl->finish_input_pass) (cinfo); | ||||
|   return JPEG_SCAN_COMPLETED; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Decompress and return some data in the multi-pass case. | ||||
|  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | ||||
|  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | ||||
|  * | ||||
|  * NB: output_buf contains a plane for each component in image. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(int) | ||||
| decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||||
|   JDIMENSION block_num; | ||||
|   int ci, block_row, block_rows; | ||||
|   JBLOCKARRAY buffer; | ||||
|   JBLOCKROW buffer_ptr; | ||||
|   JSAMPARRAY output_ptr; | ||||
|   JDIMENSION output_col; | ||||
|   jpeg_component_info *compptr; | ||||
|   inverse_DCT_method_ptr inverse_DCT; | ||||
| 
 | ||||
|   /* Force some input to be done if we are getting ahead of the input. */ | ||||
|   while (cinfo->input_scan_number < cinfo->output_scan_number || | ||||
| 	 (cinfo->input_scan_number == cinfo->output_scan_number && | ||||
| 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | ||||
|     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | ||||
|       return JPEG_SUSPENDED; | ||||
|   } | ||||
| 
 | ||||
|   /* OK, output from the virtual arrays. */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Don't bother to IDCT an uninteresting component. */ | ||||
|     if (! compptr->component_needed) | ||||
|       continue; | ||||
|     /* Align the virtual buffer for this component. */ | ||||
|     buffer = (*cinfo->mem->access_virt_barray) | ||||
|       ((j_common_ptr) cinfo, coef->whole_image[ci], | ||||
|        cinfo->output_iMCU_row * compptr->v_samp_factor, | ||||
|        (JDIMENSION) compptr->v_samp_factor, FALSE); | ||||
|     /* Count non-dummy DCT block rows in this iMCU row. */ | ||||
|     if (cinfo->output_iMCU_row < last_iMCU_row) | ||||
|       block_rows = compptr->v_samp_factor; | ||||
|     else { | ||||
|       /* NB: can't use last_row_height here; it is input-side-dependent! */ | ||||
|       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||||
|       if (block_rows == 0) block_rows = compptr->v_samp_factor; | ||||
|     } | ||||
|     inverse_DCT = cinfo->idct->inverse_DCT[ci]; | ||||
|     output_ptr = output_buf[ci]; | ||||
|     /* Loop over all DCT blocks to be processed. */ | ||||
|     for (block_row = 0; block_row < block_rows; block_row++) { | ||||
|       buffer_ptr = buffer[block_row]; | ||||
|       output_col = 0; | ||||
|       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { | ||||
| 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, | ||||
| 			output_ptr, output_col); | ||||
| 	buffer_ptr++; | ||||
| 	output_col += compptr->DCT_h_scaled_size; | ||||
|       } | ||||
|       output_ptr += compptr->DCT_v_scaled_size; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if (++(cinfo->output_iMCU_row) <= last_iMCU_row) | ||||
|     return JPEG_ROW_COMPLETED; | ||||
|   return JPEG_SCAN_COMPLETED; | ||||
| } | ||||
| 
 | ||||
| #endif /* D_MULTISCAN_FILES_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| #ifdef BLOCK_SMOOTHING_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * This code applies interblock smoothing as described by section K.8 | ||||
|  * of the JPEG standard: the first 5 AC coefficients are estimated from | ||||
|  * the DC values of a DCT block and its 8 neighboring blocks. | ||||
|  * We apply smoothing only for progressive JPEG decoding, and only if | ||||
|  * the coefficients it can estimate are not yet known to full precision. | ||||
|  */ | ||||
| 
 | ||||
| /* Natural-order array positions of the first 5 zigzag-order coefficients */ | ||||
| #define Q01_POS  1 | ||||
| #define Q10_POS  8 | ||||
| #define Q20_POS  16 | ||||
| #define Q11_POS  9 | ||||
| #define Q02_POS  2 | ||||
| 
 | ||||
| /*
 | ||||
|  * Determine whether block smoothing is applicable and safe. | ||||
|  * We also latch the current states of the coef_bits[] entries for the | ||||
|  * AC coefficients; otherwise, if the input side of the decompressor | ||||
|  * advances into a new scan, we might think the coefficients are known | ||||
|  * more accurately than they really are. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(boolean) | ||||
| smoothing_ok (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   boolean smoothing_useful = FALSE; | ||||
|   int ci, coefi; | ||||
|   jpeg_component_info *compptr; | ||||
|   JQUANT_TBL * qtable; | ||||
|   int * coef_bits; | ||||
|   int * coef_bits_latch; | ||||
| 
 | ||||
|   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) | ||||
|     return FALSE; | ||||
| 
 | ||||
|   /* Allocate latch area if not already done */ | ||||
|   if (coef->coef_bits_latch == NULL) | ||||
|     coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        cinfo->num_components * (SAVED_COEFS * SIZEOF(int))); | ||||
|   coef_bits_latch = coef->coef_bits_latch; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* All components' quantization values must already be latched. */ | ||||
|     if ((qtable = compptr->quant_table) == NULL) | ||||
|       return FALSE; | ||||
|     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ | ||||
|     if (qtable->quantval[0] == 0 || | ||||
| 	qtable->quantval[Q01_POS] == 0 || | ||||
| 	qtable->quantval[Q10_POS] == 0 || | ||||
| 	qtable->quantval[Q20_POS] == 0 || | ||||
| 	qtable->quantval[Q11_POS] == 0 || | ||||
| 	qtable->quantval[Q02_POS] == 0) | ||||
|       return FALSE; | ||||
|     /* DC values must be at least partly known for all components. */ | ||||
|     coef_bits = cinfo->coef_bits[ci]; | ||||
|     if (coef_bits[0] < 0) | ||||
|       return FALSE; | ||||
|     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ | ||||
|     for (coefi = 1; coefi <= 5; coefi++) { | ||||
|       coef_bits_latch[coefi] = coef_bits[coefi]; | ||||
|       if (coef_bits[coefi] != 0) | ||||
| 	smoothing_useful = TRUE; | ||||
|     } | ||||
|     coef_bits_latch += SAVED_COEFS; | ||||
|   } | ||||
| 
 | ||||
|   return smoothing_useful; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Variant of decompress_data for use when doing block smoothing. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(int) | ||||
| decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | ||||
| { | ||||
|   my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||||
|   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||||
|   JDIMENSION block_num, last_block_column; | ||||
|   int ci, block_row, block_rows, access_rows; | ||||
|   JBLOCKARRAY buffer; | ||||
|   JBLOCKROW buffer_ptr, prev_block_row, next_block_row; | ||||
|   JSAMPARRAY output_ptr; | ||||
|   JDIMENSION output_col; | ||||
|   jpeg_component_info *compptr; | ||||
|   inverse_DCT_method_ptr inverse_DCT; | ||||
|   boolean first_row, last_row; | ||||
|   JBLOCK workspace; | ||||
|   int *coef_bits; | ||||
|   JQUANT_TBL *quanttbl; | ||||
|   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; | ||||
|   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; | ||||
|   int Al, pred; | ||||
| 
 | ||||
|   /* Force some input to be done if we are getting ahead of the input. */ | ||||
|   while (cinfo->input_scan_number <= cinfo->output_scan_number && | ||||
| 	 ! cinfo->inputctl->eoi_reached) { | ||||
|     if (cinfo->input_scan_number == cinfo->output_scan_number) { | ||||
|       /* If input is working on current scan, we ordinarily want it to
 | ||||
|        * have completed the current row.  But if input scan is DC, | ||||
|        * we want it to keep one row ahead so that next block row's DC | ||||
|        * values are up to date. | ||||
|        */ | ||||
|       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; | ||||
|       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) | ||||
| 	break; | ||||
|     } | ||||
|     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | ||||
|       return JPEG_SUSPENDED; | ||||
|   } | ||||
| 
 | ||||
|   /* OK, output from the virtual arrays. */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Don't bother to IDCT an uninteresting component. */ | ||||
|     if (! compptr->component_needed) | ||||
|       continue; | ||||
|     /* Count non-dummy DCT block rows in this iMCU row. */ | ||||
|     if (cinfo->output_iMCU_row < last_iMCU_row) { | ||||
|       block_rows = compptr->v_samp_factor; | ||||
|       access_rows = block_rows * 2; /* this and next iMCU row */ | ||||
|       last_row = FALSE; | ||||
|     } else { | ||||
|       /* NB: can't use last_row_height here; it is input-side-dependent! */ | ||||
|       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||||
|       if (block_rows == 0) block_rows = compptr->v_samp_factor; | ||||
|       access_rows = block_rows; /* this iMCU row only */ | ||||
|       last_row = TRUE; | ||||
|     } | ||||
|     /* Align the virtual buffer for this component. */ | ||||
|     if (cinfo->output_iMCU_row > 0) { | ||||
|       access_rows += compptr->v_samp_factor; /* prior iMCU row too */ | ||||
|       buffer = (*cinfo->mem->access_virt_barray) | ||||
| 	((j_common_ptr) cinfo, coef->whole_image[ci], | ||||
| 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, | ||||
| 	 (JDIMENSION) access_rows, FALSE); | ||||
|       buffer += compptr->v_samp_factor;	/* point to current iMCU row */ | ||||
|       first_row = FALSE; | ||||
|     } else { | ||||
|       buffer = (*cinfo->mem->access_virt_barray) | ||||
| 	((j_common_ptr) cinfo, coef->whole_image[ci], | ||||
| 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); | ||||
|       first_row = TRUE; | ||||
|     } | ||||
|     /* Fetch component-dependent info */ | ||||
|     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); | ||||
|     quanttbl = compptr->quant_table; | ||||
|     Q00 = quanttbl->quantval[0]; | ||||
|     Q01 = quanttbl->quantval[Q01_POS]; | ||||
|     Q10 = quanttbl->quantval[Q10_POS]; | ||||
|     Q20 = quanttbl->quantval[Q20_POS]; | ||||
|     Q11 = quanttbl->quantval[Q11_POS]; | ||||
|     Q02 = quanttbl->quantval[Q02_POS]; | ||||
|     inverse_DCT = cinfo->idct->inverse_DCT[ci]; | ||||
|     output_ptr = output_buf[ci]; | ||||
|     /* Loop over all DCT blocks to be processed. */ | ||||
|     for (block_row = 0; block_row < block_rows; block_row++) { | ||||
|       buffer_ptr = buffer[block_row]; | ||||
|       if (first_row && block_row == 0) | ||||
| 	prev_block_row = buffer_ptr; | ||||
|       else | ||||
| 	prev_block_row = buffer[block_row-1]; | ||||
|       if (last_row && block_row == block_rows-1) | ||||
| 	next_block_row = buffer_ptr; | ||||
|       else | ||||
| 	next_block_row = buffer[block_row+1]; | ||||
|       /* We fetch the surrounding DC values using a sliding-register approach.
 | ||||
|        * Initialize all nine here so as to do the right thing on narrow pics. | ||||
|        */ | ||||
|       DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; | ||||
|       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; | ||||
|       DC7 = DC8 = DC9 = (int) next_block_row[0][0]; | ||||
|       output_col = 0; | ||||
|       last_block_column = compptr->width_in_blocks - 1; | ||||
|       for (block_num = 0; block_num <= last_block_column; block_num++) { | ||||
| 	/* Fetch current DCT block into workspace so we can modify it. */ | ||||
| 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); | ||||
| 	/* Update DC values */ | ||||
| 	if (block_num < last_block_column) { | ||||
| 	  DC3 = (int) prev_block_row[1][0]; | ||||
| 	  DC6 = (int) buffer_ptr[1][0]; | ||||
| 	  DC9 = (int) next_block_row[1][0]; | ||||
| 	} | ||||
| 	/* Compute coefficient estimates per K.8.
 | ||||
| 	 * An estimate is applied only if coefficient is still zero, | ||||
| 	 * and is not known to be fully accurate. | ||||
| 	 */ | ||||
| 	/* AC01 */ | ||||
| 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { | ||||
| 	  num = 36 * Q00 * (DC4 - DC6); | ||||
| 	  if (num >= 0) { | ||||
| 	    pred = (int) (((Q01<<7) + num) / (Q01<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	  } else { | ||||
| 	    pred = (int) (((Q01<<7) - num) / (Q01<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	    pred = -pred; | ||||
| 	  } | ||||
| 	  workspace[1] = (JCOEF) pred; | ||||
| 	} | ||||
| 	/* AC10 */ | ||||
| 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { | ||||
| 	  num = 36 * Q00 * (DC2 - DC8); | ||||
| 	  if (num >= 0) { | ||||
| 	    pred = (int) (((Q10<<7) + num) / (Q10<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	  } else { | ||||
| 	    pred = (int) (((Q10<<7) - num) / (Q10<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	    pred = -pred; | ||||
| 	  } | ||||
| 	  workspace[8] = (JCOEF) pred; | ||||
| 	} | ||||
| 	/* AC20 */ | ||||
| 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { | ||||
| 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5); | ||||
| 	  if (num >= 0) { | ||||
| 	    pred = (int) (((Q20<<7) + num) / (Q20<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	  } else { | ||||
| 	    pred = (int) (((Q20<<7) - num) / (Q20<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	    pred = -pred; | ||||
| 	  } | ||||
| 	  workspace[16] = (JCOEF) pred; | ||||
| 	} | ||||
| 	/* AC11 */ | ||||
| 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { | ||||
| 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); | ||||
| 	  if (num >= 0) { | ||||
| 	    pred = (int) (((Q11<<7) + num) / (Q11<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	  } else { | ||||
| 	    pred = (int) (((Q11<<7) - num) / (Q11<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	    pred = -pred; | ||||
| 	  } | ||||
| 	  workspace[9] = (JCOEF) pred; | ||||
| 	} | ||||
| 	/* AC02 */ | ||||
| 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { | ||||
| 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5); | ||||
| 	  if (num >= 0) { | ||||
| 	    pred = (int) (((Q02<<7) + num) / (Q02<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	  } else { | ||||
| 	    pred = (int) (((Q02<<7) - num) / (Q02<<8)); | ||||
| 	    if (Al > 0 && pred >= (1<<Al)) | ||||
| 	      pred = (1<<Al)-1; | ||||
| 	    pred = -pred; | ||||
| 	  } | ||||
| 	  workspace[2] = (JCOEF) pred; | ||||
| 	} | ||||
| 	/* OK, do the IDCT */ | ||||
| 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, | ||||
| 			output_ptr, output_col); | ||||
| 	/* Advance for next column */ | ||||
| 	DC1 = DC2; DC2 = DC3; | ||||
| 	DC4 = DC5; DC5 = DC6; | ||||
| 	DC7 = DC8; DC8 = DC9; | ||||
| 	buffer_ptr++, prev_block_row++, next_block_row++; | ||||
| 	output_col += compptr->DCT_h_scaled_size; | ||||
|       } | ||||
|       output_ptr += compptr->DCT_v_scaled_size; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if (++(cinfo->output_iMCU_row) <= last_iMCU_row) | ||||
|     return JPEG_ROW_COMPLETED; | ||||
|   return JPEG_SCAN_COMPLETED; | ||||
| } | ||||
| 
 | ||||
| #endif /* BLOCK_SMOOTHING_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize coefficient buffer controller. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | ||||
| { | ||||
|   my_coef_ptr coef; | ||||
| 
 | ||||
|   if (need_full_buffer) { | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
|     /* Allocate a full-image virtual array for each component, */ | ||||
|     /* padded to a multiple of samp_factor DCT blocks in each direction. */ | ||||
|     /* Note we ask for a pre-zeroed array. */ | ||||
|     int ci, access_rows; | ||||
|     jpeg_component_info *compptr; | ||||
| 
 | ||||
|     coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer)); | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       access_rows = compptr->v_samp_factor; | ||||
| #ifdef BLOCK_SMOOTHING_SUPPORTED | ||||
|       /* If block smoothing could be used, need a bigger window */ | ||||
|       if (cinfo->progressive_mode) | ||||
| 	access_rows *= 3; | ||||
| #endif | ||||
|       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, | ||||
| 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks, | ||||
| 				(long) compptr->h_samp_factor), | ||||
| 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, | ||||
| 				(long) compptr->v_samp_factor), | ||||
| 	 (JDIMENSION) access_rows); | ||||
|     } | ||||
|     coef->pub.consume_data = consume_data; | ||||
|     coef->pub.decompress_data = decompress_data; | ||||
|     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|   } else { | ||||
|     /* We only need a single-MCU buffer. */ | ||||
|     JBLOCKARRAY blkp; | ||||
|     JBLOCKROW buffer_ptr; | ||||
|     int bi; | ||||
| 
 | ||||
|     coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); | ||||
|     buffer_ptr = coef->blk_buffer; | ||||
|     if (cinfo->lim_Se == 0)	/* DC only case: want to bypass later */ | ||||
|       MEMZERO(buffer_ptr, SIZEOF(coef->blk_buffer)); | ||||
|     blkp = coef->MCU_buffer; | ||||
|     bi = D_MAX_BLOCKS_IN_MCU; | ||||
|     do { | ||||
|       *blkp++ = buffer_ptr++; | ||||
|     } while (--bi); | ||||
|     coef->pub.consume_data = dummy_consume_data; | ||||
|     coef->pub.decompress_data = decompress_onepass; | ||||
|     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ | ||||
|   } | ||||
| 
 | ||||
|   coef->pub.start_input_pass = start_input_pass; | ||||
|   coef->pub.start_output_pass = start_output_pass; | ||||
| #ifdef BLOCK_SMOOTHING_SUPPORTED | ||||
|   coef->coef_bits_latch = NULL; | ||||
| #endif | ||||
|   cinfo->coef = &coef->pub; | ||||
| } | ||||
							
								
								
									
										769
									
								
								dep/libjpeg/src/jdcolor.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										769
									
								
								dep/libjpeg/src/jdcolor.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,769 @@ | |||
| /*
 | ||||
|  * jdcolor.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 2011-2023 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains output colorspace conversion routines. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| #if RANGE_BITS < 2 | ||||
|   /* Deliberate syntax err */ | ||||
|   Sorry, this code requires 2 or more range extension bits. | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Private subobject */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_color_deconverter pub; /* public fields */ | ||||
| 
 | ||||
|   /* Private state for YCbCr->RGB and BG_YCC->RGB conversion */ | ||||
|   int * Cr_r_tab;		/* => table for Cr to R conversion */ | ||||
|   int * Cb_b_tab;		/* => table for Cb to B conversion */ | ||||
|   INT32 * Cr_g_tab;		/* => table for Cr to G conversion */ | ||||
|   INT32 * Cb_g_tab;		/* => table for Cb to G conversion */ | ||||
| 
 | ||||
|   /* Private state for RGB->Y conversion */ | ||||
|   INT32 * R_y_tab;		/* => table for R to Y conversion */ | ||||
|   INT32 * G_y_tab;		/* => table for G to Y conversion */ | ||||
|   INT32 * B_y_tab;		/* => table for B to Y conversion */ | ||||
| } my_color_deconverter; | ||||
| 
 | ||||
| typedef my_color_deconverter * my_cconvert_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /***************  YCbCr -> RGB conversion: most common case **************/ | ||||
| /*************** BG_YCC -> RGB conversion: less common case **************/ | ||||
| /***************    RGB -> Y   conversion: less common case **************/ | ||||
| 
 | ||||
| /*
 | ||||
|  * YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), | ||||
|  * previously known as Recommendation CCIR 601-1, except that Cb and Cr | ||||
|  * are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. | ||||
|  * sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. | ||||
|  * sYCC (standard luma-chroma-chroma color space with extended gamut) | ||||
|  * is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. | ||||
|  * bg-sRGB and bg-sYCC (big gamut standard color spaces) | ||||
|  * are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. | ||||
|  * Note that the derived conversion coefficients given in some of these | ||||
|  * documents are imprecise.  The general conversion equations are | ||||
|  * | ||||
|  *	R = Y + K * (1 - Kr) * Cr | ||||
|  *	G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb) | ||||
|  *	B = Y + K * (1 - Kb) * Cb | ||||
|  * | ||||
|  *	Y = Kr * R + (1 - Kr - Kb) * G + Kb * B | ||||
|  * | ||||
|  * With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 | ||||
|  * from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, | ||||
|  * the conversion equations to be implemented are therefore | ||||
|  * | ||||
|  *	R = Y + 1.402 * Cr | ||||
|  *	G = Y - 0.344136286 * Cb - 0.714136286 * Cr | ||||
|  *	B = Y + 1.772 * Cb | ||||
|  * | ||||
|  *	Y = 0.299 * R + 0.587 * G + 0.114 * B | ||||
|  * | ||||
|  * where Cb and Cr represent the incoming values less CENTERJSAMPLE. | ||||
|  * For bg-sYCC, with K = 4, the equations are | ||||
|  * | ||||
|  *	R = Y + 2.804 * Cr | ||||
|  *	G = Y - 0.688272572 * Cb - 1.428272572 * Cr | ||||
|  *	B = Y + 3.544 * Cb | ||||
|  * | ||||
|  * To avoid floating-point arithmetic, we represent the fractional constants | ||||
|  * as integers scaled up by 2^16 (about 4 digits precision); we have to divide | ||||
|  * the products by 2^16, with appropriate rounding, to get the correct answer. | ||||
|  * Notice that Y, being an integral input, does not contribute any fraction | ||||
|  * so it need not participate in the rounding. | ||||
|  * | ||||
|  * For even more speed, we avoid doing any multiplications in the inner loop | ||||
|  * by precalculating the constants times Cb and Cr for all possible values. | ||||
|  * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); | ||||
|  * for 9-bit to 12-bit samples it is still acceptable.  It's not very | ||||
|  * reasonable for 16-bit samples, but if you want lossless storage | ||||
|  * you shouldn't be changing colorspace anyway. | ||||
|  * The Cr=>R and Cb=>B values can be rounded to integers in advance; | ||||
|  * the values for the G calculation are left scaled up, | ||||
|  * since we must add them together before rounding. | ||||
|  */ | ||||
| 
 | ||||
| #define SCALEBITS	16	/* speediest right-shift on some machines */ | ||||
| #define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) | ||||
| #define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| build_ycc_rgb_table (j_decompress_ptr cinfo) | ||||
| /* Normal case, sYCC */ | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   int i; | ||||
|   INT32 x; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
|   cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
| 
 | ||||
|   for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | ||||
|     /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | ||||
|     /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | ||||
|     /* Cr=>R value is nearest int to 1.402 * x */ | ||||
|     cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS); | ||||
|     /* Cb=>B value is nearest int to 1.772 * x */ | ||||
|     cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS); | ||||
|     /* Cr=>G value is scaled-up -0.714136286 * x */ | ||||
|     cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x; | ||||
|     /* Cb=>G value is scaled-up -0.344136286 * x */ | ||||
|     /* We also add in ONE_HALF so that need not do it in inner loop */ | ||||
|     cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| build_bg_ycc_rgb_table (j_decompress_ptr cinfo) | ||||
| /* Wide gamut case, bg-sYCC */ | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   int i; | ||||
|   INT32 x; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
|   cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
| 
 | ||||
|   for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | ||||
|     /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | ||||
|     /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | ||||
|     /* Cr=>R value is nearest int to 2.804 * x */ | ||||
|     cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS); | ||||
|     /* Cb=>B value is nearest int to 3.544 * x */ | ||||
|     cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS); | ||||
|     /* Cr=>G value is scaled-up -1.428272572 * x */ | ||||
|     cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x; | ||||
|     /* Cb=>G value is scaled-up -0.688272572 * x */ | ||||
|     /* We also add in ONE_HALF so that need not do it in inner loop */ | ||||
|     cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the output colorspace. | ||||
|  * | ||||
|  * Note that we change from noninterleaved, one-plane-per-component format | ||||
|  * to interleaved-pixel format.  The output buffer is therefore three times | ||||
|  * as wide as the input buffer. | ||||
|  * | ||||
|  * A starting row offset is provided only for the input buffer.  The caller | ||||
|  * can easily adjust the passed output_buf value to accommodate any row | ||||
|  * offset required on that side. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| ycc_rgb_convert (j_decompress_ptr cinfo, | ||||
| 		 JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		 JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register int y, cb, cr; | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
|   /* copy these pointers into registers if possible */ | ||||
|   register JSAMPLE * range_limit = cinfo->sample_range_limit; | ||||
|   register int * Crrtab = cconvert->Cr_r_tab; | ||||
|   register int * Cbbtab = cconvert->Cb_b_tab; | ||||
|   register INT32 * Crgtab = cconvert->Cr_g_tab; | ||||
|   register INT32 * Cbgtab = cconvert->Cb_g_tab; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       y  = GETJSAMPLE(inptr0[col]); | ||||
|       cb = GETJSAMPLE(inptr1[col]); | ||||
|       cr = GETJSAMPLE(inptr2[col]); | ||||
|       /* Range-limiting is essential due to noise introduced by DCT losses,
 | ||||
|        * for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings. | ||||
|        */ | ||||
|       outptr[RGB_RED]   = range_limit[y + Crrtab[cr]]; | ||||
|       outptr[RGB_GREEN] = range_limit[y + | ||||
| 			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], | ||||
| 						 SCALEBITS))]; | ||||
|       outptr[RGB_BLUE]  = range_limit[y + Cbbtab[cb]]; | ||||
|       outptr += RGB_PIXELSIZE; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /**************** Cases other than YCC -> RGB ****************/ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for RGB->grayscale colorspace conversion. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| build_rgb_y_table (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   INT32 i; | ||||
| 
 | ||||
|   cconvert->R_y_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
|   cconvert->G_y_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
|   cconvert->B_y_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
| 
 | ||||
|   for (i = 0; i <= MAXJSAMPLE; i++) { | ||||
|     cconvert->R_y_tab[i] = FIX(0.299) * i; | ||||
|     cconvert->G_y_tab[i] = FIX(0.587) * i; | ||||
|     cconvert->B_y_tab[i] = FIX(0.114) * i + ONE_HALF; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert RGB to grayscale. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_gray_convert (j_decompress_ptr cinfo, | ||||
| 		  JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		  JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register INT32 y; | ||||
|   register INT32 * Rytab = cconvert->R_y_tab; | ||||
|   register INT32 * Gytab = cconvert->G_y_tab; | ||||
|   register INT32 * Bytab = cconvert->B_y_tab; | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       y  = Rytab[GETJSAMPLE(inptr0[col])]; | ||||
|       y += Gytab[GETJSAMPLE(inptr1[col])]; | ||||
|       y += Bytab[GETJSAMPLE(inptr2[col])]; | ||||
|       outptr[col] = (JSAMPLE) (y >> SCALEBITS); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the output colorspace. | ||||
|  * [R-G,G,B-G] to [R,G,B] conversion with modulo calculation | ||||
|  * (inverse color transform). | ||||
|  * This can be seen as an adaption of the general YCbCr->RGB | ||||
|  * conversion equation with Kr = Kb = 0, while replacing the | ||||
|  * normalization by modulo calculation. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb1_rgb_convert (j_decompress_ptr cinfo, | ||||
| 		  JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		  JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   register int r, g, b; | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       r = GETJSAMPLE(inptr0[col]); | ||||
|       g = GETJSAMPLE(inptr1[col]); | ||||
|       b = GETJSAMPLE(inptr2[col]); | ||||
|       /* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
 | ||||
|        * (modulo) operator is equivalent to the bitmask operator AND. | ||||
|        */ | ||||
|       outptr[RGB_RED]   = (JSAMPLE) ((r + g - CENTERJSAMPLE) & MAXJSAMPLE); | ||||
|       outptr[RGB_GREEN] = (JSAMPLE) g; | ||||
|       outptr[RGB_BLUE]  = (JSAMPLE) ((b + g - CENTERJSAMPLE) & MAXJSAMPLE); | ||||
|       outptr += RGB_PIXELSIZE; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * [R-G,G,B-G] to grayscale conversion with modulo calculation | ||||
|  * (inverse color transform). | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb1_gray_convert (j_decompress_ptr cinfo, | ||||
| 		   JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		   JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register int r, g, b; | ||||
|   register INT32 y; | ||||
|   register INT32 * Rytab = cconvert->R_y_tab; | ||||
|   register INT32 * Gytab = cconvert->G_y_tab; | ||||
|   register INT32 * Bytab = cconvert->B_y_tab; | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       r = GETJSAMPLE(inptr0[col]); | ||||
|       g = GETJSAMPLE(inptr1[col]); | ||||
|       b = GETJSAMPLE(inptr2[col]); | ||||
|       /* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
 | ||||
|        * (modulo) operator is equivalent to the bitmask operator AND. | ||||
|        */ | ||||
|       y  = Rytab[(r + g - CENTERJSAMPLE) & MAXJSAMPLE]; | ||||
|       y += Gytab[g]; | ||||
|       y += Bytab[(b + g - CENTERJSAMPLE) & MAXJSAMPLE]; | ||||
|       outptr[col] = (JSAMPLE) (y >> SCALEBITS); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the output colorspace. | ||||
|  * No colorspace change, but conversion from separate-planes | ||||
|  * to interleaved representation. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| rgb_convert (j_decompress_ptr cinfo, | ||||
| 	     JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 	     JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       /* We can dispense with GETJSAMPLE() here */ | ||||
|       outptr[RGB_RED]   = inptr0[col]; | ||||
|       outptr[RGB_GREEN] = inptr1[col]; | ||||
|       outptr[RGB_BLUE]  = inptr2[col]; | ||||
|       outptr += RGB_PIXELSIZE; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Color conversion for no colorspace change: just copy the data, | ||||
|  * converting from separate-planes to interleaved representation. | ||||
|  * Note: Omit uninteresting components in output buffer. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| null_convert (j_decompress_ptr cinfo, | ||||
| 	      JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 	      JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr; | ||||
|   register JDIMENSION count; | ||||
|   register int out_comps = cinfo->out_color_components; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
|   JSAMPROW startptr; | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     /* It seems fastest to make a separate pass for each component. */ | ||||
|     startptr = *output_buf++; | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       if (! compptr->component_needed) | ||||
| 	continue;		/* skip uninteresting component */ | ||||
|       inptr = input_buf[ci][input_row]; | ||||
|       outptr = startptr++; | ||||
|       for (count = num_cols; count > 0; count--) { | ||||
| 	*outptr = *inptr++;	/* don't need GETJSAMPLE() here */ | ||||
| 	outptr += out_comps; | ||||
|       } | ||||
|     } | ||||
|     input_row++; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Color conversion for grayscale: just copy the data. | ||||
|  * This also works for YCC -> grayscale conversion, in which | ||||
|  * we just copy the Y (luminance) component and ignore chrominance. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| grayscale_convert (j_decompress_ptr cinfo, | ||||
| 		   JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		   JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   jcopy_sample_rows(input_buf[0] + input_row, output_buf, | ||||
| 		    num_rows, cinfo->output_width); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert grayscale to RGB: just duplicate the graylevel three times. | ||||
|  * This is provided to support applications that don't want to cope | ||||
|  * with grayscale as a separate case. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| gray_rgb_convert (j_decompress_ptr cinfo, | ||||
| 		  JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		  JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr = input_buf[0][input_row++]; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       /* We can dispense with GETJSAMPLE() here */ | ||||
|       outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; | ||||
|       outptr += RGB_PIXELSIZE; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert some rows of samples to the output colorspace. | ||||
|  * This version handles Adobe-style YCCK->CMYK conversion, | ||||
|  * where we convert YCbCr to R=1-C, G=1-M, and B=1-Y using the | ||||
|  * same conversion as above, while passing K (black) unchanged. | ||||
|  * We assume build_ycc_rgb_table has been called. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| ycck_cmyk_convert (j_decompress_ptr cinfo, | ||||
| 		   JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		   JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register int y, cb, cr; | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2, inptr3; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
|   /* copy these pointers into registers if possible */ | ||||
|   register JSAMPLE * range_limit = cinfo->sample_range_limit; | ||||
|   register int * Crrtab = cconvert->Cr_r_tab; | ||||
|   register int * Cbbtab = cconvert->Cb_b_tab; | ||||
|   register INT32 * Crgtab = cconvert->Cr_g_tab; | ||||
|   register INT32 * Cbgtab = cconvert->Cb_g_tab; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     inptr3 = input_buf[3][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       y  = GETJSAMPLE(inptr0[col]); | ||||
|       cb = GETJSAMPLE(inptr1[col]); | ||||
|       cr = GETJSAMPLE(inptr2[col]); | ||||
|       /* Range-limiting is essential due to noise introduced by DCT losses,
 | ||||
|        * and for extended gamut encodings (sYCC). | ||||
|        */ | ||||
|       outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])];	/* red */ | ||||
|       outptr[1] = range_limit[MAXJSAMPLE - (y +			/* green */ | ||||
| 			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], | ||||
| 						 SCALEBITS)))]; | ||||
|       outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])];	/* blue */ | ||||
|       /* K passes through unchanged */ | ||||
|       outptr[3] = inptr3[col];	/* don't need GETJSAMPLE here */ | ||||
|       outptr += 4; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert CMYK to YK part of YCCK for colorless output. | ||||
|  * We assume build_rgb_y_table has been called. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| cmyk_yk_convert (j_decompress_ptr cinfo, | ||||
| 		 JSAMPIMAGE input_buf, JDIMENSION input_row, | ||||
| 		 JSAMPARRAY output_buf, int num_rows) | ||||
| { | ||||
|   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | ||||
|   register INT32 y; | ||||
|   register INT32 * Rytab = cconvert->R_y_tab; | ||||
|   register INT32 * Gytab = cconvert->G_y_tab; | ||||
|   register INT32 * Bytab = cconvert->B_y_tab; | ||||
|   register JSAMPROW outptr; | ||||
|   register JSAMPROW inptr0, inptr1, inptr2, inptr3; | ||||
|   register JDIMENSION col; | ||||
|   JDIMENSION num_cols = cinfo->output_width; | ||||
| 
 | ||||
|   while (--num_rows >= 0) { | ||||
|     inptr0 = input_buf[0][input_row]; | ||||
|     inptr1 = input_buf[1][input_row]; | ||||
|     inptr2 = input_buf[2][input_row]; | ||||
|     inptr3 = input_buf[3][input_row]; | ||||
|     input_row++; | ||||
|     outptr = *output_buf++; | ||||
|     for (col = 0; col < num_cols; col++) { | ||||
|       y  = Rytab[MAXJSAMPLE - GETJSAMPLE(inptr0[col])]; | ||||
|       y += Gytab[MAXJSAMPLE - GETJSAMPLE(inptr1[col])]; | ||||
|       y += Bytab[MAXJSAMPLE - GETJSAMPLE(inptr2[col])]; | ||||
|       outptr[0] = (JSAMPLE) (y >> SCALEBITS); | ||||
|       /* K passes through unchanged */ | ||||
|       outptr[1] = inptr3[col];	/* don't need GETJSAMPLE here */ | ||||
|       outptr += 2; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Empty method for start_pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_dcolor (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* no work needed */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for output colorspace conversion. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_color_deconverter (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cconvert_ptr cconvert; | ||||
|   int ci, i; | ||||
| 
 | ||||
|   cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter)); | ||||
|   cinfo->cconvert = &cconvert->pub; | ||||
|   cconvert->pub.start_pass = start_pass_dcolor; | ||||
| 
 | ||||
|   /* Make sure num_components agrees with jpeg_color_space */ | ||||
|   switch (cinfo->jpeg_color_space) { | ||||
|   case JCS_GRAYSCALE: | ||||
|     if (cinfo->num_components != 1) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_RGB: | ||||
|   case JCS_YCbCr: | ||||
|   case JCS_BG_RGB: | ||||
|   case JCS_BG_YCC: | ||||
|     if (cinfo->num_components != 3) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_CMYK: | ||||
|   case JCS_YCCK: | ||||
|     if (cinfo->num_components != 4) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|     break; | ||||
| 
 | ||||
|   default:			/* JCS_UNKNOWN can be anything */ | ||||
|     if (cinfo->num_components < 1) | ||||
|       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | ||||
|   } | ||||
| 
 | ||||
|   /* Support color transform only for RGB colorspaces */ | ||||
|   if (cinfo->color_transform && | ||||
|       cinfo->jpeg_color_space != JCS_RGB && | ||||
|       cinfo->jpeg_color_space != JCS_BG_RGB) | ||||
|     ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
| 
 | ||||
|   /* Set out_color_components and conversion method based on requested space.
 | ||||
|    * Also adjust the component_needed flags for any unused components, | ||||
|    * so that earlier pipeline stages can avoid useless computation. | ||||
|    */ | ||||
| 
 | ||||
|   switch (cinfo->out_color_space) { | ||||
|   case JCS_GRAYSCALE: | ||||
|     cinfo->out_color_components = 1; | ||||
|     switch (cinfo->jpeg_color_space) { | ||||
|     case JCS_GRAYSCALE: | ||||
|     case JCS_YCbCr: | ||||
|     case JCS_BG_YCC: | ||||
|       cconvert->pub.color_convert = grayscale_convert; | ||||
|       /* For color->grayscale conversion, only the Y (0) component is needed */ | ||||
|       for (ci = 1; ci < cinfo->num_components; ci++) | ||||
| 	cinfo->comp_info[ci].component_needed = FALSE; | ||||
|       break; | ||||
|     case JCS_RGB: | ||||
|       switch (cinfo->color_transform) { | ||||
|       case JCT_NONE: | ||||
| 	cconvert->pub.color_convert = rgb_gray_convert; | ||||
| 	break; | ||||
|       case JCT_SUBTRACT_GREEN: | ||||
| 	cconvert->pub.color_convert = rgb1_gray_convert; | ||||
| 	break; | ||||
|       default: | ||||
| 	ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|       } | ||||
|       build_rgb_y_table(cinfo); | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_RGB: | ||||
|     cinfo->out_color_components = RGB_PIXELSIZE; | ||||
|     switch (cinfo->jpeg_color_space) { | ||||
|     case JCS_GRAYSCALE: | ||||
|       cconvert->pub.color_convert = gray_rgb_convert; | ||||
|       break; | ||||
|     case JCS_YCbCr: | ||||
|       cconvert->pub.color_convert = ycc_rgb_convert; | ||||
|       build_ycc_rgb_table(cinfo); | ||||
|       break; | ||||
|     case JCS_BG_YCC: | ||||
|       cconvert->pub.color_convert = ycc_rgb_convert; | ||||
|       build_bg_ycc_rgb_table(cinfo); | ||||
|       break; | ||||
|     case JCS_RGB: | ||||
|       switch (cinfo->color_transform) { | ||||
|       case JCT_NONE: | ||||
| 	cconvert->pub.color_convert = rgb_convert; | ||||
| 	break; | ||||
|       case JCT_SUBTRACT_GREEN: | ||||
| 	cconvert->pub.color_convert = rgb1_rgb_convert; | ||||
| 	break; | ||||
|       default: | ||||
| 	ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|       } | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_BG_RGB: | ||||
|     if (cinfo->jpeg_color_space != JCS_BG_RGB) | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     cinfo->out_color_components = RGB_PIXELSIZE; | ||||
|     switch (cinfo->color_transform) { | ||||
|     case JCT_NONE: | ||||
|       cconvert->pub.color_convert = rgb_convert; | ||||
|       break; | ||||
|     case JCT_SUBTRACT_GREEN: | ||||
|       cconvert->pub.color_convert = rgb1_rgb_convert; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     } | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_CMYK: | ||||
|     if (cinfo->jpeg_color_space != JCS_YCCK) | ||||
|       goto def_label; | ||||
|     cinfo->out_color_components = 4; | ||||
|     cconvert->pub.color_convert = ycck_cmyk_convert; | ||||
|     build_ycc_rgb_table(cinfo); | ||||
|     break; | ||||
| 
 | ||||
|   case JCS_YCCK: | ||||
|     if (cinfo->jpeg_color_space != JCS_CMYK || | ||||
| 	/* Support only YK part of YCCK for colorless output */ | ||||
| 	! cinfo->comp_info[0].component_needed || | ||||
| 	  cinfo->comp_info[1].component_needed || | ||||
| 	  cinfo->comp_info[2].component_needed || | ||||
| 	! cinfo->comp_info[3].component_needed) | ||||
|       goto def_label; | ||||
|     cinfo->out_color_components = 2; | ||||
|     /* Need all components on input side */ | ||||
|     cinfo->comp_info[1].component_needed = TRUE; | ||||
|     cinfo->comp_info[2].component_needed = TRUE; | ||||
|     cconvert->pub.color_convert = cmyk_yk_convert; | ||||
|     build_rgb_y_table(cinfo); | ||||
|     break; | ||||
| 
 | ||||
|   default: def_label:	/* permit null conversion to same output space */ | ||||
|     if (cinfo->out_color_space != cinfo->jpeg_color_space) | ||||
|       /* unsupported non-null conversion */ | ||||
|       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | ||||
|     i = 0; | ||||
|     for (ci = 0; ci < cinfo->num_components; ci++) | ||||
|       if (cinfo->comp_info[ci].component_needed) | ||||
| 	i++;		/* count output color components */ | ||||
|     cinfo->out_color_components = i; | ||||
|     cconvert->pub.color_convert = null_convert; | ||||
|   } | ||||
| 
 | ||||
|   if (cinfo->quantize_colors) | ||||
|     cinfo->output_components = 1; /* single colormapped output component */ | ||||
|   else | ||||
|     cinfo->output_components = cinfo->out_color_components; | ||||
| } | ||||
							
