mirror of
https://github.com/RetroDECK/Duckstation.git
synced 2024-11-29 09:05:41 +00:00
dep: Add libjpeg v9f
This commit is contained in:
parent
b749c483da
commit
e9c4416272
|
@ -13,6 +13,7 @@ if(NOT WIN32 AND NOT ANDROID)
|
||||||
find_package(WebP REQUIRED)
|
find_package(WebP REQUIRED)
|
||||||
find_package(ZLIB REQUIRED)
|
find_package(ZLIB REQUIRED)
|
||||||
find_package(PNG REQUIRED)
|
find_package(PNG REQUIRED)
|
||||||
|
find_package(JPEG REQUIRED)
|
||||||
find_package(CURL REQUIRED)
|
find_package(CURL REQUIRED)
|
||||||
if(APPLE)
|
if(APPLE)
|
||||||
set(CMAKE_FIND_FRAMEWORK ${FIND_FRAMEWORK_BACKUP})
|
set(CMAKE_FIND_FRAMEWORK ${FIND_FRAMEWORK_BACKUP})
|
||||||
|
|
|
@ -37,6 +37,7 @@ if(WIN32 OR ANDROID)
|
||||||
add_subdirectory(zlib EXCLUDE_FROM_ALL)
|
add_subdirectory(zlib EXCLUDE_FROM_ALL)
|
||||||
add_subdirectory(zstd EXCLUDE_FROM_ALL)
|
add_subdirectory(zstd EXCLUDE_FROM_ALL)
|
||||||
add_subdirectory(libpng EXCLUDE_FROM_ALL)
|
add_subdirectory(libpng EXCLUDE_FROM_ALL)
|
||||||
|
add_subdirectory(libjpeg EXCLUDE_FROM_ALL)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if(ENABLE_CUBEB)
|
if(ENABLE_CUBEB)
|
||||||
|
|
65
dep/libjpeg/CMakeLists.txt
Normal file
65
dep/libjpeg/CMakeLists.txt
Normal file
|
@ -0,0 +1,65 @@
|
||||||
|
add_library(jpeg
|
||||||
|
include/jconfig.h
|
||||||
|
include/jerror.h
|
||||||
|
include/jmorecfg.h
|
||||||
|
include/jpegint.h
|
||||||
|
include/jpeglib.h
|
||||||
|
src/jaricom.c
|
||||||
|
src/jcapimin.c
|
||||||
|
src/jcapistd.c
|
||||||
|
src/jcarith.c
|
||||||
|
src/jccoefct.c
|
||||||
|
src/jccolor.c
|
||||||
|
src/jcdctmgr.c
|
||||||
|
src/jchuff.c
|
||||||
|
src/jcinit.c
|
||||||
|
src/jcmainct.c
|
||||||
|
src/jcmarker.c
|
||||||
|
src/jcmaster.c
|
||||||
|
src/jcomapi.c
|
||||||
|
src/jcparam.c
|
||||||
|
src/jcprepct.c
|
||||||
|
src/jcsample.c
|
||||||
|
src/jctrans.c
|
||||||
|
src/jdapimin.c
|
||||||
|
src/jdapistd.c
|
||||||
|
src/jdarith.c
|
||||||
|
src/jdatadst.c
|
||||||
|
src/jdatasrc.c
|
||||||
|
src/jdcoefct.c
|
||||||
|
src/jdcolor.c
|
||||||
|
src/jdct.h
|
||||||
|
src/jddctmgr.c
|
||||||
|
src/jdhuff.c
|
||||||
|
src/jdinput.c
|
||||||
|
src/jdmainct.c
|
||||||
|
src/jdmarker.c
|
||||||
|
src/jdmaster.c
|
||||||
|
src/jdmerge.c
|
||||||
|
src/jdpostct.c
|
||||||
|
src/jdsample.c
|
||||||
|
src/jdtrans.c
|
||||||
|
src/jerror.c
|
||||||
|
src/jfdctflt.c
|
||||||
|
src/jfdctfst.c
|
||||||
|
src/jfdctint.c
|
||||||
|
src/jidctflt.c
|
||||||
|
src/jidctfst.c
|
||||||
|
src/jidctint.c
|
||||||
|
src/jinclude.h
|
||||||
|
src/jmemmgr.c
|
||||||
|
src/jmemnobs.c
|
||||||
|
src/jmemsys.h
|
||||||
|
src/jquant1.c
|
||||||
|
src/jquant2.c
|
||||||
|
src/jutils.c
|
||||||
|
src/jversion.h
|
||||||
|
src/transupp.c
|
||||||
|
src/transupp.h
|
||||||
|
)
|
||||||
|
|
||||||
|
target_include_directories(jpeg PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||||
|
target_include_directories(jpeg PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/src")
|
||||||
|
disable_compiler_warnings_for_target(jpeg)
|
||||||
|
|
||||||
|
add_library(JPEG::JPEG ALIAS jpeg)
|
374
dep/libjpeg/README
Normal file
374
dep/libjpeg/README
Normal file
|
@ -0,0 +1,374 @@
|
||||||
|
The Independent JPEG Group's JPEG software
|
||||||
|
==========================================
|
||||||
|
|
||||||
|
README for release 9f of 14-Jan-2024
|
||||||
|
====================================
|
||||||
|
|
||||||
|
This distribution contains the ninth public release of the Independent JPEG
|
||||||
|
Group's free JPEG software. You are welcome to redistribute this software and
|
||||||
|
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
|
||||||
|
|
||||||
|
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
|
||||||
|
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
|
||||||
|
John Korejwa, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi,
|
||||||
|
Ge' Weijers, and other members of the Independent JPEG Group.
|
||||||
|
|
||||||
|
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee
|
||||||
|
(previously known as JPEG, together with ITU-T SG16).
|
||||||
|
|
||||||
|
|
||||||
|
DOCUMENTATION ROADMAP
|
||||||
|
=====================
|
||||||
|
|
||||||
|
This file contains the following sections:
|
||||||
|
|
||||||
|
OVERVIEW General description of JPEG and the IJG software.
|
||||||
|
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
|
||||||
|
REFERENCES Where to learn more about JPEG.
|
||||||
|
ARCHIVE LOCATIONS Where to find newer versions of this software.
|
||||||
|
ACKNOWLEDGMENTS Special thanks.
|
||||||
|
FILE FORMAT WARS Software *not* to get.
|
||||||
|
TO DO Plans for future IJG releases.
|
||||||
|
|
||||||
|
Other documentation files in the distribution are:
|
||||||
|
|
||||||
|
User documentation:
|
||||||
|
install.txt How to configure and install the IJG software.
|
||||||
|
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
|
||||||
|
rdjpgcom, and wrjpgcom.
|
||||||
|
*.1 Unix-style man pages for programs (same info as usage.txt).
|
||||||
|
wizard.txt Advanced usage instructions for JPEG wizards only.
|
||||||
|
cdaltui.txt Description of alternate user interface for cjpeg/djpeg.
|
||||||
|
change.log Version-to-version change highlights.
|
||||||
|
Programmer and internal documentation:
|
||||||
|
libjpeg.txt How to use the JPEG library in your own programs.
|
||||||
|
example.c Sample code for calling the JPEG library.
|
||||||
|
structure.txt Overview of the JPEG library's internal structure.
|
||||||
|
filelist.txt Road map of IJG files.
|
||||||
|
coderules.txt Coding style rules --- please read if you contribute code.
|
||||||
|
|
||||||
|
Please read at least the files install.txt and usage.txt. Some information
|
||||||
|
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
|
||||||
|
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
|
||||||
|
|
||||||
|
If you want to understand how the JPEG code works, we suggest reading one or
|
||||||
|
more of the REFERENCES, then looking at the documentation files (in roughly
|
||||||
|
the order listed) before diving into the code.
|
||||||
|
|
||||||
|
|
||||||
|
OVERVIEW
|
||||||
|
========
|
||||||
|
|
||||||
|
This package contains C software to implement JPEG image encoding, decoding,
|
||||||
|
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
|
||||||
|
method for full-color and grayscale images.
|
||||||
|
|
||||||
|
This software implements JPEG baseline, extended-sequential, and progressive
|
||||||
|
compression processes. Provision is made for supporting all variants of these
|
||||||
|
processes, although some uncommon parameter settings aren't implemented yet.
|
||||||
|
We have made no provision for supporting the hierarchical or lossless
|
||||||
|
processes defined in the standard.
|
||||||
|
|
||||||
|
We provide a set of library routines for reading and writing JPEG image files,
|
||||||
|
plus two sample applications "cjpeg" and "djpeg", which use the library to
|
||||||
|
perform conversion between JPEG and some other popular image file formats.
|
||||||
|
The library is intended to be reused in other applications.
|
||||||
|
|
||||||
|
In order to support file conversion and viewing software, we have included
|
||||||
|
considerable functionality beyond the bare JPEG coding/decoding capability;
|
||||||
|
for example, the color quantization modules are not strictly part of JPEG
|
||||||
|
decoding, but they are essential for output to colormapped file formats or
|
||||||
|
colormapped displays. These extra functions can be compiled out of the
|
||||||
|
library if not required for a particular application.
|
||||||
|
|
||||||
|
We have also included "jpegtran", a utility for lossless transcoding between
|
||||||
|
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
|
||||||
|
applications for inserting and extracting textual comments in JFIF files.
|
||||||
|
|
||||||
|
The emphasis in designing this software has been on achieving portability and
|
||||||
|
flexibility, while also making it fast enough to be useful. In particular,
|
||||||
|
the software is not intended to be read as a tutorial on JPEG. (See the
|
||||||
|
REFERENCES section for introductory material.) Rather, it is intended to
|
||||||
|
be reliable, portable, industrial-strength code. We do not claim to have
|
||||||
|
achieved that goal in every aspect of the software, but we strive for it.
|
||||||
|
|
||||||
|
We welcome the use of this software as a component of commercial products.
|
||||||
|
No royalty is required, but we do ask for an acknowledgement in product
|
||||||
|
documentation, as described under LEGAL ISSUES.
|
||||||
|
|
||||||
|
|
||||||
|
LEGAL ISSUES
|
||||||
|
============
|
||||||
|
|
||||||
|
In plain English:
|
||||||
|
|
||||||
|
1. We don't promise that this software works. (But if you find any bugs,
|
||||||
|
please let us know!)
|
||||||
|
2. You can use this software for whatever you want. You don't have to pay us.
|
||||||
|
3. You may not pretend that you wrote this software. If you use it in a
|
||||||
|
program, you must acknowledge somewhere in your documentation that
|
||||||
|
you've used the IJG code.
|
||||||
|
|
||||||
|
In legalese:
|
||||||
|
|
||||||
|
The authors make NO WARRANTY or representation, either express or implied,
|
||||||
|
with respect to this software, its quality, accuracy, merchantability, or
|
||||||
|
fitness for a particular purpose. This software is provided "AS IS", and you,
|
||||||
|
its user, assume the entire risk as to its quality and accuracy.
|
||||||
|
|
||||||
|
This software is copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding.
|
||||||
|
All Rights Reserved except as specified below.
|
||||||
|
|
||||||
|
Permission is hereby granted to use, copy, modify, and distribute this
|
||||||
|
software (or portions thereof) for any purpose, without fee, subject to these
|
||||||
|
conditions:
|
||||||
|
(1) If any part of the source code for this software is distributed, then this
|
||||||
|
README file must be included, with this copyright and no-warranty notice
|
||||||
|
unaltered; and any additions, deletions, or changes to the original files
|
||||||
|
must be clearly indicated in accompanying documentation.
|
||||||
|
(2) If only executable code is distributed, then the accompanying
|
||||||
|
documentation must state that "this software is based in part on the work of
|
||||||
|
the Independent JPEG Group".
|
||||||
|
(3) Permission for use of this software is granted only if the user accepts
|
||||||
|
full responsibility for any undesirable consequences; the authors accept
|
||||||
|
NO LIABILITY for damages of any kind.
|
||||||
|
|
||||||
|
These conditions apply to any software derived from or based on the IJG code,
|
||||||
|
not just to the unmodified library. If you use our work, you ought to
|
||||||
|
acknowledge us.
|
||||||
|
|
||||||
|
Permission is NOT granted for the use of any IJG author's name or company name
|
||||||
|
in advertising or publicity relating to this software or products derived from
|
||||||
|
it. This software may be referred to only as "the Independent JPEG Group's
|
||||||
|
software".
|
||||||
|
|
||||||
|
We specifically permit and encourage the use of this software as the basis of
|
||||||
|
commercial products, provided that all warranty or liability claims are
|
||||||
|
assumed by the product vendor.
|
||||||
|
|
||||||
|
|
||||||
|
The Unix configuration script "configure" was produced with GNU Autoconf.
|
||||||
|
It is copyright by the Free Software Foundation but is freely distributable.
|
||||||
|
The same holds for its supporting scripts (config.guess, config.sub,
|
||||||
|
ltmain.sh). Another support script, install-sh, is copyright by X Consortium
|
||||||
|
but is also freely distributable.
|
||||||
|
|
||||||
|
|
||||||
|
REFERENCES
|
||||||
|
==========
|
||||||
|
|
||||||
|
We recommend reading one or more of these references before trying to
|
||||||
|
understand the innards of the JPEG software.
|
||||||
|
|
||||||
|
The best short technical introduction to the JPEG compression algorithm is
|
||||||
|
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||||
|
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
|
||||||
|
(Adjacent articles in that issue discuss MPEG motion picture compression,
|
||||||
|
applications of JPEG, and related topics.) If you don't have the CACM issue
|
||||||
|
handy, a PDF file containing a revised version of Wallace's article is
|
||||||
|
available at https://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually
|
||||||
|
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
|
||||||
|
omits the sample images that appeared in CACM, but it includes corrections
|
||||||
|
and some added material. Note: the Wallace article is copyright ACM and IEEE,
|
||||||
|
and it may not be used for commercial purposes.
|
||||||
|
|
||||||
|
A somewhat less technical, more leisurely introduction to JPEG can be found in
|
||||||
|
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
|
||||||
|
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
|
||||||
|
good explanations and example C code for a multitude of compression methods
|
||||||
|
including JPEG. It is an excellent source if you are comfortable reading C
|
||||||
|
code but don't know much about data compression in general. The book's JPEG
|
||||||
|
sample code is far from industrial-strength, but when you are ready to look
|
||||||
|
at a full implementation, you've got one here...
|
||||||
|
|
||||||
|
The best currently available description of JPEG is the textbook "JPEG Still
|
||||||
|
Image Data Compression Standard" by William B. Pennebaker and Joan L.
|
||||||
|
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
|
||||||
|
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
|
||||||
|
standards (DIS 10918-1 and draft DIS 10918-2).
|
||||||
|
Although this is by far the most detailed and comprehensive exposition of
|
||||||
|
JPEG publicly available, we point out that it is still missing an explanation
|
||||||
|
of the most essential properties and algorithms of the underlying DCT
|
||||||
|
technology.
|
||||||
|
If you think that you know about DCT-based JPEG after reading this book,
|
||||||
|
then you are in delusion. The real fundamentals and corresponding potential
|
||||||
|
of DCT-based JPEG are not publicly known so far, and that is the reason for
|
||||||
|
all the mistaken developments taking place in the image coding domain.
|
||||||
|
|
||||||
|
The original JPEG standard is divided into two parts, Part 1 being the actual
|
||||||
|
specification, while Part 2 covers compliance testing methods. Part 1 is
|
||||||
|
titled "Digital Compression and Coding of Continuous-tone Still Images,
|
||||||
|
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
|
||||||
|
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
|
||||||
|
Continuous-tone Still Images, Part 2: Compliance testing" and has document
|
||||||
|
numbers ISO/IEC IS 10918-2, ITU-T T.83.
|
||||||
|
IJG JPEG 8 introduced an implementation of the JPEG SmartScale extension
|
||||||
|
which is specified in two documents: A contributed document at ITU and ISO
|
||||||
|
with title "ITU-T JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced
|
||||||
|
Image Coding", April 2006, Geneva, Switzerland. The latest version of this
|
||||||
|
document is Revision 3. And a contributed document ISO/IEC JTC1/SC29/WG1 N
|
||||||
|
5799 with title "Evolution of JPEG", June/July 2011, Berlin, Germany.
|
||||||
|
IJG JPEG 9 introduces a reversible color transform for improved lossless
|
||||||
|
compression which is described in a contributed document ISO/IEC JTC1/SC29/
|
||||||
|
WG1 N 6080 with title "JPEG 9 Lossless Coding", June/July 2012, Paris, France.
|
||||||
|
|
||||||
|
The JPEG standard does not specify all details of an interchangeable file
|
||||||
|
format. For the omitted details we follow the "JFIF" conventions, version 2.
|
||||||
|
JFIF version 1 has been adopted as Recommendation ITU-T T.871 (05/2011) :
|
||||||
|
Information technology - Digital compression and coding of continuous-tone
|
||||||
|
still images: JPEG File Interchange Format (JFIF). It is available as a
|
||||||
|
free download in PDF file format from https://www.itu.int/rec/T-REC-T.871.
|
||||||
|
A PDF file of the older JFIF document is available at
|
||||||
|
https://www.w3.org/Graphics/JPEG/jfif3.pdf.
|
||||||
|
|
||||||
|
The TIFF 6.0 file format specification can be obtained by FTP from
|
||||||
|
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
|
||||||
|
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
|
||||||
|
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
|
||||||
|
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
|
||||||
|
(Compression tag 7). Copies of this Note can be obtained from
|
||||||
|
https://www.ijg.org/files/. It is expected that the next revision
|
||||||
|
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
|
||||||
|
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
|
||||||
|
uses our library to implement TIFF/JPEG per the Note.
|
||||||
|
|
||||||
|
|
||||||
|
ARCHIVE LOCATIONS
|
||||||
|
=================
|
||||||
|
|
||||||
|
The "official" archive site for this software is www.ijg.org.
|
||||||
|
The most recent released version can always be found there in
|
||||||
|
directory "files". This particular version will be archived
|
||||||
|
in Windows-compatible "zip" archive format as
|
||||||
|
https://www.ijg.org/files/jpegsr9f.zip, and
|
||||||
|
in Unix-compatible "tar.gz" archive format as
|
||||||
|
https://www.ijg.org/files/jpegsrc.v9f.tar.gz.
|
||||||
|
|
||||||
|
The JPEG FAQ (Frequently Asked Questions) article is a source of some
|
||||||
|
general information about JPEG.
|
||||||
|
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
|
||||||
|
and other news.answers archive sites, including the official news.answers
|
||||||
|
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
|
||||||
|
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
|
||||||
|
with body
|
||||||
|
send usenet/news.answers/jpeg-faq/part1
|
||||||
|
send usenet/news.answers/jpeg-faq/part2
|
||||||
|
|
||||||
|
|
||||||
|
ACKNOWLEDGMENTS
|
||||||
|
===============
|
||||||
|
|
||||||
|
Thank to Juergen Bruder for providing me with a copy of the common DCT
|
||||||
|
algorithm article, only to find out that I had come to the same result
|
||||||
|
in a more direct and comprehensible way with a more generative approach.
|
||||||
|
|
||||||
|
Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the
|
||||||
|
ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.
|
||||||
|
|
||||||
|
Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
|
||||||
|
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
|
||||||
|
|
||||||
|
Thank to Thomas Richter and Daniel Lee for inviting me to the
|
||||||
|
ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16)
|
||||||
|
meeting in Berlin, Germany.
|
||||||
|
|
||||||
|
Thank to John Korejwa and Massimo Ballerini for inviting me to
|
||||||
|
fruitful consultations in Boston, MA and Milan, Italy.
|
||||||
|
|
||||||
|
Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther
|
||||||
|
Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel
|
||||||
|
for corresponding business development.
|
||||||
|
|
||||||
|
Thank to Nico Zschach and Dirk Stelling of the technical support team
|
||||||
|
at the Digital Images company in Halle for providing me with extra
|
||||||
|
equipment for configuration tests.
|
||||||
|
|
||||||
|
Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful
|
||||||
|
communication about JPEG configuration in Sigma Photo Pro software.
|
||||||
|
|
||||||
|
Thank to Andrew Finkenstadt for hosting the ijg.org site.
|
||||||
|
|
||||||
|
Thank to Thomas G. Lane for the original design and development
|
||||||
|
of this singular software package.
|
||||||
|
|
||||||
|
Thank to Lars Goehler, Andreas Heinecke, Sebastian Fuss,
|
||||||
|
Yvonne Roebert, Andrej Werner, Ulf-Dietrich Braumann,
|
||||||
|
and Nina Ssymank for support and public relations.
|
||||||
|
|
||||||
|
|
||||||
|
FILE FORMAT WARS
|
||||||
|
================
|
||||||
|
|
||||||
|
The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG,
|
||||||
|
together with ITU-T SG16) currently promotes different formats containing
|
||||||
|
the name "JPEG" which is misleading because these formats are incompatible
|
||||||
|
with original DCT-based JPEG and are based on faulty technologies.
|
||||||
|
IJG therefore does not and will not support such momentary mistakes
|
||||||
|
(see REFERENCES).
|
||||||
|
There exist also distributions under the name "OpenJPEG" promoting such
|
||||||
|
kind of formats which is misleading because they don't support original
|
||||||
|
JPEG images.
|
||||||
|
We have no sympathy for the promotion of inferior formats. Indeed, one of
|
||||||
|
the original reasons for developing this free software was to help force
|
||||||
|
convergence on common, interoperable format standards for JPEG files.
|
||||||
|
Don't use an incompatible file format!
|
||||||
|
(In any case, our decoder will remain capable of reading existing JPEG
|
||||||
|
image files indefinitely.)
|
||||||
|
|
||||||
|
The ISO committee pretends to be "responsible for the popular JPEG" in their
|
||||||
|
public reports which is not true because they don't respond to actual
|
||||||
|
requirements for the maintenance of the original JPEG specification.
|
||||||
|
Furthermore, the ISO committee pretends to "ensure interoperability" with
|
||||||
|
their standards which is not true because their "standards" support only
|
||||||
|
application-specific and proprietary use cases and contain mathematically
|
||||||
|
incorrect code.
|
||||||
|
|
||||||
|
There are currently different distributions in circulation containing the
|
||||||
|
name "libjpeg" which is misleading because they don't have the features and
|
||||||
|
are incompatible with formats supported by actual IJG libjpeg distributions.
|
||||||
|
One of those fakes is released by members of the ISO committee and just uses
|
||||||
|
the name of libjpeg for misdirection of people, similar to the abuse of the
|
||||||
|
name JPEG as described above, while having nothing in common with actual IJG
|
||||||
|
libjpeg distributions and containing mathematically incorrect code.
|
||||||
|
The other one claims to be a "derivative" or "fork" of the original libjpeg,
|
||||||
|
but violates the license conditions as described under LEGAL ISSUES above
|
||||||
|
and violates basic C programming properties.
|
||||||
|
We have no sympathy for the release of misleading, incorrect and illegal
|
||||||
|
distributions derived from obsolete code bases.
|
||||||
|
Don't use an obsolete code base!
|
||||||
|
|
||||||
|
According to the UCC (Uniform Commercial Code) law, IJG has the lawful and
|
||||||
|
legal right to foreclose on certain standardization bodies and other
|
||||||
|
institutions or corporations that knowingly perform substantial and
|
||||||
|
systematic deceptive acts and practices, fraud, theft, and damaging of the
|
||||||
|
value of the people of this planet without their knowing, willing and
|
||||||
|
intentional consent.
|
||||||
|
The titles, ownership, and rights of these institutions and all their assets
|
||||||
|
are now duly secured and held in trust for the free people of this planet.
|
||||||
|
People of the planet, on every country, may have a financial interest in
|
||||||
|
the assets of these former principals, agents, and beneficiaries of the
|
||||||
|
foreclosed institutions and corporations.
|
||||||
|
IJG asserts what is: that each man, woman, and child has unalienable value
|
||||||
|
and rights granted and deposited in them by the Creator and not any one of
|
||||||
|
the people is subordinate to any artificial principality, corporate fiction
|
||||||
|
or the special interest of another without their appropriate knowing,
|
||||||
|
willing and intentional consent made by contract or accommodation agreement.
|
||||||
|
IJG expresses that which already was.
|
||||||
|
The people have already determined and demanded that public administration
|
||||||
|
entities, national governments, and their supporting judicial systems must
|
||||||
|
be fully transparent, accountable, and liable.
|
||||||
|
IJG has secured the value for all concerned free people of the planet.
|
||||||
|
|
||||||
|
A partial list of foreclosed institutions and corporations ("Hall of Shame")
|
||||||
|
is currently prepared and will be published later.
|
||||||
|
|
||||||
|
|
||||||
|
TO DO
|
||||||
|
=====
|
||||||
|
|
||||||
|
Version 9 is the second release of a new generation JPEG standard
|
||||||
|
to overcome the limitations of the original JPEG specification,
|
||||||
|
and is the first true source reference JPEG codec.
|
||||||
|
More features are being prepared for coming releases...
|
||||||
|
|
||||||
|
Please send bug reports, offers of help, etc. to jpeg-info@ijg.org.
|
527
dep/libjpeg/change.log
Normal file
527
dep/libjpeg/change.log
Normal file
|
@ -0,0 +1,527 @@
|
||||||
|
CHANGE LOG for Independent JPEG Group's JPEG software
|
||||||
|
|
||||||
|
|
||||||
|
Version 9f 14-Jan-2024
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Add build system for C++Builder/RAD Studio.
|
||||||
|
|
||||||
|
Add build system for Xcode (beside configure).
|
||||||
|
|
||||||
|
Add ARM64EC (Emulation Compatible) platform support in the
|
||||||
|
Visual Studio build.
|
||||||
|
|
||||||
|
|
||||||
|
Version 9e 16-Jan-2022
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Include alternate user interface files for cjpeg/djpeg.
|
||||||
|
|
||||||
|
jcparam.c: change default chrominance DC quantization factor
|
||||||
|
for lossless support. Note: Requires rebuild of test images.
|
||||||
|
|
||||||
|
rdgif.c, cderror.h: add sanity check for GIF image dimensions.
|
||||||
|
Thank to Casper Sun for cjpeg potential vulnerability report.
|
||||||
|
|
||||||
|
Add ARM and ARM64 platform support in the Visual Studio build.
|
||||||
|
|
||||||
|
|
||||||
|
Version 9d 12-Jan-2020
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Optimize the optimal Huffman code table generation to produce
|
||||||
|
slightly smaller files. Thank to John Korejwa for suggestion.
|
||||||
|
Note: Requires rebuild of testimgp.jpg.
|
||||||
|
|
||||||
|
Decoding Huffman: Use default tables if tables are not defined.
|
||||||
|
Thank to Simone Azzalin for report (Motion JPEG),
|
||||||
|
and to Martin Strunz for hint.
|
||||||
|
|
||||||
|
Add sanity check in optimal Huffman code table generation.
|
||||||
|
Thank to Adam Farley for suggestion.
|
||||||
|
|
||||||
|
rdtarga.c: use read_byte(), with EOF check, instead of getc()
|
||||||
|
in read_*_pixel().
|
||||||
|
Thank to Chijin Zhou for cjpeg potential vulnerability report.
|
||||||
|
|
||||||
|
jmemnobs.c: respect the max_memory_to_use setting in
|
||||||
|
jpeg_mem_available() computation. Thank to Sheng Shu and
|
||||||
|
Dongdong She for djpeg potential vulnerability report.