								
								
									
										409
									
								
								dep/libjpeg/src/jdct.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										409
									
								
								dep/libjpeg/src/jdct.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,409 @@ | |||
| /*
 | ||||
|  * jdct.h | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2002-2023 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This include file contains common declarations for the forward and | ||||
|  * inverse DCT modules.  These declarations are private to the DCT managers | ||||
|  * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. | ||||
|  * The individual DCT algorithms are kept in separate files to ease  | ||||
|  * machine-dependent tuning (e.g., assembly coding). | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * A forward DCT routine is given a pointer to an input sample array and | ||||
|  * a pointer to a work area of type DCTELEM[]; the DCT is to be performed | ||||
|  * in-place in that buffer.  Type DCTELEM is int for 8-bit samples, INT32 | ||||
|  * for 12-bit samples.  (NOTE: Floating-point DCT implementations use an | ||||
|  * array of type FAST_FLOAT, instead.) | ||||
|  * The input data is to be fetched from the sample array starting at a | ||||
|  * specified column.  (Any row offset needed will be applied to the array | ||||
|  * pointer before it is passed to the FDCT code.) | ||||
|  * Note that the number of samples fetched by the FDCT routine is | ||||
|  * DCT_h_scaled_size * DCT_v_scaled_size. | ||||
|  * The DCT outputs are returned scaled up by a factor of 8; they therefore | ||||
|  * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This | ||||
|  * convention improves accuracy in integer implementations and saves some | ||||
|  * work in floating-point ones. | ||||
|  * Quantization of the output coefficients is done by jcdctmgr.c. | ||||
|  */ | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| typedef int DCTELEM;		/* 16 or 32 bits is fine */ | ||||
| #else | ||||
| typedef INT32 DCTELEM;		/* must have 32 bits */ | ||||
| #endif | ||||
| 
 | ||||
| typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, | ||||
| 					       JSAMPARRAY sample_data, | ||||
| 					       JDIMENSION start_col)); | ||||
| typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, | ||||
| 					     JSAMPARRAY sample_data, | ||||
| 					     JDIMENSION start_col)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer | ||||
|  * to an output sample array.  The routine must dequantize the input data as | ||||
|  * well as perform the IDCT; for dequantization, it uses the multiplier table | ||||
|  * pointed to by compptr->dct_table.  The output data is to be placed into the | ||||
|  * sample array starting at a specified column.  (Any row offset needed will | ||||
|  * be applied to the array pointer before it is passed to the IDCT code.) | ||||
|  * Note that the number of samples emitted by the IDCT routine is | ||||
|  * DCT_h_scaled_size * DCT_v_scaled_size. | ||||
|  */ | ||||
| 
 | ||||
| /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ | ||||
| 
 | ||||
| /*
 | ||||
|  * Each IDCT routine has its own ideas about the best dct_table element type. | ||||
|  */ | ||||
| 
 | ||||
| typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ | ||||
| #define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */ | ||||
| #else | ||||
| typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */ | ||||
| #define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */ | ||||
| #endif | ||||
| typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Each IDCT routine is responsible for range-limiting its results and | ||||
|  * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could | ||||
|  * be quite far out of range if the input data is corrupt, so a bulletproof | ||||
|  * range-limiting step is required.  We use a mask-and-table-lookup method | ||||
|  * to do the combined operations quickly, assuming that RANGE_CENTER | ||||
|  * (defined in jpegint.h) is a power of 2.  See the comments with | ||||
|  * prepare_range_limit_table (in jdmaster.c) for more info. | ||||
|  */ | ||||
| 
 | ||||
| #define RANGE_MASK  (RANGE_CENTER * 2 - 1) | ||||
| #define RANGE_SUBSET  (RANGE_CENTER - CENTERJSAMPLE) | ||||
| 
 | ||||
| #define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit - RANGE_SUBSET) | ||||
| 
 | ||||
| 
 | ||||
| /* Short forms of external names for systems with brain-damaged linkers. */ | ||||
| 
 | ||||
| #ifdef NEED_SHORT_EXTERNAL_NAMES | ||||
| #define jpeg_fdct_islow		jFDislow | ||||
| #define jpeg_fdct_ifast		jFDifast | ||||
| #define jpeg_fdct_float		jFDfloat | ||||
| #define jpeg_fdct_7x7		jFD7x7 | ||||
| #define jpeg_fdct_6x6		jFD6x6 | ||||
| #define jpeg_fdct_5x5		jFD5x5 | ||||
| #define jpeg_fdct_4x4		jFD4x4 | ||||
| #define jpeg_fdct_3x3		jFD3x3 | ||||
| #define jpeg_fdct_2x2		jFD2x2 | ||||
| #define jpeg_fdct_1x1		jFD1x1 | ||||
| #define jpeg_fdct_9x9		jFD9x9 | ||||
| #define jpeg_fdct_10x10		jFD10x10 | ||||
| #define jpeg_fdct_11x11		jFD11x11 | ||||
| #define jpeg_fdct_12x12		jFD12x12 | ||||
| #define jpeg_fdct_13x13		jFD13x13 | ||||
| #define jpeg_fdct_14x14		jFD14x14 | ||||
| #define jpeg_fdct_15x15		jFD15x15 | ||||
| #define jpeg_fdct_16x16		jFD16x16 | ||||
| #define jpeg_fdct_16x8		jFD16x8 | ||||
| #define jpeg_fdct_14x7		jFD14x7 | ||||
| #define jpeg_fdct_12x6		jFD12x6 | ||||
| #define jpeg_fdct_10x5		jFD10x5 | ||||
| #define jpeg_fdct_8x4		jFD8x4 | ||||
| #define jpeg_fdct_6x3		jFD6x3 | ||||
| #define jpeg_fdct_4x2		jFD4x2 | ||||
| #define jpeg_fdct_2x1		jFD2x1 | ||||
| #define jpeg_fdct_8x16		jFD8x16 | ||||
| #define jpeg_fdct_7x14		jFD7x14 | ||||
| #define jpeg_fdct_6x12		jFD6x12 | ||||
| #define jpeg_fdct_5x10		jFD5x10 | ||||
| #define jpeg_fdct_4x8		jFD4x8 | ||||
| #define jpeg_fdct_3x6		jFD3x6 | ||||
| #define jpeg_fdct_2x4		jFD2x4 | ||||
| #define jpeg_fdct_1x2		jFD1x2 | ||||
| #define jpeg_idct_islow		jRDislow | ||||
| #define jpeg_idct_ifast		jRDifast | ||||
| #define jpeg_idct_float		jRDfloat | ||||
| #define jpeg_idct_7x7		jRD7x7 | ||||
| #define jpeg_idct_6x6		jRD6x6 | ||||
| #define jpeg_idct_5x5		jRD5x5 | ||||
| #define jpeg_idct_4x4		jRD4x4 | ||||
| #define jpeg_idct_3x3		jRD3x3 | ||||
| #define jpeg_idct_2x2		jRD2x2 | ||||
| #define jpeg_idct_1x1		jRD1x1 | ||||
| #define jpeg_idct_9x9		jRD9x9 | ||||
| #define jpeg_idct_10x10		jRD10x10 | ||||
| #define jpeg_idct_11x11		jRD11x11 | ||||
| #define jpeg_idct_12x12		jRD12x12 | ||||
| #define jpeg_idct_13x13		jRD13x13 | ||||
| #define jpeg_idct_14x14		jRD14x14 | ||||
| #define jpeg_idct_15x15		jRD15x15 | ||||
| #define jpeg_idct_16x16		jRD16x16 | ||||
| #define jpeg_idct_16x8		jRD16x8 | ||||
| #define jpeg_idct_14x7		jRD14x7 | ||||
| #define jpeg_idct_12x6		jRD12x6 | ||||
| #define jpeg_idct_10x5		jRD10x5 | ||||
| #define jpeg_idct_8x4		jRD8x4 | ||||
| #define jpeg_idct_6x3		jRD6x3 | ||||
| #define jpeg_idct_4x2		jRD4x2 | ||||
| #define jpeg_idct_2x1		jRD2x1 | ||||
| #define jpeg_idct_8x16		jRD8x16 | ||||
| #define jpeg_idct_7x14		jRD7x14 | ||||
| #define jpeg_idct_6x12		jRD6x12 | ||||
| #define jpeg_idct_5x10		jRD5x10 | ||||
| #define jpeg_idct_4x8		jRD4x8 | ||||
| #define jpeg_idct_3x6		jRD3x6 | ||||
| #define jpeg_idct_2x4		jRD2x4 | ||||
| #define jpeg_idct_1x2		jRD1x2 | ||||
| #endif /* NEED_SHORT_EXTERNAL_NAMES */ | ||||
| 
 | ||||
| /* Extern declarations for the forward and inverse DCT routines. */ | ||||
| 
 | ||||
| EXTERN(void) jpeg_fdct_islow | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_ifast | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_float | ||||
|     JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_7x7 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_6x6 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_5x5 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_4x4 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_3x3 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_2x2 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_1x1 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_9x9 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_10x10 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_11x11 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_12x12 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_13x13 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_14x14 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_15x15 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_16x16 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_16x8 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_14x7 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_12x6 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_10x5 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_8x4 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_6x3 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_4x2 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_2x1 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_8x16 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_7x14 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_6x12 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_5x10 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_4x8 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_3x6 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_2x4 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| EXTERN(void) jpeg_fdct_1x2 | ||||
|     JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | ||||
| 
 | ||||
| EXTERN(void) jpeg_idct_islow | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_ifast | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_float | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_7x7 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_6x6 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_5x5 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_4x4 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_3x3 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_2x2 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_1x1 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_9x9 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_10x10 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_11x11 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_12x12 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_13x13 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_14x14 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_15x15 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_16x16 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_16x8 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_14x7 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_12x6 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_10x5 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_8x4 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_6x3 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_4x2 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_2x1 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_8x16 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_7x14 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_6x12 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_5x10 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_4x8 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_3x6 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_2x4 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| EXTERN(void) jpeg_idct_1x2 | ||||
|     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Macros for handling fixed-point arithmetic; these are used by many | ||||
|  * but not all of the DCT/IDCT modules. | ||||
|  * | ||||
|  * All values are expected to be of type INT32. | ||||
|  * Fractional constants are scaled left by CONST_BITS bits. | ||||
|  * CONST_BITS is defined within each module using these macros, | ||||
|  * and may differ from one module to the next. | ||||
|  */ | ||||
| 
 | ||||
| #define ONE	((INT32) 1) | ||||
| #define CONST_SCALE (ONE << CONST_BITS) | ||||
| 
 | ||||
| /* Convert a positive real constant to an integer scaled by CONST_SCALE.
 | ||||
|  * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, | ||||
|  * thus causing a lot of useless floating-point operations at run time. | ||||
|  */ | ||||
| 
 | ||||
| #define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5)) | ||||
| 
 | ||||
| /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 | ||||
|  * This macro is used only when the two inputs will actually be no more than | ||||
|  * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a | ||||
|  * full 32x32 multiply.  This provides a useful speedup on many machines. | ||||
|  * Unfortunately there is no way to specify a 16x16->32 multiply portably | ||||
|  * in C, but some C compilers will do the right thing if you provide the | ||||
|  * correct combination of casts. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */ | ||||
| #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const))) | ||||
| #endif | ||||
| #ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */ | ||||
| #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const))) | ||||
| #endif | ||||
| 
 | ||||
| #ifndef MULTIPLY16C16		/* default definition */ | ||||
| #define MULTIPLY16C16(var,const)  ((var) * (const)) | ||||
| #endif | ||||
| 
 | ||||
| /* Same except both inputs are variables. */ | ||||
| 
 | ||||
| #ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */ | ||||
| #define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2))) | ||||
| #endif | ||||
| 
 | ||||
| #ifndef MULTIPLY16V16		/* default definition */ | ||||
| #define MULTIPLY16V16(var1,var2)  ((var1) * (var2)) | ||||
| #endif | ||||
| 
 | ||||
| /* Like RIGHT_SHIFT, but applies to a DCTELEM.
 | ||||
|  * We assume that int right shift is unsigned if INT32 right shift is. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef RIGHT_SHIFT_IS_UNSIGNED | ||||
| #define ISHIFT_TEMPS	DCTELEM ishift_temp; | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */ | ||||
| #else | ||||
| #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */ | ||||
| #endif | ||||
| #define IRIGHT_SHIFT(x,shft)  \ | ||||
|     ((ishift_temp = (x)) < 0 ? \ | ||||
|      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ | ||||
|      (ishift_temp >> (shft))) | ||||
| #else | ||||
| #define ISHIFT_TEMPS | ||||
| #define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) | ||||
| #endif | ||||
							
								
								
									
										384
									
								
								dep/libjpeg/src/jddctmgr.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										384
									
								
								dep/libjpeg/src/jddctmgr.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,384 @@ | |||
| /*
 | ||||
|  * jddctmgr.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2002-2013 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the inverse-DCT management logic. | ||||
|  * This code selects a particular IDCT implementation to be used, | ||||
|  * and it performs related housekeeping chores.  No code in this file | ||||
|  * is executed per IDCT step, only during output pass setup. | ||||
|  * | ||||
|  * Note that the IDCT routines are responsible for performing coefficient | ||||
|  * dequantization as well as the IDCT proper.  This module sets up the | ||||
|  * dequantization multiplier table needed by the IDCT routine. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jdct.h"		/* Private declarations for DCT subsystem */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The decompressor input side (jdinput.c) saves away the appropriate | ||||
|  * quantization table for each component at the start of the first scan | ||||
|  * involving that component.  (This is necessary in order to correctly | ||||
|  * decode files that reuse Q-table slots.) | ||||
|  * When we are ready to make an output pass, the saved Q-table is converted | ||||
|  * to a multiplier table that will actually be used by the IDCT routine. | ||||
|  * The multiplier table contents are IDCT-method-dependent.  To support | ||||
|  * application changes in IDCT method between scans, we can remake the | ||||
|  * multiplier tables if necessary. | ||||
|  * In buffered-image mode, the first output pass may occur before any data | ||||
|  * has been seen for some components, and thus before their Q-tables have | ||||
|  * been saved away.  To handle this case, multiplier tables are preset | ||||
|  * to zeroes; the result of the IDCT will be a neutral gray level. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Private subobject for this module */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_inverse_dct pub;	/* public fields */ | ||||
| 
 | ||||
|   /* This array contains the IDCT method code that each multiplier table
 | ||||
|    * is currently set up for, or -1 if it's not yet set up. | ||||
|    * The actual multiplier tables are pointed to by dct_table in the | ||||
|    * per-component comp_info structures. | ||||
|    */ | ||||
|   int cur_method[MAX_COMPONENTS]; | ||||
| } my_idct_controller; | ||||
| 
 | ||||
| typedef my_idct_controller * my_idct_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Allocated multiplier tables: big enough for any supported variant */ | ||||
| 
 | ||||
| typedef union { | ||||
|   ISLOW_MULT_TYPE islow_array[DCTSIZE2]; | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
|   IFAST_MULT_TYPE ifast_array[DCTSIZE2]; | ||||
| #endif | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|   FLOAT_MULT_TYPE float_array[DCTSIZE2]; | ||||
| #endif | ||||
| } multiplier_table; | ||||
| 
 | ||||
| 
 | ||||
| /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
 | ||||
|  * so be sure to compile that code if either ISLOW or SCALING is requested. | ||||
|  */ | ||||
| #ifdef DCT_ISLOW_SUPPORTED | ||||
| #define PROVIDE_ISLOW_TABLES | ||||
| #else | ||||
| #ifdef IDCT_SCALING_SUPPORTED | ||||
| #define PROVIDE_ISLOW_TABLES | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Prepare for an output pass. | ||||
|  * Here we select the proper IDCT routine for each component and build | ||||
|  * a matching multiplier table. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_idct_ptr idct = (my_idct_ptr) cinfo->idct; | ||||
|   int ci, i; | ||||
|   jpeg_component_info *compptr; | ||||
|   int method = 0; | ||||
|   inverse_DCT_method_ptr method_ptr = NULL; | ||||
|   JQUANT_TBL * qtbl; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Select the proper IDCT routine for this component's scaling */ | ||||
|     switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | ||||
| #ifdef IDCT_SCALING_SUPPORTED | ||||
|     case ((1 << 8) + 1): | ||||
|       method_ptr = jpeg_idct_1x1; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((2 << 8) + 2): | ||||
|       method_ptr = jpeg_idct_2x2; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((3 << 8) + 3): | ||||
|       method_ptr = jpeg_idct_3x3; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((4 << 8) + 4): | ||||
|       method_ptr = jpeg_idct_4x4; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((5 << 8) + 5): | ||||
|       method_ptr = jpeg_idct_5x5; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((6 << 8) + 6): | ||||
|       method_ptr = jpeg_idct_6x6; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((7 << 8) + 7): | ||||
|       method_ptr = jpeg_idct_7x7; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((9 << 8) + 9): | ||||
|       method_ptr = jpeg_idct_9x9; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((10 << 8) + 10): | ||||
|       method_ptr = jpeg_idct_10x10; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((11 << 8) + 11): | ||||
|       method_ptr = jpeg_idct_11x11; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((12 << 8) + 12): | ||||
|       method_ptr = jpeg_idct_12x12; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((13 << 8) + 13): | ||||
|       method_ptr = jpeg_idct_13x13; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((14 << 8) + 14): | ||||
|       method_ptr = jpeg_idct_14x14; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((15 << 8) + 15): | ||||
|       method_ptr = jpeg_idct_15x15; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((16 << 8) + 16): | ||||
|       method_ptr = jpeg_idct_16x16; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((16 << 8) + 8): | ||||
|       method_ptr = jpeg_idct_16x8; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((14 << 8) + 7): | ||||
|       method_ptr = jpeg_idct_14x7; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((12 << 8) + 6): | ||||
|       method_ptr = jpeg_idct_12x6; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((10 << 8) + 5): | ||||
|       method_ptr = jpeg_idct_10x5; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((8 << 8) + 4): | ||||
|       method_ptr = jpeg_idct_8x4; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((6 << 8) + 3): | ||||
|       method_ptr = jpeg_idct_6x3; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((4 << 8) + 2): | ||||
|       method_ptr = jpeg_idct_4x2; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((2 << 8) + 1): | ||||
|       method_ptr = jpeg_idct_2x1; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((8 << 8) + 16): | ||||
|       method_ptr = jpeg_idct_8x16; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((7 << 8) + 14): | ||||
|       method_ptr = jpeg_idct_7x14; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((6 << 8) + 12): | ||||
|       method_ptr = jpeg_idct_6x12; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((5 << 8) + 10): | ||||
|       method_ptr = jpeg_idct_5x10; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((4 << 8) + 8): | ||||
|       method_ptr = jpeg_idct_4x8; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((3 << 8) + 6): | ||||
|       method_ptr = jpeg_idct_3x6; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((2 << 8) + 4): | ||||
|       method_ptr = jpeg_idct_2x4; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
|     case ((1 << 8) + 2): | ||||
|       method_ptr = jpeg_idct_1x2; | ||||
|       method = JDCT_ISLOW;	/* jidctint uses islow-style table */ | ||||
|       break; | ||||
| #endif | ||||
|     case ((DCTSIZE << 8) + DCTSIZE): | ||||
|       switch (cinfo->dct_method) { | ||||
| #ifdef DCT_ISLOW_SUPPORTED | ||||
|       case JDCT_ISLOW: | ||||
| 	method_ptr = jpeg_idct_islow; | ||||
| 	method = JDCT_ISLOW; | ||||
| 	break; | ||||
| #endif | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
|       case JDCT_IFAST: | ||||
| 	method_ptr = jpeg_idct_ifast; | ||||
| 	method = JDCT_IFAST; | ||||
| 	break; | ||||
| #endif | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|       case JDCT_FLOAT: | ||||
| 	method_ptr = jpeg_idct_float; | ||||
| 	method = JDCT_FLOAT; | ||||
| 	break; | ||||
| #endif | ||||
|       default: | ||||
| 	ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| 	break; | ||||
|       } | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | ||||
| 	       compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | ||||
|       break; | ||||
|     } | ||||
|     idct->pub.inverse_DCT[ci] = method_ptr; | ||||
|     /* Create multiplier table from quant table.
 | ||||
|      * However, we can skip this if the component is uninteresting | ||||
|      * or if we already built the table.  Also, if no quant table | ||||
|      * has yet been saved for the component, we leave the | ||||
|      * multiplier table all-zero; we'll be reading zeroes from the | ||||
|      * coefficient controller's buffer anyway. | ||||
|      */ | ||||
|     if (! compptr->component_needed || idct->cur_method[ci] == method) | ||||
|       continue; | ||||
|     qtbl = compptr->quant_table; | ||||
|     if (qtbl == NULL)		/* happens if no data yet for component */ | ||||
|       continue; | ||||
|     idct->cur_method[ci] = method; | ||||
|     switch (method) { | ||||
| #ifdef PROVIDE_ISLOW_TABLES | ||||
|     case JDCT_ISLOW: | ||||
|       { | ||||
| 	/* For LL&M IDCT method, multipliers are equal to raw quantization
 | ||||
| 	 * coefficients, but are stored as ints to ensure access efficiency. | ||||
| 	 */ | ||||
| 	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; | ||||
| 	for (i = 0; i < DCTSIZE2; i++) { | ||||
| 	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; | ||||
| 	} | ||||
|       } | ||||
|       break; | ||||
| #endif | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
|     case JDCT_IFAST: | ||||
|       { | ||||
| 	/* For AA&N IDCT method, multipliers are equal to quantization
 | ||||
| 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | ||||
| 	 *   scalefactor[0] = 1 | ||||
| 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | ||||
| 	 * For integer operation, the multiplier table is to be scaled by | ||||
| 	 * IFAST_SCALE_BITS. | ||||
| 	 */ | ||||
| 	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; | ||||
| #define CONST_BITS 14 | ||||
| 	static const INT16 aanscales[DCTSIZE2] = { | ||||
| 	  /* precomputed values scaled up by 14 bits */ | ||||
| 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | ||||
| 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, | ||||
| 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, | ||||
| 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, | ||||
| 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | ||||
| 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, | ||||
| 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, | ||||
| 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 | ||||
| 	}; | ||||
| 	SHIFT_TEMPS | ||||
| 
 | ||||
| 	for (i = 0; i < DCTSIZE2; i++) { | ||||
| 	  ifmtbl[i] = (IFAST_MULT_TYPE) | ||||
| 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | ||||
| 				  (INT32) aanscales[i]), | ||||
| 		    CONST_BITS-IFAST_SCALE_BITS); | ||||
| 	} | ||||
|       } | ||||
|       break; | ||||
| #endif | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
|     case JDCT_FLOAT: | ||||
|       { | ||||
| 	/* For float AA&N IDCT method, multipliers are equal to quantization
 | ||||
| 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | ||||
| 	 *   scalefactor[0] = 1 | ||||
| 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | ||||
| 	 * We apply a further scale factor of 1/8. | ||||
| 	 */ | ||||
| 	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; | ||||
| 	int row, col; | ||||
| 	static const double aanscalefactor[DCTSIZE] = { | ||||
| 	  1.0, 1.387039845, 1.306562965, 1.175875602, | ||||
| 	  1.0, 0.785694958, 0.541196100, 0.275899379 | ||||
| 	}; | ||||
| 
 | ||||
| 	i = 0; | ||||
| 	for (row = 0; row < DCTSIZE; row++) { | ||||
| 	  for (col = 0; col < DCTSIZE; col++) { | ||||
| 	    fmtbl[i] = (FLOAT_MULT_TYPE) | ||||
| 	      ((double) qtbl->quantval[i] * | ||||
| 	       aanscalefactor[row] * aanscalefactor[col] * 0.125); | ||||
| 	    i++; | ||||
| 	  } | ||||
| 	} | ||||
|       } | ||||
|       break; | ||||
| #endif | ||||
|     default: | ||||
|       ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize IDCT manager. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_inverse_dct (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_idct_ptr idct; | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   idct = (my_idct_ptr) | ||||
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 				SIZEOF(my_idct_controller)); | ||||
|   cinfo->idct = &idct->pub; | ||||
|   idct->pub.start_pass = start_pass; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Allocate and pre-zero a multiplier table for each component */ | ||||
|     compptr->dct_table = | ||||
|       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 				  SIZEOF(multiplier_table)); | ||||
|     MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); | ||||
|     /* Mark multiplier table not yet set up for any method */ | ||||
|     idct->cur_method[ci] = -1; | ||||
|   } | ||||
| } | ||||
							
								
								
									
										1559
									
								
								dep/libjpeg/src/jdhuff.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1559
									
								
								dep/libjpeg/src/jdhuff.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										657
									
								
								dep/libjpeg/src/jdinput.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										657
									
								
								dep/libjpeg/src/jdinput.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,657 @@ | |||
| /*
 | ||||
|  * jdinput.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 2002-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains input control logic for the JPEG decompressor. | ||||
|  * These routines are concerned with controlling the decompressor's input | ||||
|  * processing (marker reading and coefficient decoding).  The actual input | ||||
|  * reading is done in jdmarker.c, jdhuff.c, and jdarith.c. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Private state */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_input_controller pub; /* public fields */ | ||||
| 
 | ||||
|   int inheaders;		/* Nonzero until first SOS is reached */ | ||||
| } my_input_controller; | ||||
| 
 | ||||
| typedef my_input_controller * my_inputctl_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Routines to calculate various quantities related to the size of the image. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Compute output image dimensions and related values. | ||||
|  * NOTE: this is exported for possible use by application. | ||||
|  * Hence it mustn't do anything that can't be done twice. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_core_output_dimensions (j_decompress_ptr cinfo) | ||||
| /* Do computations that are needed before master selection phase.
 | ||||
|  * This function is used for transcoding and full decompression. | ||||
|  */ | ||||
| { | ||||
| #ifdef IDCT_SCALING_SUPPORTED | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Compute actual output image dimensions and DCT scaling choices. */ | ||||
|   if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) { | ||||
|     /* Provide 1/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 1; | ||||
|     cinfo->min_DCT_v_scaled_size = 1; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) { | ||||
|     /* Provide 2/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 2; | ||||
|     cinfo->min_DCT_v_scaled_size = 2; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) { | ||||
|     /* Provide 3/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 3; | ||||
|     cinfo->min_DCT_v_scaled_size = 3; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) { | ||||
|     /* Provide 4/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 4; | ||||
|     cinfo->min_DCT_v_scaled_size = 4; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) { | ||||
|     /* Provide 5/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 5; | ||||
|     cinfo->min_DCT_v_scaled_size = 5; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) { | ||||
|     /* Provide 6/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 6; | ||||
|     cinfo->min_DCT_v_scaled_size = 6; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) { | ||||
|     /* Provide 7/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 7; | ||||
|     cinfo->min_DCT_v_scaled_size = 7; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) { | ||||
|     /* Provide 8/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 8; | ||||
|     cinfo->min_DCT_v_scaled_size = 8; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) { | ||||
|     /* Provide 9/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 9; | ||||
|     cinfo->min_DCT_v_scaled_size = 9; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) { | ||||
|     /* Provide 10/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 10; | ||||
|     cinfo->min_DCT_v_scaled_size = 10; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) { | ||||
|     /* Provide 11/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 11; | ||||
|     cinfo->min_DCT_v_scaled_size = 11; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) { | ||||
|     /* Provide 12/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 12; | ||||
|     cinfo->min_DCT_v_scaled_size = 12; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) { | ||||
|     /* Provide 13/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 13; | ||||
|     cinfo->min_DCT_v_scaled_size = 13; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) { | ||||
|     /* Provide 14/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 14; | ||||
|     cinfo->min_DCT_v_scaled_size = 14; | ||||
|   } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) { | ||||
|     /* Provide 15/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 15; | ||||
|     cinfo->min_DCT_v_scaled_size = 15; | ||||
|   } else { | ||||
|     /* Provide 16/block_size scaling */ | ||||
|     cinfo->output_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size); | ||||
|     cinfo->output_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size); | ||||
|     cinfo->min_DCT_h_scaled_size = 16; | ||||
|     cinfo->min_DCT_v_scaled_size = 16; | ||||
|   } | ||||
| 
 | ||||
|   /* Recompute dimensions of components */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size; | ||||
|     compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size; | ||||
|   } | ||||
| 
 | ||||
| #else /* !IDCT_SCALING_SUPPORTED */ | ||||
| 
 | ||||
|   /* Hardwire it to "no scaling" */ | ||||
|   cinfo->output_width = cinfo->image_width; | ||||
|   cinfo->output_height = cinfo->image_height; | ||||
|   /* initial_setup has already initialized DCT_scaled_size,
 | ||||
|    * and has computed unscaled downsampled_width and downsampled_height. | ||||
|    */ | ||||
| 
 | ||||
| #endif /* IDCT_SCALING_SUPPORTED */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| initial_setup (j_decompress_ptr cinfo) | ||||
| /* Called once, when first SOS marker is reached */ | ||||
| { | ||||
|   int ci; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Make sure image isn't bigger than I can handle */ | ||||
|   if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || | ||||
|       (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) | ||||
|     ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); | ||||
| 
 | ||||
|   /* Only 8 to 12 bits data precision are supported for DCT based JPEG */ | ||||
|   if (cinfo->data_precision < 8 || cinfo->data_precision > 12) | ||||
|     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | ||||
| 
 | ||||
|   /* Check that number of components won't exceed internal array sizes */ | ||||
|   if (cinfo->num_components > MAX_COMPONENTS) | ||||
|     ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | ||||
| 	     MAX_COMPONENTS); | ||||
| 
 | ||||
|   /* Compute maximum sampling factors; check factor validity */ | ||||
|   cinfo->max_h_samp_factor = 1; | ||||
|   cinfo->max_v_samp_factor = 1; | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || | ||||
| 	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) | ||||
|       ERREXIT(cinfo, JERR_BAD_SAMPLING); | ||||
|     cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, | ||||
| 				   compptr->h_samp_factor); | ||||
|     cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, | ||||
| 				   compptr->v_samp_factor); | ||||
|   } | ||||
| 
 | ||||
|   /* Derive block_size, natural_order, and lim_Se */ | ||||
|   if (cinfo->is_baseline || (cinfo->progressive_mode && | ||||
|       cinfo->comps_in_scan)) { /* no pseudo SOS marker */ | ||||
|     cinfo->block_size = DCTSIZE; | ||||
|     cinfo->natural_order = jpeg_natural_order; | ||||
|     cinfo->lim_Se = DCTSIZE2-1; | ||||
|   } else | ||||
|     switch (cinfo->Se) { | ||||
|     case (1*1-1): | ||||
|       cinfo->block_size = 1; | ||||
|       cinfo->natural_order = jpeg_natural_order; /* not needed */ | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (2*2-1): | ||||
|       cinfo->block_size = 2; | ||||
|       cinfo->natural_order = jpeg_natural_order2; | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (3*3-1): | ||||
|       cinfo->block_size = 3; | ||||
|       cinfo->natural_order = jpeg_natural_order3; | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (4*4-1): | ||||
|       cinfo->block_size = 4; | ||||
|       cinfo->natural_order = jpeg_natural_order4; | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (5*5-1): | ||||
|       cinfo->block_size = 5; | ||||
|       cinfo->natural_order = jpeg_natural_order5; | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (6*6-1): | ||||
|       cinfo->block_size = 6; | ||||
|       cinfo->natural_order = jpeg_natural_order6; | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (7*7-1): | ||||
|       cinfo->block_size = 7; | ||||
|       cinfo->natural_order = jpeg_natural_order7; | ||||
|       cinfo->lim_Se = cinfo->Se; | ||||
|       break; | ||||
|     case (8*8-1): | ||||
|       cinfo->block_size = 8; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (9*9-1): | ||||
|       cinfo->block_size = 9; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (10*10-1): | ||||
|       cinfo->block_size = 10; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (11*11-1): | ||||
|       cinfo->block_size = 11; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (12*12-1): | ||||
|       cinfo->block_size = 12; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (13*13-1): | ||||
|       cinfo->block_size = 13; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (14*14-1): | ||||
|       cinfo->block_size = 14; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (15*15-1): | ||||
|       cinfo->block_size = 15; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     case (16*16-1): | ||||
|       cinfo->block_size = 16; | ||||
|       cinfo->natural_order = jpeg_natural_order; | ||||
|       cinfo->lim_Se = DCTSIZE2-1; | ||||
|       break; | ||||
|     default: | ||||
|       ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | ||||
| 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | ||||
|     } | ||||
| 
 | ||||
|   /* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
 | ||||
|    * In the full decompressor, | ||||
|    * this will be overridden by jpeg_calc_output_dimensions in jdmaster.c; | ||||
|    * but in the transcoder, | ||||
|    * jpeg_calc_output_dimensions is not used, so we must do it here. | ||||
|    */ | ||||
|   cinfo->min_DCT_h_scaled_size = cinfo->block_size; | ||||
|   cinfo->min_DCT_v_scaled_size = cinfo->block_size; | ||||
| 
 | ||||
|   /* Compute dimensions of components */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     compptr->DCT_h_scaled_size = cinfo->block_size; | ||||
|     compptr->DCT_v_scaled_size = cinfo->block_size; | ||||
|     /* Size in DCT blocks */ | ||||
|     compptr->width_in_blocks = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, | ||||
| 		    (long) (cinfo->max_h_samp_factor * cinfo->block_size)); | ||||
|     compptr->height_in_blocks = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, | ||||
| 		    (long) (cinfo->max_v_samp_factor * cinfo->block_size)); | ||||
|     /* downsampled_width and downsampled_height will also be overridden by
 | ||||
|      * jdmaster.c if we are doing full decompression.  The transcoder library | ||||
|      * doesn't use these values, but the calling application might. | ||||
|      */ | ||||
|     /* Size in samples */ | ||||
|     compptr->downsampled_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, | ||||
| 		    (long) cinfo->max_h_samp_factor); | ||||
|     compptr->downsampled_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, | ||||
| 		    (long) cinfo->max_v_samp_factor); | ||||
|     /* Mark component needed, until color conversion says otherwise */ | ||||
|     compptr->component_needed = TRUE; | ||||
|     /* Mark no quantization table yet saved for component */ | ||||
|     compptr->quant_table = NULL; | ||||
|   } | ||||
| 
 | ||||
|   /* Compute number of fully interleaved MCU rows. */ | ||||
|   cinfo->total_iMCU_rows = (JDIMENSION) | ||||
|     jdiv_round_up((long) cinfo->image_height, | ||||
| 	          (long) (cinfo->max_v_samp_factor * cinfo->block_size)); | ||||
| 
 | ||||
|   /* Decide whether file contains multiple scans */ | ||||
|   if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) | ||||
|     cinfo->inputctl->has_multiple_scans = TRUE; | ||||
|   else | ||||
|     cinfo->inputctl->has_multiple_scans = FALSE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| per_scan_setup (j_decompress_ptr cinfo) | ||||
| /* Do computations that are needed before processing a JPEG scan */ | ||||
| /* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ | ||||
| { | ||||
|   int ci, mcublks, tmp; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   if (cinfo->comps_in_scan == 1) { | ||||
| 
 | ||||
|     /* Noninterleaved (single-component) scan */ | ||||
|     compptr = cinfo->cur_comp_info[0]; | ||||
| 
 | ||||
|     /* Overall image size in MCUs */ | ||||
|     cinfo->MCUs_per_row = compptr->width_in_blocks; | ||||
|     cinfo->MCU_rows_in_scan = compptr->height_in_blocks; | ||||
| 
 | ||||
|     /* For noninterleaved scan, always one block per MCU */ | ||||
|     compptr->MCU_width = 1; | ||||
|     compptr->MCU_height = 1; | ||||
|     compptr->MCU_blocks = 1; | ||||
|     compptr->MCU_sample_width = compptr->DCT_h_scaled_size; | ||||
|     compptr->last_col_width = 1; | ||||
|     /* For noninterleaved scans, it is convenient to define last_row_height
 | ||||
|      * as the number of block rows present in the last iMCU row. | ||||
|      */ | ||||
|     tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||||
|     if (tmp == 0) tmp = compptr->v_samp_factor; | ||||
|     compptr->last_row_height = tmp; | ||||
| 
 | ||||
|     /* Prepare array describing MCU composition */ | ||||
|     cinfo->blocks_in_MCU = 1; | ||||
|     cinfo->MCU_membership[0] = 0; | ||||
| 
 | ||||
|   } else { | ||||
| 
 | ||||
|     /* Interleaved (multi-component) scan */ | ||||
|     if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) | ||||
|       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, | ||||
| 	       MAX_COMPS_IN_SCAN); | ||||
| 
 | ||||
|     /* Overall image size in MCUs */ | ||||
|     cinfo->MCUs_per_row = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width, | ||||
| 		    (long) (cinfo->max_h_samp_factor * cinfo->block_size)); | ||||
|     cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows; | ||||
| 
 | ||||
|     cinfo->blocks_in_MCU = 0; | ||||
| 
 | ||||
|     for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|       compptr = cinfo->cur_comp_info[ci]; | ||||
|       /* Sampling factors give # of blocks of component in each MCU */ | ||||
|       compptr->MCU_width = compptr->h_samp_factor; | ||||
|       compptr->MCU_height = compptr->v_samp_factor; | ||||
|       compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; | ||||
|       compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; | ||||
|       /* Figure number of non-dummy blocks in last MCU column & row */ | ||||
|       tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); | ||||
|       if (tmp == 0) tmp = compptr->MCU_width; | ||||
|       compptr->last_col_width = tmp; | ||||
|       tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); | ||||
|       if (tmp == 0) tmp = compptr->MCU_height; | ||||
|       compptr->last_row_height = tmp; | ||||
|       /* Prepare array describing MCU composition */ | ||||
|       mcublks = compptr->MCU_blocks; | ||||
|       if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) | ||||
| 	ERREXIT(cinfo, JERR_BAD_MCU_SIZE); | ||||
|       while (mcublks-- > 0) { | ||||
| 	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Save away a copy of the Q-table referenced by each component present | ||||
|  * in the current scan, unless already saved during a prior scan. | ||||
|  * | ||||
|  * In a multiple-scan JPEG file, the encoder could assign different components | ||||
|  * the same Q-table slot number, but change table definitions between scans | ||||
|  * so that each component uses a different Q-table.  (The IJG encoder is not | ||||
|  * currently capable of doing this, but other encoders might.)  Since we want | ||||
|  * to be able to dequantize all the components at the end of the file, this | ||||
|  * means that we have to save away the table actually used for each component. | ||||
|  * We do this by copying the table at the start of the first scan containing | ||||
|  * the component. | ||||
|  * The JPEG spec prohibits the encoder from changing the contents of a Q-table | ||||
|  * slot between scans of a component using that slot.  If the encoder does so | ||||
|  * anyway, this decoder will simply use the Q-table values that were current | ||||
|  * at the start of the first scan for the component. | ||||
|  * | ||||
|  * The decompressor output side looks only at the saved quant tables, | ||||
|  * not at the current Q-table slots. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| latch_quant_tables (j_decompress_ptr cinfo) | ||||
| { | ||||
|   int ci, qtblno; | ||||
|   jpeg_component_info *compptr; | ||||
|   JQUANT_TBL * qtbl; | ||||
| 
 | ||||
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||||
|     compptr = cinfo->cur_comp_info[ci]; | ||||
|     /* No work if we already saved Q-table for this component */ | ||||
|     if (compptr->quant_table != NULL) | ||||
|       continue; | ||||
|     /* Make sure specified quantization table is present */ | ||||
|     qtblno = compptr->quant_tbl_no; | ||||
|     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | ||||
| 	cinfo->quant_tbl_ptrs[qtblno] == NULL) | ||||
|       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | ||||
|     /* OK, save away the quantization table */ | ||||
|     qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(JQUANT_TBL)); | ||||
|     MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); | ||||
|     compptr->quant_table = qtbl; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize the input modules to read a scan of compressed data. | ||||
|  * The first call to this is done by jdmaster.c after initializing | ||||
|  * the entire decompressor (during jpeg_start_decompress). | ||||
|  * Subsequent calls come from consume_markers, below. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_input_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   per_scan_setup(cinfo); | ||||
|   latch_quant_tables(cinfo); | ||||
|   (*cinfo->entropy->start_pass) (cinfo); | ||||
|   (*cinfo->coef->start_input_pass) (cinfo); | ||||
|   cinfo->inputctl->consume_input = cinfo->coef->consume_data; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up after inputting a compressed-data scan. | ||||
|  * This is called by the coefficient controller after it's read all | ||||
|  * the expected data of the scan. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| finish_input_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   (*cinfo->entropy->finish_pass) (cinfo); | ||||
|   cinfo->inputctl->consume_input = consume_markers; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Read JPEG markers before, between, or after compressed-data scans. | ||||
|  * Change state as necessary when a new scan is reached. | ||||
|  * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. | ||||
|  * | ||||
|  * The consume_input method pointer points either here or to the | ||||
|  * coefficient controller's consume_data routine, depending on whether | ||||
|  * we are reading a compressed data segment or inter-segment markers. | ||||
|  * | ||||
|  * Note: This function should NOT return a pseudo SOS marker (with zero | ||||
|  * component number) to the caller.  A pseudo marker received by | ||||
|  * read_markers is processed and then skipped for other markers. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(int) | ||||
| consume_markers (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; | ||||
|   int val; | ||||
| 
 | ||||
|   if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ | ||||
|     return JPEG_REACHED_EOI; | ||||
| 
 | ||||
|   for (;;) {			/* Loop to pass pseudo SOS marker */ | ||||
|     val = (*cinfo->marker->read_markers) (cinfo); | ||||
| 
 | ||||
|     switch (val) { | ||||
|     case JPEG_REACHED_SOS:	/* Found SOS */ | ||||
|       if (inputctl->inheaders) { /* 1st SOS */ | ||||
| 	if (inputctl->inheaders == 1) | ||||
| 	  initial_setup(cinfo); | ||||
| 	if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */ | ||||
| 	  inputctl->inheaders = 2; | ||||
| 	  break; | ||||
| 	} | ||||
| 	inputctl->inheaders = 0; | ||||
| 	/* Note: start_input_pass must be called by jdmaster.c
 | ||||
| 	 * before any more input can be consumed.  jdapimin.c is | ||||
| 	 * responsible for enforcing this sequencing. | ||||
| 	 */ | ||||
|       } else {			/* 2nd or later SOS marker */ | ||||
| 	if (! inputctl->pub.has_multiple_scans) | ||||
| 	  ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ | ||||
| 	if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */ | ||||
| 	  break; | ||||
| 	start_input_pass(cinfo); | ||||
|       } | ||||
|       return val; | ||||
|     case JPEG_REACHED_EOI:	/* Found EOI */ | ||||
|       inputctl->pub.eoi_reached = TRUE; | ||||
|       if (inputctl->inheaders) { /* Tables-only datastream, apparently */ | ||||
| 	if (cinfo->marker->saw_SOF) | ||||
| 	  ERREXIT(cinfo, JERR_SOF_NO_SOS); | ||||
|       } else { | ||||
| 	/* Prevent infinite loop in coef ctlr's decompress_data routine
 | ||||
| 	 * if user set output_scan_number larger than number of scans. | ||||
| 	 */ | ||||
| 	if (cinfo->output_scan_number > cinfo->input_scan_number) | ||||
| 	  cinfo->output_scan_number = cinfo->input_scan_number; | ||||
|       } | ||||
|       return val; | ||||
|     case JPEG_SUSPENDED: | ||||
|       return val; | ||||
|     default: | ||||
|       return val; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Reset state to begin a fresh datastream. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| reset_input_controller (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; | ||||
| 
 | ||||
|   inputctl->pub.consume_input = consume_markers; | ||||
|   inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ | ||||
|   inputctl->pub.eoi_reached = FALSE; | ||||
|   inputctl->inheaders = 1; | ||||
|   /* Reset other modules */ | ||||
|   (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | ||||
|   (*cinfo->marker->reset_marker_reader) (cinfo); | ||||
|   /* Reset progression state -- would be cleaner if entropy decoder did this */ | ||||
|   cinfo->coef_bits = NULL; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize the input controller module. | ||||
|  * This is called only once, when the decompression object is created. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_input_controller (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_inputctl_ptr inputctl; | ||||
| 
 | ||||
|   /* Create subobject in permanent pool */ | ||||
|   inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_input_controller)); | ||||
|   cinfo->inputctl = &inputctl->pub; | ||||
|   /* Initialize method pointers */ | ||||
|   inputctl->pub.consume_input = consume_markers; | ||||
|   inputctl->pub.reset_input_controller = reset_input_controller; | ||||
|   inputctl->pub.start_input_pass = start_input_pass; | ||||
|   inputctl->pub.finish_input_pass = finish_input_pass; | ||||
|   /* Initialize state: can't use reset_input_controller since we don't
 | ||||
|    * want to try to reset other modules yet. | ||||
|    */ | ||||
|   inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ | ||||
|   inputctl->pub.eoi_reached = FALSE; | ||||
|   inputctl->inheaders = 1; | ||||
| } | ||||
							
								
								
									
										511
									
								
								dep/libjpeg/src/jdmainct.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										511
									
								
								dep/libjpeg/src/jdmainct.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,511 @@ | |||
| /*
 | ||||
|  * jdmainct.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2002-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the main buffer controller for decompression. | ||||
|  * The main buffer lies between the JPEG decompressor proper and the | ||||
|  * post-processor; it holds downsampled data in the JPEG colorspace. | ||||
|  * | ||||
|  * Note that this code is bypassed in raw-data mode, since the application | ||||
|  * supplies the equivalent of the main buffer in that case. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * In the current system design, the main buffer need never be a full-image | ||||
|  * buffer; any full-height buffers will be found inside the coefficient or | ||||
|  * postprocessing controllers.  Nonetheless, the main controller is not | ||||
|  * trivial.  Its responsibility is to provide context rows for upsampling/ | ||||
|  * rescaling, and doing this in an efficient fashion is a bit tricky. | ||||
|  * | ||||
|  * Postprocessor input data is counted in "row groups".  A row group is | ||||
|  * defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) | ||||
|  * sample rows of each component.  (We require DCT_scaled_size values to be | ||||
|  * chosen such that these numbers are integers.  In practice DCT_scaled_size | ||||
|  * values will likely be powers of two, so we actually have the stronger | ||||
|  * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) | ||||
|  * Upsampling will typically produce max_v_samp_factor pixel rows from each | ||||
|  * row group (times any additional scale factor that the upsampler is | ||||
|  * applying). | ||||
|  * | ||||
|  * The coefficient controller will deliver data to us one iMCU row at a time; | ||||
|  * each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or | ||||
|  * exactly min_DCT_v_scaled_size row groups.  (This amount of data corresponds | ||||
|  * to one row of MCUs when the image is fully interleaved.)  Note that the | ||||
|  * number of sample rows varies across components, but the number of row | ||||
|  * groups does not.  Some garbage sample rows may be included in the last iMCU | ||||
|  * row at the bottom of the image. | ||||
|  * | ||||
|  * Depending on the vertical scaling algorithm used, the upsampler may need | ||||
|  * access to the sample row(s) above and below its current input row group. | ||||
|  * The upsampler is required to set need_context_rows TRUE at global selection | ||||
|  * time if so.  When need_context_rows is FALSE, this controller can simply | ||||
|  * obtain one iMCU row at a time from the coefficient controller and dole it | ||||
|  * out as row groups to the postprocessor. | ||||
|  * | ||||
|  * When need_context_rows is TRUE, this controller guarantees that the buffer | ||||
|  * passed to postprocessing contains at least one row group's worth of samples | ||||
|  * above and below the row group(s) being processed.  Note that the context | ||||
|  * rows "above" the first passed row group appear at negative row offsets in | ||||
|  * the passed buffer.  At the top and bottom of the image, the required | ||||
|  * context rows are manufactured by duplicating the first or last real sample | ||||
|  * row; this avoids having special cases in the upsampling inner loops. | ||||
|  * | ||||
|  * The amount of context is fixed at one row group just because that's a | ||||
|  * convenient number for this controller to work with.  The existing | ||||
|  * upsamplers really only need one sample row of context.  An upsampler | ||||
|  * supporting arbitrary output rescaling might wish for more than one row | ||||
|  * group of context when shrinking the image; tough, we don't handle that. | ||||
|  * (This is justified by the assumption that downsizing will be handled mostly | ||||
|  * by adjusting the DCT_scaled_size values, so that the actual scale factor at | ||||
|  * the upsample step needn't be much less than one.) | ||||
|  * | ||||
|  * To provide the desired context, we have to retain the last two row groups | ||||
|  * of one iMCU row while reading in the next iMCU row.  (The last row group | ||||
|  * can't be processed until we have another row group for its below-context, | ||||
|  * and so we have to save the next-to-last group too for its above-context.) | ||||
|  * We could do this most simply by copying data around in our buffer, but | ||||
|  * that'd be very slow.  We can avoid copying any data by creating a rather | ||||
|  * strange pointer structure.  Here's how it works.  We allocate a workspace | ||||
|  * consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number | ||||
|  * of row groups per iMCU row).  We create two sets of redundant pointers to | ||||
|  * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized | ||||
|  * pointer lists look like this: | ||||
|  *                   M+1                          M-1 | ||||
|  * master pointer --> 0         master pointer --> 0 | ||||
|  *                    1                            1 | ||||
|  *                   ...                          ... | ||||
|  *                   M-3                          M-3 | ||||
|  *                   M-2                           M | ||||
|  *                   M-1                          M+1 | ||||
|  *                    M                           M-2 | ||||
|  *                   M+1                          M-1 | ||||
|  *                    0                            0 | ||||
|  * We read alternate iMCU rows using each master pointer; thus the last two | ||||
|  * row groups of the previous iMCU row remain un-overwritten in the workspace. | ||||
|  * The pointer lists are set up so that the required context rows appear to | ||||
|  * be adjacent to the proper places when we pass the pointer lists to the | ||||
|  * upsampler. | ||||
|  * | ||||
|  * The above pictures describe the normal state of the pointer lists. | ||||
|  * At top and bottom of the image, we diddle the pointer lists to duplicate | ||||
|  * the first or last sample row as necessary (this is cheaper than copying | ||||
|  * sample rows around). | ||||
|  * | ||||
|  * This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1.  In that | ||||
|  * situation each iMCU row provides only one row group so the buffering logic | ||||
|  * must be different (eg, we must read two iMCU rows before we can emit the | ||||
|  * first row group).  For now, we simply do not support providing context | ||||
|  * rows when min_DCT_v_scaled_size is 1.  That combination seems unlikely to | ||||
|  * be worth providing --- if someone wants a 1/8th-size preview, they probably | ||||
|  * want it quick and dirty, so a context-free upsampler is sufficient. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_d_main_controller pub; /* public fields */ | ||||
| 
 | ||||
|   /* Pointer to allocated workspace (M or M+2 row groups). */ | ||||
|   JSAMPARRAY buffer[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */ | ||||
|   JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */ | ||||
| 
 | ||||
|   /* Remaining fields are only used in the context case. */ | ||||
| 
 | ||||
|   boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */ | ||||
| 
 | ||||
|   /* These are the master pointers to the funny-order pointer lists. */ | ||||
|   JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */ | ||||
| 
 | ||||
|   int whichptr;			/* indicates which pointer set is now in use */ | ||||
|   int context_state;		/* process_data state machine status */ | ||||
|   JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */ | ||||
| } my_main_controller; | ||||
| 
 | ||||
| typedef my_main_controller * my_main_ptr; | ||||
| 
 | ||||
| /* context_state values: */ | ||||
| #define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */ | ||||
| #define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */ | ||||
| #define CTX_POSTPONED_ROW	2	/* feeding postponed row group */ | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| METHODDEF(void) process_data_simple_main | ||||
| 	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | ||||
| 	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | ||||
| METHODDEF(void) process_data_context_main | ||||
| 	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | ||||
| 	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
| METHODDEF(void) process_data_crank_post | ||||
| 	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | ||||
| 	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| alloc_funny_pointers (j_decompress_ptr cinfo) | ||||
| /* Allocate space for the funny pointer lists.
 | ||||
|  * This is done only once, not once per pass. | ||||
|  */ | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
|   int ci, rgroup; | ||||
|   int M = cinfo->min_DCT_v_scaled_size; | ||||
|   jpeg_component_info *compptr; | ||||
|   JSAMPARRAY xbuf; | ||||
| 
 | ||||
|   /* Get top-level space for component array pointers.
 | ||||
|    * We alloc both arrays with one call to save a few cycles. | ||||
|    */ | ||||
|   mainp->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|      cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); | ||||
|   mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (! compptr->component_needed) | ||||
|       continue;			/* skip uninteresting component */ | ||||
|     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
|       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | ||||
|     /* Get space for pointer lists --- M+4 row groups in each list.
 | ||||
|      * We alloc both pointer lists with one call to save a few cycles. | ||||
|      */ | ||||
|     xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, | ||||
|       JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); | ||||
|     xbuf += rgroup;		/* want one row group at negative offsets */ | ||||
|     mainp->xbuffer[0][ci] = xbuf; | ||||
|     xbuf += rgroup * (M + 4); | ||||
|     mainp->xbuffer[1][ci] = xbuf; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| make_funny_pointers (j_decompress_ptr cinfo) | ||||
| /* Create the funny pointer lists discussed in the comments above.
 | ||||
|  * The actual workspace is already allocated (in mainp->buffer), | ||||
|  * and the space for the pointer lists is allocated too. | ||||
|  * This routine just fills in the curiously ordered lists. | ||||
|  * This will be repeated at the beginning of each pass. | ||||
|  */ | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
|   int ci, i, rgroup; | ||||
|   int M = cinfo->min_DCT_v_scaled_size; | ||||
|   jpeg_component_info *compptr; | ||||
|   JSAMPARRAY buf, xbuf0, xbuf1; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (! compptr->component_needed) | ||||
|       continue;			/* skip uninteresting component */ | ||||
|     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
|       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | ||||
|     xbuf0 = mainp->xbuffer[0][ci]; | ||||
|     xbuf1 = mainp->xbuffer[1][ci]; | ||||
|     /* First copy the workspace pointers as-is */ | ||||
|     buf = mainp->buffer[ci]; | ||||
|     for (i = 0; i < rgroup * (M + 2); i++) { | ||||
|       xbuf0[i] = xbuf1[i] = buf[i]; | ||||
|     } | ||||
|     /* In the second list, put the last four row groups in swapped order */ | ||||
|     for (i = 0; i < rgroup * 2; i++) { | ||||
|       xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; | ||||
|       xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; | ||||
|     } | ||||
|     /* The wraparound pointers at top and bottom will be filled later
 | ||||
|      * (see set_wraparound_pointers, below).  Initially we want the "above" | ||||
|      * pointers to duplicate the first actual data line.  This only needs | ||||
|      * to happen in xbuffer[0]. | ||||
|      */ | ||||
|     for (i = 0; i < rgroup; i++) { | ||||
|       xbuf0[i - rgroup] = xbuf0[0]; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| set_wraparound_pointers (j_decompress_ptr cinfo) | ||||
| /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
 | ||||
|  * This changes the pointer list state from top-of-image to the normal state. | ||||
|  */ | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
|   int ci, i, rgroup; | ||||
|   int M = cinfo->min_DCT_v_scaled_size; | ||||
|   jpeg_component_info *compptr; | ||||
|   JSAMPARRAY xbuf0, xbuf1; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (! compptr->component_needed) | ||||
|       continue;			/* skip uninteresting component */ | ||||
|     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
|       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | ||||
|     xbuf0 = mainp->xbuffer[0][ci]; | ||||
|     xbuf1 = mainp->xbuffer[1][ci]; | ||||
|     for (i = 0; i < rgroup; i++) { | ||||
|       xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; | ||||
|       xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; | ||||
|       xbuf0[rgroup*(M+2) + i] = xbuf0[i]; | ||||
|       xbuf1[rgroup*(M+2) + i] = xbuf1[i]; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| set_bottom_pointers (j_decompress_ptr cinfo) | ||||
| /* Change the pointer lists to duplicate the last sample row at the bottom
 | ||||
|  * of the image.  whichptr indicates which xbuffer holds the final iMCU row. | ||||
|  * Also sets rowgroups_avail to indicate number of nondummy row groups in row. | ||||
|  */ | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
|   int ci, i, rgroup, iMCUheight, rows_left; | ||||
|   jpeg_component_info *compptr; | ||||
|   JSAMPARRAY xbuf; | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (! compptr->component_needed) | ||||
|       continue;			/* skip uninteresting component */ | ||||
|     /* Count sample rows in one iMCU row and in one row group */ | ||||
|     iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size; | ||||
|     rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size; | ||||
|     /* Count nondummy sample rows remaining for this component */ | ||||
|     rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); | ||||
|     if (rows_left == 0) rows_left = iMCUheight; | ||||
|     /* Count nondummy row groups.  Should get same answer for each component,
 | ||||
|      * so we need only do it once. | ||||
|      */ | ||||
|     if (ci == 0) { | ||||
|       mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); | ||||
|     } | ||||
|     /* Duplicate the last real sample row rgroup*2 times; this pads out the
 | ||||
|      * last partial rowgroup and ensures at least one full rowgroup of context. | ||||
|      */ | ||||
|     xbuf = mainp->xbuffer[mainp->whichptr][ci]; | ||||
|     for (i = 0; i < rgroup * 2; i++) { | ||||
|       xbuf[rows_left + i] = xbuf[rows_left-1]; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
| 
 | ||||
|   switch (pass_mode) { | ||||
|   case JBUF_PASS_THRU: | ||||
|     if (cinfo->upsample->need_context_rows) { | ||||
|       mainp->pub.process_data = process_data_context_main; | ||||
|       make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ | ||||
|       mainp->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */ | ||||
|       mainp->context_state = CTX_PREPARE_FOR_IMCU; | ||||
|       mainp->iMCU_row_ctr = 0; | ||||
|       mainp->buffer_full = FALSE; /* Mark buffer empty */ | ||||
|     } else { | ||||
|       /* Simple case with no context needed */ | ||||
|       mainp->pub.process_data = process_data_simple_main; | ||||
|       mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */ | ||||
|     } | ||||
|     break; | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|   case JBUF_CRANK_DEST: | ||||
|     /* For last pass of 2-pass quantization, just crank the postprocessor */ | ||||
|     mainp->pub.process_data = process_data_crank_post; | ||||
|     break; | ||||
| #endif | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data. | ||||
|  * This handles the simple case where no context is required. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, | ||||
| 			  JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
| 
 | ||||
|   /* Read input data if we haven't filled the main buffer yet */ | ||||
|   if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) { | ||||
|     if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer)) | ||||
|       return;			/* suspension forced, can do nothing more */ | ||||
|     mainp->rowgroup_ctr = 0;	/* OK, we have an iMCU row to work with */ | ||||
|   } | ||||
| 
 | ||||
|   /* Note: at the bottom of the image, we may pass extra garbage row groups
 | ||||
|    * to the postprocessor.  The postprocessor has to check for bottom | ||||
|    * of image anyway (at row resolution), so no point in us doing it too. | ||||
|    */ | ||||
| 
 | ||||
|   /* Feed the postprocessor */ | ||||
|   (*cinfo->post->post_process_data) (cinfo, mainp->buffer, | ||||
| 			&mainp->rowgroup_ctr, mainp->rowgroups_avail, | ||||
| 			output_buf, out_row_ctr, out_rows_avail); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data. | ||||
|  * This handles the case where context rows must be provided. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, | ||||
| 			   JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) | ||||
| { | ||||
|   my_main_ptr mainp = (my_main_ptr) cinfo->main; | ||||
| 
 | ||||
|   /* Read input data if we haven't filled the main buffer yet */ | ||||
|   if (! mainp->buffer_full) { | ||||
|     if (! (*cinfo->coef->decompress_data) (cinfo, | ||||
| 					   mainp->xbuffer[mainp->whichptr])) | ||||
|       return;			/* suspension forced, can do nothing more */ | ||||
|     mainp->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */ | ||||
|     mainp->iMCU_row_ctr++;	/* count rows received */ | ||||
|   } | ||||
| 
 | ||||
|   /* Postprocessor typically will not swallow all the input data it is handed
 | ||||
|    * in one call (due to filling the output buffer first).  Must be prepared | ||||
|    * to exit and restart.  This switch lets us keep track of how far we got. | ||||
|    * Note that each case falls through to the next on successful completion. | ||||
|    */ | ||||
|   switch (mainp->context_state) { | ||||
|   case CTX_POSTPONED_ROW: | ||||
|     /* Call postprocessor using previously set pointers for postponed row */ | ||||
|     (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], | ||||
| 			&mainp->rowgroup_ctr, mainp->rowgroups_avail, | ||||
| 			output_buf, out_row_ctr, out_rows_avail); | ||||
|     if (mainp->rowgroup_ctr < mainp->rowgroups_avail) | ||||
|       return;			/* Need to suspend */ | ||||
|     mainp->context_state = CTX_PREPARE_FOR_IMCU; | ||||
|     if (*out_row_ctr >= out_rows_avail) | ||||
|       return;			/* Postprocessor exactly filled output buf */ | ||||
|     /*FALLTHROUGH*/ | ||||
|   case CTX_PREPARE_FOR_IMCU: | ||||
|     /* Prepare to process first M-1 row groups of this iMCU row */ | ||||
|     mainp->rowgroup_ctr = 0; | ||||
|     mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); | ||||
|     /* Check for bottom of image: if so, tweak pointers to "duplicate"
 | ||||
|      * the last sample row, and adjust rowgroups_avail to ignore padding rows. | ||||
|      */ | ||||
|     if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows) | ||||
|       set_bottom_pointers(cinfo); | ||||
|     mainp->context_state = CTX_PROCESS_IMCU; | ||||
|     /*FALLTHROUGH*/ | ||||
|   case CTX_PROCESS_IMCU: | ||||
|     /* Call postprocessor using previously set pointers */ | ||||
|     (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], | ||||
| 			&mainp->rowgroup_ctr, mainp->rowgroups_avail, | ||||
| 			output_buf, out_row_ctr, out_rows_avail); | ||||
|     if (mainp->rowgroup_ctr < mainp->rowgroups_avail) | ||||
|       return;			/* Need to suspend */ | ||||
|     /* After the first iMCU, change wraparound pointers to normal state */ | ||||
|     if (mainp->iMCU_row_ctr == 1) | ||||
|       set_wraparound_pointers(cinfo); | ||||
|     /* Prepare to load new iMCU row using other xbuffer list */ | ||||
|     mainp->whichptr ^= 1;	/* 0=>1 or 1=>0 */ | ||||
|     mainp->buffer_full = FALSE; | ||||
|     /* Still need to process last row group of this iMCU row, */ | ||||
|     /* which is saved at index M+1 of the other xbuffer */ | ||||
|     mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); | ||||
|     mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); | ||||
|     mainp->context_state = CTX_POSTPONED_ROW; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data. | ||||
|  * Final pass of two-pass quantization: just call the postprocessor. | ||||
|  * Source data will be the postprocessor controller's internal buffer. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf, | ||||
| 			 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) | ||||
| { | ||||
|   (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, | ||||
| 			(JDIMENSION *) NULL, (JDIMENSION) 0, | ||||
| 			output_buf, out_row_ctr, out_rows_avail); | ||||
| } | ||||
| 
 | ||||
| #endif /* QUANT_2PASS_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize main buffer controller. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | ||||
| { | ||||
|   my_main_ptr mainp; | ||||
|   int ci, rgroup, ngroups; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   mainp = (my_main_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller)); | ||||
|   cinfo->main = &mainp->pub; | ||||
|   mainp->pub.start_pass = start_pass_main; | ||||
| 
 | ||||
|   if (need_full_buffer)		/* shouldn't happen */ | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| 
 | ||||
|   /* Allocate the workspace.
 | ||||
|    * ngroups is the number of row groups we need. | ||||
|    */ | ||||
|   if (cinfo->upsample->need_context_rows) { | ||||
|     if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */ | ||||
|       ERREXIT(cinfo, JERR_NOTIMPL); | ||||
|     alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ | ||||
|     ngroups = cinfo->min_DCT_v_scaled_size + 2; | ||||
|   } else { | ||||
|     /* There are always min_DCT_v_scaled_size row groups in an iMCU row. */ | ||||
|     ngroups = cinfo->min_DCT_v_scaled_size; | ||||
|     mainp->rowgroups_avail = (JDIMENSION) ngroups; | ||||
|   } | ||||
| 
 | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     if (! compptr->component_needed) | ||||
|       continue;			/* skip uninteresting component */ | ||||
|     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
|       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | ||||
|     mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), | ||||
|        (JDIMENSION) (rgroup * ngroups)); | ||||
|   } | ||||
| } | ||||
							
								
								
									
										1505
									
								
								dep/libjpeg/src/jdmarker.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1505
									
								
								dep/libjpeg/src/jdmarker.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										532
									
								
								dep/libjpeg/src/jdmaster.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										532
									