|
||||||
|
|
||||||
|
jdarith.c, jdhuff.c: avoid left shift of negative value
|
||||||
|
compiler warning in decode_mcu_AC_refine().
|
||||||
|
Thank to Indu Bhagat for suggestion.
|
||||||
|
|
||||||
|
Add x64 (64-bit) platform support, avoid compiler warnings.
|
||||||
|
Thank to Jonathan Potter, Feiyun Wang, and Sheng Shu for suggestion.
|
||||||
|
|
||||||
|
Adjust libjpeg version specification for pkg-config file.
|
||||||
|
Thank to Chen Chen for suggestion.
|
||||||
|
|
||||||
|
Restore GIF read and write support from libjpeg version 6a.
|
||||||
|
Thank to Wolfgang Werner (W.W.) Heinz for suggestion.
|
||||||
|
|
||||||
|
Improve consistency in raw (downsampled) image data processing mode.
|
||||||
|
Thank to Zhongyuan Zhou for hint.
|
||||||
|
|
||||||
|
Avoid out of bounds array read (AC derived table pointers)
|
||||||
|
in start pass in jdhuff.c. Thank to Peng Li for report.
|
||||||
|
|
||||||
|
Improve code sanity (jdhuff.c).
|
||||||
|
Thank to Reza Mirzazade farkhani for reports.
|
||||||
|
|
||||||
|
Add jpegtran -drop option; add options to the crop extension and wipe
|
||||||
|
to fill the extra area with content from the source image region,
|
||||||
|
instead of gray out.
|
||||||
|
|
||||||
|
|
||||||
|
Version 9c 14-Jan-2018
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
jpegtran: add an option to the -wipe switch to fill the region
|
||||||
|
with the average of adjacent blocks, instead of gray out.
|
||||||
|
Thank to Caitlyn Feddock and Maddie Ziegler for inspiration.
|
||||||
|
|
||||||
|
Make range extension bits adjustable (in jpegint.h).
|
||||||
|
Thank to Robin Watts for suggestion.
|
||||||
|
|
||||||
|
Provide macros for fflush() and ferror() in jinclude.h in order
|
||||||
|
to facilitate adaption by applications using an own FILE class.
|
||||||
|
Thank to Gerhard Huber for suggestion.
|
||||||
|
|
||||||
|
Add libjpeg pkg-config file. Thank to Mark Lavi, Vincent Torri,
|
||||||
|
Patrick McMunn, and Huw Davies for suggestion.
|
||||||
|
|
||||||
|
Add sanity checks in cjpeg image reader modules.
|
||||||
|
Thank to Bingchang, Liu for reports.
|
||||||
|
|
||||||
|
|
||||||
|
Version 9b 17-Jan-2016
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Improvements and optimizations in DCT and color calculations.
|
||||||
|
Normalize range limit array composition and access pattern.
|
||||||
|
Thank to Sia Furler and Maddie Ziegler for inspiration.
|
||||||
|
|
||||||
|
Use merged upsample with scaled DCT sizes larger than 8.
|
||||||
|
Thank to Taylor Hatala for inspiration.
|
||||||
|
|
||||||
|
Check for excessive comment lengths in argument parsing in wrjpgcom.c.
|
||||||
|
Thank to Julian Cohen for hint.
|
||||||
|
|
||||||
|
Add makefile.b32 for use with Borland C++ 32-bit (bcc32).
|
||||||
|
Thank to Joe Slater for contribution.
|
||||||
|
|
||||||
|
Document 'f' specifier for jpegtran -crop specification.
|
||||||
|
Thank to Michele Martone for suggestion.
|
||||||
|
|
||||||
|
Use defined value from header instead of hardwired number in rdswitch.c.
|
||||||
|
Thank to Robert Sprowson for hint.
|
||||||
|
|
||||||
|
|
||||||
|
Version 9a 19-Jan-2014
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Add support for wide gamut color spaces (JFIF version 2).
|
||||||
|
Improve clarity and accuracy in color conversion modules.
|
||||||
|
Note: Requires rebuild of test images.
|
||||||
|
|
||||||
|
Extend the bit depth support to all values from 8 to 12
|
||||||
|
(BITS_IN_JSAMPLE configuration option in jmorecfg.h).
|
||||||
|
jpegtran now supports N bits sample data precision with all N from 8 to 12
|
||||||
|
in a single instance. Thank to Roland Fassauer for inspiration.
|
||||||
|
|
||||||
|
Try to resolve issues with new boolean type definition.
|
||||||
|
Thank also to v4hn for suggestion.
|
||||||
|
|
||||||
|
Enable option to use default Huffman tables for lossless compression
|
||||||
|
(for hardware solution), and in this case improve lossless RGB compression
|
||||||
|
with reversible color transform. Thank to Benny Alexandar for hint.
|
||||||
|
|
||||||
|
Extend the entropy decoding structure, so that extraneous bytes between
|
||||||
|
compressed scan data and following marker can be reported correctly.
|
||||||
|
Thank to Nigel Tao for hint.
|
||||||
|
|
||||||
|
Add jpegtran -wipe option and extension for -crop.
|
||||||
|
Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion.
|
||||||
|
|
||||||
|
|
||||||
|
Version 9 13-Jan-2013
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
Add cjpeg -rgb1 option to create an RGB JPEG file, and insert
|
||||||
|
a simple reversible color transform into the processing which
|
||||||
|
significantly improves the compression.
|
||||||
|
The recommended command for lossless coding of RGB images is now
|
||||||
|
cjpeg -rgb1 -block 1 -arithmetic.
|
||||||
|
As said, this option improves the compression significantly, but
|
||||||
|
the files are not compatible with JPEG decoders prior to IJG v9
|
||||||
|
due to the included color transform.
|
||||||
|
The used color transform and marker signaling is compatible with
|
||||||
|
other JPEG standards (e.g., JPEG-LS part 2).
|
||||||
|
|
||||||
|
Remove the automatic de-ANSI-fication support (Automake 1.12).
|
||||||
|
Thank also to Nitin A Kamble for suggestion.
|
||||||
|
|
||||||
|
Add remark for jpeg_mem_dest() in jdatadst.c.
|
||||||
|
Thank to Elie-Gregoire Khoury for the hint.
|
||||||
|
|
||||||
|
Support files with invalid component identifiers (created
|
||||||
|
by Adobe PDF). Thank to Robin Watts for the suggestion.
|
||||||
|
|
||||||
|
Adapt full buffer case in jcmainct.c for use with scaled DCT.
|
||||||
|
Thank to Sergii Biloshytskyi for the suggestion.
|
||||||
|
|
||||||
|
Add type identifier for declaration of noreturn functions.
|
||||||
|
Thank to Brett L. Moore for the suggestion.
|
||||||
|
|
||||||
|
Correct argument type in format string, avoid compiler warnings.
|
||||||
|
Thank to Vincent Torri for hint.
|
||||||
|
|
||||||
|
Add missing #include directives in configuration checks, avoid
|
||||||
|
configuration errors. Thank to John Spencer for the hint.
|
||||||
|
|
||||||
|
|
||||||
|
Version 8d 15-Jan-2012
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Add cjpeg -rgb option to create RGB JPEG files.
|
||||||
|
Using this switch suppresses the conversion from RGB
|
||||||
|
colorspace input to the default YCbCr JPEG colorspace.
|
||||||
|
This feature allows true lossless JPEG coding of RGB color images.
|
||||||
|
The recommended command for this purpose is currently
|
||||||
|
cjpeg -rgb -block 1 -arithmetic.
|
||||||
|
SmartScale capable decoder (introduced with IJG JPEG 8) required.
|
||||||
|
Thank to Michael Koch for the initial suggestion.
|
||||||
|
|
||||||
|
Add option to disable the region adjustment in the transupp crop code.
|
||||||
|
Thank to Jeffrey Friedl for the suggestion.
|
||||||
|
|
||||||
|
Thank to Richard Jones and Edd Dawson for various minor corrections.
|
||||||
|
|
||||||
|
Thank to Akim Demaille for configure.ac cleanup.
|
||||||
|
|
||||||
|
|
||||||
|
Version 8c 16-Jan-2011
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Add option to compression library and cjpeg (-block N) to use
|
||||||
|
different DCT block size.
|
||||||
|
All N from 1 to 16 are possible. Default is 8 (baseline format).
|
||||||
|
Larger values produce higher compression,
|
||||||
|
smaller values produce higher quality.
|
||||||
|
SmartScale capable decoder (introduced with IJG JPEG 8) required.
|
||||||
|
|
||||||
|
|
||||||
|
Version 8b 16-May-2010
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Repair problem in new memory source manager with corrupt JPEG data.
|
||||||
|
Thank to Ted Campbell and Samuel Chun for the report.
|
||||||
|
|
||||||
|
Repair problem in Makefile.am test target.
|
||||||
|
Thank to anonymous user for the report.
|
||||||
|
|
||||||
|
Support MinGW installation with automatic configure.
|
||||||
|
Thank to Volker Grabsch for the suggestion.
|
||||||
|
|
||||||
|
|
||||||
|
Version 8a 28-Feb-2010
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
Writing tables-only datastreams via jpeg_write_tables works again.
|
||||||
|
|
||||||
|
Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg.
|
||||||
|
Thank to Brett Blackham for the suggestion.
|
||||||
|
|
||||||
|
Improve accuracy in floating point IDCT calculation.
|
||||||
|
Thank to Robert Hooke for the hint.
|
||||||
|
|
||||||
|
|
||||||
|
Version 8 10-Jan-2010
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
jpegtran now supports the same -scale option as djpeg for "lossless" resize.
|
||||||
|
An implementation of the JPEG SmartScale extension is required for this
|
||||||
|
feature. A (draft) specification of the JPEG SmartScale extension is
|
||||||
|
available as a contributed document at ITU and ISO. Revision 2 or later
|
||||||
|
of the document is required (latest document version is Revision 3).
|
||||||
|
The SmartScale extension will enable more features beside lossless resize
|
||||||
|
in future implementations, as described in the document (new compression
|
||||||
|
options).
|
||||||
|
|
||||||
|
Add sanity check in BMP reader module to avoid cjpeg crash for empty input
|
||||||
|
image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error).
|
||||||
|
|
||||||
|
Add data source and destination managers for read from and write to
|
||||||
|
memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest.
|
||||||
|
Thank to Roberto Boni from Italy for the suggestion.
|
||||||
|
|
||||||
|
|
||||||
|
Version 7 27-Jun-2009
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
New scaled DCTs implemented.
|
||||||
|
djpeg now supports scalings N/8 with all N from 1 to 16.
|
||||||
|
cjpeg now supports scalings 8/N with all N from 1 to 16.
|
||||||
|
Scaled DCTs with size larger than 8 are now also used for resolving the
|
||||||
|
common 2x2 chroma subsampling case without additional spatial resampling.
|
||||||
|
Separate spatial resampling for those kind of files is now only necessary
|
||||||
|
for N>8 scaling cases.
|
||||||
|
Furthermore, separate scaled DCT functions are provided for direct resolving
|
||||||
|
of the common asymmetric subsampling cases (2x1 and 1x2) without additional
|
||||||
|
spatial resampling.
|
||||||
|
|
||||||
|
cjpeg -quality option has been extended for support of separate quality
|
||||||
|
settings for luminance and chrominance (or in general, for every provided
|
||||||
|
quantization table slot).
|
||||||
|
New API function jpeg_default_qtables() and q_scale_factor array in library.
|
||||||
|
|
||||||
|
Added -nosmooth option to cjpeg, complementary to djpeg.
|
||||||
|
New variable "do_fancy_downsampling" in library, complement to fancy
|
||||||
|
upsampling. Fancy upsampling now uses direct DCT scaling with sizes
|
||||||
|
larger than 8. The old method is not reversible and has been removed.
|
||||||
|
|
||||||
|
Support arithmetic entropy encoding and decoding.
|
||||||
|
Added files jaricom.c, jcarith.c, jdarith.c.
|
||||||
|
|
||||||
|
Straighten the file structure:
|
||||||
|
Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h.
|
||||||
|
|
||||||
|
jpegtran has a new "lossless" cropping feature.
|
||||||
|
|
||||||
|
Implement -perfect option in jpegtran, new API function
|
||||||
|
jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch)
|
||||||
|
|
||||||
|
Better error messages for jpegtran fopen failure.
|
||||||
|
(DP 203_jpegtran_errmsg.dpatch)
|
||||||
|
|
||||||
|
Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c:
|
||||||
|
according to Netpbm, the de facto standard implementation of the PNM formats,
|
||||||
|
the most significant byte is first. (DP 203_rdppm.dpatch)
|
||||||
|
|
||||||
|
Add -raw option to rdjpgcom not to mangle the output.
|
||||||
|
(DP 205_rdjpgcom_raw.dpatch)
|
||||||
|
|
||||||
|
Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch)
|
||||||
|
|
||||||
|
Add extern "C" to jpeglib.h.
|
||||||
|
This avoids the need to put extern "C" { ... } around #include "jpeglib.h"
|
||||||
|
in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the
|
||||||
|
configuration prevents this. (DP 202_jpeglib.h_c++.dpatch)
|
||||||
|
|
||||||
|
|
||||||
|
Version 6b 27-Mar-1998
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
jpegtran has new features for lossless image transformations (rotation
|
||||||
|
and flipping) as well as "lossless" reduction to grayscale.
|
||||||
|
|
||||||
|
jpegtran now copies comments by default; it has a -copy switch to enable
|
||||||
|
copying all APPn blocks as well, or to suppress comments. (Formerly it
|
||||||
|
always suppressed comments and APPn blocks.) jpegtran now also preserves
|
||||||
|
JFIF version and resolution information.
|
||||||
|
|
||||||
|
New decompressor library feature: COM and APPn markers found in the input
|
||||||
|
file can be saved in memory for later use by the application. (Before,
|
||||||
|
you had to code this up yourself with a custom marker processor.)
|
||||||
|
|
||||||
|
There is an unused field "void * client_data" now in compress and decompress
|
||||||
|
parameter structs; this may be useful in some applications.
|
||||||
|
|
||||||
|
JFIF version number information is now saved by the decoder and accepted by
|
||||||
|
the encoder. jpegtran uses this to copy the source file's version number,
|
||||||
|
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
|
||||||
|
extensions but claim to be version 1.01. Applications that generate their
|
||||||
|
own JFXX extension markers also (finally) have a supported way to cause the
|
||||||
|
encoder to emit JFIF version number 1.02.
|
||||||
|
|
||||||
|
djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
|
||||||
|
than as unknown APP0 markers.
|
||||||
|
|
||||||
|
In -verbose mode, djpeg and rdjpgcom will try to print the contents of
|
||||||
|
APP12 markers as text. Some digital cameras store useful text information
|
||||||
|
in APP12 markers.
|
||||||
|
|
||||||
|
Handling of truncated data streams is more robust: blocks beyond the one in
|
||||||
|
which the error occurs will be output as uniform gray, or left unchanged
|
||||||
|
if decoding a progressive JPEG. The appearance no longer depends on the
|
||||||
|
Huffman tables being used.
|
||||||
|
|
||||||
|
Huffman tables are checked for validity much more carefully than before.
|
||||||
|
|
||||||
|
To avoid the Unisys LZW patent, djpeg's GIF output capability has been
|
||||||
|
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
|
||||||
|
has been removed altogether. We're not happy about it either, but there
|
||||||
|
seems to be no good alternative.
|
||||||
|
|
||||||
|
The configure script now supports building libjpeg as a shared library
|
||||||
|
on many flavors of Unix (all the ones that GNU libtool knows how to
|
||||||
|
build shared libraries for). Use "./configure --enable-shared" to
|
||||||
|
try this out.
|
||||||
|
|
||||||
|
New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
|
||||||
|
Also, a jconfig file and a build script for Metrowerks CodeWarrior
|
||||||
|
on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there
|
||||||
|
are miscellaneous other minor improvements in the makefiles.
|
||||||
|
|
||||||
|
jmemmac.c now knows how to create temporary files following Mac System 7
|
||||||
|
conventions.
|
||||||
|
|
||||||
|
djpeg's -map switch is now able to read raw-format PPM files reliably.
|
||||||
|
|
||||||
|
cjpeg -progressive -restart no longer generates any unnecessary DRI markers.
|
||||||
|
|
||||||
|
Multiple calls to jpeg_simple_progression for a single JPEG object
|
||||||
|
no longer leak memory.
|
||||||
|
|
||||||
|
|
||||||
|
Version 6a 7-Feb-96
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
Library initialization sequence modified to detect version mismatches
|
||||||
|
and struct field packing mismatches between library and calling application.
|
||||||
|
This change requires applications to be recompiled, but does not require
|
||||||
|
any application source code change.
|
||||||
|
|
||||||
|
All routine declarations changed to the style "GLOBAL(type) name ...",
|
||||||
|
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
|
||||||
|
routine's return type as an argument. This makes it possible to add
|
||||||
|
Microsoft-style linkage keywords to all the routines by changing just
|
||||||
|
these macros. Note that any application code that was using these macros
|
||||||
|
will have to be changed.
|
||||||
|
|
||||||
|
DCT coefficient quantization tables are now stored in normal array order
|
||||||
|
rather than zigzag order. Application code that calls jpeg_add_quant_table,
|
||||||
|
or otherwise manipulates quantization tables directly, will need to be
|
||||||
|
changed. If you need to make such code work with either older or newer
|
||||||
|
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
|
||||||
|
recommended.
|
||||||
|
|
||||||
|
djpeg's trace capability now dumps DQT tables in natural order, not zigzag
|
||||||
|
order. This allows the trace output to be made into a "-qtables" file
|
||||||
|
more easily.
|
||||||
|
|
||||||
|
New system-dependent memory manager module for use on Apple Macintosh.
|
||||||
|
|
||||||
|
Fix bug in cjpeg's -smooth option: last one or two scanlines would be
|
||||||
|
duplicates of the prior line unless the image height mod 16 was 1 or 2.
|
||||||
|
|
||||||
|
Repair minor problems in VMS, BCC, MC6 makefiles.
|
||||||
|
|
||||||
|
New configure script based on latest GNU Autoconf.
|
||||||
|
|
||||||
|
Correct the list of include files needed by MetroWerks C for ccommand().
|
||||||
|
|
||||||
|
Numerous small documentation updates.
|
||||||
|
|
||||||
|
|
||||||
|
Version 6 2-Aug-95
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
Progressive JPEG support: library can read and write full progressive JPEG
|
||||||
|
files. A "buffered image" mode supports incremental decoding for on-the-fly
|
||||||
|
display of progressive images. Simply recompiling an existing IJG-v5-based
|
||||||
|
decoder with v6 should allow it to read progressive files, though of course
|
||||||
|
without any special progressive display.
|
||||||
|
|
||||||
|
New "jpegtran" application performs lossless transcoding between different
|
||||||
|
JPEG formats; primarily, it can be used to convert baseline to progressive
|
||||||
|
JPEG and vice versa. In support of jpegtran, the library now allows lossless
|
||||||
|
reading and writing of JPEG files as DCT coefficient arrays. This ability
|
||||||
|
may be of use in other applications.
|
||||||
|
|
||||||
|
Notes for programmers:
|
||||||
|
* We changed jpeg_start_decompress() to be able to suspend; this makes all
|
||||||
|
decoding modes available to suspending-input applications. However,
|
||||||
|
existing applications that use suspending input will need to be changed
|
||||||
|
to check the return value from jpeg_start_decompress(). You don't need to
|
||||||
|
do anything if you don't use a suspending data source.
|
||||||
|
* We changed the interface to the virtual array routines: access_virt_array
|
||||||
|
routines now take a count of the number of rows to access this time. The
|
||||||
|
last parameter to request_virt_array routines is now interpreted as the
|
||||||
|
maximum number of rows that may be accessed at once, but not necessarily
|
||||||
|
the height of every access.
|
||||||
|
|
||||||
|
|
||||||
|
Version 5b 15-Mar-95
|
||||||
|
---------------------
|
||||||
|
|
||||||
|
Correct bugs with grayscale images having v_samp_factor > 1.
|
||||||
|
|
||||||
|
jpeg_write_raw_data() now supports output suspension.
|
||||||
|
|
||||||
|
Correct bugs in "configure" script for case of compiling in
|
||||||
|
a directory other than the one containing the source files.
|
||||||
|
|
||||||
|
Repair bug in jquant1.c: sometimes didn't use as many colors as it could.
|
||||||
|
|
||||||
|
Borland C makefile and jconfig file work under either MS-DOS or OS/2.
|
||||||
|
|
||||||
|
Miscellaneous improvements to documentation.
|
||||||
|
|
||||||
|
|
||||||
|
Version 5a 7-Dec-94
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
Changed color conversion roundoff behavior so that grayscale values are
|
||||||
|
represented exactly. (This causes test image files to change.)
|
||||||
|
|
||||||
|
Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
|
||||||
|
improvement.
|
||||||
|
|
||||||
|
New configure script based on latest GNU Autoconf.
|
||||||
|
Fix configure script to handle CFLAGS correctly.
|
||||||
|
Rename *.auto files to *.cfg, so that configure script still works if
|
||||||
|
file names have been truncated for DOS.
|
||||||
|
|
||||||
|
Fix bug in rdbmp.c: didn't allow for extra data between header and image.
|
||||||
|
|
||||||
|
Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.
|
||||||
|
|
||||||
|
Fix several bugs in rdrle.c.
|
||||||
|
|
||||||
|
NEED_SHORT_EXTERNAL_NAMES option was broken.
|
||||||
|
|
||||||
|
Revise jerror.h/jerror.c for more flexibility in message table.
|
||||||
|
|
||||||
|
Repair oversight in jmemname.c NO_MKTEMP case: file could be there
|
||||||
|
but unreadable.
|
||||||
|
|
||||||
|
|
||||||
|
Version 5 24-Sep-94
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
Version 5 represents a nearly complete redesign and rewrite of the IJG
|
||||||
|
software. Major user-visible changes include:
|
||||||
|
* Automatic configuration simplifies installation for most Unix systems.
|
||||||
|
* A range of speed vs. image quality tradeoffs are supported.
|
||||||
|
This includes resizing of an image during decompression: scaling down
|
||||||
|
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
|
||||||
|
* New programs rdjpgcom and wrjpgcom allow insertion and extraction
|
||||||
|
of text comments in a JPEG file.
|
||||||
|
|
||||||
|
The application programmer's interface to the library has changed completely.
|
||||||
|
Notable improvements include:
|
||||||
|
* We have eliminated the use of callback routines for handling the
|
||||||
|
uncompressed image data. The application now sees the library as a
|
||||||
|
set of routines that it calls to read or write image data on a
|
||||||
|
scanline-by-scanline basis.
|
||||||
|
* The application image data is represented in a conventional interleaved-
|
||||||
|
pixel format, rather than as a separate array for each color channel.
|
||||||
|
This can save a copying step in many programs.
|
||||||
|
* The handling of compressed data has been cleaned up: the application can
|
||||||
|
supply routines to source or sink the compressed data. It is possible to
|
||||||
|
suspend processing on source/sink buffer overrun, although this is not
|
||||||
|
supported in all operating modes.
|
||||||
|
* All static state has been eliminated from the library, so that multiple
|
||||||
|
instances of compression or decompression can be active concurrently.
|
||||||
|
* JPEG abbreviated datastream formats are supported, ie, quantization and
|
||||||
|
Huffman tables can be stored separately from the image data.
|
||||||
|
* And not only that, but the documentation of the library has improved
|
||||||
|
considerably!
|
||||||
|
|
||||||
|
|
||||||
|
The last widely used release before the version 5 rewrite was version 4A of
|
||||||
|
18-Feb-93. Change logs before that point have been discarded, since they
|
||||||
|
are not of much interest after the rewrite.
|
171
dep/libjpeg/include/jconfig.h
Normal file
171
dep/libjpeg/include/jconfig.h
Normal file
|
@ -0,0 +1,171 @@
|
||||||
|
/*
|
||||||
|
* jconfig.txt
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||||
|
* Modified 2009-2013 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file documents the configuration options that are required to
|
||||||
|
* customize the JPEG software for a particular system.
|
||||||
|
*
|
||||||
|
* The actual configuration options for a particular installation are stored
|
||||||
|
* in jconfig.h. On many machines, jconfig.h can be generated automatically
|
||||||
|
* or copied from one of the "canned" jconfig files that we supply. But if
|
||||||
|
* you need to generate a jconfig.h file by hand, this file tells you how.
|
||||||
|
*
|
||||||
|
* DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
|
||||||
|
* EDIT A COPY NAMED JCONFIG.H.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These symbols indicate the properties of your machine or compiler.
|
||||||
|
* #define the symbol if yes, #undef it if no.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Does your compiler support function prototypes?
|
||||||
|
* (If not, you also need to use ansi2knr, see install.txt)
|
||||||
|
*/
|
||||||
|
#define HAVE_PROTOTYPES
|
||||||
|
|
||||||
|
/* Does your compiler support the declaration "unsigned char" ?
|
||||||
|
* How about "unsigned short" ?
|
||||||
|
*/
|
||||||
|
#define HAVE_UNSIGNED_CHAR
|
||||||
|
#define HAVE_UNSIGNED_SHORT
|
||||||
|
|
||||||
|
/* Define "void" as "char" if your compiler doesn't know about type void.
|
||||||
|
* NOTE: be sure to define void such that "void *" represents the most general
|
||||||
|
* pointer type, e.g., that returned by malloc().
|
||||||
|
*/
|
||||||
|
/* #define void char */
|
||||||
|
|
||||||
|
/* Define "const" as empty if your compiler doesn't know the "const" keyword.
|
||||||
|
*/
|
||||||
|
/* #define const */
|
||||||
|
|
||||||
|
/* Define this if an ordinary "char" type is unsigned.
|
||||||
|
* If you're not sure, leaving it undefined will work at some cost in speed.
|
||||||
|
* If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
|
||||||
|
*/
|
||||||
|
#undef CHAR_IS_UNSIGNED
|
||||||
|
|
||||||
|
/* Define this if your system has an ANSI-conforming <stddef.h> file.
|
||||||
|
*/
|
||||||
|
#define HAVE_STDDEF_H
|
||||||
|
|
||||||
|
/* Define this if your system has an ANSI-conforming <stdlib.h> file.
|
||||||
|
*/
|
||||||
|
#define HAVE_STDLIB_H
|
||||||
|
|
||||||
|
/* Define this if your system does not have an ANSI/SysV <string.h>,
|
||||||
|
* but does have a BSD-style <strings.h>.
|
||||||
|
*/
|
||||||
|
#undef NEED_BSD_STRINGS
|
||||||
|
|
||||||
|
/* Define this if your system does not provide typedef size_t in any of the
|
||||||
|
* ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
|
||||||
|
* <sys/types.h> instead.
|
||||||
|
*/
|
||||||
|
#undef NEED_SYS_TYPES_H
|
||||||
|
|
||||||
|
/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
|
||||||
|
* unless you are using a large-data memory model or 80386 flat-memory mode.
|
||||||
|
* On less brain-damaged CPUs this symbol must not be defined.
|
||||||
|
* (Defining this symbol causes large data structures to be referenced through
|
||||||
|
* "far" pointers and to be allocated with a special version of malloc.)
|
||||||
|
*/
|
||||||
|
#undef NEED_FAR_POINTERS
|
||||||
|
|
||||||
|
/* Define this if your linker needs global names to be unique in less
|
||||||
|
* than the first 15 characters.
|
||||||
|
*/
|
||||||
|
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||||
|
|
||||||
|
/* Although a real ANSI C compiler can deal perfectly well with pointers to
|
||||||
|
* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
|
||||||
|
* and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
|
||||||
|
* define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you
|
||||||
|
* actually get "missing structure definition" warnings or errors while
|
||||||
|
* compiling the JPEG code.
|
||||||
|
*/
|
||||||
|
#undef INCOMPLETE_TYPES_BROKEN
|
||||||
|
|
||||||
|
/* Define "boolean" as unsigned char, not enum, on Windows systems.
|
||||||
|
*/
|
||||||
|
#ifdef _WIN32
|
||||||
|
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
|
||||||
|
typedef unsigned char boolean;
|
||||||
|
#endif
|
||||||
|
#ifndef FALSE /* in case these macros already exist */
|
||||||
|
#define FALSE 0 /* values of boolean */
|
||||||
|
#endif
|
||||||
|
#ifndef TRUE
|
||||||
|
#define TRUE 1
|
||||||
|
#endif
|
||||||
|
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The following options affect code selection within the JPEG library,
|
||||||
|
* but they don't need to be visible to applications using the library.
|
||||||
|
* To minimize application namespace pollution, the symbols won't be
|
||||||
|
* defined unless JPEG_INTERNALS has been defined.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef JPEG_INTERNALS
|
||||||
|
|
||||||
|
/* Define this if your compiler implements ">>" on signed values as a logical
|
||||||
|
* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
|
||||||
|
* which is the normal and rational definition.
|
||||||
|
*/
|
||||||
|
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||||
|
|
||||||
|
|
||||||
|
#endif /* JPEG_INTERNALS */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The remaining options do not affect the JPEG library proper,
|
||||||
|
* but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
|
||||||
|
* Other applications can ignore these.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef JPEG_CJPEG_DJPEG
|
||||||
|
|
||||||
|
/* These defines indicate which image (non-JPEG) file formats are allowed. */
|
||||||
|
|
||||||
|
#define BMP_SUPPORTED /* BMP image file format */
|
||||||
|
#define GIF_SUPPORTED /* GIF image file format */
|
||||||
|
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||||
|
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||||
|
#define TARGA_SUPPORTED /* Targa image file format */
|
||||||
|
|
||||||
|
/* Define this if you want to name both input and output files on the command
|
||||||
|
* line, rather than using stdout and optionally stdin. You MUST do this if
|
||||||
|
* your system can't cope with binary I/O to stdin/stdout. See comments at
|
||||||
|
* head of cjpeg.c or djpeg.c.
|
||||||
|
*/
|
||||||
|
#undef TWO_FILE_COMMANDLINE
|
||||||
|
|
||||||
|
/* Define this if your system needs explicit cleanup of temporary files.
|
||||||
|
* This is crucial under MS-DOS, where the temporary "files" may be areas
|
||||||
|
* of extended memory; on most other systems it's not as important.
|
||||||
|
*/
|
||||||
|
#undef NEED_SIGNAL_CATCHER
|
||||||
|
|
||||||
|
/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
|
||||||
|
* This is necessary on systems that distinguish text files from binary files,
|
||||||
|
* and is harmless on most systems that don't. If you have one of the rare
|
||||||
|
* systems that complains about the "b" spec, define this symbol.
|
||||||
|
*/
|
||||||
|
#undef DONT_USE_B_MODE
|
||||||
|
|
||||||
|
/* Define this if you want percent-done progress reports from cjpeg/djpeg.
|
||||||
|
*/
|
||||||
|
#undef PROGRESS_REPORT
|
||||||
|
|
||||||
|
|
||||||
|
#endif /* JPEG_CJPEG_DJPEG */
|
304
dep/libjpeg/include/jerror.h
Normal file
304
dep/libjpeg/include/jerror.h
Normal file
|
@ -0,0 +1,304 @@
|
||||||
|
/*
|
||||||
|
* jerror.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||||
|
* Modified 1997-2018 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file defines the error and message codes for the JPEG library.
|
||||||
|
* Edit this file to add new codes, or to translate the message strings to
|
||||||
|
* some other language.
|
||||||
|
* A set of error-reporting macros are defined too. Some applications using
|
||||||
|
* the JPEG library may wish to include this file to get the error codes
|
||||||
|
* and/or the macros.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* To define the enum list of message codes, include this file without
|
||||||
|
* defining macro JMESSAGE. To create a message string table, include it
|
||||||
|
* again with a suitable JMESSAGE definition (see jerror.c for an example).
|
||||||
|
*/
|
||||||
|
#ifndef JMESSAGE
|
||||||
|
#ifndef JERROR_H
|
||||||
|
/* First time through, define the enum list */
|
||||||
|
#define JMAKE_ENUM_LIST
|
||||||
|
#else
|
||||||
|
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
|
||||||
|
#define JMESSAGE(code,string)
|
||||||
|
#endif /* JERROR_H */
|
||||||
|
#endif /* JMESSAGE */
|
||||||
|
|
||||||
|
#ifdef JMAKE_ENUM_LIST
|
||||||
|
|
||||||
|
typedef enum {
|
||||||
|
|
||||||
|
#define JMESSAGE(code,string) code ,
|
||||||
|
|
||||||
|
#endif /* JMAKE_ENUM_LIST */
|
||||||
|
|
||||||
|
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
|
||||||
|
|
||||||
|
/* For maintenance convenience, list is alphabetical by message code name */
|
||||||
|
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
|
||||||
|
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
|
||||||
|
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
|
||||||
|
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
|
||||||
|
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
|
||||||
|
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
|
||||||
|
JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
|
||||||
|
JMESSAGE(JERR_BAD_DROP_SAMPLING,
|
||||||
|
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
|
||||||
|
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
|
||||||
|
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
|
||||||
|
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
|
||||||
|
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
|
||||||
|
JMESSAGE(JERR_BAD_LIB_VERSION,
|
||||||
|
"Wrong JPEG library version: library is %d, caller expects %d")
|
||||||
|
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
|
||||||
|
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
|
||||||
|
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
|
||||||
|
JMESSAGE(JERR_BAD_PROGRESSION,
|
||||||
|
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
|
||||||
|
JMESSAGE(JERR_BAD_PROG_SCRIPT,
|
||||||
|
"Invalid progressive parameters at scan script entry %d")
|
||||||
|
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
|
||||||
|
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
|
||||||
|
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
|
||||||
|
JMESSAGE(JERR_BAD_STRUCT_SIZE,
|
||||||
|
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
|
||||||
|
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
|
||||||
|
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
|
||||||
|
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
|
||||||
|
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
|
||||||
|
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
|
||||||
|
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
|
||||||
|
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
|
||||||
|
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
|
||||||
|
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
|
||||||
|
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
|
||||||
|
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
|
||||||
|
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
|
||||||
|
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
|
||||||
|
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
|
||||||
|
JMESSAGE(JERR_FILE_READ, "Input file read error")
|
||||||
|
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
|
||||||
|
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
|
||||||
|
JMESSAGE(JERR_HUFF_CLEN_OUTOFBOUNDS, "Huffman code size table out of bounds")
|
||||||
|
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
|
||||||
|
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
|
||||||
|
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
|
||||||
|
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
|
||||||
|
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
|
||||||
|
"Cannot transcode due to multiple use of quantization table %d")
|
||||||
|
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
|
||||||
|
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
|
||||||
|
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
|
||||||
|
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||||
|
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
|
||||||
|
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
|
||||||
|
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||||
|
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||||
|
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
|
||||||
|
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
|
||||||
|
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
|
||||||
|
JMESSAGE(JERR_QUANT_COMPONENTS,
|
||||||
|
"Cannot quantize more than %d color components")
|
||||||
|
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
|
||||||
|
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
|
||||||
|
JMESSAGE(JERR_SOF_BEFORE, "Invalid JPEG file structure: %s before SOF")
|
||||||
|
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
|
||||||
|
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
|
||||||
|
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
|
||||||
|
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
|
||||||
|
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
|
||||||
|
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
|
||||||
|
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
|
||||||
|
JMESSAGE(JERR_TFILE_WRITE,
|
||||||
|
"Write failed on temporary file --- out of disk space?")
|
||||||
|
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
|
||||||
|
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
|
||||||
|
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
|
||||||
|
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
|
||||||
|
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
|
||||||
|
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
|
||||||
|
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
|
||||||
|
JMESSAGE(JMSG_VERSION, JVERSION)
|
||||||
|
JMESSAGE(JTRC_16BIT_TABLES,
|
||||||
|
"Caution: quantization tables are too coarse for baseline JPEG")
|
||||||
|
JMESSAGE(JTRC_ADOBE,
|
||||||
|
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
|
||||||
|
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
|
||||||
|
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
|
||||||
|
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
|
||||||
|
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
|
||||||
|
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
|
||||||
|
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
|
||||||
|
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
|
||||||
|
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
|
||||||
|
JMESSAGE(JTRC_EOI, "End Of Image")
|
||||||
|
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
|
||||||
|
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
|
||||||
|
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
|
||||||
|
"Warning: thumbnail image size does not match data length %u")
|
||||||
|
JMESSAGE(JTRC_JFIF_EXTENSION,
|
||||||
|
"JFIF extension marker: type 0x%02x, length %u")
|
||||||
|
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
|
||||||
|
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
|
||||||
|
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
|
||||||
|
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
|
||||||
|
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
|
||||||
|
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
|
||||||
|
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
|
||||||
|
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
|
||||||
|
JMESSAGE(JTRC_RST, "RST%d")
|
||||||
|
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
|
||||||
|
"Smoothing not supported with nonstandard sampling ratios")
|
||||||
|
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
|
||||||
|
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
|
||||||
|
JMESSAGE(JTRC_SOI, "Start of Image")
|
||||||
|
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
|
||||||
|
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
|
||||||
|
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
|
||||||
|
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
|
||||||
|
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
|
||||||
|
JMESSAGE(JTRC_THUMB_JPEG,
|
||||||
|
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
|
||||||
|
JMESSAGE(JTRC_THUMB_PALETTE,
|
||||||
|
"JFIF extension marker: palette thumbnail image, length %u")
|
||||||
|
JMESSAGE(JTRC_THUMB_RGB,
|
||||||
|
"JFIF extension marker: RGB thumbnail image, length %u")
|
||||||
|
JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||||
|
"Unrecognized component IDs %d %d %d, assuming YCbCr")
|
||||||
|
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||||
|
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||||
|
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||||
|
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
|
||||||
|
JMESSAGE(JWRN_BOGUS_PROGRESSION,
|
||||||
|
"Inconsistent progression sequence for component %d coefficient %d")
|
||||||
|
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||||
|
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
|
||||||
|
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
|
||||||
|
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
|
||||||
|
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
|
||||||
|
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
|
||||||
|
JMESSAGE(JWRN_MUST_RESYNC,
|
||||||
|
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
|
||||||
|
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
|
||||||
|
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
|
||||||
|
|
||||||
|
#ifdef JMAKE_ENUM_LIST
|
||||||
|
|
||||||
|
JMSG_LASTMSGCODE
|
||||||
|
} J_MESSAGE_CODE;
|
||||||
|
|
||||||
|
#undef JMAKE_ENUM_LIST
|
||||||
|
#endif /* JMAKE_ENUM_LIST */
|
||||||
|
|
||||||
|
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
|
||||||
|
#undef JMESSAGE
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef JERROR_H
|
||||||
|
#define JERROR_H
|
||||||
|
|
||||||
|
/* Macros to simplify using the error and trace message stuff */
|
||||||
|
/* The first parameter is either type of cinfo pointer */
|
||||||
|
|
||||||
|
/* Fatal errors (print message and exit) */
|
||||||
|
#define ERREXIT(cinfo,code) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
#define ERREXIT1(cinfo,code,p1) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
#define ERREXIT2(cinfo,code,p1,p2) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
#define ERREXIT3(cinfo,code,p1,p2,p3) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||||
|
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||||
|
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||||
|
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||||
|
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||||
|
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||||
|
(cinfo)->err->msg_parm.i[4] = (p5), \
|
||||||
|
(cinfo)->err->msg_parm.i[5] = (p6), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
#define ERREXITS(cinfo,code,str) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||||
|
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||||
|
|
||||||
|
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||||
|
|
||||||
|
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
|
||||||
|
#define WARNMS(cinfo,code) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||||
|
#define WARNMS1(cinfo,code,p1) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||||
|
#define WARNMS2(cinfo,code,p1,p2) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||||
|
|
||||||
|
/* Informational/debugging messages */
|
||||||
|
#define TRACEMS(cinfo,lvl,code) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||||
|
#define TRACEMS1(cinfo,lvl,code,p1) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||||
|
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||||
|
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||||
|
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
|
||||||
|
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||||
|
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||||
|
(cinfo)->err->msg_code = (code); \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||||
|
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
|
||||||
|
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||||
|
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||||
|
(cinfo)->err->msg_code = (code); \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||||
|
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
|
||||||
|
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||||
|
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||||
|
_mp[4] = (p5); \
|
||||||
|
(cinfo)->err->msg_code = (code); \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||||
|
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
|
||||||
|
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||||
|
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||||
|
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||||
|
(cinfo)->err->msg_code = (code); \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||||
|
#define TRACEMSS(cinfo,lvl,code,str) \
|
||||||
|
((cinfo)->err->msg_code = (code), \
|
||||||
|
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||||
|
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||||
|
|
||||||
|
#endif /* JERROR_H */
|
457
dep/libjpeg/include/jmorecfg.h
Normal file
457
dep/libjpeg/include/jmorecfg.h
Normal file
|
@ -0,0 +1,457 @@
|
||||||
|
/*
|
||||||
|
* jmorecfg.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 1997-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains additional configuration options that customize the
|
||||||
|
* JPEG software for special applications or support machine-dependent
|
||||||
|
* optimizations. Most users will not need to touch this file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Define BITS_IN_JSAMPLE as either
|
||||||
|
* 8 for 8-bit sample values (the usual setting)
|
||||||
|
* 9 for 9-bit sample values
|
||||||
|
* 10 for 10-bit sample values
|
||||||
|
* 11 for 11-bit sample values
|
||||||
|
* 12 for 12-bit sample values
|
||||||
|
* Only 8, 9, 10, 11, and 12 bits sample data precision are supported for
|
||||||
|
* full-feature DCT processing. Further depths up to 16-bit may be added
|
||||||
|
* later for the lossless modes of operation.
|
||||||
|
* Run-time selection and conversion of data precision will be added later
|
||||||
|
* and are currently not supported, sorry.
|
||||||
|
* Exception: The transcoding part (jpegtran) supports all settings in a
|
||||||
|
* single instance, since it operates on the level of DCT coefficients and
|
||||||
|
* not sample values. The DCT coefficients are of the same type (16 bits)
|
||||||
|
* in all cases (see below).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define BITS_IN_JSAMPLE 8 /* use 8, 9, 10, 11, or 12 */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Maximum number of components (color channels) allowed in JPEG image.
|
||||||
|
* To meet the letter of the JPEG spec, set this to 255. However, darn
|
||||||
|
* few applications need more than 4 channels (maybe 5 for CMYK + alpha
|
||||||
|
* mask). We recommend 10 as a reasonable compromise; use 4 if you are
|
||||||
|
* really short on memory. (Each allowed component costs a hundred or so
|
||||||
|
* bytes of storage, whether actually used in an image or not.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define MAX_COMPONENTS 10 /* maximum number of image components */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Basic data types.
|
||||||
|
* You may need to change these if you have a machine with unusual data
|
||||||
|
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
|
||||||
|
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
|
||||||
|
* but it had better be at least 16.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Representation of a single sample (pixel element value).
|
||||||
|
* We frequently allocate large arrays of these, so it's important to keep
|
||||||
|
* them small. But if you have memory to burn and access to char or short
|
||||||
|
* arrays is very slow on your hardware, you might want to change these.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||||
|
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef HAVE_UNSIGNED_CHAR
|
||||||
|
|
||||||
|
typedef unsigned char JSAMPLE;
|
||||||
|
#define GETJSAMPLE(value) ((int) (value))
|
||||||
|
|
||||||
|
#else /* not HAVE_UNSIGNED_CHAR */
|
||||||
|
|
||||||
|
typedef char JSAMPLE;
|
||||||
|
#ifdef CHAR_IS_UNSIGNED
|
||||||
|
#define GETJSAMPLE(value) ((int) (value))
|
||||||
|
#else
|
||||||
|
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
|
||||||
|
#endif /* CHAR_IS_UNSIGNED */
|
||||||
|
|
||||||
|
#endif /* HAVE_UNSIGNED_CHAR */
|
||||||
|
|
||||||
|
#define MAXJSAMPLE 255
|
||||||
|
#define CENTERJSAMPLE 128
|
||||||
|
|
||||||
|
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||||
|
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 9
|
||||||
|
/* JSAMPLE should be the smallest type that will hold the values 0..511.
|
||||||
|
* On nearly all machines "short" will do nicely.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef short JSAMPLE;
|
||||||
|
#define GETJSAMPLE(value) ((int) (value))
|
||||||
|
|
||||||
|
#define MAXJSAMPLE 511
|
||||||
|
#define CENTERJSAMPLE 256
|
||||||
|
|
||||||
|
#endif /* BITS_IN_JSAMPLE == 9 */
|
||||||
|
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 10
|
||||||
|
/* JSAMPLE should be the smallest type that will hold the values 0..1023.
|
||||||
|
* On nearly all machines "short" will do nicely.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef short JSAMPLE;
|
||||||
|
#define GETJSAMPLE(value) ((int) (value))
|
||||||
|
|
||||||
|
#define MAXJSAMPLE 1023
|
||||||
|
#define CENTERJSAMPLE 512
|
||||||
|
|
||||||
|
#endif /* BITS_IN_JSAMPLE == 10 */
|
||||||
|
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 11
|
||||||
|
/* JSAMPLE should be the smallest type that will hold the values 0..2047.
|
||||||
|
* On nearly all machines "short" will do nicely.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef short JSAMPLE;
|
||||||
|
#define GETJSAMPLE(value) ((int) (value))
|
||||||
|
|
||||||
|
#define MAXJSAMPLE 2047
|
||||||
|
#define CENTERJSAMPLE 1024
|
||||||
|
|
||||||
|
#endif /* BITS_IN_JSAMPLE == 11 */
|
||||||
|
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 12
|
||||||
|
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
|
||||||
|
* On nearly all machines "short" will do nicely.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef short JSAMPLE;
|
||||||
|
#define GETJSAMPLE(value) ((int) (value))
|
||||||
|
|
||||||
|
#define MAXJSAMPLE 4095
|
||||||
|
#define CENTERJSAMPLE 2048
|
||||||
|
|
||||||
|
#endif /* BITS_IN_JSAMPLE == 12 */
|
||||||
|
|
||||||
|
|
||||||
|
/* Representation of a DCT frequency coefficient.
|
||||||
|
* This should be a signed value of at least 16 bits; "short" is usually OK.
|
||||||
|
* Again, we allocate large arrays of these, but you can change to int
|
||||||
|
* if you have memory to burn and "short" is really slow.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef short JCOEF;
|
||||||
|
|
||||||
|
|
||||||
|
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||||
|
* These must be EXACTLY 8 bits wide, at least once they are written to
|
||||||
|
* external storage. Note that when using the stdio data source/destination
|
||||||
|
* managers, this is also the data type passed to fread/fwrite.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef HAVE_UNSIGNED_CHAR
|
||||||
|
|
||||||
|
typedef unsigned char JOCTET;
|
||||||
|
#define GETJOCTET(value) (value)
|
||||||
|
|
||||||
|
#else /* not HAVE_UNSIGNED_CHAR */
|
||||||
|
|
||||||
|
typedef char JOCTET;
|
||||||
|
#ifdef CHAR_IS_UNSIGNED
|
||||||
|
#define GETJOCTET(value) (value)
|
||||||
|
#else
|
||||||
|
#define GETJOCTET(value) ((value) & 0xFF)
|
||||||
|
#endif /* CHAR_IS_UNSIGNED */
|
||||||
|
|
||||||
|
#endif /* HAVE_UNSIGNED_CHAR */
|
||||||
|
|
||||||
|
|
||||||
|
/* These typedefs are used for various table entries and so forth.
|
||||||
|
* They must be at least as wide as specified; but making them too big
|
||||||
|
* won't cost a huge amount of memory, so we don't provide special
|
||||||
|
* extraction code like we did for JSAMPLE. (In other words, these
|
||||||
|
* typedefs live at a different point on the speed/space tradeoff curve.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* UINT8 must hold at least the values 0..255. */
|
||||||
|
|
||||||
|
#ifdef HAVE_UNSIGNED_CHAR
|
||||||
|
typedef unsigned char UINT8;
|
||||||
|
#else /* not HAVE_UNSIGNED_CHAR */
|
||||||
|
#ifdef CHAR_IS_UNSIGNED
|
||||||
|
typedef char UINT8;
|
||||||
|
#else /* not CHAR_IS_UNSIGNED */
|
||||||
|
typedef short UINT8;
|
||||||
|
#endif /* CHAR_IS_UNSIGNED */
|
||||||
|
#endif /* HAVE_UNSIGNED_CHAR */
|
||||||
|
|
||||||
|
/* UINT16 must hold at least the values 0..65535. */
|
||||||
|
|
||||||
|
#ifdef HAVE_UNSIGNED_SHORT
|
||||||
|
typedef unsigned short UINT16;
|
||||||
|
#else /* not HAVE_UNSIGNED_SHORT */
|
||||||
|
typedef unsigned int UINT16;
|
||||||
|
#endif /* HAVE_UNSIGNED_SHORT */
|
||||||
|
|
||||||
|
/* INT16 must hold at least the values -32768..32767. */
|
||||||
|
|
||||||
|
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
|
||||||
|
typedef short INT16;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* INT32 must hold at least signed 32-bit values. */
|
||||||
|
|
||||||
|
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
|
||||||
|
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
|
||||||
|
#ifndef _BASETSD_H /* MinGW is slightly different */
|
||||||
|
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
|
||||||
|
typedef long INT32;
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||||
|
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
|
||||||
|
* "unsigned int" is sufficient on all machines. However, if you need to
|
||||||
|
* handle larger images and you don't mind deviating from the spec, you
|
||||||
|
* can change this datatype.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef unsigned int JDIMENSION;
|
||||||
|
|
||||||
|
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
||||||
|
|
||||||
|
|
||||||
|
/* These macros are used in all function definitions and extern declarations.
|
||||||
|
* You could modify them if you need to change function linkage conventions;
|
||||||
|
* in particular, you'll need to do that to make the library a Windows DLL.
|
||||||
|
* Another application is to make all functions global for use with debuggers
|
||||||
|
* or code profilers that require it.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* a function called through method pointers: */
|
||||||
|
#define METHODDEF(type) static type
|
||||||
|
/* a function used only in its module: */
|
||||||
|
#define LOCAL(type) static type
|
||||||
|
/* a function referenced thru EXTERNs: */
|
||||||
|
#define GLOBAL(type) type
|
||||||
|
/* a reference to a GLOBAL function: */
|
||||||
|
#define EXTERN(type) extern type
|
||||||
|
|
||||||
|
|
||||||
|
/* This macro is used to declare a "method", that is, a function pointer.
|
||||||
|
* We want to supply prototype parameters if the compiler can cope.
|
||||||
|
* Note that the arglist parameter must be parenthesized!
|
||||||
|
* Again, you can customize this if you need special linkage keywords.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef HAVE_PROTOTYPES
|
||||||
|
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
|
||||||
|
#else
|
||||||
|
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* The noreturn type identifier is used to declare functions
|
||||||
|
* which cannot return.
|
||||||
|
* Compilers can thus create more optimized code and perform
|
||||||
|
* better checks for warnings and errors.
|
||||||
|
* Static analyzer tools can make improved inferences about
|
||||||
|
* execution paths and are prevented from giving false alerts.
|
||||||
|
*
|
||||||
|
* Unfortunately, the proposed specifications of corresponding
|
||||||
|
* extensions in the Dec 2011 ISO C standard revision (C11),
|
||||||
|
* GCC, MSVC, etc. are not viable.
|
||||||
|
* Thus we introduce a user defined type to declare noreturn
|
||||||
|
* functions at least for clarity. A proper compiler would
|
||||||
|
* have a suitable noreturn type to match in place of void.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef HAVE_NORETURN_T
|
||||||
|
typedef void noreturn_t;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Here is the pseudo-keyword for declaring pointers that must be "far"
|
||||||
|
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
|
||||||
|
* by just saying "FAR *" where such a pointer is needed. In a few places
|
||||||
|
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef FAR
|
||||||
|
#ifdef NEED_FAR_POINTERS
|
||||||
|
#define FAR far
|
||||||
|
#else
|
||||||
|
#define FAR
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
|
||||||
|
* in standard header files. Or you may have conflicts with application-
|
||||||
|
* specific header files that you want to include together with these files.
|
||||||
|
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef HAVE_BOOLEAN
|
||||||
|
#if defined FALSE || defined TRUE || defined QGLOBAL_H
|
||||||
|
/* Qt3 defines FALSE and TRUE as "const" variables in qglobal.h */
|
||||||
|
typedef int boolean;
|
||||||
|
#ifndef FALSE /* in case these macros already exist */
|
||||||
|
#define FALSE 0 /* values of boolean */
|
||||||
|
#endif
|
||||||
|
#ifndef TRUE
|
||||||
|
#define TRUE 1
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
typedef enum { FALSE = 0, TRUE = 1 } boolean;
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The remaining options affect code selection within the JPEG library,
|
||||||
|
* but they don't need to be visible to most applications using the library.
|
||||||
|
* To minimize application namespace pollution, the symbols won't be
|
||||||
|
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef JPEG_INTERNALS
|
||||||
|
#define JPEG_INTERNAL_OPTIONS
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef JPEG_INTERNAL_OPTIONS
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These defines indicate whether to include various optional functions.
|
||||||
|
* Undefining some of these symbols will produce a smaller but less capable
|
||||||
|
* library. Note that you can leave certain source files out of the
|
||||||
|
* compilation/linking process if you've #undef'd the corresponding symbols.
|
||||||
|
* (You may HAVE to do that if your compiler doesn't like null source files.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Capability options common to encoder and decoder: */
|
||||||
|
|
||||||
|
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
|
||||||
|
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
|
||||||
|
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
|
||||||
|
|
||||||
|
/* Encoder capability options: */
|
||||||
|
|
||||||
|
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||||
|
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||||
|
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN) */
|
||||||
|
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW) */
|
||||||
|
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||||
|
/* Note: if you selected more than 8-bit data precision, it is dangerous to
|
||||||
|
* turn off ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only
|
||||||
|
* good for 8-bit precision, so arithmetic coding is recommended for higher
|
||||||
|
* precision. The Huffman encoder normally uses entropy optimization to
|
||||||
|
* compute usable tables for higher precision. Otherwise, you'll have to
|
||||||
|
* supply different default Huffman tables.
|
||||||
|
* The exact same statements apply for progressive JPEG: the default tables
|
||||||
|
* don't work for progressive mode. (This may get fixed, however.)