								
								dep/libjpeg/src/jdmaster.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,532 @@ | |||
| /*
 | ||||
|  * jdmaster.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
|  * Modified 2002-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains master control logic for the JPEG decompressor. | ||||
|  * These routines are concerned with selecting the modules to be executed | ||||
|  * and with determining the number of passes and the work to be done in each | ||||
|  * pass. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Private state */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_decomp_master pub; /* public fields */ | ||||
| 
 | ||||
|   int pass_number;		/* # of passes completed */ | ||||
| 
 | ||||
|   boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ | ||||
| 
 | ||||
|   /* Saved references to initialized quantizer modules,
 | ||||
|    * in case we need to switch modes. | ||||
|    */ | ||||
|   struct jpeg_color_quantizer * quantizer_1pass; | ||||
|   struct jpeg_color_quantizer * quantizer_2pass; | ||||
| } my_decomp_master; | ||||
| 
 | ||||
| typedef my_decomp_master * my_master_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Determine whether merged upsample/color conversion should be used. | ||||
|  * CRUCIAL: this must match the actual capabilities of jdmerge.c! | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(boolean) | ||||
| use_merged_upsample (j_decompress_ptr cinfo) | ||||
| { | ||||
| #ifdef UPSAMPLE_MERGING_SUPPORTED | ||||
|   /* Merging is the equivalent of plain box-filter upsampling. */ | ||||
|   /* The following condition is only needed if fancy shall select
 | ||||
|    * a different upsampling method.  In our current implementation | ||||
|    * fancy only affects the DCT scaling, thus we can use fancy | ||||
|    * upsampling and merged upsample simultaneously, in particular | ||||
|    * with scaled DCT sizes larger than the default DCTSIZE. | ||||
|    */ | ||||
| #if 0 | ||||
|   if (cinfo->do_fancy_upsampling) | ||||
|     return FALSE; | ||||
| #endif | ||||
|   if (cinfo->CCIR601_sampling) | ||||
|     return FALSE; | ||||
|   /* jdmerge.c only supports YCC=>RGB color conversion */ | ||||
|   if ((cinfo->jpeg_color_space != JCS_YCbCr && | ||||
|        cinfo->jpeg_color_space != JCS_BG_YCC) || | ||||
|       cinfo->num_components != 3 || | ||||
|       cinfo->out_color_space != JCS_RGB || | ||||
|       cinfo->out_color_components != RGB_PIXELSIZE || | ||||
|       cinfo->color_transform) | ||||
|     return FALSE; | ||||
|   /* and it only handles 2h1v or 2h2v sampling ratios */ | ||||
|   if (cinfo->comp_info[0].h_samp_factor != 2 || | ||||
|       cinfo->comp_info[1].h_samp_factor != 1 || | ||||
|       cinfo->comp_info[2].h_samp_factor != 1 || | ||||
|       cinfo->comp_info[0].v_samp_factor >  2 || | ||||
|       cinfo->comp_info[1].v_samp_factor != 1 || | ||||
|       cinfo->comp_info[2].v_samp_factor != 1) | ||||
|     return FALSE; | ||||
|   /* furthermore, it doesn't work if we've scaled the IDCTs differently */ | ||||
|   if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || | ||||
|       cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || | ||||
|       cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || | ||||
|       cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || | ||||
|       cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || | ||||
|       cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size) | ||||
|     return FALSE; | ||||
|   /* ??? also need to test for upsample-time rescaling, when & if supported */ | ||||
|   return TRUE;			/* by golly, it'll work... */ | ||||
| #else | ||||
|   return FALSE; | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Compute output image dimensions and related values. | ||||
|  * NOTE: this is exported for possible use by application. | ||||
|  * Hence it mustn't do anything that can't be done twice. | ||||
|  * Also note that it may be called before the master module is initialized! | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_calc_output_dimensions (j_decompress_ptr cinfo) | ||||
| /* Do computations that are needed before master selection phase.
 | ||||
|  * This function is used for full decompression. | ||||
|  */ | ||||
| { | ||||
|   int ci, i; | ||||
|   jpeg_component_info *compptr; | ||||
| 
 | ||||
|   /* Prevent application from calling me at wrong times */ | ||||
|   if (cinfo->global_state != DSTATE_READY) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   /* Compute core output image dimensions and DCT scaling choices. */ | ||||
|   jpeg_core_output_dimensions(cinfo); | ||||
| 
 | ||||
| #ifdef IDCT_SCALING_SUPPORTED | ||||
| 
 | ||||
|   /* In selecting the actual DCT scaling for each component, we try to
 | ||||
|    * scale up the chroma components via IDCT scaling rather than upsampling. | ||||
|    * This saves time if the upsampler gets to use 1:1 scaling. | ||||
|    * Note this code adapts subsampling ratios which are powers of 2. | ||||
|    */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     int ssize = 1; | ||||
|     if (! cinfo->raw_data_out) | ||||
|       while (cinfo->min_DCT_h_scaled_size * ssize <= | ||||
| 	     (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && | ||||
| 	     (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == | ||||
| 	     0) { | ||||
| 	ssize = ssize * 2; | ||||
|       } | ||||
|     compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; | ||||
|     ssize = 1; | ||||
|     if (! cinfo->raw_data_out) | ||||
|       while (cinfo->min_DCT_v_scaled_size * ssize <= | ||||
| 	     (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && | ||||
| 	     (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == | ||||
| 	     0) { | ||||
| 	ssize = ssize * 2; | ||||
|       } | ||||
|     compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; | ||||
| 
 | ||||
|     /* We don't support IDCT ratios larger than 2. */ | ||||
|     if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) | ||||
| 	compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; | ||||
|     else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) | ||||
| 	compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; | ||||
| 
 | ||||
|     /* Recompute downsampled dimensions of components;
 | ||||
|      * application needs to know these if using raw downsampled data. | ||||
|      */ | ||||
|     /* Size in samples, after IDCT scaling */ | ||||
|     compptr->downsampled_width = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_width * | ||||
| 		    (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), | ||||
| 		    (long) (cinfo->max_h_samp_factor * cinfo->block_size)); | ||||
|     compptr->downsampled_height = (JDIMENSION) | ||||
|       jdiv_round_up((long) cinfo->image_height * | ||||
| 		    (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), | ||||
| 		    (long) (cinfo->max_v_samp_factor * cinfo->block_size)); | ||||
|   } | ||||
| 
 | ||||
| #endif /* IDCT_SCALING_SUPPORTED */ | ||||
| 
 | ||||
|   /* Report number of components in selected colorspace. */ | ||||
|   /* This should correspond to the actual code in the color conversion module. */ | ||||
|   switch (cinfo->out_color_space) { | ||||
|   case JCS_GRAYSCALE: | ||||
|     cinfo->out_color_components = 1; | ||||
|     break; | ||||
|   case JCS_RGB: | ||||
|   case JCS_BG_RGB: | ||||
|     cinfo->out_color_components = RGB_PIXELSIZE; | ||||
|     break; | ||||
|   default:	/* YCCK <=> CMYK conversion or same colorspace as in file */ | ||||
|     i = 0; | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) | ||||
|       if (compptr->component_needed) | ||||
| 	i++;	/* count output color components */ | ||||
|     cinfo->out_color_components = i; | ||||
|   } | ||||
|   cinfo->output_components = (cinfo->quantize_colors ? 1 : | ||||
| 			      cinfo->out_color_components); | ||||
| 
 | ||||
|   /* See if upsampler will want to emit more than one row at a time */ | ||||
|   if (use_merged_upsample(cinfo)) | ||||
|     cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; | ||||
|   else | ||||
|     cinfo->rec_outbuf_height = 1; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Several decompression processes need to range-limit values to the range | ||||
|  * 0..MAXJSAMPLE; the input value may fall somewhat outside this range | ||||
|  * due to noise introduced by quantization, roundoff error, etc.  These | ||||
|  * processes are inner loops and need to be as fast as possible.  On most | ||||
|  * machines, particularly CPUs with pipelines or instruction prefetch, | ||||
|  * a (subscript-check-less) C table lookup | ||||
|  *		x = sample_range_limit[x]; | ||||
|  * is faster than explicit tests | ||||
|  *		if (x < 0)  x = 0; | ||||
|  *		else if (x > MAXJSAMPLE)  x = MAXJSAMPLE; | ||||
|  * These processes all use a common table prepared by the routine below. | ||||
|  * | ||||
|  * For most steps we can mathematically guarantee that the initial value | ||||
|  * of x is within 2*(MAXJSAMPLE+1) of the legal range, so a table running | ||||
|  * from -2*(MAXJSAMPLE+1) to 3*MAXJSAMPLE+2 is sufficient.  But for the | ||||
|  * initial limiting step (just after the IDCT), a wildly out-of-range value | ||||
|  * is possible if the input data is corrupt.  To avoid any chance of indexing | ||||
|  * off the end of memory and getting a bad-pointer trap, we perform the | ||||
|  * post-IDCT limiting thus: | ||||
|  *		x = (sample_range_limit - SUBSET)[(x + CENTER) & MASK]; | ||||
|  * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit | ||||
|  * samples.  Under normal circumstances this is more than enough range and | ||||
|  * a correct output will be generated; with bogus input data the mask will | ||||
|  * cause wraparound, and we will safely generate a bogus-but-in-range output. | ||||
|  * For the post-IDCT step, we want to convert the data from signed to unsigned | ||||
|  * representation by adding CENTERJSAMPLE at the same time that we limit it. | ||||
|  * This is accomplished with SUBSET = CENTER - CENTERJSAMPLE. | ||||
|  * | ||||
|  * Note that the table is allocated in near data space on PCs; it's small | ||||
|  * enough and used often enough to justify this. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| prepare_range_limit_table (j_decompress_ptr cinfo) | ||||
| /* Allocate and fill in the sample_range_limit table */ | ||||
| { | ||||
|   JSAMPLE * table; | ||||
|   int i; | ||||
| 
 | ||||
|   table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, | ||||
|     JPOOL_IMAGE, (RANGE_CENTER * 2 + MAXJSAMPLE + 1) * SIZEOF(JSAMPLE)); | ||||
|   /* First segment of range limit table: limit[x] = 0 for x < 0 */ | ||||
|   MEMZERO(table, RANGE_CENTER * SIZEOF(JSAMPLE)); | ||||
|   table += RANGE_CENTER;	/* allow negative subscripts of table */ | ||||
|   cinfo->sample_range_limit = table; | ||||
|   /* Main part of range limit table: limit[x] = x */ | ||||
|   for (i = 0; i <= MAXJSAMPLE; i++) | ||||
|     table[i] = (JSAMPLE) i; | ||||
|   /* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */ | ||||
|   for (; i <=  MAXJSAMPLE + RANGE_CENTER; i++) | ||||
|     table[i] = MAXJSAMPLE; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Master selection of decompression modules. | ||||
|  * This is done once at jpeg_start_decompress time.  We determine | ||||
|  * which modules will be used and give them appropriate initialization calls. | ||||
|  * We also initialize the decompressor input side to begin consuming data. | ||||
|  * | ||||
|  * Since jpeg_read_header has finished, we know what is in the SOF | ||||
|  * and (first) SOS markers.  We also have all the application parameter | ||||
|  * settings. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| master_selection (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
|   boolean use_c_buffer; | ||||
|   long samplesperrow; | ||||
|   JDIMENSION jd_samplesperrow; | ||||
| 
 | ||||
|   /* For now, precision must match compiled-in value... */ | ||||
|   if (cinfo->data_precision != BITS_IN_JSAMPLE) | ||||
|     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | ||||
| 
 | ||||
|   /* Initialize dimensions and other stuff */ | ||||
|   jpeg_calc_output_dimensions(cinfo); | ||||
|   prepare_range_limit_table(cinfo); | ||||
| 
 | ||||
|   /* Sanity check on image dimensions */ | ||||
|   if (cinfo->output_height <= 0 || cinfo->output_width <= 0 || | ||||
|       cinfo->out_color_components <= 0) | ||||
|     ERREXIT(cinfo, JERR_EMPTY_IMAGE); | ||||
| 
 | ||||
|   /* Width of an output scanline must be representable as JDIMENSION. */ | ||||
|   samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; | ||||
|   jd_samplesperrow = (JDIMENSION) samplesperrow; | ||||
|   if ((long) jd_samplesperrow != samplesperrow) | ||||
|     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | ||||
| 
 | ||||
|   /* Initialize my private state */ | ||||
|   master->pass_number = 0; | ||||
|   master->using_merged_upsample = use_merged_upsample(cinfo); | ||||
| 
 | ||||
|   /* Color quantizer selection */ | ||||
|   master->quantizer_1pass = NULL; | ||||
|   master->quantizer_2pass = NULL; | ||||
|   /* No mode changes if not using buffered-image mode. */ | ||||
|   if (! cinfo->quantize_colors || ! cinfo->buffered_image) { | ||||
|     cinfo->enable_1pass_quant = FALSE; | ||||
|     cinfo->enable_external_quant = FALSE; | ||||
|     cinfo->enable_2pass_quant = FALSE; | ||||
|   } | ||||
|   if (cinfo->quantize_colors) { | ||||
|     if (cinfo->raw_data_out) | ||||
|       ERREXIT(cinfo, JERR_NOTIMPL); | ||||
|     /* 2-pass quantizer only works in 3-component color space. */ | ||||
|     if (cinfo->out_color_components != 3) { | ||||
|       cinfo->enable_1pass_quant = TRUE; | ||||
|       cinfo->enable_external_quant = FALSE; | ||||
|       cinfo->enable_2pass_quant = FALSE; | ||||
|       cinfo->colormap = NULL; | ||||
|     } else if (cinfo->colormap != NULL) { | ||||
|       cinfo->enable_external_quant = TRUE; | ||||
|     } else if (cinfo->two_pass_quantize) { | ||||
|       cinfo->enable_2pass_quant = TRUE; | ||||
|     } else { | ||||
|       cinfo->enable_1pass_quant = TRUE; | ||||
|     } | ||||
| 
 | ||||
|     if (cinfo->enable_1pass_quant) { | ||||
| #ifdef QUANT_1PASS_SUPPORTED | ||||
|       jinit_1pass_quantizer(cinfo); | ||||
|       master->quantizer_1pass = cinfo->cquantize; | ||||
| #else | ||||
|       ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|     } | ||||
| 
 | ||||
|     /* We use the 2-pass code to map to external colormaps. */ | ||||
|     if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|       jinit_2pass_quantizer(cinfo); | ||||
|       master->quantizer_2pass = cinfo->cquantize; | ||||
| #else | ||||
|       ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|     } | ||||
|     /* If both quantizers are initialized, the 2-pass one is left active;
 | ||||
|      * this is necessary for starting with quantization to an external map. | ||||
|      */ | ||||
|   } | ||||
| 
 | ||||
|   /* Post-processing: in particular, color conversion first */ | ||||
|   if (! cinfo->raw_data_out) { | ||||
|     if (master->using_merged_upsample) { | ||||
| #ifdef UPSAMPLE_MERGING_SUPPORTED | ||||
|       jinit_merged_upsampler(cinfo); /* does color conversion too */ | ||||
| #else | ||||
|       ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif | ||||
|     } else { | ||||
|       jinit_color_deconverter(cinfo); | ||||
|       jinit_upsampler(cinfo); | ||||
|     } | ||||
|     jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); | ||||
|   } | ||||
|   /* Inverse DCT */ | ||||
|   jinit_inverse_dct(cinfo); | ||||
|   /* Entropy decoding: either Huffman or arithmetic coding. */ | ||||
|   if (cinfo->arith_code) | ||||
|     jinit_arith_decoder(cinfo); | ||||
|   else { | ||||
|     jinit_huff_decoder(cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Initialize principal buffer controllers. */ | ||||
|   use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; | ||||
|   jinit_d_coef_controller(cinfo, use_c_buffer); | ||||
| 
 | ||||
|   if (! cinfo->raw_data_out) | ||||
|     jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); | ||||
| 
 | ||||
|   /* We can now tell the memory manager to allocate virtual arrays. */ | ||||
|   (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   /* Initialize input side of decompressor to consume first scan. */ | ||||
|   (*cinfo->inputctl->start_input_pass) (cinfo); | ||||
| 
 | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
|   /* If jpeg_start_decompress will read the whole file, initialize
 | ||||
|    * progress monitoring appropriately.  The input step is counted | ||||
|    * as one pass. | ||||
|    */ | ||||
|   if (cinfo->progress != NULL && ! cinfo->buffered_image && | ||||
|       cinfo->inputctl->has_multiple_scans) { | ||||
|     int nscans; | ||||
|     /* Estimate number of scans to set pass_limit. */ | ||||
|     if (cinfo->progressive_mode) { | ||||
|       /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | ||||
|       nscans = 2 + 3 * cinfo->num_components; | ||||
|     } else { | ||||
|       /* For a nonprogressive multiscan file, estimate 1 scan per component. */ | ||||
|       nscans = cinfo->num_components; | ||||
|     } | ||||
|     cinfo->progress->pass_counter = 0L; | ||||
|     cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | ||||
|     cinfo->progress->completed_passes = 0; | ||||
|     cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); | ||||
|     /* Count the input pass as done */ | ||||
|     master->pass_number++; | ||||
|   } | ||||
| #endif /* D_MULTISCAN_FILES_SUPPORTED */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Per-pass setup. | ||||
|  * This is called at the beginning of each output pass.  We determine which | ||||
|  * modules will be active during this pass and give them appropriate | ||||
|  * start_pass calls.  We also set is_dummy_pass to indicate whether this | ||||
|  * is a "real" output pass or a dummy pass for color quantization. | ||||
|  * (In the latter case, jdapistd.c will crank the pass to completion.) | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| prepare_for_output_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
| 
 | ||||
|   if (master->pub.is_dummy_pass) { | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|     /* Final pass of 2-pass quantization */ | ||||
|     master->pub.is_dummy_pass = FALSE; | ||||
|     (*cinfo->cquantize->start_pass) (cinfo, FALSE); | ||||
|     (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); | ||||
|     (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); | ||||
| #else | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
| #endif /* QUANT_2PASS_SUPPORTED */ | ||||
|   } else { | ||||
|     if (cinfo->quantize_colors && cinfo->colormap == NULL) { | ||||
|       /* Select new quantization method */ | ||||
|       if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { | ||||
| 	cinfo->cquantize = master->quantizer_2pass; | ||||
| 	master->pub.is_dummy_pass = TRUE; | ||||
|       } else if (cinfo->enable_1pass_quant) { | ||||
| 	cinfo->cquantize = master->quantizer_1pass; | ||||
|       } else { | ||||
| 	ERREXIT(cinfo, JERR_MODE_CHANGE); | ||||
|       } | ||||
|     } | ||||
|     (*cinfo->idct->start_pass) (cinfo); | ||||
|     (*cinfo->coef->start_output_pass) (cinfo); | ||||
|     if (! cinfo->raw_data_out) { | ||||
|       if (! master->using_merged_upsample) | ||||
| 	(*cinfo->cconvert->start_pass) (cinfo); | ||||
|       (*cinfo->upsample->start_pass) (cinfo); | ||||
|       if (cinfo->quantize_colors) | ||||
| 	(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); | ||||
|       (*cinfo->post->start_pass) (cinfo, | ||||
| 	    (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | ||||
|       (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Set up progress monitor's pass info if present */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     cinfo->progress->completed_passes = master->pass_number; | ||||
|     cinfo->progress->total_passes = master->pass_number + | ||||
| 				    (master->pub.is_dummy_pass ? 2 : 1); | ||||
|     /* In buffered-image mode, we assume one more output pass if EOI not
 | ||||
|      * yet reached, but no more passes if EOI has been reached. | ||||
|      */ | ||||
|     if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { | ||||
|       cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up at end of an output pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| finish_output_pass (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
| 
 | ||||
|   if (cinfo->quantize_colors) | ||||
|     (*cinfo->cquantize->finish_pass) (cinfo); | ||||
|   master->pass_number++; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef D_MULTISCAN_FILES_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Switch to a new external colormap between output passes. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_new_colormap (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master = (my_master_ptr) cinfo->master; | ||||
| 
 | ||||
|   /* Prevent application from calling me at wrong times */ | ||||
|   if (cinfo->global_state != DSTATE_BUFIMAGE) | ||||
|     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
| 
 | ||||
|   if (cinfo->quantize_colors && cinfo->enable_external_quant && | ||||
|       cinfo->colormap != NULL) { | ||||
|     /* Select 2-pass quantizer for external colormap use */ | ||||
|     cinfo->cquantize = master->quantizer_2pass; | ||||
|     /* Notify quantizer of colormap change */ | ||||
|     (*cinfo->cquantize->new_color_map) (cinfo); | ||||
|     master->pub.is_dummy_pass = FALSE; /* just in case */ | ||||
|   } else | ||||
|     ERREXIT(cinfo, JERR_MODE_CHANGE); | ||||
| } | ||||
| 
 | ||||
| #endif /* D_MULTISCAN_FILES_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize master decompression control and select active modules. | ||||
|  * This is performed at the start of jpeg_start_decompress. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_master_decompress (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_master_ptr master; | ||||
| 
 | ||||
|   master = (my_master_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master)); | ||||
|   cinfo->master = &master->pub; | ||||
|   master->pub.prepare_for_output_pass = prepare_for_output_pass; | ||||
|   master->pub.finish_output_pass = finish_output_pass; | ||||
| 
 | ||||
|   master->pub.is_dummy_pass = FALSE; | ||||
| 
 | ||||
|   master_selection(cinfo); | ||||
| } | ||||
							
								
								
									
										437
									
								
								dep/libjpeg/src/jdmerge.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										437
									
								
								dep/libjpeg/src/jdmerge.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,437 @@ | |||
| /*
 | ||||
|  * jdmerge.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2013-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains code for merged upsampling/color conversion. | ||||
|  * | ||||
|  * This file combines functions from jdsample.c and jdcolor.c; | ||||
|  * read those files first to understand what's going on. | ||||
|  * | ||||
|  * When the chroma components are to be upsampled by simple replication | ||||
|  * (ie, box filtering), we can save some work in color conversion by | ||||
|  * calculating all the output pixels corresponding to a pair of chroma | ||||
|  * samples at one time.  In the conversion equations | ||||
|  *	R = Y           + K1 * Cr | ||||
|  *	G = Y + K2 * Cb + K3 * Cr | ||||
|  *	B = Y + K4 * Cb | ||||
|  * only the Y term varies among the group of pixels corresponding to a pair | ||||
|  * of chroma samples, so the rest of the terms can be calculated just once. | ||||
|  * At typical sampling ratios, this eliminates half or three-quarters | ||||
|  * of the multiplications needed for color conversion. | ||||
|  * | ||||
|  * This file currently provides implementations for the following cases: | ||||
|  *	YCC => RGB color conversion only (YCbCr or BG_YCC). | ||||
|  *	Sampling ratios of 2h1v or 2h2v. | ||||
|  *	No scaling needed at upsample time. | ||||
|  *	Corner-aligned (non-CCIR601) sampling alignment. | ||||
|  * Other special cases could be added, but in most applications these | ||||
|  * are the only common cases.  (For uncommon cases we fall back on | ||||
|  * the more general code in jdsample.c and jdcolor.c.) | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| #ifdef UPSAMPLE_MERGING_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| #if RANGE_BITS < 2 | ||||
|   /* Deliberate syntax err */ | ||||
|   Sorry, this code requires 2 or more range extension bits. | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Private subobject */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_upsampler pub;	/* public fields */ | ||||
| 
 | ||||
|   /* Pointer to routine to do actual upsampling/conversion of one row group */ | ||||
|   JMETHOD(void, upmethod, (j_decompress_ptr cinfo, | ||||
| 			   JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | ||||
| 			   JSAMPARRAY output_buf)); | ||||
| 
 | ||||
|   /* Private state for YCC->RGB conversion */ | ||||
|   int * Cr_r_tab;		/* => table for Cr to R conversion */ | ||||
|   int * Cb_b_tab;		/* => table for Cb to B conversion */ | ||||
|   INT32 * Cr_g_tab;		/* => table for Cr to G conversion */ | ||||
|   INT32 * Cb_g_tab;		/* => table for Cb to G conversion */ | ||||
| 
 | ||||
|   /* For 2:1 vertical sampling, we produce two output rows at a time.
 | ||||
|    * We need a "spare" row buffer to hold the second output row if the | ||||
|    * application provides just a one-row buffer; we also use the spare | ||||
|    * to discard the dummy last row if the image height is odd. | ||||
|    */ | ||||
|   JSAMPROW spare_row; | ||||
|   boolean spare_full;		/* T if spare buffer is occupied */ | ||||
| 
 | ||||
|   JDIMENSION out_row_width;	/* samples per output row */ | ||||
|   JDIMENSION rows_to_go;	/* counts rows remaining in image */ | ||||
| } my_upsampler; | ||||
| 
 | ||||
| typedef my_upsampler * my_upsample_ptr; | ||||
| 
 | ||||
| #define SCALEBITS	16	/* speediest right-shift on some machines */ | ||||
| #define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) | ||||
| #define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. | ||||
|  * This is taken directly from jdcolor.c; see that file for more info. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| build_ycc_rgb_table (j_decompress_ptr cinfo) | ||||
| /* Normal case, sYCC */ | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   int i; | ||||
|   INT32 x; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
|   upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
| 
 | ||||
|   for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | ||||
|     /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | ||||
|     /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | ||||
|     /* Cr=>R value is nearest int to 1.402 * x */ | ||||
|     upsample->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS); | ||||
|     /* Cb=>B value is nearest int to 1.772 * x */ | ||||
|     upsample->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS); | ||||
|     /* Cr=>G value is scaled-up -0.714136286 * x */ | ||||
|     upsample->Cr_g_tab[i] = (- FIX(0.714136286)) * x; | ||||
|     /* Cb=>G value is scaled-up -0.344136286 * x */ | ||||
|     /* We also add in ONE_HALF so that need not do it in inner loop */ | ||||
|     upsample->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(void) | ||||
| build_bg_ycc_rgb_table (j_decompress_ptr cinfo) | ||||
| /* Wide gamut case, bg-sYCC */ | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   int i; | ||||
|   INT32 x; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); | ||||
|   upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
|   upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); | ||||
| 
 | ||||
|   for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | ||||
|     /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | ||||
|     /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | ||||
|     /* Cr=>R value is nearest int to 2.804 * x */ | ||||
|     upsample->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS); | ||||
|     /* Cb=>B value is nearest int to 3.544 * x */ | ||||
|     upsample->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS); | ||||
|     /* Cr=>G value is scaled-up -1.428272572 * x */ | ||||
|     upsample->Cr_g_tab[i] = (- FIX(1.428272572)) * x; | ||||
|     /* Cb=>G value is scaled-up -0.688272572 * x */ | ||||
|     /* We also add in ONE_HALF so that need not do it in inner loop */ | ||||
|     upsample->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an upsampling pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_merged_upsample (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
| 
 | ||||
|   /* Mark the spare buffer empty */ | ||||
|   upsample->spare_full = FALSE; | ||||
|   /* Initialize total-height counter for detecting bottom of image */ | ||||
|   upsample->rows_to_go = cinfo->output_height; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Control routine to do upsampling (and color conversion). | ||||
|  * | ||||
|  * The control routine just handles the row buffering considerations. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| merged_2v_upsample (j_decompress_ptr cinfo, | ||||
| 		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 		    JDIMENSION in_row_groups_avail, | ||||
| 		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 		    JDIMENSION out_rows_avail) | ||||
| /* 2:1 vertical sampling case: may need a spare row. */ | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   JSAMPROW work_ptrs[2]; | ||||
|   JDIMENSION num_rows;		/* number of rows returned to caller */ | ||||
| 
 | ||||
|   if (upsample->spare_full) { | ||||
|     /* If we have a spare row saved from a previous cycle, just return it. */ | ||||
|     jcopy_sample_rows(& upsample->spare_row, output_buf + *out_row_ctr, | ||||
| 		      1, upsample->out_row_width); | ||||
|     num_rows = 1; | ||||
|     upsample->spare_full = FALSE; | ||||
|   } else { | ||||
|     /* Figure number of rows to return to caller. */ | ||||
|     num_rows = 2; | ||||
|     /* Not more than the distance to the end of the image. */ | ||||
|     if (num_rows > upsample->rows_to_go) | ||||
|       num_rows = upsample->rows_to_go; | ||||
|     /* And not more than what the client can accept: */ | ||||
|     out_rows_avail -= *out_row_ctr; | ||||
|     if (num_rows > out_rows_avail) | ||||
|       num_rows = out_rows_avail; | ||||
|     /* Create output pointer array for upsampler. */ | ||||
|     work_ptrs[0] = output_buf[*out_row_ctr]; | ||||
|     if (num_rows > 1) { | ||||
|       work_ptrs[1] = output_buf[*out_row_ctr + 1]; | ||||
|     } else { | ||||
|       work_ptrs[1] = upsample->spare_row; | ||||
|       upsample->spare_full = TRUE; | ||||
|     } | ||||
|     /* Now do the upsampling. */ | ||||
|     (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); | ||||
|   } | ||||
| 
 | ||||
|   /* Adjust counts */ | ||||
|   *out_row_ctr += num_rows; | ||||
|   upsample->rows_to_go -= num_rows; | ||||
|   /* When the buffer is emptied, declare this input row group consumed */ | ||||
|   if (! upsample->spare_full) | ||||
|     (*in_row_group_ctr)++; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| merged_1v_upsample (j_decompress_ptr cinfo, | ||||
| 		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 		    JDIMENSION in_row_groups_avail, | ||||
| 		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 		    JDIMENSION out_rows_avail) | ||||
| /* 1:1 vertical sampling case: much easier, never need a spare row. */ | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
| 
 | ||||
|   /* Just do the upsampling. */ | ||||
|   (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, | ||||
| 			 output_buf + *out_row_ctr); | ||||
|   /* Adjust counts */ | ||||
|   (*out_row_ctr)++; | ||||
|   (*in_row_group_ctr)++; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These are the routines invoked by the control routines to do | ||||
|  * the actual upsampling/conversion.  One row group is processed per call. | ||||
|  * | ||||
|  * Note: since we may be writing directly into application-supplied buffers, | ||||
|  * we have to be honest about the output width; we can't assume the buffer | ||||
|  * has been rounded up to an even width. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v1_merged_upsample (j_decompress_ptr cinfo, | ||||
| 		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | ||||
| 		      JSAMPARRAY output_buf) | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   register int y, cred, cgreen, cblue; | ||||
|   int cb, cr; | ||||
|   register JSAMPROW outptr; | ||||
|   JSAMPROW inptr0, inptr1, inptr2; | ||||
|   JDIMENSION col; | ||||
|   /* copy these pointers into registers if possible */ | ||||
|   register JSAMPLE * range_limit = cinfo->sample_range_limit; | ||||
|   int * Crrtab = upsample->Cr_r_tab; | ||||
|   int * Cbbtab = upsample->Cb_b_tab; | ||||
|   INT32 * Crgtab = upsample->Cr_g_tab; | ||||
|   INT32 * Cbgtab = upsample->Cb_g_tab; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   inptr0 = input_buf[0][in_row_group_ctr]; | ||||
|   inptr1 = input_buf[1][in_row_group_ctr]; | ||||
|   inptr2 = input_buf[2][in_row_group_ctr]; | ||||
|   outptr = output_buf[0]; | ||||
|   /* Loop for each pair of output pixels */ | ||||
|   for (col = cinfo->output_width >> 1; col > 0; col--) { | ||||
|     /* Do the chroma part of the calculation */ | ||||
|     cb = GETJSAMPLE(*inptr1++); | ||||
|     cr = GETJSAMPLE(*inptr2++); | ||||
|     cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | ||||
|     cblue  = Cbbtab[cb]; | ||||
|     cred   = Crrtab[cr]; | ||||
|     /* Fetch 2 Y values and emit 2 pixels */ | ||||
|     y  = GETJSAMPLE(*inptr0++); | ||||
|     outptr[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     outptr += RGB_PIXELSIZE; | ||||
|     y  = GETJSAMPLE(*inptr0++); | ||||
|     outptr[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     outptr += RGB_PIXELSIZE; | ||||
|   } | ||||
|   /* If image width is odd, do the last output column separately */ | ||||
|   if (cinfo->output_width & 1) { | ||||
|     y  = GETJSAMPLE(*inptr0); | ||||
|     cb = GETJSAMPLE(*inptr1); | ||||
|     cr = GETJSAMPLE(*inptr2); | ||||
|     outptr[RGB_RED]   = range_limit[y + Crrtab[cr]]; | ||||
|     outptr[RGB_GREEN] = range_limit[y + | ||||
| 			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], | ||||
| 						 SCALEBITS))]; | ||||
|     outptr[RGB_BLUE]  = range_limit[y + Cbbtab[cb]]; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v2_merged_upsample (j_decompress_ptr cinfo, | ||||
| 		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | ||||
| 		      JSAMPARRAY output_buf) | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   register int y, cred, cgreen, cblue; | ||||
|   int cb, cr; | ||||
|   register JSAMPROW outptr0, outptr1; | ||||
|   JSAMPROW inptr00, inptr01, inptr1, inptr2; | ||||
|   JDIMENSION col; | ||||
|   /* copy these pointers into registers if possible */ | ||||
|   register JSAMPLE * range_limit = cinfo->sample_range_limit; | ||||
|   int * Crrtab = upsample->Cr_r_tab; | ||||
|   int * Cbbtab = upsample->Cb_b_tab; | ||||
|   INT32 * Crgtab = upsample->Cr_g_tab; | ||||
|   INT32 * Cbgtab = upsample->Cb_g_tab; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   inptr00 = input_buf[0][in_row_group_ctr*2]; | ||||
|   inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; | ||||
|   inptr1 = input_buf[1][in_row_group_ctr]; | ||||
|   inptr2 = input_buf[2][in_row_group_ctr]; | ||||
|   outptr0 = output_buf[0]; | ||||
|   outptr1 = output_buf[1]; | ||||
|   /* Loop for each group of output pixels */ | ||||
|   for (col = cinfo->output_width >> 1; col > 0; col--) { | ||||
|     /* Do the chroma part of the calculation */ | ||||
|     cb = GETJSAMPLE(*inptr1++); | ||||
|     cr = GETJSAMPLE(*inptr2++); | ||||
|     cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | ||||
|     cblue  = Cbbtab[cb]; | ||||
|     cred   = Crrtab[cr]; | ||||
|     /* Fetch 4 Y values and emit 4 pixels */ | ||||
|     y  = GETJSAMPLE(*inptr00++); | ||||
|     outptr0[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr0[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr0[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     outptr0 += RGB_PIXELSIZE; | ||||
|     y  = GETJSAMPLE(*inptr00++); | ||||
|     outptr0[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr0[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr0[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     outptr0 += RGB_PIXELSIZE; | ||||
|     y  = GETJSAMPLE(*inptr01++); | ||||
|     outptr1[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr1[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr1[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     outptr1 += RGB_PIXELSIZE; | ||||
|     y  = GETJSAMPLE(*inptr01++); | ||||
|     outptr1[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr1[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr1[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     outptr1 += RGB_PIXELSIZE; | ||||
|   } | ||||
|   /* If image width is odd, do the last output column separately */ | ||||
|   if (cinfo->output_width & 1) { | ||||
|     cb = GETJSAMPLE(*inptr1); | ||||
|     cr = GETJSAMPLE(*inptr2); | ||||
|     cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | ||||
|     cblue  = Cbbtab[cb]; | ||||
|     cred   = Crrtab[cr]; | ||||
|     y  = GETJSAMPLE(*inptr00); | ||||
|     outptr0[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr0[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr0[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|     y  = GETJSAMPLE(*inptr01); | ||||
|     outptr1[RGB_RED]   = range_limit[y + cred]; | ||||
|     outptr1[RGB_GREEN] = range_limit[y + cgreen]; | ||||
|     outptr1[RGB_BLUE]  = range_limit[y + cblue]; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for merged upsampling/color conversion. | ||||
|  * | ||||
|  * NB: this is called under the conditions determined by use_merged_upsample() | ||||
|  * in jdmaster.c.  That routine MUST correspond to the actual capabilities | ||||
|  * of this module; no safety checks are made here. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_merged_upsampler (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_upsample_ptr upsample; | ||||
| 
 | ||||
|   upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler)); | ||||
|   cinfo->upsample = &upsample->pub; | ||||
|   upsample->pub.start_pass = start_pass_merged_upsample; | ||||
|   upsample->pub.need_context_rows = FALSE; | ||||
| 
 | ||||
|   upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; | ||||
| 
 | ||||
|   if (cinfo->max_v_samp_factor == 2) { | ||||
|     upsample->pub.upsample = merged_2v_upsample; | ||||
|     upsample->upmethod = h2v2_merged_upsample; | ||||
|     /* Allocate a spare row buffer */ | ||||
|     upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        (size_t) upsample->out_row_width * SIZEOF(JSAMPLE)); | ||||
|   } else { | ||||
|     upsample->pub.upsample = merged_1v_upsample; | ||||
|     upsample->upmethod = h2v1_merged_upsample; | ||||
|     /* No spare row needed */ | ||||
|     upsample->spare_row = NULL; | ||||
|   } | ||||
| 
 | ||||
|   if (cinfo->jpeg_color_space == JCS_BG_YCC) | ||||
|     build_bg_ycc_rgb_table(cinfo); | ||||
|   else | ||||
|     build_ycc_rgb_table(cinfo); | ||||
| } | ||||
| 
 | ||||
| #endif /* UPSAMPLE_MERGING_SUPPORTED */ | ||||
							
								
								
									
										290
									
								
								dep/libjpeg/src/jdpostct.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										290
									
								
								dep/libjpeg/src/jdpostct.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,290 @@ | |||
| /*
 | ||||
|  * jdpostct.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains the decompression postprocessing controller. | ||||
|  * This controller manages the upsampling, color conversion, and color | ||||
|  * quantization/reduction steps; specifically, it controls the buffering | ||||
|  * between upsample/color conversion and color quantization/reduction. | ||||
|  * | ||||
|  * If no color quantization/reduction is required, then this module has no | ||||
|  * work to do, and it just hands off to the upsample/color conversion code. | ||||
|  * An integrated upsample/convert/quantize process would replace this module | ||||
|  * entirely. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Private buffer controller object */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_d_post_controller pub; /* public fields */ | ||||
| 
 | ||||
|   /* Color quantization source buffer: this holds output data from
 | ||||
|    * the upsample/color conversion step to be passed to the quantizer. | ||||
|    * For two-pass color quantization, we need a full-image buffer; | ||||
|    * for one-pass operation, a strip buffer is sufficient. | ||||
|    */ | ||||
|   jvirt_sarray_ptr whole_image;	/* virtual array, or NULL if one-pass */ | ||||
|   JSAMPARRAY buffer;		/* strip buffer, or current strip of virtual */ | ||||
|   JDIMENSION strip_height;	/* buffer size in rows */ | ||||
|   /* for two-pass mode only: */ | ||||
|   JDIMENSION starting_row;	/* row # of first row in current strip */ | ||||
|   JDIMENSION next_row;		/* index of next row to fill/empty in strip */ | ||||
| } my_post_controller; | ||||
| 
 | ||||
| typedef my_post_controller * my_post_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| METHODDEF(void) post_process_1pass | ||||
| 	JPP((j_decompress_ptr cinfo, | ||||
| 	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 	     JDIMENSION in_row_groups_avail, | ||||
| 	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 	     JDIMENSION out_rows_avail)); | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
| METHODDEF(void) post_process_prepass | ||||
| 	JPP((j_decompress_ptr cinfo, | ||||
| 	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 	     JDIMENSION in_row_groups_avail, | ||||
| 	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 	     JDIMENSION out_rows_avail)); | ||||
| METHODDEF(void) post_process_2pass | ||||
| 	JPP((j_decompress_ptr cinfo, | ||||
| 	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 	     JDIMENSION in_row_groups_avail, | ||||
| 	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 	     JDIMENSION out_rows_avail)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for a processing pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) | ||||
| { | ||||
|   my_post_ptr post = (my_post_ptr) cinfo->post; | ||||
| 
 | ||||
|   switch (pass_mode) { | ||||
|   case JBUF_PASS_THRU: | ||||
|     if (cinfo->quantize_colors) { | ||||
|       /* Single-pass processing with color quantization. */ | ||||
|       post->pub.post_process_data = post_process_1pass; | ||||
|       /* We could be doing buffered-image output before starting a 2-pass
 | ||||
|        * color quantization; in that case, jinit_d_post_controller did not | ||||
|        * allocate a strip buffer.  Use the virtual-array buffer as workspace. | ||||
|        */ | ||||
|       if (post->buffer == NULL) { | ||||
| 	post->buffer = (*cinfo->mem->access_virt_sarray) | ||||
| 	  ((j_common_ptr) cinfo, post->whole_image, | ||||
| 	   (JDIMENSION) 0, post->strip_height, TRUE); | ||||
|       } | ||||
|     } else { | ||||
|       /* For single-pass processing without color quantization,
 | ||||
|        * I have no work to do; just call the upsampler directly. | ||||
|        */ | ||||
|       post->pub.post_process_data = cinfo->upsample->upsample; | ||||
|     } | ||||
|     break; | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|   case JBUF_SAVE_AND_PASS: | ||||
|     /* First pass of 2-pass quantization */ | ||||
|     if (post->whole_image == NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     post->pub.post_process_data = post_process_prepass; | ||||
|     break; | ||||
|   case JBUF_CRANK_DEST: | ||||
|     /* Second pass of 2-pass quantization */ | ||||
|     if (post->whole_image == NULL) | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     post->pub.post_process_data = post_process_2pass; | ||||
|     break; | ||||
| #endif /* QUANT_2PASS_SUPPORTED */ | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
|     break; | ||||
|   } | ||||
|   post->starting_row = post->next_row = 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the one-pass (strip buffer) case. | ||||
|  * This is used for color precision reduction as well as one-pass quantization. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| post_process_1pass (j_decompress_ptr cinfo, | ||||
| 		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 		    JDIMENSION in_row_groups_avail, | ||||
| 		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 		    JDIMENSION out_rows_avail) | ||||
| { | ||||
|   my_post_ptr post = (my_post_ptr) cinfo->post; | ||||
|   JDIMENSION num_rows, max_rows; | ||||
| 
 | ||||
|   /* Fill the buffer, but not more than what we can dump out in one go. */ | ||||
|   /* Note we rely on the upsampler to detect bottom of image. */ | ||||
|   max_rows = out_rows_avail - *out_row_ctr; | ||||
|   if (max_rows > post->strip_height) | ||||
|     max_rows = post->strip_height; | ||||
|   num_rows = 0; | ||||
|   (*cinfo->upsample->upsample) (cinfo, | ||||
| 		input_buf, in_row_group_ctr, in_row_groups_avail, | ||||
| 		post->buffer, &num_rows, max_rows); | ||||
|   /* Quantize and emit data. */ | ||||
|   (*cinfo->cquantize->color_quantize) (cinfo, | ||||
| 		post->buffer, output_buf + *out_row_ctr, (int) num_rows); | ||||
|   *out_row_ctr += num_rows; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the first pass of 2-pass quantization. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| post_process_prepass (j_decompress_ptr cinfo, | ||||
| 		      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 		      JDIMENSION in_row_groups_avail, | ||||
| 		      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 		      JDIMENSION out_rows_avail) | ||||
| { | ||||
|   my_post_ptr post = (my_post_ptr) cinfo->post; | ||||
|   JDIMENSION old_next_row, num_rows; | ||||
| 
 | ||||
|   /* Reposition virtual buffer if at start of strip. */ | ||||
|   if (post->next_row == 0) { | ||||
|     post->buffer = (*cinfo->mem->access_virt_sarray) | ||||
| 	((j_common_ptr) cinfo, post->whole_image, | ||||
| 	 post->starting_row, post->strip_height, TRUE); | ||||
|   } | ||||
| 
 | ||||
|   /* Upsample some data (up to a strip height's worth). */ | ||||
|   old_next_row = post->next_row; | ||||
|   (*cinfo->upsample->upsample) (cinfo, | ||||
| 		input_buf, in_row_group_ctr, in_row_groups_avail, | ||||
| 		post->buffer, &post->next_row, post->strip_height); | ||||
| 
 | ||||
|   /* Allow quantizer to scan new data.  No data is emitted, */ | ||||
|   /* but we advance out_row_ctr so outer loop can tell when we're done. */ | ||||
|   if (post->next_row > old_next_row) { | ||||
|     num_rows = post->next_row - old_next_row; | ||||
|     (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, | ||||
| 					 (JSAMPARRAY) NULL, (int) num_rows); | ||||
|     *out_row_ctr += num_rows; | ||||
|   } | ||||
| 
 | ||||
|   /* Advance if we filled the strip. */ | ||||
|   if (post->next_row >= post->strip_height) { | ||||
|     post->starting_row += post->strip_height; | ||||
|     post->next_row = 0; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Process some data in the second pass of 2-pass quantization. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| post_process_2pass (j_decompress_ptr cinfo, | ||||
| 		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 		    JDIMENSION in_row_groups_avail, | ||||
| 		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 		    JDIMENSION out_rows_avail) | ||||
| { | ||||
|   my_post_ptr post = (my_post_ptr) cinfo->post; | ||||
|   JDIMENSION num_rows, max_rows; | ||||
| 
 | ||||
|   /* Reposition virtual buffer if at start of strip. */ | ||||
|   if (post->next_row == 0) { | ||||
|     post->buffer = (*cinfo->mem->access_virt_sarray) | ||||
| 	((j_common_ptr) cinfo, post->whole_image, | ||||
| 	 post->starting_row, post->strip_height, FALSE); | ||||
|   } | ||||
| 
 | ||||
|   /* Determine number of rows to emit. */ | ||||
|   num_rows = post->strip_height - post->next_row; /* available in strip */ | ||||
|   max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ | ||||
|   if (num_rows > max_rows) | ||||
|     num_rows = max_rows; | ||||
|   /* We have to check bottom of image here, can't depend on upsampler. */ | ||||
|   max_rows = cinfo->output_height - post->starting_row; | ||||
|   if (num_rows > max_rows) | ||||
|     num_rows = max_rows; | ||||
| 
 | ||||
|   /* Quantize and emit data. */ | ||||
|   (*cinfo->cquantize->color_quantize) (cinfo, | ||||
| 		post->buffer + post->next_row, output_buf + *out_row_ctr, | ||||
| 		(int) num_rows); | ||||
|   *out_row_ctr += num_rows; | ||||
| 
 | ||||
|   /* Advance if we filled the strip. */ | ||||
|   post->next_row += num_rows; | ||||
|   if (post->next_row >= post->strip_height) { | ||||
|     post->starting_row += post->strip_height; | ||||
|     post->next_row = 0; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* QUANT_2PASS_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize postprocessing controller. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | ||||
| { | ||||
|   my_post_ptr post; | ||||
| 
 | ||||
|   post = (my_post_ptr) | ||||
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 				SIZEOF(my_post_controller)); | ||||
|   cinfo->post = (struct jpeg_d_post_controller *) post; | ||||
|   post->pub.start_pass = start_pass_dpost; | ||||
|   post->whole_image = NULL;	/* flag for no virtual arrays */ | ||||
|   post->buffer = NULL;		/* flag for no strip buffer */ | ||||
| 
 | ||||
|   /* Create the quantization buffer, if needed */ | ||||
|   if (cinfo->quantize_colors) { | ||||
|     /* The buffer strip height is max_v_samp_factor, which is typically
 | ||||
|      * an efficient number of rows for upsampling to return. | ||||
|      * (In the presence of output rescaling, we might want to be smarter?) | ||||
|      */ | ||||
|     post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; | ||||
|     if (need_full_buffer) { | ||||
|       /* Two-pass color quantization: need full-image storage. */ | ||||
|       /* We round up the number of rows to a multiple of the strip height. */ | ||||
| #ifdef QUANT_2PASS_SUPPORTED | ||||
|       post->whole_image = (*cinfo->mem->request_virt_sarray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | ||||
| 	 cinfo->output_width * cinfo->out_color_components, | ||||
| 	 (JDIMENSION) jround_up((long) cinfo->output_height, | ||||
| 				(long) post->strip_height), | ||||
| 	 post->strip_height); | ||||
| #else | ||||
|       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | ||||
| #endif /* QUANT_2PASS_SUPPORTED */ | ||||
|     } else { | ||||
|       /* One-pass color quantization: just make a strip buffer. */ | ||||
|       post->buffer = (*cinfo->mem->alloc_sarray) | ||||
| 	((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
| 	 cinfo->output_width * cinfo->out_color_components, | ||||
| 	 post->strip_height); | ||||
|     } | ||||
|   } | ||||
| } | ||||
							
								
								
									
										341
									
								
								dep/libjpeg/src/jdsample.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										341
									
								
								dep/libjpeg/src/jdsample.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,341 @@ | |||
| /*
 | ||||
|  * jdsample.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1996, Thomas G. Lane. | ||||
|  * Modified 2002-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains upsampling routines. | ||||
|  * | ||||
|  * Upsampling input data is counted in "row groups".  A row group | ||||
|  * is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) | ||||
|  * sample rows of each component.  Upsampling will normally produce | ||||
|  * max_v_samp_factor pixel rows from each row group (but this could vary | ||||
|  * if the upsampler is applying a scale factor of its own). | ||||
|  * | ||||
|  * An excellent reference for image resampling is | ||||
|  *   Digital Image Warping, George Wolberg, 1990. | ||||
|  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Pointer to routine to upsample a single component */ | ||||
| typedef JMETHOD(void, upsample1_ptr, | ||||
| 		(j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)); | ||||
| 
 | ||||
| /* Private subobject */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_upsampler pub;	/* public fields */ | ||||
| 
 | ||||
|   /* Color conversion buffer.  When using separate upsampling and color
 | ||||
|    * conversion steps, this buffer holds one upsampled row group until it | ||||
|    * has been color converted and output. | ||||
|    * Note: we do not allocate any storage for component(s) which are full-size, | ||||
|    * ie do not need rescaling.  The corresponding entry of color_buf[] is | ||||
|    * simply set to point to the input data array, thereby avoiding copying. | ||||
|    */ | ||||
|   JSAMPARRAY color_buf[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   /* Per-component upsampling method pointers */ | ||||
|   upsample1_ptr methods[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   int next_row_out;		/* counts rows emitted from color_buf */ | ||||
|   JDIMENSION rows_to_go;	/* counts rows remaining in image */ | ||||
| 
 | ||||
|   /* Height of an input row group for each component. */ | ||||
|   int rowgroup_height[MAX_COMPONENTS]; | ||||
| 
 | ||||
|   /* These arrays save pixel expansion factors so that int_expand need not
 | ||||
|    * recompute them each time.  They are unused for other upsampling methods. | ||||
|    */ | ||||
|   UINT8 h_expand[MAX_COMPONENTS]; | ||||
|   UINT8 v_expand[MAX_COMPONENTS]; | ||||
| } my_upsampler; | ||||
| 
 | ||||
| typedef my_upsampler * my_upsample_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for an upsampling pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_upsample (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
| 
 | ||||
|   /* Mark the conversion buffer empty */ | ||||
|   upsample->next_row_out = cinfo->max_v_samp_factor; | ||||
|   /* Initialize total-height counter for detecting bottom of image */ | ||||
|   upsample->rows_to_go = cinfo->output_height; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Control routine to do upsampling (and color conversion). | ||||
|  * | ||||
|  * In this version we upsample each component independently. | ||||
|  * We upsample one row group into the conversion buffer, then apply | ||||
|  * color conversion a row at a time. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| sep_upsample (j_decompress_ptr cinfo, | ||||
| 	      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | ||||
| 	      JDIMENSION in_row_groups_avail, | ||||
| 	      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | ||||
| 	      JDIMENSION out_rows_avail) | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
|   JDIMENSION num_rows; | ||||
| 
 | ||||
|   /* Fill the conversion buffer, if it's empty */ | ||||
|   if (upsample->next_row_out >= cinfo->max_v_samp_factor) { | ||||
|     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
| 	 ci++, compptr++) { | ||||
|       /* Don't bother to upsample an uninteresting component. */ | ||||
|       if (! compptr->component_needed) | ||||
| 	continue; | ||||
|       /* Invoke per-component upsample method.  Notice we pass a POINTER
 | ||||
|        * to color_buf[ci], so that fullsize_upsample can change it. | ||||
|        */ | ||||
|       (*upsample->methods[ci]) (cinfo, compptr, | ||||
| 	input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), | ||||
| 	upsample->color_buf + ci); | ||||
|     } | ||||
|     upsample->next_row_out = 0; | ||||
|   } | ||||
| 
 | ||||
|   /* Color-convert and emit rows */ | ||||
| 
 | ||||
|   /* How many we have in the buffer: */ | ||||
|   num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); | ||||
|   /* Not more than the distance to the end of the image.  Need this test
 | ||||
|    * in case the image height is not a multiple of max_v_samp_factor: | ||||
|    */ | ||||
|   if (num_rows > upsample->rows_to_go)  | ||||
|     num_rows = upsample->rows_to_go; | ||||
|   /* And not more than what the client can accept: */ | ||||
|   out_rows_avail -= *out_row_ctr; | ||||
|   if (num_rows > out_rows_avail) | ||||
|     num_rows = out_rows_avail; | ||||
| 
 | ||||
|   (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, | ||||
| 				     (JDIMENSION) upsample->next_row_out, | ||||
| 				     output_buf + *out_row_ctr, | ||||
| 				     (int) num_rows); | ||||
| 
 | ||||
|   /* Adjust counts */ | ||||
|   *out_row_ctr += num_rows; | ||||
|   upsample->rows_to_go -= num_rows; | ||||
|   upsample->next_row_out += num_rows; | ||||
|   /* When the buffer is emptied, declare this input row group consumed */ | ||||
|   if (upsample->next_row_out >= cinfo->max_v_samp_factor) | ||||
|     (*in_row_group_ctr)++; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These are the routines invoked by sep_upsample to upsample pixel values | ||||
|  * of a single component.  One row group is processed per call. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * For full-size components, we just make color_buf[ci] point at the | ||||
|  * input buffer, and thus avoid copying any data.  Note that this is | ||||
|  * safe only because sep_upsample doesn't declare the input row group | ||||
|  * "consumed" until we are done color converting and emitting it. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		   JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) | ||||
| { | ||||
|   *output_data_ptr = input_data; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This version handles any integral sampling ratios. | ||||
|  * This is not used for typical JPEG files, so it need not be fast. | ||||
|  * Nor, for that matter, is it particularly accurate: the algorithm is | ||||
|  * simple replication of the input pixel onto the corresponding output | ||||
|  * pixels.  The hi-falutin sampling literature refers to this as a | ||||
|  * "box filter".  A box filter tends to introduce visible artifacts, | ||||
|  * so if you are actually going to use 3:1 or 4:1 sampling ratios | ||||
|  * you would be well advised to improve this code. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	      JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) | ||||
| { | ||||
|   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | ||||
|   JSAMPARRAY output_data, output_end; | ||||
|   register JSAMPROW inptr, outptr; | ||||
|   register JSAMPLE invalue; | ||||
|   register int h; | ||||
|   JSAMPROW outend; | ||||
|   int h_expand, v_expand; | ||||
| 
 | ||||
|   h_expand = upsample->h_expand[compptr->component_index]; | ||||
|   v_expand = upsample->v_expand[compptr->component_index]; | ||||
| 
 | ||||
|   output_data = *output_data_ptr; | ||||
|   output_end = output_data + cinfo->max_v_samp_factor; | ||||
|   for (; output_data < output_end; output_data += v_expand) { | ||||
|     /* Generate one output row with proper horizontal expansion */ | ||||
|     inptr = *input_data++; | ||||
|     outptr = *output_data; | ||||
|     outend = outptr + cinfo->output_width; | ||||
|     while (outptr < outend) { | ||||
|       invalue = *inptr++;	/* don't need GETJSAMPLE() here */ | ||||
|       for (h = h_expand; h > 0; h--) { | ||||
| 	*outptr++ = invalue; | ||||
|       } | ||||
|     } | ||||
|     /* Generate any additional output rows by duplicating the first one */ | ||||
|     if (v_expand > 1) { | ||||
|       jcopy_sample_rows(output_data, output_data + 1, | ||||
| 			v_expand - 1, cinfo->output_width); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. | ||||
|  * It's still a box filter. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	       JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) | ||||
| { | ||||
|   JSAMPARRAY output_data = *output_data_ptr; | ||||
|   register JSAMPROW inptr, outptr; | ||||
|   register JSAMPLE invalue; | ||||
|   JSAMPROW outend; | ||||
|   int outrow; | ||||
| 
 | ||||
|   for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) { | ||||
|     inptr = input_data[outrow]; | ||||
|     outptr = output_data[outrow]; | ||||
|     outend = outptr + cinfo->output_width; | ||||
|     while (outptr < outend) { | ||||
|       invalue = *inptr++;	/* don't need GETJSAMPLE() here */ | ||||
|       *outptr++ = invalue; | ||||
|       *outptr++ = invalue; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. | ||||
|  * It's still a box filter. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 	       JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr) | ||||
| { | ||||
|   JSAMPARRAY output_data, output_end; | ||||
|   register JSAMPROW inptr, outptr; | ||||
|   register JSAMPLE invalue; | ||||
|   JSAMPROW outend; | ||||
| 
 | ||||
|   output_data = *output_data_ptr; | ||||
|   output_end = output_data + cinfo->max_v_samp_factor; | ||||
|   for (; output_data < output_end; output_data += 2) { | ||||
|     inptr = *input_data++; | ||||
|     outptr = *output_data; | ||||
|     outend = outptr + cinfo->output_width; | ||||
|     while (outptr < outend) { | ||||
|       invalue = *inptr++;	/* don't need GETJSAMPLE() here */ | ||||
|       *outptr++ = invalue; | ||||
|       *outptr++ = invalue; | ||||
|     } | ||||
|     jcopy_sample_rows(output_data, output_data + 1, | ||||
| 		      1, cinfo->output_width); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for upsampling. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_upsampler (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_upsample_ptr upsample; | ||||
|   int ci; | ||||
|   jpeg_component_info * compptr; | ||||
|   int h_in_group, v_in_group, h_out_group, v_out_group; | ||||
| 
 | ||||
|   upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler)); | ||||
|   cinfo->upsample = &upsample->pub; | ||||
|   upsample->pub.start_pass = start_pass_upsample; | ||||
|   upsample->pub.upsample = sep_upsample; | ||||
|   upsample->pub.need_context_rows = FALSE; /* until we find out differently */ | ||||
| 
 | ||||
|   if (cinfo->CCIR601_sampling)	/* this isn't supported */ | ||||
|     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | ||||
| 
 | ||||
|   /* Verify we can handle the sampling factors, select per-component methods,
 | ||||
|    * and create storage as needed. | ||||
|    */ | ||||
|   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||||
|        ci++, compptr++) { | ||||
|     /* Don't bother to upsample an uninteresting component. */ | ||||
|     if (! compptr->component_needed) | ||||
|       continue; | ||||
|     /* Compute size of an "input group" after IDCT scaling.  This many samples
 | ||||
|      * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. | ||||
|      */ | ||||
|     h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / | ||||
| 		 cinfo->min_DCT_h_scaled_size; | ||||
|     v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | ||||
| 		 cinfo->min_DCT_v_scaled_size; | ||||
|     h_out_group = cinfo->max_h_samp_factor; | ||||
|     v_out_group = cinfo->max_v_samp_factor; | ||||
|     upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ | ||||
|     if (h_in_group == h_out_group && v_in_group == v_out_group) { | ||||
|       /* Fullsize components can be processed without any work. */ | ||||
|       upsample->methods[ci] = fullsize_upsample; | ||||
|       continue;		/* don't need to allocate buffer */ | ||||
|     } | ||||
|     if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) { | ||||
|       /* Special case for 2h1v upsampling */ | ||||
|       upsample->methods[ci] = h2v1_upsample; | ||||
|     } else if (h_in_group * 2 == h_out_group && | ||||
| 	       v_in_group * 2 == v_out_group) { | ||||
|       /* Special case for 2h2v upsampling */ | ||||
|       upsample->methods[ci] = h2v2_upsample; | ||||
|     } else if ((h_out_group % h_in_group) == 0 && | ||||
| 	       (v_out_group % v_in_group) == 0) { | ||||
|       /* Generic integral-factors upsampling method */ | ||||
|       upsample->methods[ci] = int_upsample; | ||||
|       upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); | ||||
|       upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); | ||||
|     } else | ||||
|       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | ||||
|     upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|        (JDIMENSION) jround_up((long) cinfo->output_width, | ||||
| 			      (long) cinfo->max_h_samp_factor), | ||||
|        (JDIMENSION) cinfo->max_v_samp_factor); | ||||
|   } | ||||
| } | ||||
							
								
								
									
										140
									
								
								dep/libjpeg/src/jdtrans.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										140
									
								
								dep/libjpeg/src/jdtrans.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,140 @@ | |||
| /*
 | ||||
|  * jdtrans.c | ||||
|  * | ||||
|  * Copyright (C) 1995-1997, Thomas G. Lane. | ||||
|  * Modified 2000-2009 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains library routines for transcoding decompression, | ||||
|  * that is, reading raw DCT coefficient arrays from an input JPEG file. | ||||
|  * The routines in jdapimin.c will also be needed by a transcoder. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /* Forward declarations */ | ||||
| LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Read the coefficient arrays from a JPEG file. | ||||
|  * jpeg_read_header must be completed before calling this. | ||||
|  * | ||||
|  * The entire image is read into a set of virtual coefficient-block arrays, | ||||
|  * one per component.  The return value is a pointer to the array of | ||||
|  * virtual-array descriptors.  These can be manipulated directly via the | ||||
|  * JPEG memory manager, or handed off to jpeg_write_coefficients(). | ||||
|  * To release the memory occupied by the virtual arrays, call | ||||
|  * jpeg_finish_decompress() when done with the data. | ||||
|  * | ||||
|  * An alternative usage is to simply obtain access to the coefficient arrays | ||||
|  * during a buffered-image-mode decompression operation.  This is allowed | ||||
|  * after any jpeg_finish_output() call.  The arrays can be accessed until | ||||
|  * jpeg_finish_decompress() is called.  (Note that any call to the library | ||||
|  * may reposition the arrays, so don't rely on access_virt_barray() results | ||||
|  * to stay valid across library calls.) | ||||
|  * | ||||
|  * Returns NULL if suspended.  This case need be checked only if | ||||
|  * a suspending data source is used. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(jvirt_barray_ptr *) | ||||
| jpeg_read_coefficients (j_decompress_ptr cinfo) | ||||
| { | ||||
|   if (cinfo->global_state == DSTATE_READY) { | ||||
|     /* First call: initialize active modules */ | ||||
|     transdecode_master_selection(cinfo); | ||||
|     cinfo->global_state = DSTATE_RDCOEFS; | ||||
|   } | ||||
|   if (cinfo->global_state == DSTATE_RDCOEFS) { | ||||
|     /* Absorb whole file into the coef buffer */ | ||||
|     for (;;) { | ||||
|       int retcode; | ||||
|       /* Call progress monitor hook if present */ | ||||
|       if (cinfo->progress != NULL) | ||||
| 	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | ||||
|       /* Absorb some more input */ | ||||
|       retcode = (*cinfo->inputctl->consume_input) (cinfo); | ||||
|       if (retcode == JPEG_SUSPENDED) | ||||
| 	return NULL; | ||||
|       if (retcode == JPEG_REACHED_EOI) | ||||
| 	break; | ||||
|       /* Advance progress counter if appropriate */ | ||||
|       if (cinfo->progress != NULL && | ||||
| 	  (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { | ||||
| 	if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { | ||||
| 	  /* startup underestimated number of scans; ratchet up one scan */ | ||||
| 	  cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; | ||||
| 	} | ||||
|       } | ||||
|     } | ||||
|     /* Set state so that jpeg_finish_decompress does the right thing */ | ||||
|     cinfo->global_state = DSTATE_STOPPING; | ||||
|   } | ||||
|   /* At this point we should be in state DSTATE_STOPPING if being used
 | ||||
|    * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access | ||||
|    * to the coefficients during a full buffered-image-mode decompression. | ||||
|    */ | ||||
|   if ((cinfo->global_state == DSTATE_STOPPING || | ||||
|        cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { | ||||
|     return cinfo->coef->coef_arrays; | ||||
|   } | ||||
|   /* Oops, improper usage */ | ||||
|   ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | ||||
|   return NULL;			/* keep compiler happy */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Master selection of decompression modules for transcoding. | ||||
|  * This substitutes for jdmaster.c's initialization of the full decompressor. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| transdecode_master_selection (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* This is effectively a buffered-image operation. */ | ||||
|   cinfo->buffered_image = TRUE; | ||||
| 
 | ||||
|   /* Compute output image dimensions and related values. */ | ||||
|   jpeg_core_output_dimensions(cinfo); | ||||
| 
 | ||||
|   /* Entropy decoding: either Huffman or arithmetic coding. */ | ||||
|   if (cinfo->arith_code) | ||||
|     jinit_arith_decoder(cinfo); | ||||
|   else { | ||||
|     jinit_huff_decoder(cinfo); | ||||
|   } | ||||
| 
 | ||||
|   /* Always get a full-image coefficient buffer. */ | ||||
|   jinit_d_coef_controller(cinfo, TRUE); | ||||
| 
 | ||||
|   /* We can now tell the memory manager to allocate virtual arrays. */ | ||||
|   (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | ||||
| 
 | ||||
|   /* Initialize input side of decompressor to consume first scan. */ | ||||
|   (*cinfo->inputctl->start_input_pass) (cinfo); | ||||
| 
 | ||||
|   /* Initialize progress monitoring. */ | ||||
|   if (cinfo->progress != NULL) { | ||||
|     int nscans; | ||||
|     /* Estimate number of scans to set pass_limit. */ | ||||
|     if (cinfo->progressive_mode) { | ||||
|       /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | ||||
|       nscans = 2 + 3 * cinfo->num_components; | ||||
|     } else if (cinfo->inputctl->has_multiple_scans) { | ||||
|       /* For a nonprogressive multiscan file, estimate 1 scan per component. */ | ||||
|       nscans = cinfo->num_components; | ||||
|     } else { | ||||
|       nscans = 1; | ||||
|     } | ||||
|     cinfo->progress->pass_counter = 0L; | ||||
|     cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | ||||
|     cinfo->progress->completed_passes = 0; | ||||
|     cinfo->progress->total_passes = 1; | ||||
|   } | ||||
| } | ||||
							
								
								
									
										253
									
								
								dep/libjpeg/src/jerror.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										253
									
								
								dep/libjpeg/src/jerror.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,253 @@ | |||
| /*
 | ||||
|  * jerror.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1998, Thomas G. Lane. | ||||
|  * Modified 2012-2015 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains simple error-reporting and trace-message routines. | ||||
|  * These are suitable for Unix-like systems and others where writing to | ||||
|  * stderr is the right thing to do.  Many applications will want to replace | ||||
|  * some or all of these routines. | ||||
|  * | ||||
|  * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, | ||||
|  * you get a Windows-specific hack to display error messages in a dialog box. | ||||
|  * It ain't much, but it beats dropping error messages into the bit bucket, | ||||
|  * which is what happens to output to stderr under most Windows C compilers. | ||||
|  * | ||||
|  * These routines are used by both the compression and decompression code. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef USE_WINDOWS_MESSAGEBOX | ||||
| #include <windows.h> | ||||
| #endif | ||||
| 
 | ||||
| /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jversion.h" | ||||
| #include "jerror.h" | ||||
| 
 | ||||
| #ifndef EXIT_FAILURE		/* define exit() codes if not provided */ | ||||
| #define EXIT_FAILURE  1 | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create the message string table. | ||||
|  * We do this from the master message list in jerror.h by re-reading | ||||
|  * jerror.h with a suitable definition for macro JMESSAGE. | ||||
|  * The message table is made an external symbol just in case any applications | ||||
|  * want to refer to it directly. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef NEED_SHORT_EXTERNAL_NAMES | ||||
| #define jpeg_std_message_table	jMsgTable | ||||
| #endif | ||||
| 
 | ||||
| #define JMESSAGE(code,string)	string , | ||||
| 
 | ||||
| const char * const jpeg_std_message_table[] = { | ||||
| #include "jerror.h" | ||||
|   NULL | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Error exit handler: must not return to caller. | ||||
|  * | ||||
|  * Applications may override this if they want to get control back after | ||||
|  * an error.  Typically one would longjmp somewhere instead of exiting. | ||||
|  * The setjmp buffer can be made a private field within an expanded error | ||||
|  * handler object.  Note that the info needed to generate an error message | ||||
|  * is stored in the error object, so you can generate the message now or | ||||
|  * later, at your convenience. | ||||
|  * You should make sure that the JPEG object is cleaned up (with jpeg_abort | ||||
|  * or jpeg_destroy) at some point. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(noreturn_t) | ||||
| error_exit (j_common_ptr cinfo) | ||||
| { | ||||
|   /* Always display the message */ | ||||
|   (*cinfo->err->output_message) (cinfo); | ||||
| 
 | ||||
|   /* Let the memory manager delete any temp files before we die */ | ||||
|   jpeg_destroy(cinfo); | ||||
| 
 | ||||
|   exit(EXIT_FAILURE); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Actual output of an error or trace message. | ||||
|  * Applications may override this method to send JPEG messages somewhere | ||||
|  * other than stderr. | ||||
|  * | ||||
|  * On Windows, printing to stderr is generally completely useless, | ||||
|  * so we provide optional code to produce an error-dialog popup. | ||||
|  * Most Windows applications will still prefer to override this routine, | ||||
|  * but if they don't, it'll do something at least marginally useful. | ||||
|  * | ||||
|  * NOTE: to use the library in an environment that doesn't support the | ||||
|  * C stdio library, you may have to delete the call to fprintf() entirely, | ||||
|  * not just not use this routine. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| output_message (j_common_ptr cinfo) | ||||
| { | ||||
|   char buffer[JMSG_LENGTH_MAX]; | ||||
| 
 | ||||
|   /* Create the message */ | ||||
|   (*cinfo->err->format_message) (cinfo, buffer); | ||||
| 
 | ||||
| #ifdef USE_WINDOWS_MESSAGEBOX | ||||
|   /* Display it in a message dialog box */ | ||||
|   MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", | ||||
| 	     MB_OK | MB_ICONERROR); | ||||
| #else | ||||
|   /* Send it to stderr, adding a newline */ | ||||
|   fprintf(stderr, "%s\n", buffer); | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Decide whether to emit a trace or warning message. | ||||
|  * msg_level is one of: | ||||
|  *   -1: recoverable corrupt-data warning, may want to abort. | ||||
|  *    0: important advisory messages (always display to user). | ||||
|  *    1: first level of tracing detail. | ||||
|  *    2,3,...: successively more detailed tracing messages. | ||||
|  * An application might override this method if it wanted to abort on warnings | ||||
|  * or change the policy about which messages to display. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| emit_message (j_common_ptr cinfo, int msg_level) | ||||
| { | ||||
|   struct jpeg_error_mgr * err = cinfo->err; | ||||
| 
 | ||||
|   if (msg_level < 0) { | ||||
|     /* It's a warning message.  Since corrupt files may generate many warnings,
 | ||||
|      * the policy implemented here is to show only the first warning, | ||||
|      * unless trace_level >= 3. | ||||
|      */ | ||||
|     if (err->num_warnings == 0 || err->trace_level >= 3) | ||||
|       (*err->output_message) (cinfo); | ||||
|     /* Always count warnings in num_warnings. */ | ||||
|     err->num_warnings++; | ||||
|   } else { | ||||
|     /* It's a trace message.  Show it if trace_level >= msg_level. */ | ||||
|     if (err->trace_level >= msg_level) | ||||
|       (*err->output_message) (cinfo); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Format a message string for the most recent JPEG error or message. | ||||
|  * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX | ||||
|  * characters.  Note that no '\n' character is added to the string. | ||||
|  * Few applications should need to override this method. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| format_message (j_common_ptr cinfo, char * buffer) | ||||
| { | ||||
|   struct jpeg_error_mgr * err = cinfo->err; | ||||
|   int msg_code = err->msg_code; | ||||
|   const char * msgtext = NULL; | ||||
|   const char * msgptr; | ||||
|   char ch; | ||||
|   boolean isstring; | ||||
| 
 | ||||
|   /* Look up message string in proper table */ | ||||
|   if (msg_code > 0 && msg_code <= err->last_jpeg_message) { | ||||
|     msgtext = err->jpeg_message_table[msg_code]; | ||||
|   } else if (err->addon_message_table != NULL && | ||||
| 	     msg_code >= err->first_addon_message && | ||||
| 	     msg_code <= err->last_addon_message) { | ||||
|     msgtext = err->addon_message_table[msg_code - err->first_addon_message]; | ||||
|   } | ||||
| 
 | ||||
|   /* Defend against bogus message number */ | ||||
|   if (msgtext == NULL) { | ||||
|     err->msg_parm.i[0] = msg_code; | ||||
|     msgtext = err->jpeg_message_table[0]; | ||||
|   } | ||||
| 
 | ||||
|   /* Check for string parameter, as indicated by %s in the message text */ | ||||
|   isstring = FALSE; | ||||
|   msgptr = msgtext; | ||||
|   while ((ch = *msgptr++) != '\0') { | ||||
|     if (ch == '%') { | ||||
|       if (*msgptr == 's') isstring = TRUE; | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /* Format the message into the passed buffer */ | ||||
|   if (isstring) | ||||
|     sprintf(buffer, msgtext, err->msg_parm.s); | ||||
|   else | ||||
|     sprintf(buffer, msgtext, | ||||
| 	    err->msg_parm.i[0], err->msg_parm.i[1], | ||||
| 	    err->msg_parm.i[2], err->msg_parm.i[3], | ||||
| 	    err->msg_parm.i[4], err->msg_parm.i[5], | ||||
| 	    err->msg_parm.i[6], err->msg_parm.i[7]); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Reset error state variables at start of a new image. | ||||
|  * This is called during compression startup to reset trace/error | ||||
|  * processing to default state, without losing any application-specific | ||||
|  * method pointers.  An application might possibly want to override | ||||
|  * this method if it has additional error processing state. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| reset_error_mgr (j_common_ptr cinfo) | ||||
| { | ||||
|   cinfo->err->num_warnings = 0; | ||||
|   /* trace_level is not reset since it is an application-supplied parameter */ | ||||
|   cinfo->err->msg_code = 0;	/* may be useful as a flag for "no error" */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Fill in the standard error-handling methods in a jpeg_error_mgr object. | ||||
|  * Typical call is: | ||||
|  *	struct jpeg_compress_struct cinfo; | ||||
|  *	struct jpeg_error_mgr err; | ||||
|  * | ||||
|  *	cinfo.err = jpeg_std_error(&err); | ||||
|  * after which the application may override some of the methods. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(struct jpeg_error_mgr *) | ||||
| jpeg_std_error (struct jpeg_error_mgr * err) | ||||
| { | ||||
|   err->error_exit = error_exit; | ||||
|   err->emit_message = emit_message; | ||||
|   err->output_message = output_message; | ||||
|   err->format_message = format_message; | ||||
|   err->reset_error_mgr = reset_error_mgr; | ||||
| 
 | ||||
|   err->trace_level = 0;		/* default = no tracing */ | ||||
|   err->num_warnings = 0;	/* no warnings emitted yet */ | ||||
|   err->msg_code = 0;		/* may be useful as a flag for "no error" */ | ||||
| 
 | ||||
|   /* Initialize message table pointers */ | ||||
|   err->jpeg_message_table = jpeg_std_message_table; | ||||
|   err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; | ||||
| 
 | ||||
|   err->addon_message_table = NULL; | ||||
|   err->first_addon_message = 0;	/* for safety */ | ||||
|   err->last_addon_message = 0; | ||||
| 
 | ||||
|   return err; | ||||
| } | ||||
							
								
								
									
										176
									
								
								dep/libjpeg/src/jfdctflt.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								dep/libjpeg/src/jfdctflt.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,176 @@ | |||
| /*
 | ||||
|  * jfdctflt.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2003-2017 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains a floating-point implementation of the | ||||
|  * forward DCT (Discrete Cosine Transform). | ||||
|  * | ||||
|  * This implementation should be more accurate than either of the integer | ||||
|  * DCT implementations.  However, it may not give the same results on all | ||||
|  * machines because of differences in roundoff behavior.  Speed will depend | ||||
|  * on the hardware's floating point capacity. | ||||
|  * | ||||
|  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | ||||
|  * on each column.  Direct algorithms are also available, but they are | ||||
|  * much more complex and seem not to be any faster when reduced to code. | ||||
|  * | ||||
|  * This implementation is based on Arai, Agui, and Nakajima's algorithm for | ||||
|  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in | ||||
|  * Japanese, but the algorithm is described in the Pennebaker & Mitchell | ||||
|  * JPEG textbook (see REFERENCES section in file README).  The following code | ||||
|  * is based directly on figure 4-8 in P&M. | ||||
|  * While an 8-point DCT cannot be done in less than 11 multiplies, it is | ||||
|  * possible to arrange the computation so that many of the multiplies are | ||||
|  * simple scalings of the final outputs.  These multiplies can then be | ||||
|  * folded into the multiplications or divisions by the JPEG quantization | ||||
|  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds | ||||
|  * to be done in the DCT itself. | ||||
|  * The primary disadvantage of this method is that with a fixed-point | ||||
|  * implementation, accuracy is lost due to imprecise representation of the | ||||
|  * scaled quantization values.  However, that problem does not arise if | ||||
|  * we use floating point arithmetic. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jdct.h"		/* Private declarations for DCT subsystem */ | ||||
| 
 | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This module is specialized to the case DCTSIZE = 8. | ||||
|  */ | ||||
| 
 | ||||
| #if DCTSIZE != 8 | ||||
|   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Perform the forward DCT on one block of samples. | ||||
|  * | ||||
|  * cK represents cos(K*pi/16). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) | ||||
| { | ||||
|   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||||
|   FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | ||||
|   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; | ||||
|   FAST_FLOAT *dataptr; | ||||
|   JSAMPROW elemptr; | ||||
|   int ctr; | ||||
| 
 | ||||
|   /* Pass 1: process rows. */ | ||||
| 
 | ||||
|   dataptr = data; | ||||
|   for (ctr = 0; ctr < DCTSIZE; ctr++) { | ||||
|     elemptr = sample_data[ctr] + start_col; | ||||
| 
 | ||||
|     /* Load data into workspace */ | ||||
|     tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); | ||||
|     tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); | ||||
|     tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); | ||||
|     tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); | ||||
|     tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); | ||||
|     tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); | ||||
|     tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); | ||||
|     tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); | ||||
| 
 | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp10 = tmp0 + tmp3;	/* phase 2 */ | ||||
|     tmp13 = tmp0 - tmp3; | ||||
|     tmp11 = tmp1 + tmp2; | ||||
|     tmp12 = tmp1 - tmp2; | ||||
| 
 | ||||
|     /* Apply unsigned->signed conversion. */ | ||||
|     dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ | ||||
|     dataptr[4] = tmp10 - tmp11; | ||||
| 
 | ||||
|     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | ||||
|     dataptr[2] = tmp13 + z1;	/* phase 5 */ | ||||
|     dataptr[6] = tmp13 - z1; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     tmp10 = tmp4 + tmp5;	/* phase 2 */ | ||||
|     tmp11 = tmp5 + tmp6; | ||||
|     tmp12 = tmp6 + tmp7; | ||||
| 
 | ||||
|     /* The rotator is modified from fig 4-8 to avoid extra negations. */ | ||||
|     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | ||||
|     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | ||||
|     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | ||||
|     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | ||||
| 
 | ||||
|     z11 = tmp7 + z3;		/* phase 5 */ | ||||
|     z13 = tmp7 - z3; | ||||
| 
 | ||||
|     dataptr[5] = z13 + z2;	/* phase 6 */ | ||||
|     dataptr[3] = z13 - z2; | ||||
|     dataptr[1] = z11 + z4; | ||||
|     dataptr[7] = z11 - z4; | ||||
| 
 | ||||
|     dataptr += DCTSIZE;		/* advance pointer to next row */ | ||||
|   } | ||||
| 
 | ||||
|   /* Pass 2: process columns. */ | ||||
| 
 | ||||
|   dataptr = data; | ||||
|   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | ||||
|     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | ||||
|     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | ||||
|     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | ||||
|     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | ||||
|     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | ||||
|     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | ||||
|     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | ||||
|     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | ||||
| 
 | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp10 = tmp0 + tmp3;	/* phase 2 */ | ||||
|     tmp13 = tmp0 - tmp3; | ||||
|     tmp11 = tmp1 + tmp2; | ||||
|     tmp12 = tmp1 - tmp2; | ||||
| 
 | ||||
|     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | ||||
|     dataptr[DCTSIZE*4] = tmp10 - tmp11; | ||||
| 
 | ||||
|     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | ||||
|     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | ||||
|     dataptr[DCTSIZE*6] = tmp13 - z1; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     tmp10 = tmp4 + tmp5;	/* phase 2 */ | ||||
|     tmp11 = tmp5 + tmp6; | ||||
|     tmp12 = tmp6 + tmp7; | ||||
| 
 | ||||
|     /* The rotator is modified from fig 4-8 to avoid extra negations. */ | ||||
|     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | ||||
|     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | ||||
|     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | ||||
|     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | ||||
| 
 | ||||
|     z11 = tmp7 + z3;		/* phase 5 */ | ||||
|     z13 = tmp7 - z3; | ||||
| 
 | ||||
|     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | ||||
|     dataptr[DCTSIZE*3] = z13 - z2; | ||||
|     dataptr[DCTSIZE*1] = z11 + z4; | ||||
|     dataptr[DCTSIZE*7] = z11 - z4; | ||||
| 
 | ||||
|     dataptr++;			/* advance pointer to next column */ | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* DCT_FLOAT_SUPPORTED */ | ||||
							
								
								