|
||||||
|
*/
|
||||||
|
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
|
||||||
|
|
||||||
|
/* Decoder capability options: */
|
||||||
|
|
||||||
|
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||||
|
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||||
|
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN) */
|
||||||
|
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? (Requires DCT_ISLOW) */
|
||||||
|
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||||
|
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
|
||||||
|
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
|
||||||
|
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
|
||||||
|
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
|
||||||
|
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
|
||||||
|
|
||||||
|
/* more capability options later, no doubt */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Ordering of RGB data in scanlines passed to or from the application.
|
||||||
|
* If your application wants to deal with data in the order B,G,R, just
|
||||||
|
* #define JPEG_USE_RGB_CUSTOM in jconfig.h, or define your own custom
|
||||||
|
* order in jconfig.h and #define JPEG_HAVE_RGB_CUSTOM.
|
||||||
|
* You can also deal with formats such as R,G,B,X (one extra byte per pixel)
|
||||||
|
* by changing RGB_PIXELSIZE.
|
||||||
|
* Note that changing the offsets will also change
|
||||||
|
* the order in which colormap data is organized.
|
||||||
|
* RESTRICTIONS:
|
||||||
|
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
|
||||||
|
* 2. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
|
||||||
|
* is not 3 (they don't understand about dummy color components!).
|
||||||
|
* So you can't use color quantization if you change that value.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef JPEG_HAVE_RGB_CUSTOM
|
||||||
|
#ifdef JPEG_USE_RGB_CUSTOM
|
||||||
|
#define RGB_RED 2 /* Offset of Red in an RGB scanline element */
|
||||||
|
#define RGB_GREEN 1 /* Offset of Green */
|
||||||
|
#define RGB_BLUE 0 /* Offset of Blue */
|
||||||
|
#else
|
||||||
|
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
|
||||||
|
#define RGB_GREEN 1 /* Offset of Green */
|
||||||
|
#define RGB_BLUE 2 /* Offset of Blue */
|
||||||
|
#endif
|
||||||
|
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Definitions for speed-related optimizations. */
|
||||||
|
|
||||||
|
|
||||||
|
/* If your compiler supports inline functions, define INLINE
|
||||||
|
* as the inline keyword; otherwise define it as empty.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef INLINE
|
||||||
|
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
|
||||||
|
#define INLINE __inline__
|
||||||
|
#endif
|
||||||
|
#ifndef INLINE
|
||||||
|
#define INLINE /* default is to define it as empty */
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||||
|
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
|
||||||
|
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MULTIPLIER
|
||||||
|
#define MULTIPLIER int /* type for fastest integer multiply */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||||
|
* by your compiler. (Note that this type is only used in the floating point
|
||||||
|
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
|
||||||
|
* Typically, float is faster in ANSI C compilers, while double is faster in
|
||||||
|
* pre-ANSI compilers (because they insist on converting to double anyway).
|
||||||
|
* The code below therefore chooses float if we have ANSI-style prototypes.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef FAST_FLOAT
|
||||||
|
#ifdef HAVE_PROTOTYPES
|
||||||
|
#define FAST_FLOAT float
|
||||||
|
#else
|
||||||
|
#define FAST_FLOAT double
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif /* JPEG_INTERNAL_OPTIONS */
|
445
dep/libjpeg/include/jpegint.h
Normal file
445
dep/libjpeg/include/jpegint.h
Normal file
|
@ -0,0 +1,445 @@
|
||||||
|
/*
|
||||||
|
* jpegint.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 1997-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file provides common declarations for the various JPEG modules.
|
||||||
|
* These declarations are considered internal to the JPEG library; most
|
||||||
|
* applications using the library shouldn't need to include this file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Declarations for both compression & decompression */
|
||||||
|
|
||||||
|
typedef enum { /* Operating modes for buffer controllers */
|
||||||
|
JBUF_PASS_THRU, /* Plain stripwise operation */
|
||||||
|
/* Remaining modes require a full-image buffer to have been created */
|
||||||
|
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
|
||||||
|
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
|
||||||
|
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
|
||||||
|
} J_BUF_MODE;
|
||||||
|
|
||||||
|
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
|
||||||
|
#define CSTATE_START 100 /* after create_compress */
|
||||||
|
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
|
||||||
|
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
|
||||||
|
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
|
||||||
|
#define DSTATE_START 200 /* after create_decompress */
|
||||||
|
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
|
||||||
|
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
|
||||||
|
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
|
||||||
|
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
|
||||||
|
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
|
||||||
|
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
|
||||||
|
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
|
||||||
|
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
|
||||||
|
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
|
||||||
|
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
|
||||||
|
|
||||||
|
|
||||||
|
/* Declarations for compression modules */
|
||||||
|
|
||||||
|
/* Master control module */
|
||||||
|
struct jpeg_comp_master {
|
||||||
|
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||||
|
|
||||||
|
/* State variables made visible to other modules */
|
||||||
|
boolean call_pass_startup; /* True if pass_startup must be called */
|
||||||
|
boolean is_last_pass; /* True during last pass */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Main buffer control (downsampled-data buffer) */
|
||||||
|
struct jpeg_c_main_controller {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||||
|
JMETHOD(void, process_data, (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||||
|
JDIMENSION in_rows_avail));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Compression preprocessing (downsampling input buffer control) */
|
||||||
|
struct jpeg_c_prep_controller {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||||
|
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf,
|
||||||
|
JDIMENSION *in_row_ctr,
|
||||||
|
JDIMENSION in_rows_avail,
|
||||||
|
JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION *out_row_group_ctr,
|
||||||
|
JDIMENSION out_row_groups_avail));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Coefficient buffer control */
|
||||||
|
struct jpeg_c_coef_controller {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||||
|
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Colorspace conversion */
|
||||||
|
struct jpeg_color_converter {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, color_convert, (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Downsampling */
|
||||||
|
struct jpeg_downsampler {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, downsample, (j_compress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||||
|
JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION out_row_group_index));
|
||||||
|
|
||||||
|
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Forward DCT (also controls coefficient quantization) */
|
||||||
|
typedef JMETHOD(void, forward_DCT_ptr,
|
||||||
|
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||||
|
JDIMENSION start_col, JDIMENSION num_blocks));
|
||||||
|
|
||||||
|
struct jpeg_forward_dct {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||||
|
/* It is useful to allow each component to have a separate FDCT method. */
|
||||||
|
forward_DCT_ptr forward_DCT[MAX_COMPONENTS];
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Entropy encoding */
|
||||||
|
struct jpeg_entropy_encoder {
|
||||||
|
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
|
||||||
|
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKARRAY MCU_data));
|
||||||
|
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Marker writing */
|
||||||
|
struct jpeg_marker_writer {
|
||||||
|
JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
|
||||||
|
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
|
||||||
|
/* These routines are exported to allow insertion of extra markers */
|
||||||
|
/* Probably only COM and APPn markers should be written this way */
|
||||||
|
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
|
||||||
|
unsigned int datalen));
|
||||||
|
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* Declarations for decompression modules */
|
||||||
|
|
||||||
|
/* Master control module */
|
||||||
|
struct jpeg_decomp_master {
|
||||||
|
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
|
||||||
|
|
||||||
|
/* State variables made visible to other modules */
|
||||||
|
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Input control module */
|
||||||
|
struct jpeg_input_controller {
|
||||||
|
JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
|
||||||
|
|
||||||
|
/* State variables made visible to other modules */
|
||||||
|
boolean has_multiple_scans; /* True if file has multiple scans */
|
||||||
|
boolean eoi_reached; /* True when EOI has been consumed */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Main buffer control (downsampled-data buffer) */
|
||||||
|
struct jpeg_d_main_controller {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||||
|
JMETHOD(void, process_data, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Coefficient buffer control */
|
||||||
|
struct jpeg_d_coef_controller {
|
||||||
|
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE output_buf));
|
||||||
|
/* Pointer to array of coefficient virtual arrays, or NULL if none */
|
||||||
|
jvirt_barray_ptr *coef_arrays;
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Decompression postprocessing (color quantization buffer control) */
|
||||||
|
struct jpeg_d_post_controller {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||||
|
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf,
|
||||||
|
JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Marker reading & parsing */
|
||||||
|
struct jpeg_marker_reader {
|
||||||
|
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
|
||||||
|
/* Read markers until SOS or EOI.
|
||||||
|
* Returns same codes as are defined for jpeg_consume_input:
|
||||||
|
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||||
|
*/
|
||||||
|
JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
|
||||||
|
/* Read a restart marker --- exported for use by entropy decoder only */
|
||||||
|
jpeg_marker_parser_method read_restart_marker;
|
||||||
|
|
||||||
|
/* State of marker reader --- nominally internal, but applications
|
||||||
|
* supplying COM or APPn handlers might like to know the state.
|
||||||
|
*/
|
||||||
|
boolean saw_SOI; /* found SOI? */
|
||||||
|
boolean saw_SOF; /* found SOF? */
|
||||||
|
int next_restart_num; /* next restart number expected (0-7) */
|
||||||
|
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Entropy decoding */
|
||||||
|
struct jpeg_entropy_decoder {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data));
|
||||||
|
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Inverse DCT (also performs dequantization) */
|
||||||
|
typedef JMETHOD(void, inverse_DCT_method_ptr,
|
||||||
|
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
|
||||||
|
struct jpeg_inverse_dct {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||||
|
/* It is useful to allow each component to have a separate IDCT method. */
|
||||||
|
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Upsampling (note that upsampler must also call color converter) */
|
||||||
|
struct jpeg_upsampler {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, upsample, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf,
|
||||||
|
JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail));
|
||||||
|
|
||||||
|
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Colorspace conversion */
|
||||||
|
struct jpeg_color_deconverter {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows));
|
||||||
|
};
|
||||||
|
|
||||||
|
/* Color quantization or color precision reduction */
|
||||||
|
struct jpeg_color_quantizer {
|
||||||
|
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
|
||||||
|
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPARRAY output_buf,
|
||||||
|
int num_rows));
|
||||||
|
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
|
||||||
|
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* Definition of range extension bits for decompression processes.
|
||||||
|
* See the comments with prepare_range_limit_table (in jdmaster.c)
|
||||||
|
* for more info.
|
||||||
|
* The recommended default value for normal applications is 2.
|
||||||
|
* Applications with special requirements may use a different value.
|
||||||
|
* For example, Ghostscript wants to use 3 for proper handling of
|
||||||
|
* wacky images with oversize coefficient values.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define RANGE_BITS 2
|
||||||
|
#define RANGE_CENTER (CENTERJSAMPLE << RANGE_BITS)
|
||||||
|
|
||||||
|
|
||||||
|
/* Miscellaneous useful macros */
|
||||||
|
|
||||||
|
#undef MAX
|
||||||
|
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
||||||
|
#undef MIN
|
||||||
|
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||||||
|
|
||||||
|
|
||||||
|
/* We assume that right shift corresponds to signed division by 2 with
|
||||||
|
* rounding towards minus infinity. This is correct for typical "arithmetic
|
||||||
|
* shift" instructions that shift in copies of the sign bit. But some
|
||||||
|
* C compilers implement >> with an unsigned shift. For these machines you
|
||||||
|
* must define RIGHT_SHIFT_IS_UNSIGNED.
|
||||||
|
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
|
||||||
|
* It is only applied with constant shift counts. SHIFT_TEMPS must be
|
||||||
|
* included in the variables of any routine using RIGHT_SHIFT.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||||
|
#define SHIFT_TEMPS INT32 shift_temp;
|
||||||
|
#define RIGHT_SHIFT(x,shft) \
|
||||||
|
((shift_temp = (x)) < 0 ? \
|
||||||
|
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
|
||||||
|
(shift_temp >> (shft)))
|
||||||
|
#else
|
||||||
|
#define SHIFT_TEMPS
|
||||||
|
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
||||||
|
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||||||
|
* the fudge factor is correct for either sign of X.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define DESCALE(x,n) RIGHT_SHIFT((x) + ((INT32) 1 << ((n)-1)), n)
|
||||||
|
|
||||||
|
|
||||||
|
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||||
|
|
||||||
|
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||||
|
#define jinit_compress_master jICompress
|
||||||
|
#define jinit_c_master_control jICMaster
|
||||||
|
#define jinit_c_main_controller jICMainC
|
||||||
|
#define jinit_c_prep_controller jICPrepC
|
||||||
|
#define jinit_c_coef_controller jICCoefC
|
||||||
|
#define jinit_color_converter jICColor
|
||||||
|
#define jinit_downsampler jIDownsampler
|
||||||
|
#define jinit_forward_dct jIFDCT
|
||||||
|
#define jinit_huff_encoder jIHEncoder
|
||||||
|
#define jinit_arith_encoder jIAEncoder
|
||||||
|
#define jinit_marker_writer jIMWriter
|
||||||
|
#define jinit_master_decompress jIDMaster
|
||||||
|
#define jinit_d_main_controller jIDMainC
|
||||||
|
#define jinit_d_coef_controller jIDCoefC
|
||||||
|
#define jinit_d_post_controller jIDPostC
|
||||||
|
#define jinit_input_controller jIInCtlr
|
||||||
|
#define jinit_marker_reader jIMReader
|
||||||
|
#define jinit_huff_decoder jIHDecoder
|
||||||
|
#define jinit_arith_decoder jIADecoder
|
||||||
|
#define jinit_inverse_dct jIIDCT
|
||||||
|
#define jinit_upsampler jIUpsampler
|
||||||
|
#define jinit_color_deconverter jIDColor
|
||||||
|
#define jinit_1pass_quantizer jI1Quant
|
||||||
|
#define jinit_2pass_quantizer jI2Quant
|
||||||
|
#define jinit_merged_upsampler jIMUpsampler
|
||||||
|
#define jinit_memory_mgr jIMemMgr
|
||||||
|
#define jdiv_round_up jDivRound
|
||||||
|
#define jround_up jRound
|
||||||
|
#define jzero_far jZeroFar
|
||||||
|
#define jcopy_sample_rows jCopySamples
|
||||||
|
#define jcopy_block_row jCopyBlocks
|
||||||
|
#define jpeg_zigzag_order jZIGTable
|
||||||
|
#define jpeg_natural_order jZAGTable
|
||||||
|
#define jpeg_natural_order7 jZAG7Table
|
||||||
|
#define jpeg_natural_order6 jZAG6Table
|
||||||
|
#define jpeg_natural_order5 jZAG5Table
|
||||||
|
#define jpeg_natural_order4 jZAG4Table
|
||||||
|
#define jpeg_natural_order3 jZAG3Table
|
||||||
|
#define jpeg_natural_order2 jZAG2Table
|
||||||
|
#define jpeg_aritab jAriTab
|
||||||
|
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||||
|
|
||||||
|
|
||||||
|
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
||||||
|
* and coefficient-block arrays. This won't work on 80x86 because the arrays
|
||||||
|
* are FAR and we're assuming a small-pointer memory model. However, some
|
||||||
|
* DOS compilers provide far-pointer versions of memcpy() and memset() even
|
||||||
|
* in the small-model libraries. These will be used if USE_FMEM is defined.
|
||||||
|
* Otherwise, the routines in jutils.c do it the hard way.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */
|
||||||
|
#define FMEMZERO(target,size) MEMZERO(target,size)
|
||||||
|
#else /* 80x86 case */
|
||||||
|
#ifdef USE_FMEM
|
||||||
|
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
|
||||||
|
#else
|
||||||
|
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
|
||||||
|
#define FMEMZERO(target,size) jzero_far(target, size)
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Compression module initialization routines */
|
||||||
|
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
|
||||||
|
boolean transcode_only));
|
||||||
|
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
|
||||||
|
boolean need_full_buffer));
|
||||||
|
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
|
||||||
|
boolean need_full_buffer));
|
||||||
|
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
|
||||||
|
boolean need_full_buffer));
|
||||||
|
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
|
||||||
|
/* Decompression module initialization routines */
|
||||||
|
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
|
||||||
|
boolean need_full_buffer));
|
||||||
|
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
|
||||||
|
boolean need_full_buffer));
|
||||||
|
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
|
||||||
|
boolean need_full_buffer));
|
||||||
|
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||||
|
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
|
||||||
|
/* Memory manager initialization */
|
||||||
|
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
|
||||||
|
|
||||||
|
/* Utility routines in jutils.c */
|
||||||
|
EXTERN(long) jdiv_round_up JPP((long a, long b));
|
||||||
|
EXTERN(long) jround_up JPP((long a, long b));
|
||||||
|
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array,
|
||||||
|
JSAMPARRAY output_array,
|
||||||
|
int num_rows, JDIMENSION num_cols));
|
||||||
|
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
|
||||||
|
JDIMENSION num_blocks));
|
||||||
|
/* Constant tables in jutils.c */
|
||||||
|
#if 0 /* This table is not actually needed in v6a */
|
||||||
|
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
|
||||||
|
#endif
|
||||||
|
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
|
||||||
|
extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */
|
||||||
|
extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */
|
||||||
|
extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */
|
||||||
|
extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */
|
||||||
|
extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */
|
||||||
|
extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */
|
||||||
|
|
||||||
|
/* Arithmetic coding probability estimation tables in jaricom.c */
|
||||||
|
extern const INT32 jpeg_aritab[];
|
||||||
|
|
||||||
|
/* Suppress undefined-structure complaints if necessary. */
|
||||||
|
|
||||||
|
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||||
|
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
|
||||||
|
struct jvirt_sarray_control { long dummy; };
|
||||||
|
struct jvirt_barray_control { long dummy; };
|
||||||
|
#endif
|
||||||
|
#endif /* INCOMPLETE_TYPES_BROKEN */
|
1183
dep/libjpeg/include/jpeglib.h
Normal file
1183
dep/libjpeg/include/jpeglib.h
Normal file
File diff suppressed because it is too large
Load diff
76
dep/libjpeg/libjpeg.vcxproj
Normal file
76
dep/libjpeg/libjpeg.vcxproj
Normal file
|
@ -0,0 +1,76 @@
|
||||||
|
<?xml version="1.0" encoding="utf-8"?>
|
||||||
|
<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||||
|
<Import Project="..\msvc\vsprops\Configurations.props" />
|
||||||
|
<PropertyGroup Label="Globals">
|
||||||
|
<ProjectGuid>{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}</ProjectGuid>
|
||||||
|
</PropertyGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<ClInclude Include="include\jconfig.h" />
|
||||||
|
<ClInclude Include="include\jerror.h" />
|
||||||
|
<ClInclude Include="include\jmorecfg.h" />
|
||||||
|
<ClInclude Include="include\jpegint.h" />
|
||||||
|
<ClInclude Include="include\jpeglib.h" />
|
||||||
|
<ClInclude Include="src\jdct.h" />
|
||||||
|
<ClInclude Include="src\jinclude.h" />
|
||||||
|
<ClInclude Include="src\jmemsys.h" />
|
||||||
|
<ClInclude Include="src\jversion.h" />
|
||||||
|
<ClInclude Include="src\transupp.h" />
|
||||||
|
</ItemGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<ClCompile Include="src\jaricom.c" />
|
||||||
|
<ClCompile Include="src\jcapimin.c" />
|
||||||
|
<ClCompile Include="src\jcapistd.c" />
|
||||||
|
<ClCompile Include="src\jcarith.c" />
|
||||||
|
<ClCompile Include="src\jccoefct.c" />
|
||||||
|
<ClCompile Include="src\jccolor.c" />
|
||||||
|
<ClCompile Include="src\jcdctmgr.c" />
|
||||||
|
<ClCompile Include="src\jchuff.c" />
|
||||||
|
<ClCompile Include="src\jcinit.c" />
|
||||||
|
<ClCompile Include="src\jcmainct.c" />
|
||||||
|
<ClCompile Include="src\jcmarker.c" />
|
||||||
|
<ClCompile Include="src\jcmaster.c" />
|
||||||
|
<ClCompile Include="src\jcomapi.c" />
|
||||||
|
<ClCompile Include="src\jcparam.c" />
|
||||||
|
<ClCompile Include="src\jcprepct.c" />
|
||||||
|
<ClCompile Include="src\jcsample.c" />
|
||||||
|
<ClCompile Include="src\jctrans.c" />
|
||||||
|
<ClCompile Include="src\jdapimin.c" />
|
||||||
|
<ClCompile Include="src\jdapistd.c" />
|
||||||
|
<ClCompile Include="src\jdarith.c" />
|
||||||
|
<ClCompile Include="src\jdatadst.c" />
|
||||||
|
<ClCompile Include="src\jdatasrc.c" />
|
||||||
|
<ClCompile Include="src\jdcoefct.c" />
|
||||||
|
<ClCompile Include="src\jdcolor.c" />
|
||||||
|
<ClCompile Include="src\jddctmgr.c" />
|
||||||
|
<ClCompile Include="src\jdhuff.c" />
|
||||||
|
<ClCompile Include="src\jdinput.c" />
|
||||||
|
<ClCompile Include="src\jdmainct.c" />
|
||||||
|
<ClCompile Include="src\jdmarker.c" />
|
||||||
|
<ClCompile Include="src\jdmaster.c" />
|
||||||
|
<ClCompile Include="src\jdmerge.c" />
|
||||||
|
<ClCompile Include="src\jdpostct.c" />
|
||||||
|
<ClCompile Include="src\jdsample.c" />
|
||||||
|
<ClCompile Include="src\jdtrans.c" />
|
||||||
|
<ClCompile Include="src\jerror.c" />
|
||||||
|
<ClCompile Include="src\jfdctflt.c" />
|
||||||
|
<ClCompile Include="src\jfdctfst.c" />
|
||||||
|
<ClCompile Include="src\jfdctint.c" />
|
||||||
|
<ClCompile Include="src\jidctflt.c" />
|
||||||
|
<ClCompile Include="src\jidctfst.c" />
|
||||||
|
<ClCompile Include="src\jidctint.c" />
|
||||||
|
<ClCompile Include="src\jmemmgr.c" />
|
||||||
|
<ClCompile Include="src\jmemnobs.c" />
|
||||||
|
<ClCompile Include="src\jquant1.c" />
|
||||||
|
<ClCompile Include="src\jquant2.c" />
|
||||||
|
<ClCompile Include="src\jutils.c" />
|
||||||
|
<ClCompile Include="src\transupp.c" />
|
||||||
|
</ItemGroup>
|
||||||
|
<Import Project="..\msvc\vsprops\StaticLibrary.props" />
|
||||||
|
<ItemDefinitionGroup>
|
||||||
|
<ClCompile>
|
||||||
|
<WarningLevel>TurnOffAllWarnings</WarningLevel>
|
||||||
|
<AdditionalIncludeDirectories>$(ProjectDir)include;$(ProjectDir)src;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
|
||||||
|
</ClCompile>
|
||||||
|
</ItemDefinitionGroup>
|
||||||
|
<Import Project="..\msvc\vsprops\Targets.props" />
|
||||||
|
</Project>
|
52
dep/libjpeg/libjpeg.vcxproj.filters
Normal file
52
dep/libjpeg/libjpeg.vcxproj.filters
Normal file
|
@ -0,0 +1,52 @@
|
||||||
|
<?xml version="1.0" encoding="utf-8"?>
|
||||||
|
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||||
|
<ItemGroup>
|
||||||
|
<ClInclude Include="include\pngconf.h" />
|
||||||
|
<ClInclude Include="include\png.h" />
|
||||||
|
<ClInclude Include="src\pngdebug.h" />
|
||||||
|
<ClInclude Include="src\pnginfo.h" />
|
||||||
|
<ClInclude Include="src\pngpriv.h" />
|
||||||
|
<ClInclude Include="src\pngstruct.h" />
|
||||||
|
<ClInclude Include="include\pnglibconf.h" />
|
||||||
|
</ItemGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<ClCompile Include="src\png.c" />
|
||||||
|
<ClCompile Include="src\pngerror.c" />
|
||||||
|
<ClCompile Include="src\pngget.c" />
|
||||||
|
<ClCompile Include="src\pngmem.c" />
|
||||||
|
<ClCompile Include="src\pngpread.c" />
|
||||||
|
<ClCompile Include="src\pngread.c" />
|
||||||
|
<ClCompile Include="src\pngrio.c" />
|
||||||
|
<ClCompile Include="src\pngrtran.c" />
|
||||||
|
<ClCompile Include="src\pngrutil.c" />
|
||||||
|
<ClCompile Include="src\pngset.c" />
|
||||||
|
<ClCompile Include="src\pngtrans.c" />
|
||||||
|
<ClCompile Include="src\pngwio.c" />
|
||||||
|
<ClCompile Include="src\pngwrite.c" />
|
||||||
|
<ClCompile Include="src\pngwtran.c" />
|
||||||
|
<ClCompile Include="src\pngwutil.c" />
|
||||||
|
<ClCompile Include="src\intel\intel_init.c">
|
||||||
|
<Filter>intel</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\intel\filter_sse2_intrinsics.c">
|
||||||
|
<Filter>intel</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\arm\filter_neon_intrinsics.c">
|
||||||
|
<Filter>arm</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\arm\palette_neon_intrinsics.c">
|
||||||
|
<Filter>arm</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\arm\arm_init.c">
|
||||||
|
<Filter>arm</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
</ItemGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<Filter Include="arm">
|
||||||
|
<UniqueIdentifier>{9f24e95e-025d-4ed8-8c41-2fb1c7a36026}</UniqueIdentifier>
|
||||||
|
</Filter>
|
||||||
|
<Filter Include="intel">
|
||||||
|
<UniqueIdentifier>{8316b9c1-8c00-4bc8-ace7-c9b864890f2d}</UniqueIdentifier>
|
||||||
|
</Filter>
|
||||||
|
</ItemGroup>
|
||||||
|
</Project>
|
153
dep/libjpeg/src/jaricom.c
Normal file
153
dep/libjpeg/src/jaricom.c
Normal file
|
@ -0,0 +1,153 @@
|
||||||
|
/*
|
||||||
|
* jaricom.c
|
||||||
|
*
|
||||||
|
* Developed 1997-2011 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains probability estimation tables for common use in
|
||||||
|
* arithmetic entropy encoding and decoding routines.
|
||||||
|
*
|
||||||
|
* This data represents Table D.3 in the JPEG spec (D.2 in the draft),
|
||||||
|
* ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81, and Table 24
|
||||||
|
* in the JBIG spec, ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
/* The following #define specifies the packing of the four components
|
||||||
|
* into the compact INT32 representation.
|
||||||
|
* Note that this formula must match the actual arithmetic encoder
|
||||||
|
* and decoder implementation. The implementation has to be changed
|
||||||
|
* if this formula is changed.
|
||||||
|
* The current organization is leaned on Markus Kuhn's JBIG
|
||||||
|
* implementation (jbig_tab.c).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
|
||||||
|
|
||||||
|
const INT32 jpeg_aritab[113+1] = {
|
||||||
|
/*
|
||||||
|
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
|
||||||
|
*/
|
||||||
|
V( 0, 0x5a1d, 1, 1, 1 ),
|
||||||
|
V( 1, 0x2586, 14, 2, 0 ),
|
||||||
|
V( 2, 0x1114, 16, 3, 0 ),
|
||||||
|
V( 3, 0x080b, 18, 4, 0 ),
|
||||||
|
V( 4, 0x03d8, 20, 5, 0 ),
|
||||||
|
V( 5, 0x01da, 23, 6, 0 ),
|
||||||
|
V( 6, 0x00e5, 25, 7, 0 ),
|
||||||
|
V( 7, 0x006f, 28, 8, 0 ),
|
||||||
|
V( 8, 0x0036, 30, 9, 0 ),
|
||||||
|
V( 9, 0x001a, 33, 10, 0 ),
|
||||||
|
V( 10, 0x000d, 35, 11, 0 ),
|
||||||
|
V( 11, 0x0006, 9, 12, 0 ),
|
||||||
|
V( 12, 0x0003, 10, 13, 0 ),
|
||||||
|
V( 13, 0x0001, 12, 13, 0 ),
|
||||||
|
V( 14, 0x5a7f, 15, 15, 1 ),
|
||||||
|
V( 15, 0x3f25, 36, 16, 0 ),
|
||||||
|
V( 16, 0x2cf2, 38, 17, 0 ),
|
||||||
|
V( 17, 0x207c, 39, 18, 0 ),
|
||||||
|
V( 18, 0x17b9, 40, 19, 0 ),
|
||||||
|
V( 19, 0x1182, 42, 20, 0 ),
|
||||||
|
V( 20, 0x0cef, 43, 21, 0 ),
|
||||||
|
V( 21, 0x09a1, 45, 22, 0 ),
|
||||||
|
V( 22, 0x072f, 46, 23, 0 ),
|
||||||
|
V( 23, 0x055c, 48, 24, 0 ),
|
||||||
|
V( 24, 0x0406, 49, 25, 0 ),
|
||||||
|
V( 25, 0x0303, 51, 26, 0 ),
|
||||||
|
V( 26, 0x0240, 52, 27, 0 ),
|
||||||
|
V( 27, 0x01b1, 54, 28, 0 ),
|
||||||
|
V( 28, 0x0144, 56, 29, 0 ),
|
||||||
|
V( 29, 0x00f5, 57, 30, 0 ),
|
||||||
|
V( 30, 0x00b7, 59, 31, 0 ),
|
||||||
|
V( 31, 0x008a, 60, 32, 0 ),
|
||||||
|
V( 32, 0x0068, 62, 33, 0 ),
|
||||||
|
V( 33, 0x004e, 63, 34, 0 ),
|
||||||
|
V( 34, 0x003b, 32, 35, 0 ),
|
||||||
|
V( 35, 0x002c, 33, 9, 0 ),
|
||||||
|
V( 36, 0x5ae1, 37, 37, 1 ),
|
||||||
|
V( 37, 0x484c, 64, 38, 0 ),
|
||||||
|
V( 38, 0x3a0d, 65, 39, 0 ),
|
||||||
|
V( 39, 0x2ef1, 67, 40, 0 ),
|
||||||
|
V( 40, 0x261f, 68, 41, 0 ),
|
||||||
|
V( 41, 0x1f33, 69, 42, 0 ),
|
||||||
|
V( 42, 0x19a8, 70, 43, 0 ),
|
||||||
|
V( 43, 0x1518, 72, 44, 0 ),
|
||||||
|
V( 44, 0x1177, 73, 45, 0 ),
|
||||||
|
V( 45, 0x0e74, 74, 46, 0 ),
|
||||||
|
V( 46, 0x0bfb, 75, 47, 0 ),
|
||||||
|
V( 47, 0x09f8, 77, 48, 0 ),
|
||||||
|
V( 48, 0x0861, 78, 49, 0 ),
|
||||||
|
V( 49, 0x0706, 79, 50, 0 ),
|
||||||
|
V( 50, 0x05cd, 48, 51, 0 ),
|
||||||
|
V( 51, 0x04de, 50, 52, 0 ),
|
||||||
|
V( 52, 0x040f, 50, 53, 0 ),
|
||||||
|
V( 53, 0x0363, 51, 54, 0 ),
|
||||||
|
V( 54, 0x02d4, 52, 55, 0 ),
|
||||||
|
V( 55, 0x025c, 53, 56, 0 ),
|
||||||
|
V( 56, 0x01f8, 54, 57, 0 ),
|
||||||
|
V( 57, 0x01a4, 55, 58, 0 ),
|
||||||
|
V( 58, 0x0160, 56, 59, 0 ),
|
||||||
|
V( 59, 0x0125, 57, 60, 0 ),
|
||||||
|
V( 60, 0x00f6, 58, 61, 0 ),
|
||||||
|
V( 61, 0x00cb, 59, 62, 0 ),
|
||||||
|
V( 62, 0x00ab, 61, 63, 0 ),
|
||||||
|
V( 63, 0x008f, 61, 32, 0 ),
|
||||||
|
V( 64, 0x5b12, 65, 65, 1 ),
|
||||||
|
V( 65, 0x4d04, 80, 66, 0 ),
|
||||||
|
V( 66, 0x412c, 81, 67, 0 ),
|
||||||
|
V( 67, 0x37d8, 82, 68, 0 ),
|
||||||
|
V( 68, 0x2fe8, 83, 69, 0 ),
|
||||||
|
V( 69, 0x293c, 84, 70, 0 ),
|
||||||
|
V( 70, 0x2379, 86, 71, 0 ),
|
||||||
|
V( 71, 0x1edf, 87, 72, 0 ),
|
||||||
|
V( 72, 0x1aa9, 87, 73, 0 ),
|
||||||
|
V( 73, 0x174e, 72, 74, 0 ),
|
||||||
|
V( 74, 0x1424, 72, 75, 0 ),
|
||||||
|
V( 75, 0x119c, 74, 76, 0 ),
|
||||||
|
V( 76, 0x0f6b, 74, 77, 0 ),
|
||||||
|
V( 77, 0x0d51, 75, 78, 0 ),
|
||||||
|
V( 78, 0x0bb6, 77, 79, 0 ),
|
||||||
|
V( 79, 0x0a40, 77, 48, 0 ),
|
||||||
|
V( 80, 0x5832, 80, 81, 1 ),
|
||||||
|
V( 81, 0x4d1c, 88, 82, 0 ),
|
||||||
|
V( 82, 0x438e, 89, 83, 0 ),
|
||||||
|
V( 83, 0x3bdd, 90, 84, 0 ),
|
||||||
|
V( 84, 0x34ee, 91, 85, 0 ),
|
||||||
|
V( 85, 0x2eae, 92, 86, 0 ),
|
||||||
|
V( 86, 0x299a, 93, 87, 0 ),
|
||||||
|
V( 87, 0x2516, 86, 71, 0 ),
|
||||||
|
V( 88, 0x5570, 88, 89, 1 ),
|
||||||
|
V( 89, 0x4ca9, 95, 90, 0 ),
|
||||||
|
V( 90, 0x44d9, 96, 91, 0 ),
|
||||||
|
V( 91, 0x3e22, 97, 92, 0 ),
|
||||||
|
V( 92, 0x3824, 99, 93, 0 ),
|
||||||
|
V( 93, 0x32b4, 99, 94, 0 ),
|
||||||
|
V( 94, 0x2e17, 93, 86, 0 ),
|
||||||
|
V( 95, 0x56a8, 95, 96, 1 ),
|
||||||
|
V( 96, 0x4f46, 101, 97, 0 ),
|
||||||
|
V( 97, 0x47e5, 102, 98, 0 ),
|
||||||
|
V( 98, 0x41cf, 103, 99, 0 ),
|
||||||
|
V( 99, 0x3c3d, 104, 100, 0 ),
|
||||||
|
V( 100, 0x375e, 99, 93, 0 ),
|
||||||
|
V( 101, 0x5231, 105, 102, 0 ),
|
||||||
|
V( 102, 0x4c0f, 106, 103, 0 ),
|
||||||
|
V( 103, 0x4639, 107, 104, 0 ),
|
||||||
|
V( 104, 0x415e, 103, 99, 0 ),
|
||||||
|
V( 105, 0x5627, 105, 106, 1 ),
|
||||||
|
V( 106, 0x50e7, 108, 107, 0 ),
|
||||||
|
V( 107, 0x4b85, 109, 103, 0 ),
|
||||||
|
V( 108, 0x5597, 110, 109, 0 ),
|
||||||
|
V( 109, 0x504f, 111, 107, 0 ),
|
||||||
|
V( 110, 0x5a10, 110, 111, 1 ),
|
||||||
|
V( 111, 0x5522, 112, 109, 0 ),
|
||||||
|
V( 112, 0x59eb, 112, 111, 1 ),
|
||||||
|
/*
|
||||||
|
* This last entry is used for fixed probability estimate of 0.5
|
||||||
|
* as suggested in Section 10.3 Table 5 of ITU-T Rec. T.851.
|
||||||
|
*/
|
||||||
|
V( 113, 0x5a1d, 113, 113, 0 )
|
||||||
|
};
|
288
dep/libjpeg/src/jcapimin.c
Normal file
288
dep/libjpeg/src/jcapimin.c
Normal file
|
@ -0,0 +1,288 @@
|
||||||
|
/*
|
||||||
|
* jcapimin.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||||
|
* Modified 2003-2010 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains application interface code for the compression half
|
||||||
|
* of the JPEG library. These are the "minimum" API routines that may be
|
||||||
|
* needed in either the normal full-compression case or the transcoding-only
|
||||||
|
* case.
|
||||||
|
*
|
||||||
|
* Most of the routines intended to be called directly by an application
|
||||||
|
* are in this file or in jcapistd.c. But also see jcparam.c for
|
||||||
|
* parameter-setup helper routines, jcomapi.c for routines shared by
|
||||||
|
* compression and decompression, and jctrans.c for the transcoding case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialization of a JPEG compression object.
|
||||||
|
* The error manager must already be set up (in case memory manager fails).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
|
||||||
|
/* Guard against version mismatches between library and caller. */
|
||||||
|
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||||
|
if (version != JPEG_LIB_VERSION)
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||||
|
if (structsize != SIZEOF(struct jpeg_compress_struct))
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||||
|
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
|
||||||
|
|
||||||
|
/* For debugging purposes, we zero the whole master structure.
|
||||||
|
* But the application has already set the err pointer, and may have set
|
||||||
|
* client_data, so we have to save and restore those fields.
|
||||||
|
* Note: if application hasn't set client_data, tools like Purify may
|
||||||
|
* complain here.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
struct jpeg_error_mgr * err = cinfo->err;
|
||||||
|
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||||
|
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
|
||||||
|
cinfo->err = err;
|
||||||
|
cinfo->client_data = client_data;
|
||||||
|
}
|
||||||
|
cinfo->is_decompressor = FALSE;
|
||||||
|
|
||||||
|
/* Initialize a memory manager instance for this object */
|
||||||
|
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
/* Zero out pointers to permanent structures. */
|
||||||
|
cinfo->progress = NULL;
|
||||||
|
cinfo->dest = NULL;
|
||||||
|
|
||||||
|
cinfo->comp_info = NULL;
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||||
|
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||||
|
cinfo->q_scale_factor[i] = 100;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||||
|
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||||
|
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Must do it here for emit_dqt in case jpeg_write_tables is used */
|
||||||
|
cinfo->block_size = DCTSIZE;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
|
||||||
|
cinfo->script_space = NULL;
|
||||||
|
|
||||||
|
cinfo->input_gamma = 1.0; /* in case application forgets */
|
||||||
|
|
||||||
|
/* OK, I'm ready */
|
||||||
|
cinfo->global_state = CSTATE_START;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Destruction of a JPEG compression object
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_destroy_compress (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Abort processing of a JPEG compression operation,
|
||||||
|
* but don't destroy the object itself.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_abort_compress (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Forcibly suppress or un-suppress all quantization and Huffman tables.
|
||||||
|
* Marks all currently defined tables as already written (if suppress)
|
||||||
|
* or not written (if !suppress). This will control whether they get emitted
|
||||||
|
* by a subsequent jpeg_start_compress call.
|
||||||
|
*
|
||||||
|
* This routine is exported for use by applications that want to produce
|
||||||
|
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
|
||||||
|
* since it is called by jpeg_start_compress, we put it here --- otherwise
|
||||||
|
* jcparam.o would be linked whether the application used it or not.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
JQUANT_TBL * qtbl;
|
||||||
|
JHUFF_TBL * htbl;
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||||
|
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
|
||||||
|
qtbl->sent_table = suppress;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||||
|
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
|
||||||
|
htbl->sent_table = suppress;
|
||||||
|
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
|
||||||
|
htbl->sent_table = suppress;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish JPEG compression.
|
||||||
|
*
|
||||||
|
* If a multipass operating mode was selected, this may do a great deal of
|
||||||
|
* work including most of the actual output.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_finish_compress (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
JDIMENSION iMCU_row;
|
||||||
|
|
||||||
|
if (cinfo->global_state == CSTATE_SCANNING ||
|
||||||
|
cinfo->global_state == CSTATE_RAW_OK) {
|
||||||
|
/* Terminate first pass */
|
||||||
|
if (cinfo->next_scanline < cinfo->image_height)
|
||||||
|
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||||
|
(*cinfo->master->finish_pass) (cinfo);
|
||||||
|
} else if (cinfo->global_state != CSTATE_WRCOEFS)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
/* Perform any remaining passes */
|
||||||
|
while (! cinfo->master->is_last_pass) {
|
||||||
|
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||||
|
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->pass_counter = (long) iMCU_row;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
/* We bypass the main controller and invoke coef controller directly;
|
||||||
|
* all work is being done from the coefficient buffer.
|
||||||
|
*/
|
||||||
|
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
|
||||||
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||||
|
}
|
||||||
|
(*cinfo->master->finish_pass) (cinfo);
|
||||||
|
}
|
||||||
|
/* Write EOI, do final cleanup */
|
||||||
|
(*cinfo->marker->write_file_trailer) (cinfo);
|
||||||
|
(*cinfo->dest->term_destination) (cinfo);
|
||||||
|
/* We can use jpeg_abort to release memory and reset global_state */
|
||||||
|
jpeg_abort((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write a special marker.
|
||||||
|
* This is only recommended for writing COM or APPn markers.
|
||||||
|
* Must be called after jpeg_start_compress() and before
|
||||||
|
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_write_marker (j_compress_ptr cinfo, int marker,
|
||||||
|
const JOCTET *dataptr, unsigned int datalen)
|
||||||
|
{
|
||||||
|
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
|
||||||
|
|
||||||
|
if (cinfo->next_scanline != 0 ||
|
||||||
|
(cinfo->global_state != CSTATE_SCANNING &&
|
||||||
|
cinfo->global_state != CSTATE_RAW_OK &&
|
||||||
|
cinfo->global_state != CSTATE_WRCOEFS))
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||||
|
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
|
||||||
|
while (datalen--) {
|
||||||
|
(*write_marker_byte) (cinfo, *dataptr);
|
||||||
|
dataptr++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Same, but piecemeal. */
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||||
|
{
|
||||||
|
if (cinfo->next_scanline != 0 ||
|
||||||
|
(cinfo->global_state != CSTATE_SCANNING &&
|
||||||
|
cinfo->global_state != CSTATE_RAW_OK &&
|
||||||
|
cinfo->global_state != CSTATE_WRCOEFS))
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||||
|
}
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
|
||||||
|
{
|
||||||
|
(*cinfo->marker->write_marker_byte) (cinfo, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Alternate compression function: just write an abbreviated table file.
|
||||||
|
* Before calling this, all parameters and a data destination must be set up.
|
||||||
|
*
|
||||||
|
* To produce a pair of files containing abbreviated tables and abbreviated
|
||||||
|
* image data, one would proceed as follows:
|
||||||
|
*
|
||||||
|
* initialize JPEG object
|
||||||
|
* set JPEG parameters
|
||||||
|
* set destination to table file
|
||||||
|
* jpeg_write_tables(cinfo);
|
||||||
|
* set destination to image file
|
||||||
|
* jpeg_start_compress(cinfo, FALSE);
|
||||||
|
* write data...
|
||||||
|
* jpeg_finish_compress(cinfo);
|
||||||
|
*
|
||||||
|
* jpeg_write_tables has the side effect of marking all tables written
|
||||||
|
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
|
||||||
|
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_write_tables (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
/* (Re)initialize error mgr and destination modules */
|
||||||
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||||
|
(*cinfo->dest->init_destination) (cinfo);
|
||||||
|
/* Initialize the marker writer ... bit of a crock to do it here. */
|
||||||
|
jinit_marker_writer(cinfo);
|
||||||
|
/* Write them tables! */
|
||||||
|
(*cinfo->marker->write_tables_only) (cinfo);
|
||||||
|
/* And clean up. */
|
||||||
|
(*cinfo->dest->term_destination) (cinfo);
|
||||||
|
/*
|
||||||
|
* In library releases up through v6a, we called jpeg_abort() here to free
|
||||||
|
* any working memory allocated by the destination manager and marker
|
||||||
|
* writer. Some applications had a problem with that: they allocated space
|
||||||
|
* of their own from the library memory manager, and didn't want it to go
|
||||||
|
* away during write_tables. So now we do nothing. This will cause a
|
||||||
|
* memory leak if an app calls write_tables repeatedly without doing a full
|
||||||
|
* compression cycle or otherwise resetting the JPEG object. However, that
|
||||||
|
* seems less bad than unexpectedly freeing memory in the normal case.
|
||||||
|
* An app that prefers the old behavior can call jpeg_abort for itself after
|
||||||
|
* each call to jpeg_write_tables().
|
||||||
|
*/
|
||||||
|
}
|
162
dep/libjpeg/src/jcapistd.c
Normal file
162
dep/libjpeg/src/jcapistd.c
Normal file
|
@ -0,0 +1,162 @@
|
||||||
|
/*
|
||||||
|
* jcapistd.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2013 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains application interface code for the compression half
|
||||||
|
* of the JPEG library. These are the "standard" API routines that are
|
||||||
|
* used in the normal full-compression case. They are not used by a
|
||||||
|
* transcoding-only application. Note that if an application links in
|
||||||
|
* jpeg_start_compress, it will end up linking in the entire compressor.
|
||||||
|
* We thus must separate this file from jcapimin.c to avoid linking the
|
||||||
|
* whole compression library into a transcoder.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compression initialization.
|
||||||
|
* Before calling this, all parameters and a data destination must be set up.
|
||||||
|
*
|
||||||
|
* We require a write_all_tables parameter as a failsafe check when writing
|
||||||
|
* multiple datastreams from the same compression object. Since prior runs
|
||||||
|
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
||||||
|
* would emit an abbreviated stream (no tables) by default. This may be what
|
||||||
|
* is wanted, but for safety's sake it should not be the default behavior:
|
||||||
|
* programmers should have to make a deliberate choice to emit abbreviated
|
||||||
|
* images. Therefore the documentation and examples should encourage people
|
||||||
|
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
||||||
|
* wrong thing.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
if (write_all_tables)
|
||||||
|
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
||||||
|
|
||||||
|
/* (Re)initialize error mgr and destination modules */
|
||||||
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||||
|
(*cinfo->dest->init_destination) (cinfo);
|
||||||
|
/* Perform master selection of active modules */
|
||||||
|
jinit_compress_master(cinfo);
|
||||||
|
/* Set up for the first pass */
|
||||||
|
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||||
|
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||||
|
* or jpeg_write_raw_data.
|
||||||
|
*/
|
||||||
|
cinfo->next_scanline = 0;
|
||||||
|
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write some scanlines of data to the JPEG compressor.
|
||||||
|
*
|
||||||
|
* The return value will be the number of lines actually written.
|
||||||
|
* This should be less than the supplied num_lines only in case that
|
||||||
|
* the data destination module has requested suspension of the compressor,
|
||||||
|
* or if more than image_height scanlines are passed in.
|
||||||
|
*
|
||||||
|
* Note: we warn about excess calls to jpeg_write_scanlines() since
|
||||||
|
* this likely signals an application programmer error. However,
|
||||||
|
* excess scanlines passed in the last valid call are *silently* ignored,
|
||||||
|
* so that the application need not adjust num_lines for end-of-image
|
||||||
|
* when using a multiple-scanline buffer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(JDIMENSION)
|
||||||
|
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
|
||||||
|
JDIMENSION num_lines)
|
||||||
|
{
|
||||||
|
JDIMENSION row_ctr, rows_left;
|
||||||
|
|
||||||
|
if (cinfo->global_state != CSTATE_SCANNING)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
if (cinfo->next_scanline >= cinfo->image_height)
|
||||||
|
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||||
|
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Give master control module another chance if this is first call to
|
||||||
|
* jpeg_write_scanlines. This lets output of the frame/scan headers be
|
||||||
|
* delayed so that application can write COM, etc, markers between
|
||||||
|
* jpeg_start_compress and jpeg_write_scanlines.
|
||||||
|
*/
|
||||||
|
if (cinfo->master->call_pass_startup)
|
||||||
|
(*cinfo->master->pass_startup) (cinfo);
|
||||||
|
|
||||||
|
/* Ignore any extra scanlines at bottom of image. */
|
||||||
|
rows_left = cinfo->image_height - cinfo->next_scanline;
|
||||||
|
if (num_lines > rows_left)
|
||||||
|
num_lines = rows_left;
|
||||||
|
|
||||||
|
row_ctr = 0;
|
||||||
|
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
||||||
|
cinfo->next_scanline += row_ctr;
|
||||||
|
return row_ctr;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Alternate entry point to write raw data.
|
||||||
|
* Processes exactly one iMCU row per call, unless suspended.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(JDIMENSION)
|
||||||
|
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
|
||||||
|
JDIMENSION num_lines)
|
||||||
|
{
|
||||||
|
JDIMENSION lines_per_iMCU_row;
|
||||||
|
|
||||||
|
if (cinfo->global_state != CSTATE_RAW_OK)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
if (cinfo->next_scanline >= cinfo->image_height) {
|
||||||
|
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Give master control module another chance if this is first call to
|
||||||
|
* jpeg_write_raw_data. This lets output of the frame/scan headers be
|
||||||
|
* delayed so that application can write COM, etc, markers between
|
||||||
|
* jpeg_start_compress and jpeg_write_raw_data.
|
||||||
|
*/
|
||||||
|
if (cinfo->master->call_pass_startup)
|
||||||
|
(*cinfo->master->pass_startup) (cinfo);
|
||||||
|
|
||||||
|
/* Verify that at least one iMCU row has been passed. */
|
||||||
|
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
|
||||||
|
if (num_lines < lines_per_iMCU_row)
|
||||||
|
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||||
|
|
||||||
|
/* Directly compress the row. */
|
||||||
|
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
|
||||||
|
/* If compressor did not consume the whole row, suspend processing. */
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* OK, we processed one iMCU row. */
|
||||||
|
cinfo->next_scanline += lines_per_iMCU_row;
|
||||||
|
return lines_per_iMCU_row;
|
||||||
|
}
|
945
dep/libjpeg/src/jcarith.c
Normal file
945
dep/libjpeg/src/jcarith.c
Normal file
|
@ -0,0 +1,945 @@
|
||||||
|
/*
|
||||||
|
* jcarith.c
|
||||||
|
*
|
||||||
|
* Developed 1997-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains portable arithmetic entropy encoding routines for JPEG
|
||||||
|
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||||
|
*
|
||||||
|
* Both sequential and progressive modes are supported in this single module.
|
||||||
|
*
|
||||||
|
* Suspension is not currently supported in this module.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Expanded entropy encoder object for arithmetic encoding. */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_entropy_encoder pub; /* public fields */
|
||||||
|
|
||||||
|
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
||||||
|
INT32 a; /* A register, normalized size of coding interval */
|
||||||
|
INT32 sc; /* counter for stacked 0xFF values which might overflow */
|
||||||
|
INT32 zc; /* counter for pending 0x00 output values which might *
|
||||||
|
* be discarded at the end ("Pacman" termination) */
|
||||||
|
int ct; /* bit shift counter, determines when next byte will be written */
|
||||||
|
int buffer; /* buffer for most recent output byte != 0xFF */
|
||||||
|
|
||||||
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||||
|
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||||
|
|
||||||
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||||
|
int next_restart_num; /* next restart number to write (0-7) */
|
||||||
|
|
||||||
|
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||||
|
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||||
|
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||||
|
|
||||||
|
/* Statistics bin for coding with fixed probability 0.5 */
|
||||||
|
unsigned char fixed_bin[4];
|
||||||
|
} arith_entropy_encoder;
|
||||||
|
|
||||||
|
typedef arith_entropy_encoder * arith_entropy_ptr;
|
||||||
|
|
||||||
|
/* The following two definitions specify the allocation chunk size
|
||||||
|
* for the statistics area.
|
||||||
|
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||||
|
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||||
|
*
|
||||||
|
* We use a compact representation with 1 byte per statistics bin,
|
||||||
|
* thus the numbers directly represent byte sizes.
|
||||||
|
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||||
|
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||||
|
* index into the probability estimation state machine table
|
||||||
|
* in the lower bits (mask 0x7F).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define DC_STAT_BINS 64
|
||||||
|
#define AC_STAT_BINS 256
|
||||||
|
|
||||||
|
/* NOTE: Uncomment the following #define if you want to use the
|
||||||
|
* given formula for calculating the AC conditioning parameter Kx
|
||||||
|
* for spectral selection progressive coding in section G.1.3.2
|
||||||
|
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
||||||
|
* Although the spec and P&M authors claim that this "has proven
|
||||||
|
* to give good results for 8 bit precision samples", I'm not
|
||||||
|
* convinced yet that this is really beneficial.
|
||||||
|
* Early tests gave only very marginal compression enhancements
|
||||||
|
* (a few - around 5 or so - bytes even for very large files),
|
||||||
|
* which would turn out rather negative if we'd suppress the
|
||||||
|
* DAC (Define Arithmetic Conditioning) marker segments for
|
||||||
|
* the default parameters in the future.
|
||||||
|
* Note that currently the marker writing module emits 12-byte
|
||||||
|
* DAC segments for a full-component scan in a color image.
|
||||||
|
* This is not worth worrying about IMHO. However, since the
|
||||||
|
* spec defines the default values to be used if the tables
|
||||||
|
* are omitted (unlike Huffman tables, which are required
|
||||||
|
* anyway), one might optimize this behaviour in the future,
|
||||||
|
* and then it would be disadvantageous to use custom tables if
|
||||||
|
* they don't provide sufficient gain to exceed the DAC size.
|
||||||
|
*
|
||||||
|
* On the other hand, I'd consider it as a reasonable result
|
||||||
|
* that the conditioning has no significant influence on the
|
||||||
|
* compression performance. This means that the basic
|
||||||
|
* statistical model is already rather stable.
|
||||||
|
*
|
||||||
|
* Thus, at the moment, we use the default conditioning values
|
||||||
|
* anyway, and do not use the custom formula.