									
										232
									
								
								dep/libjpeg/src/jfdctfst.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										232
									
								
								dep/libjpeg/src/jfdctfst.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,232 @@ | |||
| /*
 | ||||
|  * jfdctfst.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1996, Thomas G. Lane. | ||||
|  * Modified 2003-2017 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains a fast, not so accurate integer implementation of the | ||||
|  * forward DCT (Discrete Cosine Transform). | ||||
|  * | ||||
|  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | ||||
|  * on each column.  Direct algorithms are also available, but they are | ||||
|  * much more complex and seem not to be any faster when reduced to code. | ||||
|  * | ||||
|  * This implementation is based on Arai, Agui, and Nakajima's algorithm for | ||||
|  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in | ||||
|  * Japanese, but the algorithm is described in the Pennebaker & Mitchell | ||||
|  * JPEG textbook (see REFERENCES section in file README).  The following code | ||||
|  * is based directly on figure 4-8 in P&M. | ||||
|  * While an 8-point DCT cannot be done in less than 11 multiplies, it is | ||||
|  * possible to arrange the computation so that many of the multiplies are | ||||
|  * simple scalings of the final outputs.  These multiplies can then be | ||||
|  * folded into the multiplications or divisions by the JPEG quantization | ||||
|  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds | ||||
|  * to be done in the DCT itself. | ||||
|  * The primary disadvantage of this method is that with fixed-point math, | ||||
|  * accuracy is lost due to imprecise representation of the scaled | ||||
|  * quantization values.  The smaller the quantization table entry, the less | ||||
|  * precise the scaled value, so this implementation does worse with high- | ||||
|  * quality-setting files than with low-quality ones. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jdct.h"		/* Private declarations for DCT subsystem */ | ||||
| 
 | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This module is specialized to the case DCTSIZE = 8. | ||||
|  */ | ||||
| 
 | ||||
| #if DCTSIZE != 8 | ||||
|   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Scaling decisions are generally the same as in the LL&M algorithm;
 | ||||
|  * see jfdctint.c for more details.  However, we choose to descale | ||||
|  * (right shift) multiplication products as soon as they are formed, | ||||
|  * rather than carrying additional fractional bits into subsequent additions. | ||||
|  * This compromises accuracy slightly, but it lets us save a few shifts. | ||||
|  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | ||||
|  * everywhere except in the multiplications proper; this saves a good deal | ||||
|  * of work on 16-bit-int machines. | ||||
|  * | ||||
|  * Again to save a few shifts, the intermediate results between pass 1 and | ||||
|  * pass 2 are not upscaled, but are represented only to integral precision. | ||||
|  * | ||||
|  * A final compromise is to represent the multiplicative constants to only | ||||
|  * 8 fractional bits, rather than 13.  This saves some shifting work on some | ||||
|  * machines, and may also reduce the cost of multiplication (since there | ||||
|  * are fewer one-bits in the constants). | ||||
|  */ | ||||
| 
 | ||||
| #define CONST_BITS  8 | ||||
| 
 | ||||
| 
 | ||||
| /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 | ||||
|  * causing a lot of useless floating-point operations at run time. | ||||
|  * To get around this we use the following pre-calculated constants. | ||||
|  * If you change CONST_BITS you may want to add appropriate values. | ||||
|  * (With a reasonable C compiler, you can just rely on the FIX() macro...) | ||||
|  */ | ||||
| 
 | ||||
| #if CONST_BITS == 8 | ||||
| #define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */ | ||||
| #define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */ | ||||
| #define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */ | ||||
| #define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */ | ||||
| #else | ||||
| #define FIX_0_382683433  FIX(0.382683433) | ||||
| #define FIX_0_541196100  FIX(0.541196100) | ||||
| #define FIX_0_707106781  FIX(0.707106781) | ||||
| #define FIX_1_306562965  FIX(1.306562965) | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* We can gain a little more speed, with a further compromise in accuracy,
 | ||||
|  * by omitting the addition in a descaling shift.  This yields an incorrectly | ||||
|  * rounded result half the time... | ||||
|  */ | ||||
| 
 | ||||
| #ifndef USE_ACCURATE_ROUNDING | ||||
| #undef DESCALE | ||||
| #define DESCALE(x,n)  RIGHT_SHIFT(x, n) | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Multiply a DCTELEM variable by an INT32 constant, and immediately
 | ||||
|  * descale to yield a DCTELEM result. | ||||
|  */ | ||||
| 
 | ||||
| #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Perform the forward DCT on one block of samples. | ||||
|  * | ||||
|  * cK represents cos(K*pi/16). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | ||||
| { | ||||
|   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||||
|   DCTELEM tmp10, tmp11, tmp12, tmp13; | ||||
|   DCTELEM z1, z2, z3, z4, z5, z11, z13; | ||||
|   DCTELEM *dataptr; | ||||
|   JSAMPROW elemptr; | ||||
|   int ctr; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   /* Pass 1: process rows. */ | ||||
| 
 | ||||
|   dataptr = data; | ||||
|   for (ctr = 0; ctr < DCTSIZE; ctr++) { | ||||
|     elemptr = sample_data[ctr] + start_col; | ||||
| 
 | ||||
|     /* Load data into workspace */ | ||||
|     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); | ||||
|     tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); | ||||
|     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); | ||||
|     tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); | ||||
|     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); | ||||
|     tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); | ||||
|     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); | ||||
|     tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); | ||||
| 
 | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp10 = tmp0 + tmp3;	/* phase 2 */ | ||||
|     tmp13 = tmp0 - tmp3; | ||||
|     tmp11 = tmp1 + tmp2; | ||||
|     tmp12 = tmp1 - tmp2; | ||||
| 
 | ||||
|     /* Apply unsigned->signed conversion. */ | ||||
|     dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ | ||||
|     dataptr[4] = tmp10 - tmp11; | ||||
| 
 | ||||
|     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | ||||
|     dataptr[2] = tmp13 + z1;	/* phase 5 */ | ||||
|     dataptr[6] = tmp13 - z1; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     tmp10 = tmp4 + tmp5;	/* phase 2 */ | ||||
|     tmp11 = tmp5 + tmp6; | ||||
|     tmp12 = tmp6 + tmp7; | ||||
| 
 | ||||
|     /* The rotator is modified from fig 4-8 to avoid extra negations. */ | ||||
|     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | ||||
|     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | ||||
|     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | ||||
|     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | ||||
| 
 | ||||
|     z11 = tmp7 + z3;		/* phase 5 */ | ||||
|     z13 = tmp7 - z3; | ||||
| 
 | ||||
|     dataptr[5] = z13 + z2;	/* phase 6 */ | ||||
|     dataptr[3] = z13 - z2; | ||||
|     dataptr[1] = z11 + z4; | ||||
|     dataptr[7] = z11 - z4; | ||||
| 
 | ||||
|     dataptr += DCTSIZE;		/* advance pointer to next row */ | ||||
|   } | ||||
| 
 | ||||
|   /* Pass 2: process columns. */ | ||||
| 
 | ||||
|   dataptr = data; | ||||
|   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | ||||
|     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | ||||
|     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | ||||
|     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | ||||
|     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | ||||
|     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | ||||
|     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | ||||
|     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | ||||
|     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | ||||
| 
 | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp10 = tmp0 + tmp3;	/* phase 2 */ | ||||
|     tmp13 = tmp0 - tmp3; | ||||
|     tmp11 = tmp1 + tmp2; | ||||
|     tmp12 = tmp1 - tmp2; | ||||
| 
 | ||||
|     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | ||||
|     dataptr[DCTSIZE*4] = tmp10 - tmp11; | ||||
| 
 | ||||
|     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | ||||
|     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | ||||
|     dataptr[DCTSIZE*6] = tmp13 - z1; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     tmp10 = tmp4 + tmp5;	/* phase 2 */ | ||||
|     tmp11 = tmp5 + tmp6; | ||||
|     tmp12 = tmp6 + tmp7; | ||||
| 
 | ||||
|     /* The rotator is modified from fig 4-8 to avoid extra negations. */ | ||||
|     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | ||||
|     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | ||||
|     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | ||||
|     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | ||||
| 
 | ||||
|     z11 = tmp7 + z3;		/* phase 5 */ | ||||
|     z13 = tmp7 - z3; | ||||
| 
 | ||||
|     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | ||||
|     dataptr[DCTSIZE*3] = z13 - z2; | ||||
|     dataptr[DCTSIZE*1] = z11 + z4; | ||||
|     dataptr[DCTSIZE*7] = z11 - z4; | ||||
| 
 | ||||
|     dataptr++;			/* advance pointer to next column */ | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* DCT_IFAST_SUPPORTED */ | ||||
							
								
								
									
										4415
									
								
								dep/libjpeg/src/jfdctint.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4415
									
								
								dep/libjpeg/src/jfdctint.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										238
									
								
								dep/libjpeg/src/jidctflt.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										238
									
								
								dep/libjpeg/src/jidctflt.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,238 @@ | |||
| /*
 | ||||
|  * jidctflt.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1998, Thomas G. Lane. | ||||
|  * Modified 2010-2017 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains a floating-point implementation of the | ||||
|  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine | ||||
|  * must also perform dequantization of the input coefficients. | ||||
|  * | ||||
|  * This implementation should be more accurate than either of the integer | ||||
|  * IDCT implementations.  However, it may not give the same results on all | ||||
|  * machines because of differences in roundoff behavior.  Speed will depend | ||||
|  * on the hardware's floating point capacity. | ||||
|  * | ||||
|  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | ||||
|  * on each row (or vice versa, but it's more convenient to emit a row at | ||||
|  * a time).  Direct algorithms are also available, but they are much more | ||||
|  * complex and seem not to be any faster when reduced to code. | ||||
|  * | ||||
|  * This implementation is based on Arai, Agui, and Nakajima's algorithm for | ||||
|  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in | ||||
|  * Japanese, but the algorithm is described in the Pennebaker & Mitchell | ||||
|  * JPEG textbook (see REFERENCES section in file README).  The following code | ||||
|  * is based directly on figure 4-8 in P&M. | ||||
|  * While an 8-point DCT cannot be done in less than 11 multiplies, it is | ||||
|  * possible to arrange the computation so that many of the multiplies are | ||||
|  * simple scalings of the final outputs.  These multiplies can then be | ||||
|  * folded into the multiplications or divisions by the JPEG quantization | ||||
|  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds | ||||
|  * to be done in the DCT itself. | ||||
|  * The primary disadvantage of this method is that with a fixed-point | ||||
|  * implementation, accuracy is lost due to imprecise representation of the | ||||
|  * scaled quantization values.  However, that problem does not arise if | ||||
|  * we use floating point arithmetic. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jdct.h"		/* Private declarations for DCT subsystem */ | ||||
| 
 | ||||
| #ifdef DCT_FLOAT_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This module is specialized to the case DCTSIZE = 8. | ||||
|  */ | ||||
| 
 | ||||
| #if DCTSIZE != 8 | ||||
|   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Dequantize a coefficient by multiplying it by the multiplier-table
 | ||||
|  * entry; produce a float result. | ||||
|  */ | ||||
| 
 | ||||
| #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval)) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Perform dequantization and inverse DCT on one block of coefficients. | ||||
|  * | ||||
|  * cK represents cos(K*pi/16). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JCOEFPTR coef_block, | ||||
| 		 JSAMPARRAY output_buf, JDIMENSION output_col) | ||||
| { | ||||
|   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||||
|   FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | ||||
|   FAST_FLOAT z5, z10, z11, z12, z13; | ||||
|   JCOEFPTR inptr; | ||||
|   FLOAT_MULT_TYPE * quantptr; | ||||
|   FAST_FLOAT * wsptr; | ||||
|   JSAMPROW outptr; | ||||
|   JSAMPLE *range_limit = IDCT_range_limit(cinfo); | ||||
|   int ctr; | ||||
|   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ | ||||
| 
 | ||||
|   /* Pass 1: process columns from input, store into work array. */ | ||||
| 
 | ||||
|   inptr = coef_block; | ||||
|   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; | ||||
|   wsptr = workspace; | ||||
|   for (ctr = DCTSIZE; ctr > 0; ctr--) { | ||||
|     /* Due to quantization, we will usually find that many of the input
 | ||||
|      * coefficients are zero, especially the AC terms.  We can exploit this | ||||
|      * by short-circuiting the IDCT calculation for any column in which all | ||||
|      * the AC terms are zero.  In that case each output is equal to the | ||||
|      * DC coefficient (with scale factor as needed). | ||||
|      * With typical images and quantization tables, half or more of the | ||||
|      * column DCT calculations can be simplified this way. | ||||
|      */ | ||||
| 
 | ||||
|     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | ||||
| 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | ||||
| 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | ||||
| 	inptr[DCTSIZE*7] == 0) { | ||||
|       /* AC terms all zero */ | ||||
|       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | ||||
| 
 | ||||
|       wsptr[DCTSIZE*0] = dcval; | ||||
|       wsptr[DCTSIZE*1] = dcval; | ||||
|       wsptr[DCTSIZE*2] = dcval; | ||||
|       wsptr[DCTSIZE*3] = dcval; | ||||
|       wsptr[DCTSIZE*4] = dcval; | ||||
|       wsptr[DCTSIZE*5] = dcval; | ||||
|       wsptr[DCTSIZE*6] = dcval; | ||||
|       wsptr[DCTSIZE*7] = dcval; | ||||
| 
 | ||||
|       inptr++;			/* advance pointers to next column */ | ||||
|       quantptr++; | ||||
|       wsptr++; | ||||
|       continue; | ||||
|     } | ||||
| 
 | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | ||||
|     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | ||||
|     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | ||||
|     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | ||||
| 
 | ||||
|     tmp10 = tmp0 + tmp2;	/* phase 3 */ | ||||
|     tmp11 = tmp0 - tmp2; | ||||
| 
 | ||||
|     tmp13 = tmp1 + tmp3;	/* phases 5-3 */ | ||||
|     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ | ||||
| 
 | ||||
|     tmp0 = tmp10 + tmp13;	/* phase 2 */ | ||||
|     tmp3 = tmp10 - tmp13; | ||||
|     tmp1 = tmp11 + tmp12; | ||||
|     tmp2 = tmp11 - tmp12; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | ||||
|     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | ||||
|     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | ||||
|     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | ||||
| 
 | ||||
|     z13 = tmp6 + tmp5;		/* phase 6 */ | ||||
|     z10 = tmp6 - tmp5; | ||||
|     z11 = tmp4 + tmp7; | ||||
|     z12 = tmp4 - tmp7; | ||||
| 
 | ||||
|     tmp7 = z11 + z13;		/* phase 5 */ | ||||
|     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ | ||||
| 
 | ||||
|     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | ||||
|     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ | ||||
|     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ | ||||
| 
 | ||||
|     tmp6 = tmp12 - tmp7;	/* phase 2 */ | ||||
|     tmp5 = tmp11 - tmp6; | ||||
|     tmp4 = tmp10 - tmp5; | ||||
| 
 | ||||
|     wsptr[DCTSIZE*0] = tmp0 + tmp7; | ||||
|     wsptr[DCTSIZE*7] = tmp0 - tmp7; | ||||
|     wsptr[DCTSIZE*1] = tmp1 + tmp6; | ||||
|     wsptr[DCTSIZE*6] = tmp1 - tmp6; | ||||
|     wsptr[DCTSIZE*2] = tmp2 + tmp5; | ||||
|     wsptr[DCTSIZE*5] = tmp2 - tmp5; | ||||
|     wsptr[DCTSIZE*3] = tmp3 + tmp4; | ||||
|     wsptr[DCTSIZE*4] = tmp3 - tmp4; | ||||
| 
 | ||||
|     inptr++;			/* advance pointers to next column */ | ||||
|     quantptr++; | ||||
|     wsptr++; | ||||
|   } | ||||
| 
 | ||||
|   /* Pass 2: process rows from work array, store into output array. */ | ||||
| 
 | ||||
|   wsptr = workspace; | ||||
|   for (ctr = 0; ctr < DCTSIZE; ctr++) { | ||||
|     outptr = output_buf[ctr] + output_col; | ||||
|     /* Rows of zeroes can be exploited in the same way as we did with columns.
 | ||||
|      * However, the column calculation has created many nonzero AC terms, so | ||||
|      * the simplification applies less often (typically 5% to 10% of the time). | ||||
|      * And testing floats for zero is relatively expensive, so we don't bother. | ||||
|      */ | ||||
| 
 | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     /* Prepare range-limit and float->int conversion */ | ||||
|     z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5)); | ||||
|     tmp10 = z5 + wsptr[4]; | ||||
|     tmp11 = z5 - wsptr[4]; | ||||
| 
 | ||||
|     tmp13 = wsptr[2] + wsptr[6]; | ||||
|     tmp12 = (wsptr[2] - wsptr[6]) * | ||||
| 	      ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ | ||||
| 
 | ||||
|     tmp0 = tmp10 + tmp13; | ||||
|     tmp3 = tmp10 - tmp13; | ||||
|     tmp1 = tmp11 + tmp12; | ||||
|     tmp2 = tmp11 - tmp12; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     z13 = wsptr[5] + wsptr[3]; | ||||
|     z10 = wsptr[5] - wsptr[3]; | ||||
|     z11 = wsptr[1] + wsptr[7]; | ||||
|     z12 = wsptr[1] - wsptr[7]; | ||||
| 
 | ||||
|     tmp7 = z11 + z13;		/* phase 5 */ | ||||
|     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ | ||||
| 
 | ||||
|     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | ||||
|     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ | ||||
|     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ | ||||
| 
 | ||||
|     tmp6 = tmp12 - tmp7;	/* phase 2 */ | ||||
|     tmp5 = tmp11 - tmp6; | ||||
|     tmp4 = tmp10 - tmp5; | ||||
| 
 | ||||
|     /* Final output stage: float->int conversion and range-limit */ | ||||
| 
 | ||||
|     outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK]; | ||||
|     outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK]; | ||||
|     outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK]; | ||||
|     outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK]; | ||||
|     outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK]; | ||||
|     outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK]; | ||||
|     outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK]; | ||||
|     outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK]; | ||||
| 
 | ||||
|     wsptr += DCTSIZE;		/* advance pointer to next row */ | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* DCT_FLOAT_SUPPORTED */ | ||||
							
								
								
									
										351
									
								
								dep/libjpeg/src/jidctfst.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										351
									
								
								dep/libjpeg/src/jidctfst.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,351 @@ | |||
| /*
 | ||||
|  * jidctfst.c | ||||
|  * | ||||
|  * Copyright (C) 1994-1998, Thomas G. Lane. | ||||
|  * Modified 2015-2017 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains a fast, not so accurate integer implementation of the | ||||
|  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine | ||||
|  * must also perform dequantization of the input coefficients. | ||||
|  * | ||||
|  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | ||||
|  * on each row (or vice versa, but it's more convenient to emit a row at | ||||
|  * a time).  Direct algorithms are also available, but they are much more | ||||
|  * complex and seem not to be any faster when reduced to code. | ||||
|  * | ||||
|  * This implementation is based on Arai, Agui, and Nakajima's algorithm for | ||||
|  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in | ||||
|  * Japanese, but the algorithm is described in the Pennebaker & Mitchell | ||||
|  * JPEG textbook (see REFERENCES section in file README).  The following code | ||||
|  * is based directly on figure 4-8 in P&M. | ||||
|  * While an 8-point DCT cannot be done in less than 11 multiplies, it is | ||||
|  * possible to arrange the computation so that many of the multiplies are | ||||
|  * simple scalings of the final outputs.  These multiplies can then be | ||||
|  * folded into the multiplications or divisions by the JPEG quantization | ||||
|  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds | ||||
|  * to be done in the DCT itself. | ||||
|  * The primary disadvantage of this method is that with fixed-point math, | ||||
|  * accuracy is lost due to imprecise representation of the scaled | ||||
|  * quantization values.  The smaller the quantization table entry, the less | ||||
|  * precise the scaled value, so this implementation does worse with high- | ||||
|  * quality-setting files than with low-quality ones. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jdct.h"		/* Private declarations for DCT subsystem */ | ||||
| 
 | ||||
| #ifdef DCT_IFAST_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This module is specialized to the case DCTSIZE = 8. | ||||
|  */ | ||||
| 
 | ||||
| #if DCTSIZE != 8 | ||||
|   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Scaling decisions are generally the same as in the LL&M algorithm;
 | ||||
|  * see jidctint.c for more details.  However, we choose to descale | ||||
|  * (right shift) multiplication products as soon as they are formed, | ||||
|  * rather than carrying additional fractional bits into subsequent additions. | ||||
|  * This compromises accuracy slightly, but it lets us save a few shifts. | ||||
|  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | ||||
|  * everywhere except in the multiplications proper; this saves a good deal | ||||
|  * of work on 16-bit-int machines. | ||||
|  * | ||||
|  * The dequantized coefficients are not integers because the AA&N scaling | ||||
|  * factors have been incorporated.  We represent them scaled up by PASS1_BITS, | ||||
|  * so that the first and second IDCT rounds have the same input scaling. | ||||
|  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to | ||||
|  * avoid a descaling shift; this compromises accuracy rather drastically | ||||
|  * for small quantization table entries, but it saves a lot of shifts. | ||||
|  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, | ||||
|  * so we use a much larger scaling factor to preserve accuracy. | ||||
|  * | ||||
|  * A final compromise is to represent the multiplicative constants to only | ||||
|  * 8 fractional bits, rather than 13.  This saves some shifting work on some | ||||
|  * machines, and may also reduce the cost of multiplication (since there | ||||
|  * are fewer one-bits in the constants). | ||||
|  */ | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| #define CONST_BITS  8 | ||||
| #define PASS1_BITS  2 | ||||
| #else | ||||
| #define CONST_BITS  8 | ||||
| #define PASS1_BITS  1		/* lose a little precision to avoid overflow */ | ||||
| #endif | ||||
| 
 | ||||
| /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 | ||||
|  * causing a lot of useless floating-point operations at run time. | ||||
|  * To get around this we use the following pre-calculated constants. | ||||
|  * If you change CONST_BITS you may want to add appropriate values. | ||||
|  * (With a reasonable C compiler, you can just rely on the FIX() macro...) | ||||
|  */ | ||||
| 
 | ||||
| #if CONST_BITS == 8 | ||||
| #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */ | ||||
| #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */ | ||||
| #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */ | ||||
| #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */ | ||||
| #else | ||||
| #define FIX_1_082392200  FIX(1.082392200) | ||||
| #define FIX_1_414213562  FIX(1.414213562) | ||||
| #define FIX_1_847759065  FIX(1.847759065) | ||||
| #define FIX_2_613125930  FIX(2.613125930) | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* We can gain a little more speed, with a further compromise in accuracy,
 | ||||
|  * by omitting the addition in a descaling shift.  This yields an incorrectly | ||||
|  * rounded result half the time... | ||||
|  */ | ||||
| 
 | ||||
| #ifndef USE_ACCURATE_ROUNDING | ||||
| #undef DESCALE | ||||
| #define DESCALE(x,n)  RIGHT_SHIFT(x, n) | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /* Multiply a DCTELEM variable by an INT32 constant, and immediately
 | ||||
|  * descale to yield a DCTELEM result. | ||||
|  */ | ||||
| 
 | ||||
| #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | ||||
| 
 | ||||
| 
 | ||||
| /* Dequantize a coefficient by multiplying it by the multiplier-table
 | ||||
|  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16 | ||||
|  * multiplication will do.  For 12-bit data, the multiplier table is | ||||
|  * declared INT32, so a 32-bit multiply will be used. | ||||
|  */ | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval)) | ||||
| #else | ||||
| #define DEQUANTIZE(coef,quantval)  \ | ||||
| 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Perform dequantization and inverse DCT on one block of coefficients. | ||||
|  * | ||||
|  * cK represents cos(K*pi/16). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, | ||||
| 		 JCOEFPTR coef_block, | ||||
| 		 JSAMPARRAY output_buf, JDIMENSION output_col) | ||||
| { | ||||
|   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||||
|   DCTELEM tmp10, tmp11, tmp12, tmp13; | ||||
|   DCTELEM z5, z10, z11, z12, z13; | ||||
|   JCOEFPTR inptr; | ||||
|   IFAST_MULT_TYPE * quantptr; | ||||
|   int * wsptr; | ||||
|   JSAMPROW outptr; | ||||
|   JSAMPLE *range_limit = IDCT_range_limit(cinfo); | ||||
|   int ctr; | ||||
|   int workspace[DCTSIZE2];	/* buffers data between passes */ | ||||
|   SHIFT_TEMPS			/* for DESCALE */ | ||||
|   ISHIFT_TEMPS			/* for IRIGHT_SHIFT */ | ||||
| 
 | ||||
|   /* Pass 1: process columns from input, store into work array. */ | ||||
| 
 | ||||
|   inptr = coef_block; | ||||
|   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; | ||||
|   wsptr = workspace; | ||||
|   for (ctr = DCTSIZE; ctr > 0; ctr--) { | ||||
|     /* Due to quantization, we will usually find that many of the input
 | ||||
|      * coefficients are zero, especially the AC terms.  We can exploit this | ||||
|      * by short-circuiting the IDCT calculation for any column in which all | ||||
|      * the AC terms are zero.  In that case each output is equal to the | ||||
|      * DC coefficient (with scale factor as needed). | ||||
|      * With typical images and quantization tables, half or more of the | ||||
|      * column DCT calculations can be simplified this way. | ||||
|      */ | ||||
|      | ||||
|     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | ||||
| 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | ||||
| 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | ||||
| 	inptr[DCTSIZE*7] == 0) { | ||||
|       /* AC terms all zero */ | ||||
|       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | ||||
| 
 | ||||
|       wsptr[DCTSIZE*0] = dcval; | ||||
|       wsptr[DCTSIZE*1] = dcval; | ||||
|       wsptr[DCTSIZE*2] = dcval; | ||||
|       wsptr[DCTSIZE*3] = dcval; | ||||
|       wsptr[DCTSIZE*4] = dcval; | ||||
|       wsptr[DCTSIZE*5] = dcval; | ||||
|       wsptr[DCTSIZE*6] = dcval; | ||||
|       wsptr[DCTSIZE*7] = dcval; | ||||
|        | ||||
|       inptr++;			/* advance pointers to next column */ | ||||
|       quantptr++; | ||||
|       wsptr++; | ||||
|       continue; | ||||
|     } | ||||
|      | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | ||||
|     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | ||||
|     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | ||||
|     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | ||||
| 
 | ||||
|     tmp10 = tmp0 + tmp2;	/* phase 3 */ | ||||
|     tmp11 = tmp0 - tmp2; | ||||
| 
 | ||||
|     tmp13 = tmp1 + tmp3;	/* phases 5-3 */ | ||||
|     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ | ||||
| 
 | ||||
|     tmp0 = tmp10 + tmp13;	/* phase 2 */ | ||||
|     tmp3 = tmp10 - tmp13; | ||||
|     tmp1 = tmp11 + tmp12; | ||||
|     tmp2 = tmp11 - tmp12; | ||||
|      | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | ||||
|     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | ||||
|     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | ||||
|     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | ||||
| 
 | ||||
|     z13 = tmp6 + tmp5;		/* phase 6 */ | ||||
|     z10 = tmp6 - tmp5; | ||||
|     z11 = tmp4 + tmp7; | ||||
|     z12 = tmp4 - tmp7; | ||||
| 
 | ||||
|     tmp7 = z11 + z13;		/* phase 5 */ | ||||
|     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | ||||
| 
 | ||||
|     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | ||||
|     tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ | ||||
|     tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ | ||||
| 
 | ||||
|     tmp6 = tmp12 - tmp7;	/* phase 2 */ | ||||
|     tmp5 = tmp11 - tmp6; | ||||
|     tmp4 = tmp10 - tmp5; | ||||
| 
 | ||||
|     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); | ||||
|     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); | ||||
|     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); | ||||
|     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); | ||||
|     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); | ||||
|     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); | ||||
|     wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4); | ||||
|     wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4); | ||||
| 
 | ||||
|     inptr++;			/* advance pointers to next column */ | ||||
|     quantptr++; | ||||
|     wsptr++; | ||||
|   } | ||||
|    | ||||
|   /* Pass 2: process rows from work array, store into output array.
 | ||||
|    * Note that we must descale the results by a factor of 8 == 2**3, | ||||
|    * and also undo the PASS1_BITS scaling. | ||||
|    */ | ||||
| 
 | ||||
|   wsptr = workspace; | ||||
|   for (ctr = 0; ctr < DCTSIZE; ctr++) { | ||||
|     outptr = output_buf[ctr] + output_col; | ||||
| 
 | ||||
|     /* Add range center and fudge factor for final descale and range-limit. */ | ||||
|     z5 = (DCTELEM) wsptr[0] + | ||||
| 	   ((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) + | ||||
| 	    (1 << (PASS1_BITS+2))); | ||||
| 
 | ||||
|     /* Rows of zeroes can be exploited in the same way as we did with columns.
 | ||||
|      * However, the column calculation has created many nonzero AC terms, so | ||||
|      * the simplification applies less often (typically 5% to 10% of the time). | ||||
|      * On machines with very fast multiplication, it's possible that the | ||||
|      * test takes more time than it's worth.  In that case this section | ||||
|      * may be commented out. | ||||
|      */ | ||||
|      | ||||
| #ifndef NO_ZERO_ROW_TEST | ||||
|     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | ||||
| 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | ||||
|       /* AC terms all zero */ | ||||
|       JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3) | ||||
| 				  & RANGE_MASK]; | ||||
|        | ||||
|       outptr[0] = dcval; | ||||
|       outptr[1] = dcval; | ||||
|       outptr[2] = dcval; | ||||
|       outptr[3] = dcval; | ||||
|       outptr[4] = dcval; | ||||
|       outptr[5] = dcval; | ||||
|       outptr[6] = dcval; | ||||
|       outptr[7] = dcval; | ||||
| 
 | ||||
|       wsptr += DCTSIZE;		/* advance pointer to next row */ | ||||
|       continue; | ||||
|     } | ||||
| #endif | ||||
|      | ||||
|     /* Even part */ | ||||
| 
 | ||||
|     tmp10 = z5 + (DCTELEM) wsptr[4]; | ||||
|     tmp11 = z5 - (DCTELEM) wsptr[4]; | ||||
| 
 | ||||
|     tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]; | ||||
|     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], | ||||
| 		     FIX_1_414213562) - tmp13; /* 2*c4 */ | ||||
| 
 | ||||
|     tmp0 = tmp10 + tmp13; | ||||
|     tmp3 = tmp10 - tmp13; | ||||
|     tmp1 = tmp11 + tmp12; | ||||
|     tmp2 = tmp11 - tmp12; | ||||
| 
 | ||||
|     /* Odd part */ | ||||
| 
 | ||||
|     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; | ||||
|     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; | ||||
|     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; | ||||
|     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; | ||||
| 
 | ||||
|     tmp7 = z11 + z13;		/* phase 5 */ | ||||
|     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | ||||
| 
 | ||||
|     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | ||||
|     tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ | ||||
|     tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ | ||||
| 
 | ||||
|     tmp6 = tmp12 - tmp7;	/* phase 2 */ | ||||
|     tmp5 = tmp11 - tmp6; | ||||
|     tmp4 = tmp10 - tmp5; | ||||
| 
 | ||||
|     /* Final output stage: scale down by a factor of 8 and range-limit */ | ||||
| 
 | ||||
|     outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
|     outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3) | ||||
| 			    & RANGE_MASK]; | ||||
| 
 | ||||
|     wsptr += DCTSIZE;		/* advance pointer to next row */ | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| #endif /* DCT_IFAST_SUPPORTED */ | ||||
							
								
								
									
										5240
									
								
								dep/libjpeg/src/jidctint.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5240
									
								
								dep/libjpeg/src/jidctint.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										157
									
								
								dep/libjpeg/src/jinclude.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								dep/libjpeg/src/jinclude.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,157 @@ | |||
| /*
 | ||||
|  * jinclude.h | ||||
|  * | ||||
|  * Copyright (C) 1991-1994, Thomas G. Lane. | ||||
|  * Modified 2017-2022 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file exists to provide a single place to fix any problems with | ||||
|  * including the wrong system include files.  (Common problems are taken | ||||
|  * care of by the standard jconfig symbols, but on really weird systems | ||||
|  * you may have to edit this file.) | ||||
|  * | ||||
|  * NOTE: this file is NOT intended to be included by applications using | ||||
|  * the JPEG library.  Most applications need only include jpeglib.h. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Include auto-config file to find out which system include files we need. */ | ||||
| 
 | ||||
| #include "jconfig.h"		/* auto configuration options */ | ||||
| #define JCONFIG_INCLUDED	/* so that jpeglib.h doesn't do it again */ | ||||
| 
 | ||||
| /*
 | ||||
|  * We need the NULL macro and size_t typedef. | ||||
|  * On an ANSI-conforming system it is sufficient to include <stddef.h>. | ||||
|  * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to | ||||
|  * pull in <sys/types.h> as well. | ||||
|  * Note that the core JPEG library does not require <stdio.h>; | ||||
|  * only the default error handler and data source/destination modules do. | ||||
|  * But we must pull it in because of the references to FILE in jpeglib.h. | ||||
|  * You can remove those references if you want to compile without <stdio.h>. | ||||
|  */ | ||||
| 
 | ||||
| #ifdef HAVE_STDDEF_H | ||||
| #include <stddef.h> | ||||
| #endif | ||||
| 
 | ||||
| #ifdef HAVE_STDLIB_H | ||||
| #include <stdlib.h> | ||||
| #endif | ||||
| 
 | ||||
| #ifdef NEED_SYS_TYPES_H | ||||
| #include <sys/types.h> | ||||
| #endif | ||||
| 
 | ||||
| #include <stdio.h> | ||||
| 
 | ||||
| /*
 | ||||
|  * We need memory copying and zeroing functions, plus strncpy(). | ||||
|  * ANSI and System V implementations declare these in <string.h>. | ||||
|  * BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). | ||||
|  * Some systems may declare memset and memcpy in <memory.h>. | ||||
|  * | ||||
|  * NOTE: we assume the size parameters to these functions are of type size_t. | ||||
|  * Change the casts in these macros if not! | ||||
|  */ | ||||
| 
 | ||||
| #ifdef NEED_BSD_STRINGS | ||||
| 
 | ||||
| #include <strings.h> | ||||
| #define MEMZERO(target,size)	bzero((void *)(target), (size_t)(size)) | ||||
| #define MEMCOPY(dest,src,size)	bcopy((const void *)(src), (void *)(dest), (size_t)(size)) | ||||
| 
 | ||||
| #else /* not BSD, assume ANSI/SysV string lib */ | ||||
| 
 | ||||
| #include <string.h> | ||||
| #define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size)) | ||||
| #define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size)) | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * In ANSI C, and indeed any rational implementation, size_t is also the | ||||
|  * type returned by sizeof().  However, it seems there are some irrational | ||||
|  * implementations out there, in which sizeof() returns an int even though | ||||
|  * size_t is defined as long or unsigned long.  To ensure consistent results | ||||
|  * we always use this SIZEOF() macro in place of using sizeof() directly. | ||||
|  */ | ||||
| 
 | ||||
| #define SIZEOF(object)	((size_t) sizeof(object)) | ||||
| 
 | ||||
| /*
 | ||||
|  * The modules that use fread() and fwrite() always invoke them through | ||||
|  * these macros.  On some systems you may need to twiddle the argument casts. | ||||
|  * CAUTION: argument order is different from underlying functions! | ||||
|  * | ||||
|  * Furthermore, macros are provided for fflush() and ferror() in order | ||||
|  * to facilitate adaption by applications using an own FILE class. | ||||
|  * | ||||
|  * You can define your own custom file I/O functions in jconfig.h and | ||||
|  * #define JPEG_HAVE_FILE_IO_CUSTOM there to prevent redefinition here. | ||||
|  * | ||||
|  * You can #define JPEG_USE_FILE_IO_CUSTOM in jconfig.h to use custom file | ||||
|  * I/O functions implemented in Delphi VCL (Visual Component Library) | ||||
|  * in Vcl.Imaging.jpeg.pas for the TJPEGImage component utilizing | ||||
|  * the Delphi RTL (Run-Time Library) TMemoryStream component: | ||||
|  * | ||||
|  *   procedure jpeg_stdio_src(var cinfo: jpeg_decompress_struct; | ||||
|  *     input_file: TStream); external; | ||||
|  * | ||||
|  *   procedure jpeg_stdio_dest(var cinfo: jpeg_compress_struct; | ||||
|  *     output_file: TStream); external; | ||||
|  * | ||||
|  *   function jfread(var buf; recsize, reccount: Integer; S: TStream): Integer; | ||||
|  *   begin | ||||
|  *     Result := S.Read(buf, recsize * reccount); | ||||
|  *   end; | ||||
|  * | ||||
|  *   function jfwrite(const buf; recsize, reccount: Integer; S: TStream): Integer; | ||||
|  *   begin | ||||
|  *     Result := S.Write(buf, recsize * reccount); | ||||
|  *   end; | ||||
|  * | ||||
|  *   function jfflush(S: TStream): Integer; | ||||
|  *   begin | ||||
|  *     Result := 0; | ||||
|  *   end; | ||||
|  * | ||||
|  *   function jferror(S: TStream): Integer; | ||||
|  *   begin | ||||
|  *     Result := 0; | ||||
|  *   end; | ||||
|  * | ||||
|  * TMemoryStream of Delphi RTL has the distinctive feature to provide dynamic | ||||
|  * memory buffer management with a file/stream-based interface, particularly for | ||||
|  * the write (output) operation, which is easier to apply compared with direct | ||||
|  * implementations as given in jdatadst.c for memory destination.  Those direct | ||||
|  * implementations of dynamic memory write tend to be more difficult to use, | ||||
|  * so providing an option like TMemoryStream may be a useful alternative. | ||||
|  * | ||||
|  * The CFile/CMemFile classes of the Microsoft Foundation Class (MFC) Library | ||||
|  * may be used in a similar fashion. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef JPEG_HAVE_FILE_IO_CUSTOM | ||||
| #ifdef JPEG_USE_FILE_IO_CUSTOM | ||||
| extern size_t jfread(void * __ptr, size_t __size, size_t __n, FILE * __stream); | ||||
| extern size_t jfwrite(const void * __ptr, size_t __size, size_t __n, FILE * __stream); | ||||
| extern int    jfflush(FILE * __stream); | ||||
| extern int    jferror(FILE * __fp); | ||||
| 
 | ||||
| #define JFREAD(file,buf,sizeofbuf)  \ | ||||
|   ((size_t) jfread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) | ||||
| #define JFWRITE(file,buf,sizeofbuf)  \ | ||||
|   ((size_t) jfwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) | ||||
| #define JFFLUSH(file)	jfflush(file) | ||||
| #define JFERROR(file)	jferror(file) | ||||
| #else | ||||
| #define JFREAD(file,buf,sizeofbuf)  \ | ||||
|   ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) | ||||
| #define JFWRITE(file,buf,sizeofbuf)  \ | ||||
|   ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) | ||||
| #define JFFLUSH(file)	fflush(file) | ||||
| #define JFERROR(file)	ferror(file) | ||||
| #endif | ||||
| #endif | ||||
							