|
||||||
|
*
|
||||||
|
#define CALCULATE_SPECTRAL_CONDITIONING
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
||||||
|
* We assume that int right shift is unsigned if INT32 right shift is,
|
||||||
|
* which should be safe.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||||
|
#define ISHIFT_TEMPS int ishift_temp;
|
||||||
|
#define IRIGHT_SHIFT(x,shft) \
|
||||||
|
((ishift_temp = (x)) < 0 ? \
|
||||||
|
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||||
|
(ishift_temp >> (shft)))
|
||||||
|
#else
|
||||||
|
#define ISHIFT_TEMPS
|
||||||
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_byte (int val, j_compress_ptr cinfo)
|
||||||
|
/* Write next output byte; we do not support suspension in this module. */
|
||||||
|
{
|
||||||
|
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||||
|
|
||||||
|
*dest->next_output_byte++ = (JOCTET) val;
|
||||||
|
if (--dest->free_in_buffer == 0)
|
||||||
|
if (! (*dest->empty_output_buffer) (cinfo))
|
||||||
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up at the end of an arithmetic-compressed scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
finish_pass (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
INT32 temp;
|
||||||
|
|
||||||
|
/* Section D.1.8: Termination of encoding */
|
||||||
|
|
||||||
|
/* Find the e->c in the coding interval with the largest
|
||||||
|
* number of trailing zero bits */
|
||||||
|
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
|
||||||
|
e->c = temp + 0x8000L;
|
||||||
|
else
|
||||||
|
e->c = temp;
|
||||||
|
/* Send remaining bytes to output */
|
||||||
|
e->c <<= e->ct;
|
||||||
|
if (e->c & 0xF8000000L) {
|
||||||
|
/* One final overflow has to be handled */
|
||||||
|
if (e->buffer >= 0) {
|
||||||
|
if (e->zc)
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
emit_byte(e->buffer + 1, cinfo);
|
||||||
|
if (e->buffer + 1 == 0xFF)
|
||||||
|
emit_byte(0x00, cinfo);
|
||||||
|
}
|
||||||
|
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||||
|
e->sc = 0;
|
||||||
|
} else {
|
||||||
|
if (e->buffer == 0)
|
||||||
|
++e->zc;
|
||||||
|
else if (e->buffer >= 0) {
|
||||||
|
if (e->zc)
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
emit_byte(e->buffer, cinfo);
|
||||||
|
}
|
||||||
|
if (e->sc) {
|
||||||
|
if (e->zc)
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
do {
|
||||||
|
emit_byte(0xFF, cinfo);
|
||||||
|
emit_byte(0x00, cinfo);
|
||||||
|
} while (--e->sc);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Output final bytes only if they are not 0x00 */
|
||||||
|
if (e->c & 0x7FFF800L) {
|
||||||
|
if (e->zc) /* output final pending zero bytes */
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
emit_byte((int) ((e->c >> 19) & 0xFF), cinfo);
|
||||||
|
if (((e->c >> 19) & 0xFF) == 0xFF)
|
||||||
|
emit_byte(0x00, cinfo);
|
||||||
|
if (e->c & 0x7F800L) {
|
||||||
|
emit_byte((int) ((e->c >> 11) & 0xFF), cinfo);
|
||||||
|
if (((e->c >> 11) & 0xFF) == 0xFF)
|
||||||
|
emit_byte(0x00, cinfo);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The core arithmetic encoding routine (common in JPEG and JBIG).
|
||||||
|
* This needs to go as fast as possible.
|
||||||
|
* Machine-dependent optimization facilities
|
||||||
|
* are not utilized in this portable implementation.
|
||||||
|
* However, this code should be fairly efficient and
|
||||||
|
* may be a good base for further optimizations anyway.
|
||||||
|
*
|
||||||
|
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
||||||
|
*
|
||||||
|
* Note: I've added full "Pacman" termination support to the
|
||||||
|
* byte output routines, which is equivalent to the optional
|
||||||
|
* Discard_final_zeros procedure (Figure D.15) in the spec.
|
||||||
|
* Thus, we always produce the shortest possible output
|
||||||
|
* stream compliant to the spec (no trailing zero bytes,
|
||||||
|
* except for FF stuffing).
|
||||||
|
*
|
||||||
|
* I've also introduced a new scheme for accessing
|
||||||
|
* the probability estimation state machine table,
|
||||||
|
* derived from Markus Kuhn's JBIG implementation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
||||||
|
{
|
||||||
|
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
register unsigned char nl, nm;
|
||||||
|
register INT32 qe, temp;
|
||||||
|
register int sv;
|
||||||
|
|
||||||
|
/* Fetch values from our compact representation of Table D.3(D.2):
|
||||||
|
* Qe values and probability estimation state machine
|
||||||
|
*/
|
||||||
|
sv = *st;
|
||||||
|
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
|
||||||
|
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||||
|
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||||
|
|
||||||
|
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
||||||
|
e->a -= qe;
|
||||||
|
if (val != (sv >> 7)) {
|
||||||
|
/* Encode the less probable symbol */
|
||||||
|
if (e->a >= qe) {
|
||||||
|
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||||
|
* is larger than the interval size for the MPS, then exchange
|
||||||
|
* the two symbols for coding efficiency, otherwise code the LPS
|
||||||
|
* as usual: */
|
||||||
|
e->c += e->a;
|
||||||
|
e->a = qe;
|
||||||
|
}
|
||||||
|
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||||
|
} else {
|
||||||
|
/* Encode the more probable symbol */
|
||||||
|
if (e->a >= 0x8000L)
|
||||||
|
return; /* A >= 0x8000 -> ready, no renormalization required */
|
||||||
|
if (e->a < qe) {
|
||||||
|
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||||
|
* is larger than the interval size for the MPS, then exchange
|
||||||
|
* the two symbols for coding efficiency: */
|
||||||
|
e->c += e->a;
|
||||||
|
e->a = qe;
|
||||||
|
}
|
||||||
|
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Renormalization & data output per section D.1.6 */
|
||||||
|
do {
|
||||||
|
e->a <<= 1;
|
||||||
|
e->c <<= 1;
|
||||||
|
if (--e->ct == 0) {
|
||||||
|
/* Another byte is ready for output */
|
||||||
|
temp = e->c >> 19;
|
||||||
|
if (temp > 0xFF) {
|
||||||
|
/* Handle overflow over all stacked 0xFF bytes */
|
||||||
|
if (e->buffer >= 0) {
|
||||||
|
if (e->zc)
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
emit_byte(e->buffer + 1, cinfo);
|
||||||
|
if (e->buffer + 1 == 0xFF)
|
||||||
|
emit_byte(0x00, cinfo);
|
||||||
|
}
|
||||||
|
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||||
|
e->sc = 0;
|
||||||
|
/* Note: The 3 spacer bits in the C register guarantee
|
||||||
|
* that the new buffer byte can't be 0xFF here
|
||||||
|
* (see page 160 in the P&M JPEG book). */
|
||||||
|
/* New output byte, might overflow later */
|
||||||
|
e->buffer = (int) (temp & 0xFF);
|
||||||
|
} else if (temp == 0xFF) {
|
||||||
|
++e->sc; /* stack 0xFF byte (which might overflow later) */
|
||||||
|
} else {
|
||||||
|
/* Output all stacked 0xFF bytes, they will not overflow any more */
|
||||||
|
if (e->buffer == 0)
|
||||||
|
++e->zc;
|
||||||
|
else if (e->buffer >= 0) {
|
||||||
|
if (e->zc)
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
emit_byte(e->buffer, cinfo);
|
||||||
|
}
|
||||||
|
if (e->sc) {
|
||||||
|
if (e->zc)
|
||||||
|
do emit_byte(0x00, cinfo);
|
||||||
|
while (--e->zc);
|
||||||
|
do {
|
||||||
|
emit_byte(0xFF, cinfo);
|
||||||
|
emit_byte(0x00, cinfo);
|
||||||
|
} while (--e->sc);
|
||||||
|
}
|
||||||
|
/* New output byte (can still overflow) */
|
||||||
|
e->buffer = (int) (temp & 0xFF);
|
||||||
|
}
|
||||||
|
e->c &= 0x7FFFFL;
|
||||||
|
e->ct += 8;
|
||||||
|
}
|
||||||
|
} while (e->a < 0x8000L);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Emit a restart marker & resynchronize predictions.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_restart (j_compress_ptr cinfo, int restart_num)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
finish_pass(cinfo);
|
||||||
|
|
||||||
|
emit_byte(0xFF, cinfo);
|
||||||
|
emit_byte(JPEG_RST0 + restart_num, cinfo);
|
||||||
|
|
||||||
|
/* Re-initialize statistics areas */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
/* DC needs no table for refinement scan */
|
||||||
|
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
||||||
|
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||||
|
/* Reset DC predictions to 0 */
|
||||||
|
entropy->last_dc_val[ci] = 0;
|
||||||
|
entropy->dc_context[ci] = 0;
|
||||||
|
}
|
||||||
|
/* AC needs no table when not present */
|
||||||
|
if (cinfo->Se) {
|
||||||
|
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Reset arithmetic encoding variables */
|
||||||
|
entropy->c = 0;
|
||||||
|
entropy->a = 0x10000L;
|
||||||
|
entropy->sc = 0;
|
||||||
|
entropy->zc = 0;
|
||||||
|
entropy->ct = 11;
|
||||||
|
entropy->buffer = -1; /* empty */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU encoding for DC initial scan (either spectral selection,
|
||||||
|
* or first pass of successive approximation).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
unsigned char *st;
|
||||||
|
int blkn, ci, tbl;
|
||||||
|
int v, v2, m;
|
||||||
|
ISHIFT_TEMPS
|
||||||
|
|
||||||
|
/* Emit restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0) {
|
||||||
|
emit_restart(cinfo, entropy->next_restart_num);
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
entropy->next_restart_num++;
|
||||||
|
entropy->next_restart_num &= 7;
|
||||||
|
}
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Encode the MCU data blocks */
|
||||||
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||||
|
ci = cinfo->MCU_membership[blkn];
|
||||||
|
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||||
|
|
||||||
|
/* Compute the DC value after the required point transform by Al.
|
||||||
|
* This is simply an arithmetic right shift.
|
||||||
|
*/
|
||||||
|
m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
|
||||||
|
|
||||||
|
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||||
|
|
||||||
|
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||||
|
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||||
|
|
||||||
|
/* Figure F.4: Encode_DC_DIFF */
|
||||||
|
if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
||||||
|
arith_encode(cinfo, st, 0);
|
||||||
|
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||||
|
} else {
|
||||||
|
entropy->last_dc_val[ci] = m;
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
/* Figure F.6: Encoding nonzero value v */
|
||||||
|
/* Figure F.7: Encoding the sign of v */
|
||||||
|
if (v > 0) {
|
||||||
|
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||||
|
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||||
|
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||||
|
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||||
|
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||||
|
}
|
||||||
|
/* Figure F.8: Encoding the magnitude category of v */
|
||||||
|
m = 0;
|
||||||
|
if (v -= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m = 1;
|
||||||
|
v2 = v;
|
||||||
|
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||||
|
while (v2 >>= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m <<= 1;
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st, 0);
|
||||||
|
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||||
|
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||||
|
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] += 8; /* large diff category */
|
||||||
|
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU encoding for AC initial scan (either spectral selection,
|
||||||
|
* or first pass of successive approximation).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
const int * natural_order;
|
||||||
|
JBLOCKROW block;
|
||||||
|
unsigned char *st;
|
||||||
|
int tbl, k, ke;
|
||||||
|
int v, v2, m;
|
||||||
|
|
||||||
|
/* Emit restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0) {
|
||||||
|
emit_restart(cinfo, entropy->next_restart_num);
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
entropy->next_restart_num++;
|
||||||
|
entropy->next_restart_num &= 7;
|
||||||
|
}
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
natural_order = cinfo->natural_order;
|
||||||
|
|
||||||
|
/* Encode the MCU data block */
|
||||||
|
block = MCU_data[0];
|
||||||
|
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||||
|
|
||||||
|
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||||
|
|
||||||
|
/* Establish EOB (end-of-block) index */
|
||||||
|
ke = cinfo->Se;
|
||||||
|
do {
|
||||||
|
/* We must apply the point transform by Al. For AC coefficients this
|
||||||
|
* is an integer division with rounding towards 0. To do this portably
|
||||||
|
* in C, we shift after obtaining the absolute value.
|
||||||
|
*/
|
||||||
|
if ((v = (*block)[natural_order[ke]]) >= 0) {
|
||||||
|
if (v >>= cinfo->Al) break;
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
if (v >>= cinfo->Al) break;
|
||||||
|
}
|
||||||
|
} while (--ke);
|
||||||
|
|
||||||
|
/* Figure F.5: Encode_AC_Coefficients */
|
||||||
|
for (k = cinfo->Ss - 1; k < ke;) {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||||
|
for (;;) {
|
||||||
|
if ((v = (*block)[natural_order[++k]]) >= 0) {
|
||||||
|
if (v >>= cinfo->Al) {
|
||||||
|
arith_encode(cinfo, st + 1, 1);
|
||||||
|
arith_encode(cinfo, entropy->fixed_bin, 0);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
if (v >>= cinfo->Al) {
|
||||||
|
arith_encode(cinfo, st + 1, 1);
|
||||||
|
arith_encode(cinfo, entropy->fixed_bin, 1);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st + 1, 0);
|
||||||
|
st += 3;
|
||||||
|
}
|
||||||
|
st += 2;
|
||||||
|
/* Figure F.8: Encoding the magnitude category of v */
|
||||||
|
m = 0;
|
||||||
|
if (v -= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m = 1;
|
||||||
|
v2 = v;
|
||||||
|
if (v2 >>= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m <<= 1;
|
||||||
|
st = entropy->ac_stats[tbl] +
|
||||||
|
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||||
|
while (v2 >>= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m <<= 1;
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st, 0);
|
||||||
|
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||||
|
}
|
||||||
|
/* Encode EOB decision only if k < cinfo->Se */
|
||||||
|
if (k < cinfo->Se) {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU encoding for DC successive approximation refinement scan.
|
||||||
|
* Note: we assume such scans can be multi-component,
|
||||||
|
* although the spec is not very clear on the point.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
unsigned char *st;
|
||||||
|
int Al, blkn;
|
||||||
|
|
||||||
|
/* Emit restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0) {
|
||||||
|
emit_restart(cinfo, entropy->next_restart_num);
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
entropy->next_restart_num++;
|
||||||
|
entropy->next_restart_num &= 7;
|
||||||
|
}
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
st = entropy->fixed_bin; /* use fixed probability estimation */
|
||||||
|
Al = cinfo->Al;
|
||||||
|
|
||||||
|
/* Encode the MCU data blocks */
|
||||||
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||||
|
/* We simply emit the Al'th bit of the DC coefficient value. */
|
||||||
|
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU encoding for AC successive approximation refinement scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
const int * natural_order;
|
||||||
|
JBLOCKROW block;
|
||||||
|
unsigned char *st;
|
||||||
|
int tbl, k, ke, kex;
|
||||||
|
int v;
|
||||||
|
|
||||||
|
/* Emit restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0) {
|
||||||
|
emit_restart(cinfo, entropy->next_restart_num);
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
entropy->next_restart_num++;
|
||||||
|
entropy->next_restart_num &= 7;
|
||||||
|
}
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
natural_order = cinfo->natural_order;
|
||||||
|
|
||||||
|
/* Encode the MCU data block */
|
||||||
|
block = MCU_data[0];
|
||||||
|
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||||
|
|
||||||
|
/* Section G.1.3.3: Encoding of AC coefficients */
|
||||||
|
|
||||||
|
/* Establish EOB (end-of-block) index */
|
||||||
|
ke = cinfo->Se;
|
||||||
|
do {
|
||||||
|
/* We must apply the point transform by Al. For AC coefficients this
|
||||||
|
* is an integer division with rounding towards 0. To do this portably
|
||||||
|
* in C, we shift after obtaining the absolute value.
|
||||||
|
*/
|
||||||
|
if ((v = (*block)[natural_order[ke]]) >= 0) {
|
||||||
|
if (v >>= cinfo->Al) break;
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
if (v >>= cinfo->Al) break;
|
||||||
|
}
|
||||||
|
} while (--ke);
|
||||||
|
|
||||||
|
/* Establish EOBx (previous stage end-of-block) index */
|
||||||
|
for (kex = ke; kex > 0; kex--)
|
||||||
|
if ((v = (*block)[natural_order[kex]]) >= 0) {
|
||||||
|
if (v >>= cinfo->Ah) break;
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
if (v >>= cinfo->Ah) break;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Figure G.10: Encode_AC_Coefficients_SA */
|
||||||
|
for (k = cinfo->Ss - 1; k < ke;) {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
if (k >= kex)
|
||||||
|
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||||
|
for (;;) {
|
||||||
|
if ((v = (*block)[natural_order[++k]]) >= 0) {
|
||||||
|
if (v >>= cinfo->Al) {
|
||||||
|
if (v >> 1) /* previously nonzero coef */
|
||||||
|
arith_encode(cinfo, st + 2, (v & 1));
|
||||||
|
else { /* newly nonzero coef */
|
||||||
|
arith_encode(cinfo, st + 1, 1);
|
||||||
|
arith_encode(cinfo, entropy->fixed_bin, 0);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
if (v >>= cinfo->Al) {
|
||||||
|
if (v >> 1) /* previously nonzero coef */
|
||||||
|
arith_encode(cinfo, st + 2, (v & 1));
|
||||||
|
else { /* newly nonzero coef */
|
||||||
|
arith_encode(cinfo, st + 1, 1);
|
||||||
|
arith_encode(cinfo, entropy->fixed_bin, 1);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st + 1, 0);
|
||||||
|
st += 3;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Encode EOB decision only if k < cinfo->Se */
|
||||||
|
if (k < cinfo->Se) {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
encode_mcu (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
const int * natural_order;
|
||||||
|
JBLOCKROW block;
|
||||||
|
unsigned char *st;
|
||||||
|
int tbl, k, ke;
|
||||||
|
int v, v2, m;
|
||||||
|
int blkn, ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
/* Emit restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0) {
|
||||||
|
emit_restart(cinfo, entropy->next_restart_num);
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
entropy->next_restart_num++;
|
||||||
|
entropy->next_restart_num &= 7;
|
||||||
|
}
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
natural_order = cinfo->natural_order;
|
||||||
|
|
||||||
|
/* Encode the MCU data blocks */
|
||||||
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||||
|
block = MCU_data[blkn];
|
||||||
|
ci = cinfo->MCU_membership[blkn];
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
|
||||||
|
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||||
|
|
||||||
|
tbl = compptr->dc_tbl_no;
|
||||||
|
|
||||||
|
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||||
|
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||||
|
|
||||||
|
/* Figure F.4: Encode_DC_DIFF */
|
||||||
|
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
||||||
|
arith_encode(cinfo, st, 0);
|
||||||
|
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||||
|
} else {
|
||||||
|
entropy->last_dc_val[ci] = (*block)[0];
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
/* Figure F.6: Encoding nonzero value v */
|
||||||
|
/* Figure F.7: Encoding the sign of v */
|
||||||
|
if (v > 0) {
|
||||||
|
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||||
|
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||||
|
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||||
|
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||||
|
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||||
|
}
|
||||||
|
/* Figure F.8: Encoding the magnitude category of v */
|
||||||
|
m = 0;
|
||||||
|
if (v -= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m = 1;
|
||||||
|
v2 = v;
|
||||||
|
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||||
|
while (v2 >>= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m <<= 1;
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st, 0);
|
||||||
|
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||||
|
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||||
|
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] += 8; /* large diff category */
|
||||||
|
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||||
|
|
||||||
|
if ((ke = cinfo->lim_Se) == 0) continue;
|
||||||
|
tbl = compptr->ac_tbl_no;
|
||||||
|
|
||||||
|
/* Establish EOB (end-of-block) index */
|
||||||
|
do {
|
||||||
|
if ((*block)[natural_order[ke]]) break;
|
||||||
|
} while (--ke);
|
||||||
|
|
||||||
|
/* Figure F.5: Encode_AC_Coefficients */
|
||||||
|
for (k = 0; k < ke;) {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||||
|
while ((v = (*block)[natural_order[++k]]) == 0) {
|
||||||
|
arith_encode(cinfo, st + 1, 0);
|
||||||
|
st += 3;
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st + 1, 1);
|
||||||
|
/* Figure F.6: Encoding nonzero value v */
|
||||||
|
/* Figure F.7: Encoding the sign of v */
|
||||||
|
if (v > 0) {
|
||||||
|
arith_encode(cinfo, entropy->fixed_bin, 0);
|
||||||
|
} else {
|
||||||
|
v = -v;
|
||||||
|
arith_encode(cinfo, entropy->fixed_bin, 1);
|
||||||
|
}
|
||||||
|
st += 2;
|
||||||
|
/* Figure F.8: Encoding the magnitude category of v */
|
||||||
|
m = 0;
|
||||||
|
if (v -= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m = 1;
|
||||||
|
v2 = v;
|
||||||
|
if (v2 >>= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m <<= 1;
|
||||||
|
st = entropy->ac_stats[tbl] +
|
||||||
|
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||||
|
while (v2 >>= 1) {
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
m <<= 1;
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
arith_encode(cinfo, st, 0);
|
||||||
|
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||||
|
}
|
||||||
|
/* Encode EOB decision only if k < cinfo->lim_Se */
|
||||||
|
if (k < cinfo->lim_Se) {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
arith_encode(cinfo, st, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an arithmetic-compressed scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
int ci, tbl;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
if (gather_statistics)
|
||||||
|
/* Make sure to avoid that in the master control logic!
|
||||||
|
* We are fully adaptive here and need no extra
|
||||||
|
* statistics gathering pass!
|
||||||
|
*/
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
|
||||||
|
/* We assume jcmaster.c already validated the progressive scan parameters. */
|
||||||
|
|
||||||
|
/* Select execution routines */
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
if (cinfo->Ah == 0) {
|
||||||
|
if (cinfo->Ss == 0)
|
||||||
|
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
||||||
|
else
|
||||||
|
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
||||||
|
} else {
|
||||||
|
if (cinfo->Ss == 0)
|
||||||
|
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
||||||
|
else
|
||||||
|
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
||||||
|
}
|
||||||
|
} else
|
||||||
|
entropy->pub.encode_mcu = encode_mcu;
|
||||||
|
|
||||||
|
/* Allocate & initialize requested statistics areas */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
/* DC needs no table for refinement scan */
|
||||||
|
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
||||||
|
tbl = compptr->dc_tbl_no;
|
||||||
|
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||||
|
if (entropy->dc_stats[tbl] == NULL)
|
||||||
|
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||||
|
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||||
|
/* Initialize DC predictions to 0 */
|
||||||
|
entropy->last_dc_val[ci] = 0;
|
||||||
|
entropy->dc_context[ci] = 0;
|
||||||
|
}
|
||||||
|
/* AC needs no table when not present */
|
||||||
|
if (cinfo->Se) {
|
||||||
|
tbl = compptr->ac_tbl_no;
|
||||||
|
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||||
|
if (entropy->ac_stats[tbl] == NULL)
|
||||||
|
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||||
|
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||||
|
#ifdef CALCULATE_SPECTRAL_CONDITIONING
|
||||||
|
if (cinfo->progressive_mode)
|
||||||
|
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
||||||
|
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize arithmetic encoding variables */
|
||||||
|
entropy->c = 0;
|
||||||
|
entropy->a = 0x10000L;
|
||||||
|
entropy->sc = 0;
|
||||||
|
entropy->zc = 0;
|
||||||
|
entropy->ct = 11;
|
||||||
|
entropy->buffer = -1; /* empty */
|
||||||
|
|
||||||
|
/* Initialize restart stuff */
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
entropy->next_restart_num = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for arithmetic entropy encoding.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_arith_encoder (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder));
|
||||||
|
cinfo->entropy = &entropy->pub;
|
||||||
|
entropy->pub.start_pass = start_pass;
|
||||||
|
entropy->pub.finish_pass = finish_pass;
|
||||||
|
|
||||||
|
/* Mark tables unallocated */
|
||||||
|
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||||
|
entropy->dc_stats[i] = NULL;
|
||||||
|
entropy->ac_stats[i] = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize index for fixed probability estimation */
|
||||||
|
entropy->fixed_bin[0] = 113;
|
||||||
|
}
|
456
dep/libjpeg/src/jccoefct.c
Normal file
456
dep/libjpeg/src/jccoefct.c
Normal file
|
@ -0,0 +1,456 @@
|
||||||
|
/*
|
||||||
|
* jccoefct.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||||
|
* Modified 2003-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the coefficient buffer controller for compression.
|
||||||
|
* This controller is the top level of the JPEG compressor proper.
|
||||||
|
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||||
|
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
||||||
|
* step is run during the first pass, and subsequent passes need only read
|
||||||
|
* the buffered coefficients.
|
||||||
|
*/
|
||||||
|
#ifdef ENTROPY_OPT_SUPPORTED
|
||||||
|
#define FULL_COEF_BUFFER_SUPPORTED
|
||||||
|
#else
|
||||||
|
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||||
|
#define FULL_COEF_BUFFER_SUPPORTED
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_c_coef_controller pub; /* public fields */
|
||||||
|
|
||||||
|
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||||
|
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||||
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||||
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||||
|
|
||||||
|
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||||
|
* (although this may prove a bit slow in practice).
|
||||||
|
* We append a workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks,
|
||||||
|
* and reuse it for each MCU constructed and sent.
|
||||||
|
* In multi-pass modes, this array points to the current MCU's blocks
|
||||||
|
* within the virtual arrays.
|
||||||
|
*/
|
||||||
|
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||||
|
|
||||||
|
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||||
|
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
/* Workspace for single-pass compression (omitted otherwise). */
|
||||||
|
JBLOCK blk_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||||
|
} my_coef_controller;
|
||||||
|
|
||||||
|
typedef my_coef_controller * my_coef_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
METHODDEF(boolean) compress_data
|
||||||
|
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||||
|
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||||
|
METHODDEF(boolean) compress_first_pass
|
||||||
|
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||||
|
METHODDEF(boolean) compress_output
|
||||||
|
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
start_iMCU_row (j_compress_ptr cinfo)
|
||||||
|
/* Reset within-iMCU-row counters for a new row */
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
|
||||||
|
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||||
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||||
|
* But at the bottom of the image, process only what's left.
|
||||||
|
*/
|
||||||
|
if (cinfo->comps_in_scan > 1) {
|
||||||
|
coef->MCU_rows_per_iMCU_row = 1;
|
||||||
|
} else {
|
||||||
|
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||||
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||||
|
else
|
||||||
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||||
|
}
|
||||||
|
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
coef->MCU_vert_offset = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
|
||||||
|
coef->iMCU_row_num = 0;
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
|
||||||
|
switch (pass_mode) {
|
||||||
|
case JBUF_PASS_THRU:
|
||||||
|
if (coef->whole_image[0] != NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
coef->pub.compress_data = compress_data;
|
||||||
|
break;
|
||||||
|
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||||
|
case JBUF_SAVE_AND_PASS:
|
||||||
|
if (coef->whole_image[0] == NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
coef->pub.compress_data = compress_first_pass;
|
||||||
|
break;
|
||||||
|
case JBUF_CRANK_DEST:
|
||||||
|
if (coef->whole_image[0] == NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
coef->pub.compress_data = compress_output;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the single-pass case.