								
								
									
										1115
									
								
								dep/libjpeg/src/jmemmgr.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1115
									
								
								dep/libjpeg/src/jmemmgr.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										113
									
								
								dep/libjpeg/src/jmemnobs.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										113
									
								
								dep/libjpeg/src/jmemnobs.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,113 @@ | |||
| /*
 | ||||
|  * jmemnobs.c | ||||
|  * | ||||
|  * Copyright (C) 1992-1996, Thomas G. Lane. | ||||
|  * Modified 2019 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file provides a really simple implementation of the system- | ||||
|  * dependent portion of the JPEG memory manager.  This implementation | ||||
|  * assumes that no backing-store files are needed: all required space | ||||
|  * can be obtained from malloc(). | ||||
|  * This is very portable in the sense that it'll compile on almost anything, | ||||
|  * but you'd better have lots of main memory (or virtual memory) if you want | ||||
|  * to process big images. | ||||
|  * Note that the max_memory_to_use option is respected by this implementation. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| #include "jmemsys.h"		/* import the system-dependent declarations */ | ||||
| 
 | ||||
| #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */ | ||||
| extern void * malloc JPP((size_t size)); | ||||
| extern void free JPP((void *ptr)); | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Memory allocation and freeing are controlled by the regular library | ||||
|  * routines malloc() and free(). | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void *) | ||||
| jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) | ||||
| { | ||||
|   return (void *) malloc(sizeofobject); | ||||
| } | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) | ||||
| { | ||||
|   free(object); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * "Large" objects are treated the same as "small" ones. | ||||
|  * NB: although we include FAR keywords in the routine declarations, | ||||
|  * this file won't actually work in 80x86 small/medium model; at least, | ||||
|  * you probably won't be able to process useful-size images in only 64KB. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void FAR *) | ||||
| jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) | ||||
| { | ||||
|   return (void FAR *) malloc(sizeofobject); | ||||
| } | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) | ||||
| { | ||||
|   free(object); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This routine computes the total memory space available for allocation. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(long) | ||||
| jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, | ||||
| 		    long max_bytes_needed, long already_allocated) | ||||
| { | ||||
|   if (cinfo->mem->max_memory_to_use) | ||||
|     return cinfo->mem->max_memory_to_use - already_allocated; | ||||
| 
 | ||||
|   /* Here we say, "we got all you want bud!" */ | ||||
|   return max_bytes_needed; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Backing store (temporary file) management. | ||||
|  * Since jpeg_mem_available always promised the moon, | ||||
|  * this should never be called and we can just error out. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, | ||||
| 			 long total_bytes_needed) | ||||
| { | ||||
|   ERREXIT(cinfo, JERR_NO_BACKING_STORE); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These routines take care of any system-dependent initialization and | ||||
|  * cleanup required.  Here, there isn't any. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(long) | ||||
| jpeg_mem_init (j_common_ptr cinfo) | ||||
| { | ||||
|   return 0;			/* just set max_memory_to_use to 0 */ | ||||
| } | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jpeg_mem_term (j_common_ptr cinfo) | ||||
| { | ||||
|   /* no work */ | ||||
| } | ||||
							
								
								
									
										198
									
								
								dep/libjpeg/src/jmemsys.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										198
									
								
								dep/libjpeg/src/jmemsys.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,198 @@ | |||
| /*
 | ||||
|  * jmemsys.h | ||||
|  * | ||||
|  * Copyright (C) 1992-1997, Thomas G. Lane. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This include file defines the interface between the system-independent | ||||
|  * and system-dependent portions of the JPEG memory manager.  No other | ||||
|  * modules need include it.  (The system-independent portion is jmemmgr.c; | ||||
|  * there are several different versions of the system-dependent portion.) | ||||
|  * | ||||
|  * This file works as-is for the system-dependent memory managers supplied | ||||
|  * in the IJG distribution.  You may need to modify it if you write a | ||||
|  * custom memory manager.  If system-dependent changes are needed in | ||||
|  * this file, the best method is to #ifdef them based on a configuration | ||||
|  * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR | ||||
|  * and USE_MAC_MEMMGR. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Short forms of external names for systems with brain-damaged linkers. */ | ||||
| 
 | ||||
| #ifdef NEED_SHORT_EXTERNAL_NAMES | ||||
| #define jpeg_get_small		jGetSmall | ||||
| #define jpeg_free_small		jFreeSmall | ||||
| #define jpeg_get_large		jGetLarge | ||||
| #define jpeg_free_large		jFreeLarge | ||||
| #define jpeg_mem_available	jMemAvail | ||||
| #define jpeg_open_backing_store	jOpenBackStore | ||||
| #define jpeg_mem_init		jMemInit | ||||
| #define jpeg_mem_term		jMemTerm | ||||
| #endif /* NEED_SHORT_EXTERNAL_NAMES */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These two functions are used to allocate and release small chunks of | ||||
|  * memory.  (Typically the total amount requested through jpeg_get_small is | ||||
|  * no more than 20K or so; this will be requested in chunks of a few K each.) | ||||
|  * Behavior should be the same as for the standard library functions malloc | ||||
|  * and free; in particular, jpeg_get_small must return NULL on failure. | ||||
|  * On most systems, these ARE malloc and free.  jpeg_free_small is passed the | ||||
|  * size of the object being freed, just in case it's needed. | ||||
|  * On an 80x86 machine using small-data memory model, these manage near heap. | ||||
|  */ | ||||
| 
 | ||||
| EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject)); | ||||
| EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object, | ||||
| 				  size_t sizeofobject)); | ||||
| 
 | ||||
| /*
 | ||||
|  * These two functions are used to allocate and release large chunks of | ||||
|  * memory (up to the total free space designated by jpeg_mem_available). | ||||
|  * The interface is the same as above, except that on an 80x86 machine, | ||||
|  * far pointers are used.  On most other machines these are identical to | ||||
|  * the jpeg_get/free_small routines; but we keep them separate anyway, | ||||
|  * in case a different allocation strategy is desirable for large chunks. | ||||
|  */ | ||||
| 
 | ||||
| EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo, | ||||
| 				       size_t sizeofobject)); | ||||
| EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object, | ||||
| 				  size_t sizeofobject)); | ||||
| 
 | ||||
| /*
 | ||||
|  * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may | ||||
|  * be requested in a single call to jpeg_get_large (and jpeg_get_small for that | ||||
|  * matter, but that case should never come into play).  This macro is needed | ||||
|  * to model the 64Kb-segment-size limit of far addressing on 80x86 machines. | ||||
|  * On those machines, we expect that jconfig.h will provide a proper value. | ||||
|  * On machines with 32-bit flat address spaces, any large constant may be used. | ||||
|  * | ||||
|  * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type | ||||
|  * size_t and will be a multiple of sizeof(align_type). | ||||
|  */ | ||||
| 
 | ||||
| #ifndef MAX_ALLOC_CHUNK		/* may be overridden in jconfig.h */ | ||||
| #define MAX_ALLOC_CHUNK  1000000000L | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * This routine computes the total space still available for allocation by | ||||
|  * jpeg_get_large.  If more space than this is needed, backing store will be | ||||
|  * used.  NOTE: any memory already allocated must not be counted. | ||||
|  * | ||||
|  * There is a minimum space requirement, corresponding to the minimum | ||||
|  * feasible buffer sizes; jmemmgr.c will request that much space even if | ||||
|  * jpeg_mem_available returns zero.  The maximum space needed, enough to hold | ||||
|  * all working storage in memory, is also passed in case it is useful. | ||||
|  * Finally, the total space already allocated is passed.  If no better | ||||
|  * method is available, cinfo->mem->max_memory_to_use - already_allocated | ||||
|  * is often a suitable calculation. | ||||
|  * | ||||
|  * It is OK for jpeg_mem_available to underestimate the space available | ||||
|  * (that'll just lead to more backing-store access than is really necessary). | ||||
|  * However, an overestimate will lead to failure.  Hence it's wise to subtract | ||||
|  * a slop factor from the true available space.  5% should be enough. | ||||
|  * | ||||
|  * On machines with lots of virtual memory, any large constant may be returned. | ||||
|  * Conversely, zero may be returned to always use the minimum amount of memory. | ||||
|  */ | ||||
| 
 | ||||
| EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo, | ||||
| 				     long min_bytes_needed, | ||||
| 				     long max_bytes_needed, | ||||
| 				     long already_allocated)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * This structure holds whatever state is needed to access a single | ||||
|  * backing-store object.  The read/write/close method pointers are called | ||||
|  * by jmemmgr.c to manipulate the backing-store object; all other fields | ||||
|  * are private to the system-dependent backing store routines. | ||||
|  */ | ||||
| 
 | ||||
| #define TEMP_NAME_LENGTH   64	/* max length of a temporary file's name */ | ||||
| 
 | ||||
| 
 | ||||
| #ifdef USE_MSDOS_MEMMGR		/* DOS-specific junk */ | ||||
| 
 | ||||
| typedef unsigned short XMSH;	/* type of extended-memory handles */ | ||||
| typedef unsigned short EMSH;	/* type of expanded-memory handles */ | ||||
| 
 | ||||
| typedef union { | ||||
|   short file_handle;		/* DOS file handle if it's a temp file */ | ||||
|   XMSH xms_handle;		/* handle if it's a chunk of XMS */ | ||||
|   EMSH ems_handle;		/* handle if it's a chunk of EMS */ | ||||
| } handle_union; | ||||
| 
 | ||||
| #endif /* USE_MSDOS_MEMMGR */ | ||||
| 
 | ||||
| #ifdef USE_MAC_MEMMGR		/* Mac-specific junk */ | ||||
| #include <Files.h> | ||||
| #endif /* USE_MAC_MEMMGR */ | ||||
| 
 | ||||
| 
 | ||||
| typedef struct backing_store_struct * backing_store_ptr; | ||||
| 
 | ||||
| typedef struct backing_store_struct { | ||||
|   /* Methods for reading/writing/closing this backing-store object */ | ||||
|   JMETHOD(void, read_backing_store, (j_common_ptr cinfo, | ||||
| 				     backing_store_ptr info, | ||||
| 				     void FAR * buffer_address, | ||||
| 				     long file_offset, long byte_count)); | ||||
|   JMETHOD(void, write_backing_store, (j_common_ptr cinfo, | ||||
| 				      backing_store_ptr info, | ||||
| 				      void FAR * buffer_address, | ||||
| 				      long file_offset, long byte_count)); | ||||
|   JMETHOD(void, close_backing_store, (j_common_ptr cinfo, | ||||
| 				      backing_store_ptr info)); | ||||
| 
 | ||||
|   /* Private fields for system-dependent backing-store management */ | ||||
| #ifdef USE_MSDOS_MEMMGR | ||||
|   /* For the MS-DOS manager (jmemdos.c), we need: */ | ||||
|   handle_union handle;		/* reference to backing-store storage object */ | ||||
|   char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ | ||||
| #else | ||||
| #ifdef USE_MAC_MEMMGR | ||||
|   /* For the Mac manager (jmemmac.c), we need: */ | ||||
|   short temp_file;		/* file reference number to temp file */ | ||||
|   FSSpec tempSpec;		/* the FSSpec for the temp file */ | ||||
|   char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ | ||||
| #else | ||||
|   /* For a typical implementation with temp files, we need: */ | ||||
|   FILE * temp_file;		/* stdio reference to temp file */ | ||||
|   char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ | ||||
| #endif | ||||
| #endif | ||||
| } backing_store_info; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initial opening of a backing-store object.  This must fill in the | ||||
|  * read/write/close pointers in the object.  The read/write routines | ||||
|  * may take an error exit if the specified maximum file size is exceeded. | ||||
|  * (If jpeg_mem_available always returns a large value, this routine can | ||||
|  * just take an error exit.) | ||||
|  */ | ||||
| 
 | ||||
| EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo, | ||||
| 					  backing_store_ptr info, | ||||
| 					  long total_bytes_needed)); | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * These routines take care of any system-dependent initialization and | ||||
|  * cleanup required.  jpeg_mem_init will be called before anything is | ||||
|  * allocated (and, therefore, nothing in cinfo is of use except the error | ||||
|  * manager pointer).  It should return a suitable default value for | ||||
|  * max_memory_to_use; this may subsequently be overridden by the surrounding | ||||
|  * application.  (Note that max_memory_to_use is only important if | ||||
|  * jpeg_mem_available chooses to consult it ... no one else will.) | ||||
|  * jpeg_mem_term may assume that all requested memory has been freed and that | ||||
|  * all opened backing-store objects have been closed. | ||||
|  */ | ||||
| 
 | ||||
| EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo)); | ||||
| EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo)); | ||||
							
								
								
									
										851
									
								
								dep/libjpeg/src/jquant1.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										851
									
								
								dep/libjpeg/src/jquant1.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,851 @@ | |||
| /*
 | ||||
|  * jquant1.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1996, Thomas G. Lane. | ||||
|  * Modified 2011-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains 1-pass color quantization (color mapping) routines. | ||||
|  * These routines provide mapping to a fixed color map using equally spaced | ||||
|  * color values.  Optional Floyd-Steinberg or ordered dithering is available. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| #ifdef QUANT_1PASS_SUPPORTED | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * The main purpose of 1-pass quantization is to provide a fast, if not very | ||||
|  * high quality, colormapped output capability.  A 2-pass quantizer usually | ||||
|  * gives better visual quality; however, for quantized grayscale output this | ||||
|  * quantizer is perfectly adequate.  Dithering is highly recommended with this | ||||
|  * quantizer, though you can turn it off if you really want to. | ||||
|  * | ||||
|  * In 1-pass quantization the colormap must be chosen in advance of seeing the | ||||
|  * image.  We use a map consisting of all combinations of Ncolors[i] color | ||||
|  * values for the i'th component.  The Ncolors[] values are chosen so that | ||||
|  * their product, the total number of colors, is no more than that requested. | ||||
|  * (In most cases, the product will be somewhat less.) | ||||
|  * | ||||
|  * Since the colormap is orthogonal, the representative value for each color | ||||
|  * component can be determined without considering the other components; | ||||
|  * then these indexes can be combined into a colormap index by a standard | ||||
|  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved | ||||
|  * can be precalculated and stored in the lookup table colorindex[]. | ||||
|  * colorindex[i][j] maps pixel value j in component i to the nearest | ||||
|  * representative value (grid plane) for that component; this index is | ||||
|  * multiplied by the array stride for component i, so that the | ||||
|  * index of the colormap entry closest to a given pixel value is just | ||||
|  *    sum( colorindex[component-number][pixel-component-value] ) | ||||
|  * Aside from being fast, this scheme allows for variable spacing between | ||||
|  * representative values with no additional lookup cost. | ||||
|  * | ||||
|  * If gamma correction has been applied in color conversion, it might be wise | ||||
|  * to adjust the color grid spacing so that the representative colors are | ||||
|  * equidistant in linear space.  At this writing, gamma correction is not | ||||
|  * implemented by jdcolor, so nothing is done here. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Declarations for ordered dithering.
 | ||||
|  * | ||||
|  * We use a standard 16x16 ordered dither array.  The basic concept of ordered | ||||
|  * dithering is described in many references, for instance Dale Schumacher's | ||||
|  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | ||||
|  * In place of Schumacher's comparisons against a "threshold" value, we add a | ||||
|  * "dither" value to the input pixel and then round the result to the nearest | ||||
|  * output value.  The dither value is equivalent to (0.5 - threshold) times | ||||
|  * the distance between output values.  For ordered dithering, we assume that | ||||
|  * the output colors are equally spaced; if not, results will probably be | ||||
|  * worse, since the dither may be too much or too little at a given point. | ||||
|  * | ||||
|  * The normal calculation would be to form pixel value + dither, range-limit | ||||
|  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | ||||
|  * We can skip the separate range-limiting step by extending the colorindex | ||||
|  * table in both directions. | ||||
|  */ | ||||
| 
 | ||||
| #define ODITHER_SIZE  16	/* dimension of dither matrix */ | ||||
| /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | ||||
| #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */ | ||||
| #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */ | ||||
| 
 | ||||
| typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | ||||
| typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | ||||
| 
 | ||||
| static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | ||||
|   /* Bayer's order-4 dither array.  Generated by the code given in
 | ||||
|    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | ||||
|    * The values in this array must range from 0 to ODITHER_CELLS-1. | ||||
|    */ | ||||
|   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 }, | ||||
|   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | ||||
|   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | ||||
|   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | ||||
|   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 }, | ||||
|   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | ||||
|   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | ||||
|   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | ||||
|   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 }, | ||||
|   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | ||||
|   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | ||||
|   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | ||||
|   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 }, | ||||
|   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | ||||
|   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | ||||
|   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /* Declarations for Floyd-Steinberg dithering.
 | ||||
|  * | ||||
|  * Errors are accumulated into the array fserrors[], at a resolution of | ||||
|  * 1/16th of a pixel count.  The error at a given pixel is propagated | ||||
|  * to its not-yet-processed neighbors using the standard F-S fractions, | ||||
|  *		...	(here)	7/16 | ||||
|  *		3/16	5/16	1/16 | ||||
|  * We work left-to-right on even rows, right-to-left on odd rows. | ||||
|  * | ||||
|  * We can get away with a single array (holding one row's worth of errors) | ||||
|  * by using it to store the current row's errors at pixel columns not yet | ||||
|  * processed, but the next row's errors at columns already processed.  We | ||||
|  * need only a few extra variables to hold the errors immediately around the | ||||
|  * current column.  (If we are lucky, those variables are in registers, but | ||||
|  * even if not, they're probably cheaper to access than array elements are.) | ||||
|  * | ||||
|  * The fserrors[] array is indexed [component#][position]. | ||||
|  * We provide (#columns + 2) entries per component; the extra entry at each | ||||
|  * end saves us from special-casing the first and last pixels. | ||||
|  * | ||||
|  * Note: on a wide image, we might not have enough room in a PC's near data | ||||
|  * segment to hold the error array; so it is allocated with alloc_large. | ||||
|  */ | ||||
| 
 | ||||
| #if BITS_IN_JSAMPLE == 8 | ||||
| typedef INT16 FSERROR;		/* 16 bits should be enough */ | ||||
| typedef int LOCFSERROR;		/* use 'int' for calculation temps */ | ||||
| #else | ||||
| typedef INT32 FSERROR;		/* may need more than 16 bits */ | ||||
| typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ | ||||
| #endif | ||||
| 
 | ||||
| typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ | ||||
| 
 | ||||
| 
 | ||||
| /* Private subobject */ | ||||
| 
 | ||||
| #define MAX_Q_COMPS 4		/* max components I can handle */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   struct jpeg_color_quantizer pub; /* public fields */ | ||||
| 
 | ||||
|   /* Initially allocated colormap is saved here */ | ||||
|   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */ | ||||
|   int sv_actual;		/* number of entries in use */ | ||||
| 
 | ||||
|   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */ | ||||
|   /* colorindex[i][j] = index of color closest to pixel value j in component i,
 | ||||
|    * premultiplied as described above.  Since colormap indexes must fit into | ||||
|    * JSAMPLEs, the entries of this array will too. | ||||
|    */ | ||||
|   boolean is_padded;		/* is the colorindex padded for odither? */ | ||||
| 
 | ||||
|   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */ | ||||
| 
 | ||||
|   /* Variables for ordered dithering */ | ||||
|   int row_index;		/* cur row's vertical index in dither matrix */ | ||||
|   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | ||||
| 
 | ||||
|   /* Variables for Floyd-Steinberg dithering */ | ||||
|   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | ||||
|   boolean on_odd_row;		/* flag to remember which row we are on */ | ||||
| } my_cquantizer; | ||||
| 
 | ||||
| typedef my_cquantizer * my_cquantize_ptr; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Policy-making subroutines for create_colormap and create_colorindex. | ||||
|  * These routines determine the colormap to be used.  The rest of the module | ||||
|  * only assumes that the colormap is orthogonal. | ||||
|  * | ||||
|  *  * select_ncolors decides how to divvy up the available colors | ||||
|  *    among the components. | ||||
|  *  * output_value defines the set of representative values for a component. | ||||
|  *  * largest_input_value defines the mapping from input values to | ||||
|  *    representative values for a component. | ||||
|  * Note that the latter two routines may impose different policies for | ||||
|  * different components, though this is not currently done. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(int) | ||||
| select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | ||||
| /* Determine allocation of desired colors to components, */ | ||||
| /* and fill in Ncolors[] array to indicate choice. */ | ||||
| /* Return value is total number of colors (product of Ncolors[] values). */ | ||||
| { | ||||
|   int nc = cinfo->out_color_components; /* number of color components */ | ||||
|   int max_colors = cinfo->desired_number_of_colors; | ||||
|   int total_colors, iroot, i, j; | ||||
|   boolean changed; | ||||
|   long temp; | ||||
|   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | ||||
| 
 | ||||
|   /* We can allocate at least the nc'th root of max_colors per component. */ | ||||
|   /* Compute floor(nc'th root of max_colors). */ | ||||
|   iroot = 1; | ||||
|   do { | ||||
|     iroot++; | ||||
|     temp = iroot;		/* set temp = iroot ** nc */ | ||||
|     for (i = 1; i < nc; i++) | ||||
|       temp *= iroot; | ||||
|   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | ||||
|   iroot--;			/* now iroot = floor(root) */ | ||||
| 
 | ||||
|   /* Must have at least 2 color values per component */ | ||||
|   if (iroot < 2) | ||||
|     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); | ||||
| 
 | ||||
|   /* Initialize to iroot color values for each component */ | ||||
|   total_colors = 1; | ||||
|   for (i = 0; i < nc; i++) { | ||||
|     Ncolors[i] = iroot; | ||||
|     total_colors *= iroot; | ||||
|   } | ||||
|   /* We may be able to increment the count for one or more components without
 | ||||
|    * exceeding max_colors, though we know not all can be incremented. | ||||
|    * Sometimes, the first component can be incremented more than once! | ||||
|    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | ||||
|    * In RGB colorspace, try to increment G first, then R, then B. | ||||
|    */ | ||||
|   do { | ||||
|     changed = FALSE; | ||||
|     for (i = 0; i < nc; i++) { | ||||
|       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | ||||
|       /* calculate new total_colors if Ncolors[j] is incremented */ | ||||
|       temp = total_colors / Ncolors[j]; | ||||
|       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */ | ||||
|       if (temp > (long) max_colors) | ||||
| 	break;			/* won't fit, done with this pass */ | ||||
|       Ncolors[j]++;		/* OK, apply the increment */ | ||||
|       total_colors = (int) temp; | ||||
|       changed = TRUE; | ||||
|     } | ||||
|   } while (changed); | ||||
| 
 | ||||
|   return total_colors; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(int) | ||||
| output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | ||||
| /* Return j'th output value, where j will range from 0 to maxj */ | ||||
| /* The output values must fall in 0..MAXJSAMPLE in increasing order */ | ||||
| { | ||||
|   /* We always provide values 0 and MAXJSAMPLE for each component;
 | ||||
|    * any additional values are equally spaced between these limits. | ||||
|    * (Forcing the upper and lower values to the limits ensures that | ||||
|    * dithering can't produce a color outside the selected gamut.) | ||||
|    */ | ||||
|   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| LOCAL(int) | ||||
| largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | ||||
| /* Return largest input value that should map to j'th output value */ | ||||
| /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | ||||
| { | ||||
|   /* Breakpoints are halfway between values returned by output_value */ | ||||
|   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create the colormap. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| create_colormap (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   JSAMPARRAY colormap;		/* Created colormap */ | ||||
|   int total_colors;		/* Number of distinct output colors */ | ||||
|   int i,j,k, nci, blksize, blkdist, ptr, val; | ||||
| 
 | ||||
|   /* Select number of colors for each component */ | ||||
|   total_colors = select_ncolors(cinfo, cquantize->Ncolors); | ||||
| 
 | ||||
|   /* Report selected color counts */ | ||||
|   if (cinfo->out_color_components == 3) | ||||
|     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, | ||||
| 	     total_colors, cquantize->Ncolors[0], | ||||
| 	     cquantize->Ncolors[1], cquantize->Ncolors[2]); | ||||
|   else | ||||
|     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | ||||
| 
 | ||||
|   /* Allocate and fill in the colormap. */ | ||||
|   /* The colors are ordered in the map in standard row-major order, */ | ||||
|   /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | ||||
| 
 | ||||
|   colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | ||||
| 
 | ||||
|   /* blksize is number of adjacent repeated entries for a component */ | ||||
|   /* blkdist is distance between groups of identical entries for a component */ | ||||
|   blkdist = total_colors; | ||||
| 
 | ||||
|   for (i = 0; i < cinfo->out_color_components; i++) { | ||||
|     /* fill in colormap entries for i'th color component */ | ||||
|     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | ||||
|     blksize = blkdist / nci; | ||||
|     for (j = 0; j < nci; j++) { | ||||
|       /* Compute j'th output value (out of nci) for component */ | ||||
|       val = output_value(cinfo, i, j, nci-1); | ||||
|       /* Fill in all colormap entries that have this value of this component */ | ||||
|       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | ||||
| 	/* fill in blksize entries beginning at ptr */ | ||||
| 	for (k = 0; k < blksize; k++) | ||||
| 	  colormap[i][ptr+k] = (JSAMPLE) val; | ||||
|       } | ||||
|     } | ||||
|     blkdist = blksize;		/* blksize of this color is blkdist of next */ | ||||
|   } | ||||
| 
 | ||||
|   /* Save the colormap in private storage,
 | ||||
|    * where it will survive color quantization mode changes. | ||||
|    */ | ||||
|   cquantize->sv_colormap = colormap; | ||||
|   cquantize->sv_actual = total_colors; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create the color index table. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| create_colorindex (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   JSAMPROW indexptr; | ||||
|   int i,j,k, nci, blksize, val, pad; | ||||
| 
 | ||||
|   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
 | ||||
|    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | ||||
|    * This is not necessary in the other dithering modes.  However, we | ||||
|    * flag whether it was done in case user changes dithering mode. | ||||
|    */ | ||||
|   if (cinfo->dither_mode == JDITHER_ORDERED) { | ||||
|     pad = MAXJSAMPLE*2; | ||||
|     cquantize->is_padded = TRUE; | ||||
|   } else { | ||||
|     pad = 0; | ||||
|     cquantize->is_padded = FALSE; | ||||
|   } | ||||
| 
 | ||||
|   cquantize->colorindex = (*cinfo->mem->alloc_sarray) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||||
|      (JDIMENSION) (MAXJSAMPLE+1 + pad), | ||||
|      (JDIMENSION) cinfo->out_color_components); | ||||
| 
 | ||||
|   /* blksize is number of adjacent repeated entries for a component */ | ||||
|   blksize = cquantize->sv_actual; | ||||
| 
 | ||||
|   for (i = 0; i < cinfo->out_color_components; i++) { | ||||
|     /* fill in colorindex entries for i'th color component */ | ||||
|     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | ||||
|     blksize = blksize / nci; | ||||
| 
 | ||||
|     /* adjust colorindex pointers to provide padding at negative indexes. */ | ||||
|     if (pad) | ||||
|       cquantize->colorindex[i] += MAXJSAMPLE; | ||||
| 
 | ||||
|     /* in loop, val = index of current output value, */ | ||||
|     /* and k = largest j that maps to current val */ | ||||
|     indexptr = cquantize->colorindex[i]; | ||||
|     val = 0; | ||||
|     k = largest_input_value(cinfo, i, 0, nci-1); | ||||
|     for (j = 0; j <= MAXJSAMPLE; j++) { | ||||
|       while (j > k)		/* advance val if past boundary */ | ||||
| 	k = largest_input_value(cinfo, i, ++val, nci-1); | ||||
|       /* premultiply so that no multiplication needed in main processing */ | ||||
|       indexptr[j] = (JSAMPLE) (val * blksize); | ||||
|     } | ||||
|     /* Pad at both ends if necessary */ | ||||
|     if (pad) | ||||
|       for (j = 1; j <= MAXJSAMPLE; j++) { | ||||
| 	indexptr[-j] = indexptr[0]; | ||||
| 	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; | ||||
|       } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create an ordered-dither array for a component having ncolors | ||||
|  * distinct output values. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(ODITHER_MATRIX_PTR) | ||||
| make_odither_array (j_decompress_ptr cinfo, int ncolors) | ||||
| { | ||||
|   ODITHER_MATRIX_PTR odither; | ||||
|   int j,k; | ||||
|   INT32 num,den; | ||||
| 
 | ||||
|   odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX)); | ||||
|   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
 | ||||
|    * Hence the dither value for the matrix cell with fill order f | ||||
|    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | ||||
|    * On 16-bit-int machine, be careful to avoid overflow. | ||||
|    */ | ||||
|   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); | ||||
|   for (j = 0; j < ODITHER_SIZE; j++) { | ||||
|     for (k = 0; k < ODITHER_SIZE; k++) { | ||||
|       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) | ||||
| 	    * MAXJSAMPLE; | ||||
|       /* Ensure round towards zero despite C's lack of consistency
 | ||||
|        * about rounding negative values in integer division... | ||||
|        */ | ||||
|       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | ||||
|     } | ||||
|   } | ||||
|   return odither; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Create the ordered-dither tables. | ||||
|  * Components having the same number of representative colors may  | ||||
|  * share a dither table. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| create_odither_tables (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   ODITHER_MATRIX_PTR odither; | ||||
|   int i, j, nci; | ||||
| 
 | ||||
|   for (i = 0; i < cinfo->out_color_components; i++) { | ||||
|     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | ||||
|     odither = NULL;		/* search for matching prior component */ | ||||
|     for (j = 0; j < i; j++) { | ||||
|       if (nci == cquantize->Ncolors[j]) { | ||||
| 	odither = cquantize->odither[j]; | ||||
| 	break; | ||||
|       } | ||||
|     } | ||||
|     if (odither == NULL)	/* need a new table? */ | ||||
|       odither = make_odither_array(cinfo, nci); | ||||
|     cquantize->odither[i] = odither; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Map some rows of pixels to the output colormapped representation. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 		JSAMPARRAY output_buf, int num_rows) | ||||
| /* General case, no dithering */ | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   JSAMPARRAY colorindex = cquantize->colorindex; | ||||
|   register int pixcode, ci; | ||||
|   register JSAMPROW ptrin, ptrout; | ||||
|   int row; | ||||
|   JDIMENSION col; | ||||
|   JDIMENSION width = cinfo->output_width; | ||||
|   register int nc = cinfo->out_color_components; | ||||
| 
 | ||||
|   for (row = 0; row < num_rows; row++) { | ||||
|     ptrin = input_buf[row]; | ||||
|     ptrout = output_buf[row]; | ||||
|     for (col = width; col > 0; col--) { | ||||
|       pixcode = 0; | ||||
|       for (ci = 0; ci < nc; ci++) { | ||||
| 	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); | ||||
|       } | ||||
|       *ptrout++ = (JSAMPLE) pixcode; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 		 JSAMPARRAY output_buf, int num_rows) | ||||
| /* Fast path for out_color_components==3, no dithering */ | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   register int pixcode; | ||||
|   register JSAMPROW ptrin, ptrout; | ||||
|   JSAMPROW colorindex0 = cquantize->colorindex[0]; | ||||
|   JSAMPROW colorindex1 = cquantize->colorindex[1]; | ||||
|   JSAMPROW colorindex2 = cquantize->colorindex[2]; | ||||
|   int row; | ||||
|   JDIMENSION col; | ||||
|   JDIMENSION width = cinfo->output_width; | ||||
| 
 | ||||
|   for (row = 0; row < num_rows; row++) { | ||||
|     ptrin = input_buf[row]; | ||||
|     ptrout = output_buf[row]; | ||||
|     for (col = width; col > 0; col--) { | ||||
|       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); | ||||
|       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); | ||||
|       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); | ||||
|       *ptrout++ = (JSAMPLE) pixcode; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 		     JSAMPARRAY output_buf, int num_rows) | ||||
| /* General case, with ordered dithering */ | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   register JSAMPROW input_ptr; | ||||
|   register JSAMPROW output_ptr; | ||||
|   JSAMPROW colorindex_ci; | ||||
|   int * dither;			/* points to active row of dither matrix */ | ||||
|   int row_index, col_index;	/* current indexes into dither matrix */ | ||||
|   int nc = cinfo->out_color_components; | ||||
|   int ci; | ||||
|   int row; | ||||
|   JDIMENSION col; | ||||
|   JDIMENSION width = cinfo->output_width; | ||||
| 
 | ||||
|   for (row = 0; row < num_rows; row++) { | ||||
|     /* Initialize output values to 0 so can process components separately */ | ||||
|     FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE)); | ||||
|     row_index = cquantize->row_index; | ||||
|     for (ci = 0; ci < nc; ci++) { | ||||
|       input_ptr = input_buf[row] + ci; | ||||
|       output_ptr = output_buf[row]; | ||||
|       colorindex_ci = cquantize->colorindex[ci]; | ||||
|       dither = cquantize->odither[ci][row_index]; | ||||
|       col_index = 0; | ||||
| 
 | ||||
|       for (col = width; col > 0; col--) { | ||||
| 	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
 | ||||
| 	 * select output value, accumulate into output code for this pixel. | ||||
| 	 * Range-limiting need not be done explicitly, as we have extended | ||||
| 	 * the colorindex table to produce the right answers for out-of-range | ||||
| 	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the | ||||
| 	 * required amount of padding. | ||||
| 	 */ | ||||
| 	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; | ||||
| 	input_ptr += nc; | ||||
| 	output_ptr++; | ||||
| 	col_index = (col_index + 1) & ODITHER_MASK; | ||||
|       } | ||||
|     } | ||||
|     /* Advance row index for next row */ | ||||
|     row_index = (row_index + 1) & ODITHER_MASK; | ||||
|     cquantize->row_index = row_index; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 		      JSAMPARRAY output_buf, int num_rows) | ||||
| /* Fast path for out_color_components==3, with ordered dithering */ | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   register int pixcode; | ||||
|   register JSAMPROW input_ptr; | ||||
|   register JSAMPROW output_ptr; | ||||
|   JSAMPROW colorindex0 = cquantize->colorindex[0]; | ||||
|   JSAMPROW colorindex1 = cquantize->colorindex[1]; | ||||
|   JSAMPROW colorindex2 = cquantize->colorindex[2]; | ||||
|   int * dither0;		/* points to active row of dither matrix */ | ||||
|   int * dither1; | ||||
|   int * dither2; | ||||
|   int row_index, col_index;	/* current indexes into dither matrix */ | ||||
|   int row; | ||||
|   JDIMENSION col; | ||||
|   JDIMENSION width = cinfo->output_width; | ||||
| 
 | ||||
|   for (row = 0; row < num_rows; row++) { | ||||
|     row_index = cquantize->row_index; | ||||
|     input_ptr = input_buf[row]; | ||||
|     output_ptr = output_buf[row]; | ||||
|     dither0 = cquantize->odither[0][row_index]; | ||||
|     dither1 = cquantize->odither[1][row_index]; | ||||
|     dither2 = cquantize->odither[2][row_index]; | ||||
|     col_index = 0; | ||||
| 
 | ||||
|     for (col = width; col > 0; col--) { | ||||
|       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + | ||||
| 					dither0[col_index]]); | ||||
|       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + | ||||
| 					dither1[col_index]]); | ||||
|       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + | ||||
| 					dither2[col_index]]); | ||||
|       *output_ptr++ = (JSAMPLE) pixcode; | ||||
|       col_index = (col_index + 1) & ODITHER_MASK; | ||||
|     } | ||||
|     row_index = (row_index + 1) & ODITHER_MASK; | ||||
|     cquantize->row_index = row_index; | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | ||||
| 		    JSAMPARRAY output_buf, int num_rows) | ||||
| /* General case, with Floyd-Steinberg dithering */ | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   register LOCFSERROR cur;	/* current error or pixel value */ | ||||
|   LOCFSERROR belowerr;		/* error for pixel below cur */ | ||||
|   LOCFSERROR bpreverr;		/* error for below/prev col */ | ||||
|   LOCFSERROR bnexterr;		/* error for below/next col */ | ||||
|   LOCFSERROR delta; | ||||
|   register FSERRPTR errorptr;	/* => fserrors[] at column before current */ | ||||
|   register JSAMPROW input_ptr; | ||||
|   register JSAMPROW output_ptr; | ||||
|   JSAMPROW colorindex_ci; | ||||
|   JSAMPROW colormap_ci; | ||||
|   int pixcode; | ||||
|   int nc = cinfo->out_color_components; | ||||
|   int dir;			/* 1 for left-to-right, -1 for right-to-left */ | ||||
|   int dirnc;			/* dir * nc */ | ||||
|   int ci; | ||||
|   int row; | ||||
|   JDIMENSION col; | ||||
|   JDIMENSION width = cinfo->output_width; | ||||
|   JSAMPLE *range_limit = cinfo->sample_range_limit; | ||||
|   SHIFT_TEMPS | ||||
| 
 | ||||
|   for (row = 0; row < num_rows; row++) { | ||||
|     /* Initialize output values to 0 so can process components separately */ | ||||
|     FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE)); | ||||
|     for (ci = 0; ci < nc; ci++) { | ||||
|       input_ptr = input_buf[row] + ci; | ||||
|       output_ptr = output_buf[row]; | ||||
|       if (cquantize->on_odd_row) { | ||||
| 	/* work right to left in this row */ | ||||
| 	input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | ||||
| 	output_ptr += width-1; | ||||
| 	dir = -1; | ||||
| 	dirnc = -nc; | ||||
| 	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ | ||||
|       } else { | ||||
| 	/* work left to right in this row */ | ||||
| 	dir = 1; | ||||
| 	dirnc = nc; | ||||
| 	errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | ||||
|       } | ||||
|       colorindex_ci = cquantize->colorindex[ci]; | ||||
|       colormap_ci = cquantize->sv_colormap[ci]; | ||||
|       /* Preset error values: no error propagated to first pixel from left */ | ||||
|       cur = 0; | ||||
|       /* and no error propagated to row below yet */ | ||||
|       belowerr = bpreverr = 0; | ||||
| 
 | ||||
|       for (col = width; col > 0; col--) { | ||||
| 	/* cur holds the error propagated from the previous pixel on the
 | ||||
| 	 * current line.  Add the error propagated from the previous line | ||||
| 	 * to form the complete error correction term for this pixel, and | ||||
| 	 * round the error term (which is expressed * 16) to an integer. | ||||
| 	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | ||||
| 	 * for either sign of the error value. | ||||
| 	 * Note: errorptr points to *previous* column's array entry. | ||||
| 	 */ | ||||
| 	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | ||||
| 	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
 | ||||
| 	 * The maximum error is +- MAXJSAMPLE; this sets the required size | ||||
| 	 * of the range_limit array. | ||||
| 	 */ | ||||
| 	cur += GETJSAMPLE(*input_ptr); | ||||
| 	cur = GETJSAMPLE(range_limit[cur]); | ||||
| 	/* Select output value, accumulate into output code for this pixel */ | ||||
| 	pixcode = GETJSAMPLE(colorindex_ci[cur]); | ||||
| 	*output_ptr += (JSAMPLE) pixcode; | ||||
| 	/* Compute actual representation error at this pixel */ | ||||
| 	/* Note: we can do this even though we don't have the final */ | ||||
| 	/* pixel code, because the colormap is orthogonal. */ | ||||
| 	cur -= GETJSAMPLE(colormap_ci[pixcode]); | ||||
| 	/* Compute error fractions to be propagated to adjacent pixels.
 | ||||
| 	 * Add these into the running sums, and simultaneously shift the | ||||
| 	 * next-line error sums left by 1 column. | ||||
| 	 */ | ||||
| 	bnexterr = cur; | ||||
| 	delta = cur * 2; | ||||
| 	cur += delta;		/* form error * 3 */ | ||||
| 	errorptr[0] = (FSERROR) (bpreverr + cur); | ||||
| 	cur += delta;		/* form error * 5 */ | ||||
| 	bpreverr = belowerr + cur; | ||||
| 	belowerr = bnexterr; | ||||
| 	cur += delta;		/* form error * 7 */ | ||||
| 	/* At this point cur contains the 7/16 error value to be propagated
 | ||||
| 	 * to the next pixel on the current line, and all the errors for the | ||||
| 	 * next line have been shifted over. We are therefore ready to move on. | ||||
| 	 */ | ||||
| 	input_ptr += dirnc;	/* advance input ptr to next column */ | ||||
| 	output_ptr += dir;	/* advance output ptr to next column */ | ||||
| 	errorptr += dir;	/* advance errorptr to current column */ | ||||
|       } | ||||
|       /* Post-loop cleanup: we must unload the final error value into the
 | ||||
|        * final fserrors[] entry.  Note we need not unload belowerr because | ||||
|        * it is for the dummy column before or after the actual array. | ||||
|        */ | ||||
|       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | ||||
|     } | ||||
|     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Allocate workspace for Floyd-Steinberg errors. | ||||
|  */ | ||||
| 
 | ||||
| LOCAL(void) | ||||
| alloc_fs_workspace (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   size_t arraysize; | ||||
|   int i; | ||||
| 
 | ||||
|   arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR); | ||||
|   for (i = 0; i < cinfo->out_color_components; i++) { | ||||
|     cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large) | ||||
|       ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Initialize for one-pass color quantization. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | ||||
| { | ||||
|   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | ||||
|   size_t arraysize; | ||||
|   int i; | ||||
| 
 | ||||
|   /* Install my colormap. */ | ||||
|   cinfo->colormap = cquantize->sv_colormap; | ||||
|   cinfo->actual_number_of_colors = cquantize->sv_actual; | ||||
| 
 | ||||
|   /* Initialize for desired dithering mode. */ | ||||
|   switch (cinfo->dither_mode) { | ||||
|   case JDITHER_NONE: | ||||
|     if (cinfo->out_color_components == 3) | ||||
|       cquantize->pub.color_quantize = color_quantize3; | ||||
|     else | ||||
|       cquantize->pub.color_quantize = color_quantize; | ||||
|     break; | ||||
|   case JDITHER_ORDERED: | ||||
|     if (cinfo->out_color_components == 3) | ||||
|       cquantize->pub.color_quantize = quantize3_ord_dither; | ||||
|     else | ||||
|       cquantize->pub.color_quantize = quantize_ord_dither; | ||||
|     cquantize->row_index = 0;	/* initialize state for ordered dither */ | ||||
|     /* If user changed to ordered dither from another mode,
 | ||||
|      * we must recreate the color index table with padding. | ||||
|      * This will cost extra space, but probably isn't very likely. | ||||
|      */ | ||||
|     if (! cquantize->is_padded) | ||||
|       create_colorindex(cinfo); | ||||
|     /* Create ordered-dither tables if we didn't already. */ | ||||
|     if (cquantize->odither[0] == NULL) | ||||
|       create_odither_tables(cinfo); | ||||
|     break; | ||||
|   case JDITHER_FS: | ||||
|     cquantize->pub.color_quantize = quantize_fs_dither; | ||||
|     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | ||||
|     /* Allocate Floyd-Steinberg workspace if didn't already. */ | ||||
|     if (cquantize->fserrors[0] == NULL) | ||||
|       alloc_fs_workspace(cinfo); | ||||
|     /* Initialize the propagated errors to zero. */ | ||||
|     arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR); | ||||
|     for (i = 0; i < cinfo->out_color_components; i++) | ||||
|       FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize); | ||||
|     break; | ||||
|   default: | ||||
|     ERREXIT(cinfo, JERR_NOT_COMPILED); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Finish up at the end of the pass. | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| finish_pass_1_quant (j_decompress_ptr cinfo) | ||||
| { | ||||
|   /* no work in 1-pass case */ | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Switch to a new external colormap between output passes. | ||||
|  * Shouldn't get to this module! | ||||
|  */ | ||||
| 
 | ||||
| METHODDEF(void) | ||||
| new_color_map_1_quant (j_decompress_ptr cinfo) | ||||
| { | ||||
|   ERREXIT(cinfo, JERR_MODE_CHANGE); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Module initialization routine for 1-pass color quantization. | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jinit_1pass_quantizer (j_decompress_ptr cinfo) | ||||
| { | ||||
|   my_cquantize_ptr cquantize; | ||||
| 
 | ||||
|   cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) | ||||
|     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer)); | ||||
|   cinfo->cquantize = &cquantize->pub; | ||||
|   cquantize->pub.start_pass = start_pass_1_quant; | ||||
|   cquantize->pub.finish_pass = finish_pass_1_quant; | ||||
|   cquantize->pub.new_color_map = new_color_map_1_quant; | ||||
|   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | ||||
|   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */ | ||||
| 
 | ||||
|   /* Make sure my internal arrays won't overflow */ | ||||
|   if (cinfo->out_color_components > MAX_Q_COMPS) | ||||
|     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | ||||
|   /* Make sure colormap indexes can be represented by JSAMPLEs */ | ||||
|   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) | ||||
|     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); | ||||
| 
 | ||||
|   /* Create the colormap and color index table. */ | ||||
|   create_colormap(cinfo); | ||||
|   create_colorindex(cinfo); | ||||
| 
 | ||||
|   /* Allocate Floyd-Steinberg workspace now if requested.
 | ||||
|    * We do this now since it is FAR storage and may affect the memory | ||||
|    * manager's space calculations.  If the user changes to FS dither | ||||
|    * mode in a later pass, we will allocate the space then, and will | ||||
|    * possibly overrun the max_memory_to_use setting. | ||||
|    */ | ||||
|   if (cinfo->dither_mode == JDITHER_FS) | ||||
|     alloc_fs_workspace(cinfo); | ||||
| } | ||||
| 
 | ||||
| #endif /* QUANT_1PASS_SUPPORTED */ | ||||
							