|
||||||
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||||
|
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||||
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||||
|
*
|
||||||
|
* NB: input_buf contains a plane for each component in image,
|
||||||
|
* which we index according to the component's SOF position.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||||
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||||
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||||
|
int ci, xindex, yindex, yoffset, blockcnt;
|
||||||
|
JBLOCKROW blkp;
|
||||||
|
JSAMPARRAY input_ptr;
|
||||||
|
JDIMENSION xpos;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
forward_DCT_ptr forward_DCT;
|
||||||
|
|
||||||
|
/* Loop to write as much as one whole iMCU row */
|
||||||
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||||
|
yoffset++) {
|
||||||
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
||||||
|
MCU_col_num++) {
|
||||||
|
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||||
|
* Each call on forward_DCT processes a horizontal row of DCT blocks as
|
||||||
|
* wide as an MCU. Dummy blocks at the right or bottom edge are filled in
|
||||||
|
* specially. The data in them does not matter for image reconstruction,
|
||||||
|
* so we fill them with values that will encode to the smallest amount of
|
||||||
|
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
||||||
|
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
||||||
|
*/
|
||||||
|
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
|
||||||
|
input_ptr = input_buf[compptr->component_index] +
|
||||||
|
yoffset * compptr->DCT_v_scaled_size;
|
||||||
|
/* ypos == (yoffset + yindex) * compptr->DCT_v_scaled_size */
|
||||||
|
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||||
|
: compptr->last_col_width;
|
||||||
|
xpos = MCU_col_num * compptr->MCU_sample_width;
|
||||||
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||||
|
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||||
|
yoffset + yindex < compptr->last_row_height) {
|
||||||
|
(*forward_DCT) (cinfo, compptr, input_ptr, blkp,
|
||||||
|
xpos, (JDIMENSION) blockcnt);
|
||||||
|
input_ptr += compptr->DCT_v_scaled_size;
|
||||||
|
blkp += blockcnt;
|
||||||
|
/* Dummy blocks at right edge */
|
||||||
|
if ((xindex = compptr->MCU_width - blockcnt) == 0)
|
||||||
|
continue;
|
||||||
|
} else {
|
||||||
|
/* At bottom of image, need a whole row of dummy blocks */
|
||||||
|
xindex = compptr->MCU_width;
|
||||||
|
}
|
||||||
|
/* Fill in any dummy blocks needed in this row */
|
||||||
|
MEMZERO(blkp, xindex * SIZEOF(JBLOCK));
|
||||||
|
do {
|
||||||
|
blkp[0][0] = blkp[-1][0];
|
||||||
|
blkp++;
|
||||||
|
} while (--xindex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Try to write the MCU. In event of a suspension failure, we will
|
||||||
|
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
||||||
|
*/
|
||||||
|
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||||
|
/* Suspension forced; update state counters and exit */
|
||||||
|
coef->MCU_vert_offset = yoffset;
|
||||||
|
coef->MCU_ctr = MCU_col_num;
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
}
|
||||||
|
/* Completed the iMCU row, advance counters for next one */
|
||||||
|
coef->iMCU_row_num++;
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the first pass of a multi-pass case.
|
||||||
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||||
|
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||||
|
* This amount of data is read from the source buffer, DCT'd and quantized,
|
||||||
|
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
||||||
|
* as needed at the right and lower edges. (The dummy blocks are constructed
|
||||||
|
* in the virtual arrays, which have been padded appropriately.) This makes
|
||||||
|
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
||||||
|
*
|
||||||
|
* We must also emit the data to the entropy encoder. This is conveniently
|
||||||
|
* done by calling compress_output() after we've loaded the current strip
|
||||||
|
* of the virtual arrays.
|
||||||
|
*
|
||||||
|
* NB: input_buf contains a plane for each component in image. All
|
||||||
|
* components are DCT'd and loaded into the virtual arrays in this pass.
|
||||||
|
* However, it may be that only a subset of the components are emitted to
|
||||||
|
* the entropy encoder during this first pass; be careful about looking
|
||||||
|
* at the scan-dependent variables (MCU dimensions, etc).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||||
|
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
||||||
|
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
||||||
|
JCOEF lastDC;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JBLOCKARRAY buffer;
|
||||||
|
JBLOCKROW thisblockrow, lastblockrow;
|
||||||
|
JSAMPARRAY input_ptr;
|
||||||
|
forward_DCT_ptr forward_DCT;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Align the virtual buffer for this component. */
|
||||||
|
buffer = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||||
|
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||||
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||||
|
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||||
|
if (coef->iMCU_row_num < last_iMCU_row)
|
||||||
|
block_rows = compptr->v_samp_factor;
|
||||||
|
else {
|
||||||
|
/* NB: can't use last_row_height here, since may not be set! */
|
||||||
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||||
|
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||||
|
}
|
||||||
|
blocks_across = compptr->width_in_blocks;
|
||||||
|
h_samp_factor = compptr->h_samp_factor;
|
||||||
|
/* Count number of dummy blocks to be added at the right margin. */
|
||||||
|
ndummy = (int) (blocks_across % h_samp_factor);
|
||||||
|
if (ndummy > 0)
|
||||||
|
ndummy = h_samp_factor - ndummy;
|
||||||
|
forward_DCT = cinfo->fdct->forward_DCT[ci];
|
||||||
|
input_ptr = input_buf[ci];
|
||||||
|
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||||
|
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
||||||
|
*/
|
||||||
|
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||||
|
thisblockrow = buffer[block_row];
|
||||||
|
(*forward_DCT) (cinfo, compptr, input_ptr, thisblockrow,
|
||||||
|
(JDIMENSION) 0, blocks_across);
|
||||||
|
input_ptr += compptr->DCT_v_scaled_size;
|
||||||
|
if (ndummy > 0) {
|
||||||
|
/* Create dummy blocks at the right edge of the image. */
|
||||||
|
thisblockrow += blocks_across; /* => first dummy block */
|
||||||
|
FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
||||||
|
lastDC = thisblockrow[-1][0];
|
||||||
|
for (bi = 0; bi < ndummy; bi++) {
|
||||||
|
thisblockrow[bi][0] = lastDC;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* If at end of image, create dummy block rows as needed.
|
||||||
|
* The tricky part here is that within each MCU, we want the DC values
|
||||||
|
* of the dummy blocks to match the last real block's DC value.
|
||||||
|
* This squeezes a few more bytes out of the resulting file...
|
||||||
|
*/
|
||||||
|
if (block_row < compptr->v_samp_factor) {
|
||||||
|
blocks_across += ndummy; /* include lower right corner */
|
||||||
|
MCUs_across = blocks_across / h_samp_factor;
|
||||||
|
do {
|
||||||
|
thisblockrow = buffer[block_row];
|
||||||
|
lastblockrow = buffer[block_row-1];
|
||||||
|
FMEMZERO((void FAR *) thisblockrow,
|
||||||
|
(size_t) blocks_across * SIZEOF(JBLOCK));
|
||||||
|
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
||||||
|
lastDC = lastblockrow[h_samp_factor-1][0];
|
||||||
|
for (bi = 0; bi < h_samp_factor; bi++) {
|
||||||
|
thisblockrow[bi][0] = lastDC;
|
||||||
|
}
|
||||||
|
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
||||||
|
lastblockrow += h_samp_factor;
|
||||||
|
}
|
||||||
|
} while (++block_row < compptr->v_samp_factor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||||
|
* A suspension return will result in redoing all the work above next time.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
||||||
|
return compress_output(cinfo, input_buf);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in subsequent passes of a multi-pass case.
|
||||||
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||||
|
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||||
|
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||||
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||||
|
*
|
||||||
|
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||||
|
int ci, xindex, yindex, yoffset;
|
||||||
|
JDIMENSION start_col;
|
||||||
|
JBLOCKARRAY blkp;
|
||||||
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||||
|
JBLOCKROW buffer_ptr;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Align the virtual buffers for the components used in this scan.
|
||||||
|
* NB: during first pass, this is safe only because the buffers will
|
||||||
|
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
||||||
|
*/
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||||
|
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||||
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Loop to process one whole iMCU row */
|
||||||
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||||
|
yoffset++) {
|
||||||
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||||
|
MCU_col_num++) {
|
||||||
|
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||||
|
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
start_col = MCU_col_num * compptr->MCU_width;
|
||||||
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||||
|
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
|
||||||
|
xindex = compptr->MCU_width;
|
||||||
|
do {
|
||||||
|
*blkp++ = buffer_ptr++;
|
||||||
|
} while (--xindex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Try to write the MCU. */
|
||||||
|
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||||
|
/* Suspension forced; update state counters and exit */
|
||||||
|
coef->MCU_vert_offset = yoffset;
|
||||||
|
coef->MCU_ctr = MCU_col_num;
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
}
|
||||||
|
/* Completed the iMCU row, advance counters for next one */
|
||||||
|
coef->iMCU_row_num++;
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize coefficient buffer controller.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef;
|
||||||
|
|
||||||
|
if (need_full_buffer) {
|
||||||
|
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||||
|
/* Allocate a full-image virtual array for each component, */
|
||||||
|
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer));
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||||
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||||
|
(long) compptr->h_samp_factor),
|
||||||
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||||
|
(long) compptr->v_samp_factor),
|
||||||
|
(JDIMENSION) compptr->v_samp_factor);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
/* We only need a single-MCU buffer. */
|
||||||
|
JBLOCKARRAY blkp;
|
||||||
|
JBLOCKROW buffer_ptr;
|
||||||
|
int bi;
|
||||||
|
|
||||||
|
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
|
||||||
|
blkp = coef->MCU_buffer;
|
||||||
|
buffer_ptr = coef->blk_buffer;
|
||||||
|
bi = C_MAX_BLOCKS_IN_MCU;
|
||||||
|
do {
|
||||||
|
*blkp++ = buffer_ptr++;
|
||||||
|
} while (--bi);
|
||||||
|
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||||
|
}
|
||||||
|
|
||||||
|
coef->pub.start_pass = start_pass_coef;
|
||||||
|
cinfo->coef = &coef->pub;
|
||||||
|
}
|
598
dep/libjpeg/src/jccolor.c
Normal file
598
dep/libjpeg/src/jccolor.c
Normal file
|
@ -0,0 +1,598 @@
|
||||||
|
/*
|
||||||
|
* jccolor.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||||
|
* Modified 2011-2023 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains input colorspace conversion routines.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Private subobject */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_color_converter pub; /* public fields */
|
||||||
|
|
||||||
|
/* Private state for RGB->YCC conversion */
|
||||||
|
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
|
||||||
|
} my_color_converter;
|
||||||
|
|
||||||
|
typedef my_color_converter * my_cconvert_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/**************** RGB -> YCbCr conversion: most common case **************/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
|
||||||
|
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
|
||||||
|
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||||
|
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
|
||||||
|
* sYCC (standard luma-chroma-chroma color space with extended gamut)
|
||||||
|
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
|
||||||
|
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
|
||||||
|
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
|
||||||
|
* Note that the derived conversion coefficients given in some of these
|
||||||
|
* documents are imprecise. The general conversion equations are
|
||||||
|
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
|
||||||
|
* Cb = (B - Y) / (1 - Kb) / K
|
||||||
|
* Cr = (R - Y) / (1 - Kr) / K
|
||||||
|
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
|
||||||
|
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC,
|
||||||
|
* the conversion equations to be implemented are therefore
|
||||||
|
* Y = 0.299 * R + 0.587 * G + 0.114 * B
|
||||||
|
* Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE
|
||||||
|
* Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE
|
||||||
|
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
|
||||||
|
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
|
||||||
|
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
|
||||||
|
* were not represented exactly. Now we sacrifice exact representation of
|
||||||
|
* maximum red and maximum blue in order to get exact grayscales.
|
||||||
|
*
|
||||||
|
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||||
|
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||||
|
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||||
|
*
|
||||||
|
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||||
|
* by precalculating the constants times R,G,B for all possible values.
|
||||||
|
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||||
|
* for 9-bit to 12-bit samples it is still acceptable. It's not very
|
||||||
|
* reasonable for 16-bit samples, but if you want lossless storage
|
||||||
|
* you shouldn't be changing colorspace anyway.
|
||||||
|
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
|
||||||
|
* in the tables to save adding them separately in the inner loop.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||||
|
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
|
||||||
|
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||||
|
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||||
|
|
||||||
|
/* We allocate one big table and divide it up into eight parts, instead of
|
||||||
|
* doing eight alloc_small requests. This lets us use a single table base
|
||||||
|
* address, which can be held in a register in the inner loops on many
|
||||||
|
* machines (more than can hold all eight addresses, anyway).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||||
|
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
|
||||||
|
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
|
||||||
|
#define R_CB_OFF (3*(MAXJSAMPLE+1))
|
||||||
|
#define G_CB_OFF (4*(MAXJSAMPLE+1))
|
||||||
|
#define B_CB_OFF (5*(MAXJSAMPLE+1))
|
||||||
|
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
|
||||||
|
#define G_CR_OFF (6*(MAXJSAMPLE+1))
|
||||||
|
#define B_CR_OFF (7*(MAXJSAMPLE+1))
|
||||||
|
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for RGB->YCC colorspace conversion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_ycc_start (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
INT32 * rgb_ycc_tab;
|
||||||
|
INT32 i;
|
||||||
|
|
||||||
|
/* Allocate and fill in the conversion tables. */
|
||||||
|
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
TABLE_SIZE * SIZEOF(INT32));
|
||||||
|
|
||||||
|
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||||
|
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i;
|
||||||
|
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i;
|
||||||
|
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF;
|
||||||
|
rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i;
|
||||||
|
rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i;
|
||||||
|
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||||
|
* This ensures that the maximum output will round to MAXJSAMPLE
|
||||||
|
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
|
||||||
|
*/
|
||||||
|
rgb_ycc_tab[i+B_CB_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1;
|
||||||
|
/* B=>Cb and R=>Cr tables are the same
|
||||||
|
rgb_ycc_tab[i+R_CR_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1;
|
||||||
|
*/
|
||||||
|
rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i;
|
||||||
|
rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
*
|
||||||
|
* Note that we change from the application's interleaved-pixel format
|
||||||
|
* to our internal noninterleaved, one-plane-per-component format. The
|
||||||
|
* input buffer is therefore three times as wide as the output buffer.
|
||||||
|
*
|
||||||
|
* A starting row offset is provided only for the output buffer. The
|
||||||
|
* caller can easily adjust the passed input_buf value to accommodate
|
||||||
|
* any row offset required on that side.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_ycc_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register int r, g, b;
|
||||||
|
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr0, outptr1, outptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = *input_buf++;
|
||||||
|
outptr0 = output_buf[0][output_row];
|
||||||
|
outptr1 = output_buf[1][output_row];
|
||||||
|
outptr2 = output_buf[2][output_row];
|
||||||
|
output_row++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||||
|
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||||
|
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||||
|
inptr += RGB_PIXELSIZE;
|
||||||
|
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||||
|
* must be too; we do not need an explicit range-limiting operation.
|
||||||
|
* Hence the value being shifted is never negative, and we don't
|
||||||
|
* need the general RIGHT_SHIFT macro.
|
||||||
|
*/
|
||||||
|
/* Y */
|
||||||
|
outptr0[col] = (JSAMPLE)
|
||||||
|
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||||
|
>> SCALEBITS);
|
||||||
|
/* Cb */
|
||||||
|
outptr1[col] = (JSAMPLE)
|
||||||
|
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||||
|
>> SCALEBITS);
|
||||||
|
/* Cr */
|
||||||
|
outptr2[col] = (JSAMPLE)
|
||||||
|
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||||
|
>> SCALEBITS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**************** Cases other than RGB -> YCbCr **************/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
* This version handles RGB->grayscale conversion,
|
||||||
|
* which is the same as the RGB->Y portion of RGB->YCbCr.
|
||||||
|
* We assume rgb_ycc_start has been called (we only use the Y tables).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_gray_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register INT32 y;
|
||||||
|
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = *input_buf++;
|
||||||
|
outptr = output_buf[0][output_row++];
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
y = ctab[R_Y_OFF + GETJSAMPLE(inptr[RGB_RED])];
|
||||||
|
y += ctab[G_Y_OFF + GETJSAMPLE(inptr[RGB_GREEN])];
|
||||||
|
y += ctab[B_Y_OFF + GETJSAMPLE(inptr[RGB_BLUE])];
|
||||||
|
inptr += RGB_PIXELSIZE;
|
||||||
|
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
* This version handles Adobe-style CMYK->YCCK conversion,
|
||||||
|
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the
|
||||||
|
* same conversion as above, while passing K (black) unchanged.
|
||||||
|
* We assume rgb_ycc_start has been called.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
cmyk_ycck_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register int r, g, b;
|
||||||
|
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = *input_buf++;
|
||||||
|
outptr0 = output_buf[0][output_row];
|
||||||
|
outptr1 = output_buf[1][output_row];
|
||||||
|
outptr2 = output_buf[2][output_row];
|
||||||
|
outptr3 = output_buf[3][output_row];
|
||||||
|
output_row++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
|
||||||
|
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
|
||||||
|
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
|
||||||
|
/* K passes through as-is */
|
||||||
|
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
|
||||||
|
inptr += 4;
|
||||||
|
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||||
|
* must be too; we do not need an explicit range-limiting operation.
|
||||||
|
* Hence the value being shifted is never negative, and we don't
|
||||||
|
* need the general RIGHT_SHIFT macro.
|
||||||
|
*/
|
||||||
|
/* Y */
|
||||||
|
outptr0[col] = (JSAMPLE)
|
||||||
|
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||||
|
>> SCALEBITS);
|
||||||
|
/* Cb */
|
||||||
|
outptr1[col] = (JSAMPLE)
|
||||||
|
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||||
|
>> SCALEBITS);
|
||||||
|
/* Cr */
|
||||||
|
outptr2[col] = (JSAMPLE)
|
||||||
|
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||||
|
>> SCALEBITS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
* [R,G,B] to [R-G,G,B-G] conversion with modulo calculation
|
||||||
|
* (forward reversible color transform).
|
||||||
|
* This can be seen as an adaption of the general RGB->YCbCr
|
||||||
|
* conversion equation with Kr = Kb = 0, while replacing the
|
||||||
|
* normalization by modulo calculation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_rgb1_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
register int r, g, b;
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr0, outptr1, outptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = *input_buf++;
|
||||||
|
outptr0 = output_buf[0][output_row];
|
||||||
|
outptr1 = output_buf[1][output_row];
|
||||||
|
outptr2 = output_buf[2][output_row];
|
||||||
|
output_row++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||||
|
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||||
|
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||||
|
inptr += RGB_PIXELSIZE;
|
||||||
|
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
|
||||||
|
* (modulo) operator is equivalent to the bitmask operator AND.
|
||||||
|
*/
|
||||||
|
outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE);
|
||||||
|
outptr1[col] = (JSAMPLE) g;
|
||||||
|
outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
* This version handles grayscale output with no conversion.
|
||||||
|
* The source can be either plain grayscale or YCC (since Y == gray).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
grayscale_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JDIMENSION count;
|
||||||
|
register int instride = cinfo->input_components;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = *input_buf++;
|
||||||
|
outptr = output_buf[0][output_row++];
|
||||||
|
for (count = num_cols; count > 0; count--) {
|
||||||
|
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */
|
||||||
|
inptr += instride;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
* No colorspace conversion, but change from interleaved
|
||||||
|
* to separate-planes representation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr0, outptr1, outptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = *input_buf++;
|
||||||
|
outptr0 = output_buf[0][output_row];
|
||||||
|
outptr1 = output_buf[1][output_row];
|
||||||
|
outptr2 = output_buf[2][output_row];
|
||||||
|
output_row++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
/* We can dispense with GETJSAMPLE() here */
|
||||||
|
outptr0[col] = inptr[RGB_RED];
|
||||||
|
outptr1[col] = inptr[RGB_GREEN];
|
||||||
|
outptr2[col] = inptr[RGB_BLUE];
|
||||||
|
inptr += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the JPEG colorspace.
|
||||||
|
* This version handles multi-component colorspaces without conversion.
|
||||||
|
* We assume input_components == num_components.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
null_convert (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||||
|
JDIMENSION output_row, int num_rows)
|
||||||
|
{
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JDIMENSION count;
|
||||||
|
register int num_comps = cinfo->num_components;
|
||||||
|
JDIMENSION num_cols = cinfo->image_width;
|
||||||
|
int ci;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
/* It seems fastest to make a separate pass for each component. */
|
||||||
|
for (ci = 0; ci < num_comps; ci++) {
|
||||||
|
inptr = input_buf[0] + ci;
|
||||||
|
outptr = output_buf[ci][output_row];
|
||||||
|
for (count = num_cols; count > 0; count--) {
|
||||||
|
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */
|
||||||
|
inptr += num_comps;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
input_buf++;
|
||||||
|
output_row++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Empty method for start_pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
null_method (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work needed */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for input colorspace conversion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_color_converter (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert;
|
||||||
|
|
||||||
|
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter));
|
||||||
|
cinfo->cconvert = &cconvert->pub;
|
||||||
|
/* set start_pass to null method until we find out differently */
|
||||||
|
cconvert->pub.start_pass = null_method;
|
||||||
|
|
||||||
|
/* Make sure input_components agrees with in_color_space */
|
||||||
|
switch (cinfo->in_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
if (cinfo->input_components != 1)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_RGB:
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
#if RGB_PIXELSIZE != 3
|
||||||
|
if (cinfo->input_components != RGB_PIXELSIZE)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||||
|
break;
|
||||||
|
#endif /* else share code with YCbCr */
|
||||||
|
|
||||||
|
case JCS_YCbCr:
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
if (cinfo->input_components != 3)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_CMYK:
|
||||||
|
case JCS_YCCK:
|
||||||
|
if (cinfo->input_components != 4)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||||
|
break;
|
||||||
|
|
||||||
|
default: /* JCS_UNKNOWN can be anything */
|
||||||
|
if (cinfo->input_components < 1)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Support color transform only for RGB colorspaces */
|
||||||
|
if (cinfo->color_transform &&
|
||||||
|
cinfo->jpeg_color_space != JCS_RGB &&
|
||||||
|
cinfo->jpeg_color_space != JCS_BG_RGB)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
|
||||||
|
/* Check num_components, set conversion method based on requested space */
|
||||||
|
switch (cinfo->jpeg_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
if (cinfo->num_components != 1)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
switch (cinfo->in_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
case JCS_YCbCr:
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
cconvert->pub.color_convert = grayscale_convert;
|
||||||
|
break;
|
||||||
|
case JCS_RGB:
|
||||||
|
cconvert->pub.start_pass = rgb_ycc_start;
|
||||||
|
cconvert->pub.color_convert = rgb_gray_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_RGB:
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
if (cinfo->num_components != 3)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
if (cinfo->in_color_space != cinfo->jpeg_color_space)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
switch (cinfo->color_transform) {
|
||||||
|
case JCT_NONE:
|
||||||
|
cconvert->pub.color_convert = rgb_convert;
|
||||||
|
break;
|
||||||
|
case JCT_SUBTRACT_GREEN:
|
||||||
|
cconvert->pub.color_convert = rgb_rgb1_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_YCbCr:
|
||||||
|
if (cinfo->num_components != 3)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
switch (cinfo->in_color_space) {
|
||||||
|
case JCS_RGB:
|
||||||
|
cconvert->pub.start_pass = rgb_ycc_start;
|
||||||
|
cconvert->pub.color_convert = rgb_ycc_convert;
|
||||||
|
break;
|
||||||
|
case JCS_YCbCr:
|
||||||
|
cconvert->pub.color_convert = null_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
if (cinfo->num_components != 3)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
switch (cinfo->in_color_space) {
|
||||||
|
case JCS_RGB:
|
||||||
|
/* For conversion from normal RGB input to BG_YCC representation,
|
||||||
|
* the Cb/Cr values are first computed as usual, and then
|
||||||
|
* quantized further after DCT processing by a factor of
|
||||||
|
* 2 in reference to the nominal quantization factor.
|
||||||
|
*/
|
||||||
|
/* need quantization scale by factor of 2 after DCT */
|
||||||
|
cinfo->comp_info[1].component_needed = TRUE;
|
||||||
|
cinfo->comp_info[2].component_needed = TRUE;
|
||||||
|
/* compute normal YCC first */
|
||||||
|
cconvert->pub.start_pass = rgb_ycc_start;
|
||||||
|
cconvert->pub.color_convert = rgb_ycc_convert;
|
||||||
|
break;
|
||||||
|
case JCS_YCbCr:
|
||||||
|
/* need quantization scale by factor of 2 after DCT */
|
||||||
|
cinfo->comp_info[1].component_needed = TRUE;
|
||||||
|
cinfo->comp_info[2].component_needed = TRUE;
|
||||||
|
/*FALLTHROUGH*/
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
/* Pass through for BG_YCC input */
|
||||||
|
cconvert->pub.color_convert = null_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_CMYK:
|
||||||
|
if (cinfo->num_components != 4)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
if (cinfo->in_color_space != JCS_CMYK)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
cconvert->pub.color_convert = null_convert;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_YCCK:
|
||||||
|
if (cinfo->num_components != 4)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
switch (cinfo->in_color_space) {
|
||||||
|
case JCS_CMYK:
|
||||||
|
cconvert->pub.start_pass = rgb_ycc_start;
|
||||||
|
cconvert->pub.color_convert = cmyk_ycck_convert;
|
||||||
|
break;
|
||||||
|
case JCS_YCCK:
|
||||||
|
cconvert->pub.color_convert = null_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
default: /* allow null conversion of JCS_UNKNOWN */
|
||||||
|
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
|
||||||
|
cinfo->num_components != cinfo->input_components)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
cconvert->pub.color_convert = null_convert;
|
||||||
|
}
|
||||||
|
}
|
466
dep/libjpeg/src/jcdctmgr.c
Normal file
466
dep/libjpeg/src/jcdctmgr.c
Normal file
|
@ -0,0 +1,466 @@
|
||||||
|
/*
|
||||||
|
* jcdctmgr.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2003-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the forward-DCT management logic.
|
||||||
|
* This code selects a particular DCT implementation to be used,
|
||||||
|
* and it performs related housekeeping chores including coefficient
|
||||||
|
* quantization.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||||
|
|
||||||
|
|
||||||
|
/* Private subobject for this module */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_forward_dct pub; /* public fields */
|
||||||
|
|
||||||
|
/* Pointer to the DCT routine actually in use */
|
||||||
|
forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
/* Same as above for the floating-point case. */
|
||||||
|
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
|
||||||
|
#endif
|
||||||
|
} my_fdct_controller;
|
||||||
|
|
||||||
|
typedef my_fdct_controller * my_fdct_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* The allocated post-DCT divisor tables -- big enough for any
|
||||||
|
* supported variant and not identical to the quant table entries,
|
||||||
|
* because of scaling (especially for an unnormalized DCT) --
|
||||||
|
* are pointed to by dct_table in the per-component comp_info
|
||||||
|
* structures. Each table is given in normal array order.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef union {
|
||||||
|
DCTELEM int_array[DCTSIZE2];
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
FAST_FLOAT float_array[DCTSIZE2];
|
||||||
|
#endif
|
||||||
|
} divisor_table;
|
||||||
|
|
||||||
|
|
||||||
|
/* The current scaled-DCT routines require ISLOW-style divisor tables,
|
||||||
|
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||||
|
*/
|
||||||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||||||
|
#define PROVIDE_ISLOW_TABLES
|
||||||
|
#else
|
||||||
|
#ifdef DCT_SCALING_SUPPORTED
|
||||||
|
#define PROVIDE_ISLOW_TABLES
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform forward DCT on one or more blocks of a component.
|
||||||
|
*
|
||||||
|
* The input samples are taken from the sample_data[] array starting at
|
||||||
|
* position start_col, and moving to the right for any additional blocks.
|
||||||
|
* The quantized coefficients are returned in coef_blocks[].