								
								
									
										1311
									
								
								dep/libjpeg/src/jquant2.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1311
									
								
								dep/libjpeg/src/jquant2.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										224
									
								
								dep/libjpeg/src/jutils.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										224
									
								
								dep/libjpeg/src/jutils.c
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,224 @@ | |||
| /*
 | ||||
|  * jutils.c | ||||
|  * | ||||
|  * Copyright (C) 1991-1996, Thomas G. Lane. | ||||
|  * Modified 2009-2020 by Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains tables and miscellaneous utility routines needed | ||||
|  * for both compression and decompression. | ||||
|  * Note we prefix all global names with "j" to minimize conflicts with | ||||
|  * a surrounding application. | ||||
|  */ | ||||
| 
 | ||||
| #define JPEG_INTERNALS | ||||
| #include "jinclude.h" | ||||
| #include "jpeglib.h" | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element | ||||
|  * of a DCT block read in natural order (left to right, top to bottom). | ||||
|  */ | ||||
| 
 | ||||
| #if 0				/* This table is not actually needed in v6a */
 | ||||
| 
 | ||||
| const int jpeg_zigzag_order[DCTSIZE2] = { | ||||
|    0,  1,  5,  6, 14, 15, 27, 28, | ||||
|    2,  4,  7, 13, 16, 26, 29, 42, | ||||
|    3,  8, 12, 17, 25, 30, 41, 43, | ||||
|    9, 11, 18, 24, 31, 40, 44, 53, | ||||
|   10, 19, 23, 32, 39, 45, 52, 54, | ||||
|   20, 22, 33, 38, 46, 51, 55, 60, | ||||
|   21, 34, 37, 47, 50, 56, 59, 61, | ||||
|   35, 36, 48, 49, 57, 58, 62, 63 | ||||
| }; | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * jpeg_natural_order[i] is the natural-order position of the i'th element | ||||
|  * of zigzag order. | ||||
|  * | ||||
|  * When reading corrupted data, the Huffman decoders could attempt | ||||
|  * to reference an entry beyond the end of this array (if the decoded | ||||
|  * zero run length reaches past the end of the block).  To prevent | ||||
|  * wild stores without adding an inner-loop test, we put some extra | ||||
|  * "63"s after the real entries.  This will cause the extra coefficient | ||||
|  * to be stored in location 63 of the block, not somewhere random. | ||||
|  * The worst case would be a run-length of 15, which means we need 16 | ||||
|  * fake entries. | ||||
|  */ | ||||
| 
 | ||||
| const int jpeg_natural_order[DCTSIZE2+16] = { | ||||
|    0,  1,  8, 16,  9,  2,  3, 10, | ||||
|   17, 24, 32, 25, 18, 11,  4,  5, | ||||
|   12, 19, 26, 33, 40, 48, 41, 34, | ||||
|   27, 20, 13,  6,  7, 14, 21, 28, | ||||
|   35, 42, 49, 56, 57, 50, 43, 36, | ||||
|   29, 22, 15, 23, 30, 37, 44, 51, | ||||
|   58, 59, 52, 45, 38, 31, 39, 46, | ||||
|   53, 60, 61, 54, 47, 55, 62, 63, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| const int jpeg_natural_order7[7*7+16] = { | ||||
|    0,  1,  8, 16,  9,  2,  3, 10, | ||||
|   17, 24, 32, 25, 18, 11,  4,  5, | ||||
|   12, 19, 26, 33, 40, 48, 41, 34, | ||||
|   27, 20, 13,  6, 14, 21, 28, 35, | ||||
|   42, 49, 50, 43, 36, 29, 22, 30, | ||||
|   37, 44, 51, 52, 45, 38, 46, 53, | ||||
|   54, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| const int jpeg_natural_order6[6*6+16] = { | ||||
|    0,  1,  8, 16,  9,  2,  3, 10, | ||||
|   17, 24, 32, 25, 18, 11,  4,  5, | ||||
|   12, 19, 26, 33, 40, 41, 34, 27, | ||||
|   20, 13, 21, 28, 35, 42, 43, 36, | ||||
|   29, 37, 44, 45, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| const int jpeg_natural_order5[5*5+16] = { | ||||
|    0,  1,  8, 16,  9,  2,  3, 10, | ||||
|   17, 24, 32, 25, 18, 11,  4, 12, | ||||
|   19, 26, 33, 34, 27, 20, 28, 35, | ||||
|   36, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| const int jpeg_natural_order4[4*4+16] = { | ||||
|    0,  1,  8, 16,  9,  2,  3, 10, | ||||
|   17, 24, 25, 18, 11, 19, 26, 27, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| const int jpeg_natural_order3[3*3+16] = { | ||||
|    0,  1,  8, 16,  9,  2, 10, 17, | ||||
|   18, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| const int jpeg_natural_order2[2*2+16] = { | ||||
|    0,  1,  8,  9, | ||||
|   63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||||
|   63, 63, 63, 63, 63, 63, 63, 63 | ||||
| }; | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Arithmetic utilities | ||||
|  */ | ||||
| 
 | ||||
| GLOBAL(long) | ||||
| jdiv_round_up (long a, long b) | ||||
| /* Compute a/b rounded up to next integer, ie, ceil(a/b) */ | ||||
| /* Assumes a >= 0, b > 0 */ | ||||
| { | ||||
|   return (a + b - 1L) / b; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(long) | ||||
| jround_up (long a, long b) | ||||
| /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ | ||||
| /* Assumes a >= 0, b > 0 */ | ||||
| { | ||||
|   a += b - 1L; | ||||
|   return a - (a % b); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
 | ||||
|  * and coefficient-block arrays.  This won't work on 80x86 because the arrays | ||||
|  * are FAR and we're assuming a small-pointer memory model.  However, some | ||||
|  * DOS compilers provide far-pointer versions of memcpy() and memset() even | ||||
|  * in the small-model libraries.  These will be used if USE_FMEM is defined. | ||||
|  * Otherwise, the routines below do it the hard way.  (The performance cost | ||||
|  * is not all that great, because these routines aren't very heavily used.) | ||||
|  */ | ||||
| 
 | ||||
| #ifndef NEED_FAR_POINTERS	/* normal case, same as regular macro */ | ||||
| #define FMEMCOPY(dest,src,size)	MEMCOPY(dest,src,size) | ||||
| #else				/* 80x86 case, define if we can */ | ||||
| #ifdef USE_FMEM | ||||
| #define FMEMCOPY(dest,src,size)	_fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) | ||||
| #else | ||||
| /* This function is for use by the FMEMZERO macro defined in jpegint.h.
 | ||||
|  * Do not call this function directly, use the FMEMZERO macro instead. | ||||
|  */ | ||||
| GLOBAL(void) | ||||
| jzero_far (void FAR * target, size_t bytestozero) | ||||
| /* Zero out a chunk of FAR memory. */ | ||||
| /* This might be sample-array data, block-array data, or alloc_large data. */ | ||||
| { | ||||
|   register char FAR * ptr = (char FAR *) target; | ||||
|   register size_t count; | ||||
| 
 | ||||
|   for (count = bytestozero; count > 0; count--) { | ||||
|     *ptr++ = 0; | ||||
|   } | ||||
| } | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jcopy_sample_rows (JSAMPARRAY input_array, | ||||
| 		   JSAMPARRAY output_array, | ||||
| 		   int num_rows, JDIMENSION num_cols) | ||||
| /* Copy some rows of samples from one place to another.
 | ||||
|  * num_rows rows are copied from *input_array++ to *output_array++; | ||||
|  * these areas may overlap for duplication. | ||||
|  * The source and destination arrays must be at least as wide as num_cols. | ||||
|  */ | ||||
| { | ||||
|   register JSAMPROW inptr, outptr; | ||||
| #ifdef FMEMCOPY | ||||
|   register size_t count = (size_t) num_cols * SIZEOF(JSAMPLE); | ||||
| #else | ||||
|   register JDIMENSION count; | ||||
| #endif | ||||
|   register int row; | ||||
| 
 | ||||
|   for (row = num_rows; row > 0; row--) { | ||||
|     inptr = *input_array++; | ||||
|     outptr = *output_array++; | ||||
| #ifdef FMEMCOPY | ||||
|     FMEMCOPY(outptr, inptr, count); | ||||
| #else | ||||
|     for (count = num_cols; count > 0; count--) | ||||
|       *outptr++ = *inptr++;	/* needn't bother with GETJSAMPLE() here */ | ||||
| #endif | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| GLOBAL(void) | ||||
| jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, | ||||
| 		 JDIMENSION num_blocks) | ||||
| /* Copy a row of coefficient blocks from one place to another. */ | ||||
| { | ||||
| #ifdef FMEMCOPY | ||||
|   FMEMCOPY(output_row, input_row, (size_t) num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); | ||||
| #else | ||||
|   register JCOEFPTR inptr, outptr; | ||||
|   register long count; | ||||
| 
 | ||||
|   inptr = (JCOEFPTR) input_row; | ||||
|   outptr = (JCOEFPTR) output_row; | ||||
|   for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { | ||||
|     *outptr++ = *inptr++; | ||||
|   } | ||||
| #endif | ||||
| } | ||||
							
								
								
									
										14
									
								
								dep/libjpeg/src/jversion.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								dep/libjpeg/src/jversion.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,14 @@ | |||
| /*
 | ||||
|  * jversion.h | ||||
|  * | ||||
|  * Copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains software version identification. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| #define JVERSION	"9f  14-Jan-2024" | ||||
| 
 | ||||
| #define JCOPYRIGHT	"Copyright (C) 2024, Thomas G. Lane, Guido Vollbeding" | ||||
							
								
								
									
										2433
									
								
								dep/libjpeg/src/transupp.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2433
									
								
								dep/libjpeg/src/transupp.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										230
									
								
								dep/libjpeg/src/transupp.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										230
									
								
								dep/libjpeg/src/transupp.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,230 @@ | |||
| /*
 | ||||
|  * transupp.h | ||||
|  * | ||||
|  * Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding. | ||||
|  * This file is part of the Independent JPEG Group's software. | ||||
|  * For conditions of distribution and use, see the accompanying README file. | ||||
|  * | ||||
|  * This file contains declarations for image transformation routines and | ||||
|  * other utility code used by the jpegtran sample application.  These are | ||||
|  * NOT part of the core JPEG library.  But we keep these routines separate | ||||
|  * from jpegtran.c to ease the task of maintaining jpegtran-like programs | ||||
|  * that have other user interfaces. | ||||
|  * | ||||
|  * NOTE: all the routines declared here have very specific requirements | ||||
|  * about when they are to be executed during the reading and writing of the | ||||
|  * source and destination files.  See the comments in transupp.c, or see | ||||
|  * jpegtran.c for an example of correct usage. | ||||
|  */ | ||||
| 
 | ||||
| /* If you happen not to want the image transform support, disable it here */ | ||||
| #ifndef TRANSFORMS_SUPPORTED | ||||
| #define TRANSFORMS_SUPPORTED 1		/* 0 disables transform code */ | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * Although rotating and flipping data expressed as DCT coefficients is not | ||||
|  * hard, there is an asymmetry in the JPEG format specification for images | ||||
|  * whose dimensions aren't multiples of the iMCU size.  The right and bottom | ||||
|  * image edges are padded out to the next iMCU boundary with junk data; but | ||||
|  * no padding is possible at the top and left edges.  If we were to flip | ||||
|  * the whole image including the pad data, then pad garbage would become | ||||
|  * visible at the top and/or left, and real pixels would disappear into the | ||||
|  * pad margins --- perhaps permanently, since encoders & decoders may not | ||||
|  * bother to preserve DCT blocks that appear to be completely outside the | ||||
|  * nominal image area.  So, we have to exclude any partial iMCUs from the | ||||
|  * basic transformation. | ||||
|  * | ||||
|  * Transpose is the only transformation that can handle partial iMCUs at the | ||||
|  * right and bottom edges completely cleanly.  flip_h can flip partial iMCUs | ||||
|  * at the bottom, but leaves any partial iMCUs at the right edge untouched. | ||||
|  * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched. | ||||
|  * The other transforms are defined as combinations of these basic transforms | ||||
|  * and process edge blocks in a way that preserves the equivalence. | ||||
|  * | ||||
|  * The "trim" option causes untransformable partial iMCUs to be dropped; | ||||
|  * this is not strictly lossless, but it usually gives the best-looking | ||||
|  * result for odd-size images.  Note that when this option is active, | ||||
|  * the expected mathematical equivalences between the transforms may not hold. | ||||
|  * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim | ||||
|  * followed by -rot 180 -trim trims both edges.) | ||||
|  * | ||||
|  * We also offer a lossless-crop option, which discards data outside a given | ||||
|  * image region but losslessly preserves what is inside.  Like the rotate and | ||||
|  * flip transforms, lossless crop is restricted by the current JPEG format: the | ||||
|  * upper left corner of the selected region must fall on an iMCU boundary.  If | ||||
|  * this does not hold for the given crop parameters, we silently move the upper | ||||
|  * left corner up and/or left to make it so, simultaneously increasing the | ||||
|  * region dimensions to keep the lower right crop corner unchanged.  (Thus, the | ||||
|  * output image covers at least the requested region, but may cover more.) | ||||
|  * The adjustment of the region dimensions may be optionally disabled. | ||||
|  * | ||||
|  * A complementary lossless-wipe option is provided to discard (gray out) data | ||||
|  * inside a given image region while losslessly preserving what is outside. | ||||
|  * Another option is lossless-drop, which replaces data at a given image | ||||
|  * position by another image.  Both source images must have the same | ||||
|  * subsampling values.  It is best if they also have the same quantization, | ||||
|  * otherwise quantization adaption occurs.  The trim option can be used with | ||||
|  * the drop option to requantize the drop file to the source file. | ||||
|  * | ||||
|  * We also provide a lossless-resize option, which is kind of a lossless-crop | ||||
|  * operation in the DCT coefficient block domain - it discards higher-order | ||||
|  * coefficients and losslessly preserves lower-order coefficients of a | ||||
|  * sub-block. | ||||
|  * | ||||
|  * Rotate/flip transform, resize, and crop can be requested together in a | ||||
|  * single invocation.  The crop is applied last --- that is, the crop region | ||||
|  * is specified in terms of the destination image after transform/resize. | ||||
|  * | ||||
|  * We also offer a "force to grayscale" option, which simply discards the | ||||
|  * chrominance channels of a YCbCr image.  This is lossless in the sense that | ||||
|  * the luminance channel is preserved exactly.  It's not the same kind of | ||||
|  * thing as the rotate/flip transformations, but it's convenient to handle it | ||||
|  * as part of this package, mainly because the transformation routines have to | ||||
|  * be aware of the option to know how many components to work on. | ||||
|  */ | ||||
| 
 | ||||
| 
 | ||||
| /* Short forms of external names for systems with brain-damaged linkers. */ | ||||
| 
 | ||||
| #ifdef NEED_SHORT_EXTERNAL_NAMES | ||||
| #define jtransform_parse_crop_spec	jTrParCrop | ||||
| #define jtransform_request_workspace	jTrRequest | ||||
| #define jtransform_adjust_parameters	jTrAdjust | ||||
| #define jtransform_execute_transform	jTrExec | ||||
| #define jtransform_perfect_transform	jTrPerfect | ||||
| #define jcopy_markers_setup		jCMrkSetup | ||||
| #define jcopy_markers_execute		jCMrkExec | ||||
| #endif /* NEED_SHORT_EXTERNAL_NAMES */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Codes for supported types of image transformations. | ||||
|  */ | ||||
| 
 | ||||
| typedef enum { | ||||
| 	JXFORM_NONE,		/* no transformation */ | ||||
| 	JXFORM_FLIP_H,		/* horizontal flip */ | ||||
| 	JXFORM_FLIP_V,		/* vertical flip */ | ||||
| 	JXFORM_TRANSPOSE,	/* transpose across UL-to-LR axis */ | ||||
| 	JXFORM_TRANSVERSE,	/* transpose across UR-to-LL axis */ | ||||
| 	JXFORM_ROT_90,		/* 90-degree clockwise rotation */ | ||||
| 	JXFORM_ROT_180,		/* 180-degree rotation */ | ||||
| 	JXFORM_ROT_270,		/* 270-degree clockwise (or 90 ccw) */ | ||||
| 	JXFORM_WIPE,		/* wipe */ | ||||
| 	JXFORM_DROP		/* drop */ | ||||
| } JXFORM_CODE; | ||||
| 
 | ||||
| /*
 | ||||
|  * Codes for crop parameters, which can individually be unspecified, | ||||
|  * positive or negative for xoffset or yoffset, | ||||
|  * positive or force or reflect for width or height. | ||||
|  */ | ||||
| 
 | ||||
| typedef enum { | ||||
| 	JCROP_UNSET, | ||||
| 	JCROP_POS, | ||||
| 	JCROP_NEG, | ||||
| 	JCROP_FORCE, | ||||
| 	JCROP_REFLECT | ||||
| } JCROP_CODE; | ||||
| 
 | ||||
| /*
 | ||||
|  * Transform parameters struct. | ||||
|  * NB: application must not change any elements of this struct after | ||||
|  * calling jtransform_request_workspace. | ||||
|  */ | ||||
| 
 | ||||
| typedef struct { | ||||
|   /* Options: set by caller */ | ||||
|   JXFORM_CODE transform;	/* image transform operator */ | ||||
|   boolean perfect;		/* if TRUE, fail if partial MCUs are requested */ | ||||
|   boolean trim;			/* if TRUE, trim partial MCUs as needed */ | ||||
|   boolean force_grayscale;	/* if TRUE, convert color image to grayscale */ | ||||
|   boolean crop;			/* if TRUE, crop or wipe source image, or drop */ | ||||
| 
 | ||||
|   /* Crop parameters: application need not set these unless crop is TRUE.
 | ||||
|    * These can be filled in by jtransform_parse_crop_spec(). | ||||
|    */ | ||||
|   JDIMENSION crop_width;	/* Width of selected region */ | ||||
|   JCROP_CODE crop_width_set;	/* (force disables adjustment) */ | ||||
|   JDIMENSION crop_height;	/* Height of selected region */ | ||||
|   JCROP_CODE crop_height_set;	/* (force disables adjustment) */ | ||||
|   JDIMENSION crop_xoffset;	/* X offset of selected region */ | ||||
|   JCROP_CODE crop_xoffset_set;	/* (negative measures from right edge) */ | ||||
|   JDIMENSION crop_yoffset;	/* Y offset of selected region */ | ||||
|   JCROP_CODE crop_yoffset_set;	/* (negative measures from bottom edge) */ | ||||
| 
 | ||||
|   /* Drop parameters: set by caller for drop request */ | ||||
|   j_decompress_ptr drop_ptr; | ||||
|   jvirt_barray_ptr * drop_coef_arrays; | ||||
| 
 | ||||
|   /* Internal workspace: caller should not touch these */ | ||||
|   int num_components;		/* # of components in workspace */ | ||||
|   jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */ | ||||
|   JDIMENSION output_width;	/* cropped destination dimensions */ | ||||
|   JDIMENSION output_height; | ||||
|   JDIMENSION x_crop_offset;	/* destination crop offsets measured in iMCUs */ | ||||
|   JDIMENSION y_crop_offset; | ||||
|   JDIMENSION drop_width;	/* drop/wipe dimensions measured in iMCUs */ | ||||
|   JDIMENSION drop_height; | ||||
|   int iMCU_sample_width;	/* destination iMCU size */ | ||||
|   int iMCU_sample_height; | ||||
| } jpeg_transform_info; | ||||
| 
 | ||||
| 
 | ||||
| #if TRANSFORMS_SUPPORTED | ||||
| 
 | ||||
| /* Parse a crop specification (written in X11 geometry style) */ | ||||
| EXTERN(boolean) jtransform_parse_crop_spec | ||||
| 	JPP((jpeg_transform_info *info, const char *spec)); | ||||
| /* Request any required workspace */ | ||||
| EXTERN(boolean) jtransform_request_workspace | ||||
| 	JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info)); | ||||
| /* Adjust output image parameters */ | ||||
| EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters | ||||
| 	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | ||||
| 	     jvirt_barray_ptr *src_coef_arrays, | ||||
| 	     jpeg_transform_info *info)); | ||||
| /* Execute the actual transformation, if any */ | ||||
| EXTERN(void) jtransform_execute_transform | ||||
| 	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | ||||
| 	     jvirt_barray_ptr *src_coef_arrays, | ||||
| 	     jpeg_transform_info *info)); | ||||
| /* Determine whether lossless transformation is perfectly
 | ||||
|  * possible for a specified image and transformation. | ||||
|  */ | ||||
| EXTERN(boolean) jtransform_perfect_transform | ||||
| 	JPP((JDIMENSION image_width, JDIMENSION image_height, | ||||
| 	     int MCU_width, int MCU_height, | ||||
| 	     JXFORM_CODE transform)); | ||||
| 
 | ||||
| /* jtransform_execute_transform used to be called
 | ||||
|  * jtransform_execute_transformation, but some compilers complain about | ||||
|  * routine names that long.  This macro is here to avoid breaking any | ||||
|  * old source code that uses the original name... | ||||
|  */ | ||||
| #define jtransform_execute_transformation	jtransform_execute_transform | ||||
| 
 | ||||
| #endif /* TRANSFORMS_SUPPORTED */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Support for copying optional markers from source to destination file. | ||||
|  */ | ||||
| 
 | ||||
| typedef enum { | ||||
| 	JCOPYOPT_NONE,		/* copy no optional markers */ | ||||
| 	JCOPYOPT_COMMENTS,	/* copy only comment (COM) markers */ | ||||
| 	JCOPYOPT_ALL		/* copy all optional markers */ | ||||
| } JCOPY_OPTION; | ||||
| 
 | ||||
| #define JCOPYOPT_DEFAULT  JCOPYOPT_COMMENTS	/* recommended default */ | ||||
| 
 | ||||
| /* Setup decompression object to save desired markers in memory */ | ||||
| EXTERN(void) jcopy_markers_setup | ||||
| 	JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option)); | ||||
| /* Copy markers saved in the given source object to the destination object */ | ||||
| EXTERN(void) jcopy_markers_execute | ||||
| 	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | ||||
| 	     JCOPY_OPTION option)); | ||||
|  | @ -77,6 +77,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "rapidyaml", "dep\rapidyaml\ | |||
| EndProject | ||||
| Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libpng", "dep\libpng\libpng.vcxproj", "{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}" | ||||
| EndProject | ||||
| Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libjpeg", "dep\libjpeg\libjpeg.vcxproj", "{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}" | ||||
| EndProject | ||||
| Global | ||||
| 	GlobalSection(SolutionConfigurationPlatforms) = preSolution | ||||
| 		Debug|ARM64 = Debug|ARM64 | ||||
|  | @ -1099,6 +1101,38 @@ Global | |||
| 		{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64 | ||||
| 		{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64 | ||||
| 		{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|ARM64.ActiveCfg = Debug|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|ARM64.Build.0 = Debug|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|x64.ActiveCfg = Debug|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|x64.Build.0 = Debug|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|ARM64.ActiveCfg = Debug-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|ARM64.Build.0 = Debug-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|x64.ActiveCfg = Debug-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|x64.Build.0 = Debug-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|ARM64.ActiveCfg = DebugFast|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|ARM64.Build.0 = DebugFast|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|x64.ActiveCfg = DebugFast|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|x64.Build.0 = DebugFast|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|ARM64.ActiveCfg = DebugFast-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|ARM64.Build.0 = DebugFast-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|x64.ActiveCfg = DebugFast-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|x64.Build.0 = DebugFast-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|ARM64.ActiveCfg = Release|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|ARM64.Build.0 = Release|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|x64.ActiveCfg = Release|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|x64.Build.0 = Release|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|ARM64.ActiveCfg = Release-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|ARM64.Build.0 = Release-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|x64.ActiveCfg = Release-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|x64.Build.0 = Release-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|ARM64.ActiveCfg = ReleaseLTCG|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|ARM64.Build.0 = ReleaseLTCG|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|x64.ActiveCfg = ReleaseLTCG|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|x64.Build.0 = ReleaseLTCG|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|ARM64.ActiveCfg = ReleaseLTCG-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64 | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64 | ||||
| 	EndGlobalSection | ||||
| 	GlobalSection(SolutionProperties) = preSolution | ||||
| 		HideSolutionNode = FALSE | ||||
|  | @ -1129,6 +1163,7 @@ Global | |||
| 		{27B8D4BB-4F01-4432-BC14-9BF6CA458EEE} = {BA490C0E-497D-4634-A21E-E65012006385} | ||||
| 		{1AD23A8A-4C20-434C-AE6B-0E07759EEB1E} = {BA490C0E-497D-4634-A21E-E65012006385} | ||||
| 		{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5} = {BA490C0E-497D-4634-A21E-E65012006385} | ||||
| 		{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2} = {BA490C0E-497D-4634-A21E-E65012006385} | ||||
| 	EndGlobalSection | ||||
| 	GlobalSection(ExtensibilityGlobals) = postSolution | ||||
| 		SolutionGuid = {26E40B32-7C1D-48D0-95F4-1A500E054028} | ||||
|  |  | |||
|  | @ -33,6 +33,7 @@ QT=6.6.0 | |||
| MOLTENVK=1.2.6 | ||||
| ZSTD=1.5.5 | ||||
| PNG=1.6.43 | ||||
| JPEG=9f | ||||
| WEBP=1.3.2 | ||||
| 
 | ||||
| mkdir -p deps-build | ||||
|  | @ -48,6 +49,7 @@ cat > SHASUMS <<EOF | |||
| b6a3d179aa9c41275ed0e35e502e5e3fd347dbe5117a0435a26868b231cd6246  v$MOLTENVK.tar.gz | ||||
| 9c4396cc829cfae319a6e2615202e82aad41372073482fce286fac78646d3ee4  zstd-$ZSTD.tar.gz | ||||
| 6a5ca0652392a2d7c9db2ae5b40210843c0bbc081cbd410825ab00cc59f14a6c  libpng-$PNG.tar.xz | ||||
| 04705c110cb2469caa79fb71fba3d7bf834914706e9641a4589485c1f832565b  jpegsrc.v$JPEG.tar.gz | ||||
| 2a499607df669e40258e53d0ade8035ba4ec0175244869d1025d460562aa09b4  libwebp-$WEBP.tar.gz | ||||
| 039d53312acb5897a9054bd38c9ccbdab72500b71fdccdb3f4f0844b0dd39e0e  qtbase-everywhere-src-$QT.tar.xz | ||||
| e1542cb50176e237809895c6549598c08587c63703d100be54ac2d806834e384  qtimageformats-everywhere-src-$QT.tar.xz | ||||
|  | @ -62,6 +64,7 @@ curl -L \ | |||
|   -O "https://github.com/facebook/zstd/releases/download/v$ZSTD/zstd-$ZSTD.tar.gz" \ | ||||
|   -O "https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-$WEBP.tar.gz" \ | ||||
|   -O "https://downloads.sourceforge.net/project/libpng/libpng16/$PNG/libpng-$PNG.tar.xz" \ | ||||
|   -O "https://ijg.org/files/jpegsrc.v$JPEG.tar.gz" \ | ||||
|   -O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtbase-everywhere-src-$QT.tar.xz" \ | ||||
|   -O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtsvg-everywhere-src-$QT.tar.xz" \ | ||||
|   -O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qttools-everywhere-src-$QT.tar.xz" \ | ||||
|  | @ -203,6 +206,24 @@ merge_binaries $(realpath build) $(realpath build-arm64) | |||
| make -C build install | ||||
| cd .. | ||||
| 
 | ||||
| echo "Installing libjpeg..." | ||||
| rm -fr "jpeg-$JPEG" | ||||
| tar xf "jpegsrc.v$JPEG.tar.gz" | ||||
| cd "jpeg-$JPEG" | ||||
| mkdir build | ||||
| cd build | ||||
| ../configure --prefix="$INSTALLDIR" --disable-static --enable-shared --host="x86_64-apple-darwin" CFLAGS="-arch x86_64" | ||||
| make "-j$NPROCS" | ||||
| cd .. | ||||
| mkdir build-arm64 | ||||
| cd build-arm64 | ||||
| ../configure --prefix="$INSTALLDIR" --disable-static --enable-shared --host="aarch64-apple-darwin" CFLAGS="-arch arm64" | ||||
| make "-j$NPROCS" | ||||
| cd .. | ||||
| merge_binaries $(realpath build) $(realpath build-arm64) | ||||
| make -C build install | ||||
| cd .. | ||||
| 
 | ||||
| echo "Installing WebP..." | ||||
| tar xf "libwebp-$WEBP.tar.gz" | ||||
| cd "libwebp-$WEBP" | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Stenzek
						Stenzek