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||||
|
JDIMENSION start_col, JDIMENSION num_blocks)
|
||||||
|
/* This version is used for integer DCT implementations. */
|
||||||
|
{
|
||||||
|
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||||
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||||
|
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
|
||||||
|
DCTELEM * divisors = (DCTELEM *) compptr->dct_table;
|
||||||
|
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||||
|
JDIMENSION bi;
|
||||||
|
|
||||||
|
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
||||||
|
/* Perform the DCT */
|
||||||
|
(*do_dct) (workspace, sample_data, start_col);
|
||||||
|
|
||||||
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||||
|
{ register DCTELEM temp, qval;
|
||||||
|
register int i;
|
||||||
|
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||||
|
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
qval = divisors[i];
|
||||||
|
temp = workspace[i];
|
||||||
|
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||||
|
* Since C does not specify the direction of rounding for negative
|
||||||
|
* quotients, we have to force the dividend positive for portability.
|
||||||
|
*
|
||||||
|
* In most files, at least half of the output values will be zero
|
||||||
|
* (at default quantization settings, more like three-quarters...)
|
||||||
|
* so we should ensure that this case is fast. On many machines,
|
||||||
|
* a comparison is enough cheaper than a divide to make a special test
|
||||||
|
* a win. Since both inputs will be nonnegative, we need only test
|
||||||
|
* for a < b to discover whether a/b is 0.
|
||||||
|
* If your machine's division is fast enough, define FAST_DIVIDE.
|
||||||
|
*/
|
||||||
|
#ifdef FAST_DIVIDE
|
||||||
|
#define DIVIDE_BY(a,b) a /= b
|
||||||
|
#else
|
||||||
|
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
||||||
|
#endif
|
||||||
|
if (temp < 0) {
|
||||||
|
temp = -temp;
|
||||||
|
temp += qval>>1; /* for rounding */
|
||||||
|
DIVIDE_BY(temp, qval);
|
||||||
|
temp = -temp;
|
||||||
|
} else {
|
||||||
|
temp += qval>>1; /* for rounding */
|
||||||
|
DIVIDE_BY(temp, qval);
|
||||||
|
}
|
||||||
|
output_ptr[i] = (JCOEF) temp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||||
|
JDIMENSION start_col, JDIMENSION num_blocks)
|
||||||
|
/* This version is used for floating-point DCT implementations. */
|
||||||
|
{
|
||||||
|
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||||
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||||
|
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
|
||||||
|
FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table;
|
||||||
|
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||||
|
JDIMENSION bi;
|
||||||
|
|
||||||
|
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
||||||
|
/* Perform the DCT */
|
||||||
|
(*do_dct) (workspace, sample_data, start_col);
|
||||||
|
|
||||||
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||||
|
{ register FAST_FLOAT temp;
|
||||||
|
register int i;
|
||||||
|
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||||
|
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
/* Apply the quantization and scaling factor */
|
||||||
|
temp = workspace[i] * divisors[i];
|
||||||
|
/* Round to nearest integer.
|
||||||
|
* Since C does not specify the direction of rounding for negative
|
||||||
|
* quotients, we have to force the dividend positive for portability.
|
||||||
|
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||||||
|
* code should work for either 16-bit or 32-bit ints.
|
||||||
|
*/
|
||||||
|
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* DCT_FLOAT_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
* Verify that all referenced Q-tables are present, and set up
|
||||||
|
* the divisor table for each one.
|
||||||
|
* In the current implementation, DCT of all components is done during
|
||||||
|
* the first pass, even if only some components will be output in the
|
||||||
|
* first scan. Hence all components should be examined here.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_fdctmgr (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||||
|
int ci, qtblno, i;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
int method = 0;
|
||||||
|
JQUANT_TBL * qtbl;
|
||||||
|
DCTELEM * dtbl;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Select the proper DCT routine for this component's scaling */
|
||||||
|
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
||||||
|
#ifdef DCT_SCALING_SUPPORTED
|
||||||
|
case ((1 << 8) + 1):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_1x1;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((2 << 8) + 2):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_2x2;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((3 << 8) + 3):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_3x3;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((4 << 8) + 4):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_4x4;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((5 << 8) + 5):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_5x5;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((6 << 8) + 6):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_6x6;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((7 << 8) + 7):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_7x7;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((9 << 8) + 9):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_9x9;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((10 << 8) + 10):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_10x10;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((11 << 8) + 11):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_11x11;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((12 << 8) + 12):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_12x12;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((13 << 8) + 13):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_13x13;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((14 << 8) + 14):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_14x14;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((15 << 8) + 15):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_15x15;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((16 << 8) + 16):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_16x16;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((16 << 8) + 8):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_16x8;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((14 << 8) + 7):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_14x7;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((12 << 8) + 6):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_12x6;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((10 << 8) + 5):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_10x5;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((8 << 8) + 4):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_8x4;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((6 << 8) + 3):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_6x3;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((4 << 8) + 2):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_4x2;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((2 << 8) + 1):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_2x1;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((8 << 8) + 16):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_8x16;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((7 << 8) + 14):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_7x14;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((6 << 8) + 12):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_6x12;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((5 << 8) + 10):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_5x10;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((4 << 8) + 8):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_4x8;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((3 << 8) + 6):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_3x6;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((2 << 8) + 4):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_2x4;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((1 << 8) + 2):
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_1x2;
|
||||||
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
case ((DCTSIZE << 8) + DCTSIZE):
|
||||||
|
switch (cinfo->dct_method) {
|
||||||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||||||
|
case JDCT_ISLOW:
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_islow;
|
||||||
|
method = JDCT_ISLOW;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
case JDCT_IFAST:
|
||||||
|
fdct->do_dct[ci] = jpeg_fdct_ifast;
|
||||||
|
method = JDCT_IFAST;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
case JDCT_FLOAT:
|
||||||
|
fdct->do_float_dct[ci] = jpeg_fdct_float;
|
||||||
|
method = JDCT_FLOAT;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||||
|
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
||||||
|
}
|
||||||
|
qtblno = compptr->quant_tbl_no;
|
||||||
|
/* Make sure specified quantization table is present */
|
||||||
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||||
|
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||||
|
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||||
|
/* Create divisor table from quant table */
|
||||||
|
switch (method) {
|
||||||
|
#ifdef PROVIDE_ISLOW_TABLES
|
||||||
|
case JDCT_ISLOW:
|
||||||
|
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||||
|
* coefficients multiplied by 8 (to counteract scaling).
|
||||||
|
*/
|
||||||
|
dtbl = (DCTELEM *) compptr->dct_table;
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
dtbl[i] =
|
||||||
|
((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3);
|
||||||
|
}
|
||||||
|
fdct->pub.forward_DCT[ci] = forward_DCT;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
case JDCT_IFAST:
|
||||||
|
{
|
||||||
|
/* For AA&N IDCT method, divisors are equal to quantization
|
||||||
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||||
|
* scalefactor[0] = 1
|
||||||
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||||
|
* We apply a further scale factor of 8.
|
||||||
|
*/
|
||||||
|
#define CONST_BITS 14
|
||||||
|
static const INT16 aanscales[DCTSIZE2] = {
|
||||||
|
/* precomputed values scaled up by 14 bits */
|
||||||
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||||
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||||
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||||
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||||
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||||
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||||
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||||
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||||
|
};
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
dtbl = (DCTELEM *) compptr->dct_table;
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
dtbl[i] = (DCTELEM)
|
||||||
|
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||||
|
(INT32) aanscales[i]),
|
||||||
|
compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fdct->pub.forward_DCT[ci] = forward_DCT;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
case JDCT_FLOAT:
|
||||||
|
{
|
||||||
|
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||||
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||||
|
* scalefactor[0] = 1
|
||||||
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||||
|
* We apply a further scale factor of 8.
|
||||||
|
* What's actually stored is 1/divisor so that the inner loop can
|
||||||
|
* use a multiplication rather than a division.
|
||||||
|
*/
|
||||||
|
FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table;
|
||||||
|
int row, col;
|
||||||
|
static const double aanscalefactor[DCTSIZE] = {
|
||||||
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||||
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||||
|
};
|
||||||
|
|
||||||
|
i = 0;
|
||||||
|
for (row = 0; row < DCTSIZE; row++) {
|
||||||
|
for (col = 0; col < DCTSIZE; col++) {
|
||||||
|
fdtbl[i] = (FAST_FLOAT)
|
||||||
|
(1.0 / ((double) qtbl->quantval[i] *
|
||||||
|
aanscalefactor[row] * aanscalefactor[col] *
|
||||||
|
(compptr->component_needed ? 16.0 : 8.0)));
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fdct->pub.forward_DCT[ci] = forward_DCT_float;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize FDCT manager.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_forward_dct (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_fdct_ptr fdct;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller));
|
||||||
|
cinfo->fdct = &fdct->pub;
|
||||||
|
fdct->pub.start_pass = start_pass_fdctmgr;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Allocate a divisor table for each component */
|
||||||
|
compptr->dct_table = (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(divisor_table));
|
||||||
|
}
|
||||||
|
}
|
1656
dep/libjpeg/src/jchuff.c
Normal file
1656
dep/libjpeg/src/jchuff.c
Normal file
File diff suppressed because it is too large
Load diff
249
dep/libjpeg/src/jcinit.c
Normal file
249
dep/libjpeg/src/jcinit.c
Normal file
|
@ -0,0 +1,249 @@
|
||||||
|
/*
|
||||||
|
* jcinit.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 2003-2017 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains initialization logic for the JPEG compressor.
|
||||||
|
* This routine is in charge of selecting the modules to be executed and
|
||||||
|
* making an initialization call to each one.
|
||||||
|
*
|
||||||
|
* Logically, this code belongs in jcmaster.c. It's split out because
|
||||||
|
* linking this routine implies linking the entire compression library.
|
||||||
|
* For a transcoding-only application, we want to be able to use jcmaster.c
|
||||||
|
* without linking in the whole library.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compute JPEG image dimensions and related values.
|
||||||
|
* NOTE: this is exported for possible use by application.
|
||||||
|
* Hence it mustn't do anything that can't be done twice.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before master selection phase */
|
||||||
|
{
|
||||||
|
/* Sanity check on input image dimensions to prevent overflow in
|
||||||
|
* following calculations.
|
||||||
|
* We do check jpeg_width and jpeg_height in initial_setup in jcmaster.c,
|
||||||
|
* but image_width and image_height can come from arbitrary data,
|
||||||
|
* and we need some space for multiplication by block_size.
|
||||||
|
*/
|
||||||
|
if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24))
|
||||||
|
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||||
|
|
||||||
|
#ifdef DCT_SCALING_SUPPORTED
|
||||||
|
|
||||||
|
/* Compute actual JPEG image dimensions and DCT scaling choices. */
|
||||||
|
if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/1 scaling */
|
||||||
|
cinfo->jpeg_width = cinfo->image_width * cinfo->block_size;
|
||||||
|
cinfo->jpeg_height = cinfo->image_height * cinfo->block_size;
|
||||||
|
cinfo->min_DCT_h_scaled_size = 1;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 1;
|
||||||
|
} else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/2 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 2;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 2;
|
||||||
|
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/3 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 3;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 3;
|
||||||
|
} else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/4 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 4;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 4;
|
||||||
|
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/5 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 5;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 5;
|
||||||
|
} else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/6 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 6;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 6;
|
||||||
|
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/7 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 7;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 7;
|
||||||
|
} else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/8 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 8;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 8;
|
||||||
|
} else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/9 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 9;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 9;
|
||||||
|
} else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/10 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 10;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 10;
|
||||||
|
} else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/11 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 11;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 11;
|
||||||
|
} else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/12 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 12;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 12;
|
||||||
|
} else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/13 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 13;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 13;
|
||||||
|
} else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/14 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 14;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 14;
|
||||||
|
} else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) {
|
||||||
|
/* Provide block_size/15 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 15;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 15;
|
||||||
|
} else {
|
||||||
|
/* Provide block_size/16 scaling */
|
||||||
|
cinfo->jpeg_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L);
|
||||||
|
cinfo->jpeg_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 16;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 16;
|
||||||
|
}
|
||||||
|
|
||||||
|
#else /* !DCT_SCALING_SUPPORTED */
|
||||||
|
|
||||||
|
/* Hardwire it to "no scaling" */
|
||||||
|
cinfo->jpeg_width = cinfo->image_width;
|
||||||
|
cinfo->jpeg_height = cinfo->image_height;
|
||||||
|
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||||
|
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||||
|
|
||||||
|
#endif /* DCT_SCALING_SUPPORTED */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Master selection of compression modules.
|
||||||
|
* This is done once at the start of processing an image. We determine
|
||||||
|
* which modules will be used and give them appropriate initialization calls.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_compress_master (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
long samplesperrow;
|
||||||
|
JDIMENSION jd_samplesperrow;
|
||||||
|
|
||||||
|
/* For now, precision must match compiled-in value... */
|
||||||
|
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||||
|
|
||||||
|
/* Sanity check on input image dimensions */
|
||||||
|
if (cinfo->image_height <= 0 || cinfo->image_width <= 0 ||
|
||||||
|
cinfo->input_components <= 0)
|
||||||
|
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||||
|
|
||||||
|
/* Width of an input scanline must be representable as JDIMENSION. */
|
||||||
|
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
|
||||||
|
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||||
|
if ((long) jd_samplesperrow != samplesperrow)
|
||||||
|
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||||
|
|
||||||
|
/* Compute JPEG image dimensions and related values. */
|
||||||
|
jpeg_calc_jpeg_dimensions(cinfo);
|
||||||
|
|
||||||
|
/* Initialize master control (includes parameter checking/processing) */
|
||||||
|
jinit_c_master_control(cinfo, FALSE /* full compression */);
|
||||||
|
|
||||||
|
/* Preprocessing */
|
||||||
|
if (! cinfo->raw_data_in) {
|
||||||
|
jinit_color_converter(cinfo);
|
||||||
|
jinit_downsampler(cinfo);
|
||||||
|
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
|
||||||
|
}
|
||||||
|
/* Forward DCT */
|
||||||
|
jinit_forward_dct(cinfo);
|
||||||
|
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||||
|
if (cinfo->arith_code)
|
||||||
|
jinit_arith_encoder(cinfo);
|
||||||
|
else {
|
||||||
|
jinit_huff_encoder(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Need a full-image coefficient buffer in any multi-pass mode. */
|
||||||
|
jinit_c_coef_controller(cinfo,
|
||||||
|
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
|
||||||
|
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||||
|
|
||||||
|
jinit_marker_writer(cinfo);
|
||||||
|
|
||||||
|
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||||
|
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
/* Write the datastream header (SOI) immediately.
|
||||||
|
* Frame and scan headers are postponed till later.
|
||||||
|
* This lets application insert special markers after the SOI.
|
||||||
|
*/
|
||||||
|
(*cinfo->marker->write_file_header) (cinfo);
|
||||||
|
}
|
297
dep/libjpeg/src/jcmainct.c
Normal file
297
dep/libjpeg/src/jcmainct.c
Normal file
|
@ -0,0 +1,297 @@
|
||||||
|
/*
|
||||||
|
* jcmainct.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2003-2012 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the main buffer controller for compression.
|
||||||
|
* The main buffer lies between the pre-processor and the JPEG
|
||||||
|
* compressor proper; it holds downsampled data in the JPEG colorspace.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Note: currently, there is no operating mode in which a full-image buffer
|
||||||
|
* is needed at this step. If there were, that mode could not be used with
|
||||||
|
* "raw data" input, since this module is bypassed in that case. However,
|
||||||
|
* we've left the code here for possible use in special applications.
|
||||||
|
*/
|
||||||
|
#undef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_c_main_controller pub; /* public fields */
|
||||||
|
|
||||||
|
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
|
||||||
|
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
|
||||||
|
boolean suspended; /* remember if we suspended output */
|
||||||
|
J_BUF_MODE pass_mode; /* current operating mode */
|
||||||
|
|
||||||
|
/* If using just a strip buffer, this points to the entire set of buffers
|
||||||
|
* (we allocate one for each component). In the full-image case, this
|
||||||
|
* points to the currently accessible strips of the virtual arrays.
|
||||||
|
*/
|
||||||
|
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
/* If using full-image storage, this array holds pointers to virtual-array
|
||||||
|
* control blocks for each component. Unused if not full-image storage.
|
||||||
|
*/
|
||||||
|
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
|
||||||
|
#endif
|
||||||
|
} my_main_controller;
|
||||||
|
|
||||||
|
typedef my_main_controller * my_main_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
METHODDEF(void) process_data_simple_main
|
||||||
|
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
METHODDEF(void) process_data_buffer_main
|
||||||
|
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
|
||||||
|
/* Do nothing in raw-data mode. */
|
||||||
|
if (cinfo->raw_data_in)
|
||||||
|
return;
|
||||||
|
|
||||||
|
mainp->cur_iMCU_row = 0; /* initialize counters */
|
||||||
|
mainp->rowgroup_ctr = 0;
|
||||||
|
mainp->suspended = FALSE;
|
||||||
|
mainp->pass_mode = pass_mode; /* save mode for use by process_data */
|
||||||
|
|
||||||
|
switch (pass_mode) {
|
||||||
|
case JBUF_PASS_THRU:
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
if (mainp->whole_image[0] != NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
#endif
|
||||||
|
mainp->pub.process_data = process_data_simple_main;
|
||||||
|
break;
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
case JBUF_SAVE_SOURCE:
|
||||||
|
case JBUF_CRANK_DEST:
|
||||||
|
case JBUF_SAVE_AND_PASS:
|
||||||
|
if (mainp->whole_image[0] == NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
mainp->pub.process_data = process_data_buffer_main;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data.
|
||||||
|
* This routine handles the simple pass-through mode,
|
||||||
|
* where we have only a strip buffer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
process_data_simple_main (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||||
|
JDIMENSION in_rows_avail)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
|
||||||
|
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||||
|
/* Read input data if we haven't filled the main buffer yet */
|
||||||
|
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||||
|
(*cinfo->prep->pre_process_data) (cinfo,
|
||||||
|
input_buf, in_row_ctr, in_rows_avail,
|
||||||
|
mainp->buffer, &mainp->rowgroup_ctr,
|
||||||
|
(JDIMENSION) cinfo->min_DCT_v_scaled_size);
|
||||||
|
|
||||||
|
/* If we don't have a full iMCU row buffered, return to application for
|
||||||
|
* more data. Note that preprocessor will always pad to fill the iMCU row
|
||||||
|
* at the bottom of the image.
|
||||||
|
*/
|
||||||
|
if (mainp->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Send the completed row to the compressor */
|
||||||
|
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) {
|
||||||
|
/* If compressor did not consume the whole row, then we must need to
|
||||||
|
* suspend processing and return to the application. In this situation
|
||||||
|
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||||
|
* it happened to be the last row of the image, the application would
|
||||||
|
* think we were done.
|
||||||
|
*/
|
||||||
|
if (! mainp->suspended) {
|
||||||
|
(*in_row_ctr)--;
|
||||||
|
mainp->suspended = TRUE;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
/* We did finish the row. Undo our little suspension hack if a previous
|
||||||
|
* call suspended; then mark the main buffer empty.
|
||||||
|
*/
|
||||||
|
if (mainp->suspended) {
|
||||||
|
(*in_row_ctr)++;
|
||||||
|
mainp->suspended = FALSE;
|
||||||
|
}
|
||||||
|
mainp->rowgroup_ctr = 0;
|
||||||
|
mainp->cur_iMCU_row++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data.
|
||||||
|
* This routine handles all of the modes that use a full-size buffer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
process_data_buffer_main (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||||
|
JDIMENSION in_rows_avail)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
boolean writing = (mainp->pass_mode != JBUF_CRANK_DEST);
|
||||||
|
|
||||||
|
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||||
|
/* Realign the virtual buffers if at the start of an iMCU row. */
|
||||||
|
if (mainp->rowgroup_ctr == 0) {
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
mainp->buffer[ci] = (*cinfo->mem->access_virt_sarray)
|
||||||
|
((j_common_ptr) cinfo, mainp->whole_image[ci], mainp->cur_iMCU_row *
|
||||||
|
((JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size)),
|
||||||
|
(JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size),
|
||||||
|
writing);
|
||||||
|
}
|
||||||
|
/* In a read pass, pretend we just read some source data. */
|
||||||
|
if (! writing) {
|
||||||
|
*in_row_ctr += (JDIMENSION)
|
||||||
|
(cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size);
|
||||||
|
mainp->rowgroup_ctr = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* If a write pass, read input data until the current iMCU row is full. */
|
||||||
|
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
|
||||||
|
if (writing) {
|
||||||
|
(*cinfo->prep->pre_process_data) (cinfo,
|
||||||
|
input_buf, in_row_ctr, in_rows_avail,
|
||||||
|
mainp->buffer, &mainp->rowgroup_ctr,
|
||||||
|
(JDIMENSION) cinfo->min_DCT_v_scaled_size);
|
||||||
|
/* Return to application if we need more data to fill the iMCU row. */
|
||||||
|
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Emit data, unless this is a sink-only pass. */
|
||||||
|
if (mainp->pass_mode != JBUF_SAVE_SOURCE) {
|
||||||
|
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) {
|
||||||
|
/* If compressor did not consume the whole row, then we must need to
|
||||||
|
* suspend processing and return to the application. In this situation
|
||||||
|
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||||
|
* it happened to be the last row of the image, the application would
|
||||||
|
* think we were done.
|
||||||
|
*/
|
||||||
|
if (! mainp->suspended) {
|
||||||
|
(*in_row_ctr)--;
|
||||||
|
mainp->suspended = TRUE;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
/* We did finish the row. Undo our little suspension hack if a previous
|
||||||
|
* call suspended; then mark the main buffer empty.
|
||||||
|
*/
|
||||||
|
if (mainp->suspended) {
|
||||||
|
(*in_row_ctr)++;
|
||||||
|
mainp->suspended = FALSE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* If get here, we are done with this iMCU row. Mark buffer empty. */
|
||||||
|
mainp->rowgroup_ctr = 0;
|
||||||
|
mainp->cur_iMCU_row++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize main buffer controller.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
mainp = (my_main_ptr)
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
SIZEOF(my_main_controller));
|
||||||
|
cinfo->main = &mainp->pub;
|
||||||
|
mainp->pub.start_pass = start_pass_main;
|
||||||
|
|
||||||
|
/* We don't need to create a buffer in raw-data mode. */
|
||||||
|
if (cinfo->raw_data_in)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Create the buffer. It holds downsampled data, so each component
|
||||||
|
* may be of a different size.
|
||||||
|
*/
|
||||||
|
if (need_full_buffer) {
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
/* Allocate a full-image virtual array for each component */
|
||||||
|
/* Note we pad the bottom to a multiple of the iMCU height */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
mainp->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||||
|
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
|
||||||
|
((JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||||
|
(long) compptr->v_samp_factor)) *
|
||||||
|
((JDIMENSION) cinfo->min_DCT_v_scaled_size),
|
||||||
|
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||||
|
mainp->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||||
|
#endif
|
||||||
|
/* Allocate a strip buffer for each component */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
|
||||||
|
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
717
dep/libjpeg/src/jcmarker.c
Normal file
717
dep/libjpeg/src/jcmarker.c
Normal file
|
@ -0,0 +1,717 @@
|
||||||
|
/*
|
||||||
|
* jcmarker.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||||
|
* Modified 2003-2019 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains routines to write JPEG datastream markers.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
typedef enum { /* JPEG marker codes */
|
||||||
|
M_SOF0 = 0xc0,
|
||||||
|
M_SOF1 = 0xc1,
|
||||||
|
M_SOF2 = 0xc2,
|
||||||
|
M_SOF3 = 0xc3,
|
||||||
|
|
||||||
|
M_SOF5 = 0xc5,
|
||||||
|
M_SOF6 = 0xc6,
|
||||||
|
M_SOF7 = 0xc7,
|
||||||
|
|
||||||
|
M_JPG = 0xc8,
|
||||||
|
M_SOF9 = 0xc9,
|
||||||
|
M_SOF10 = 0xca,
|
||||||
|
M_SOF11 = 0xcb,
|
||||||
|
|
||||||
|
M_SOF13 = 0xcd,
|
||||||
|
M_SOF14 = 0xce,
|
||||||
|
M_SOF15 = 0xcf,
|
||||||
|
|
||||||
|
M_DHT = 0xc4,
|
||||||
|
|
||||||
|
M_DAC = 0xcc,
|
||||||
|
|
||||||
|
M_RST0 = 0xd0,
|
||||||
|
M_RST1 = 0xd1,
|
||||||
|
M_RST2 = 0xd2,
|
||||||
|
M_RST3 = 0xd3,
|
||||||
|
M_RST4 = 0xd4,
|
||||||
|
M_RST5 = 0xd5,
|
||||||
|
M_RST6 = 0xd6,
|
||||||
|
M_RST7 = 0xd7,
|
||||||
|
|
||||||
|
M_SOI = 0xd8,
|
||||||
|
M_EOI = 0xd9,
|
||||||
|
M_SOS = 0xda,
|
||||||
|
M_DQT = 0xdb,
|
||||||
|
M_DNL = 0xdc,
|
||||||
|
M_DRI = 0xdd,
|
||||||
|
M_DHP = 0xde,
|
||||||
|
M_EXP = 0xdf,
|
||||||
|
|
||||||
|
M_APP0 = 0xe0,
|
||||||
|
M_APP1 = 0xe1,
|
||||||
|
M_APP2 = 0xe2,
|
||||||
|
M_APP3 = 0xe3,
|
||||||
|
M_APP4 = 0xe4,
|
||||||
|
M_APP5 = 0xe5,
|
||||||
|
M_APP6 = 0xe6,
|
||||||
|
M_APP7 = 0xe7,
|
||||||
|
M_APP8 = 0xe8,
|
||||||
|
M_APP9 = 0xe9,
|
||||||
|
M_APP10 = 0xea,
|
||||||
|
M_APP11 = 0xeb,
|
||||||
|
M_APP12 = 0xec,
|
||||||
|
M_APP13 = 0xed,
|
||||||
|
M_APP14 = 0xee,
|
||||||
|
M_APP15 = 0xef,
|
||||||
|
|
||||||
|
M_JPG0 = 0xf0,
|
||||||
|
M_JPG8 = 0xf8,
|
||||||
|
M_JPG13 = 0xfd,
|
||||||
|
M_COM = 0xfe,
|
||||||
|
|
||||||
|
M_TEM = 0x01,
|
||||||
|
|
||||||
|
M_ERROR = 0x100
|
||||||
|
} JPEG_MARKER;
|
||||||
|
|
||||||
|
|
||||||
|
/* Private state */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_marker_writer pub; /* public fields */
|
||||||
|
|
||||||
|
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
|
||||||
|
} my_marker_writer;
|
||||||
|
|
||||||
|
typedef my_marker_writer * my_marker_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Basic output routines.
|
||||||
|
*
|
||||||
|
* Note that we do not support suspension while writing a marker.
|
||||||
|
* Therefore, an application using suspension must ensure that there is
|
||||||
|
* enough buffer space for the initial markers (typ. 600-700 bytes) before
|
||||||
|
* calling jpeg_start_compress, and enough space to write the trailing EOI
|
||||||
|
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
|
||||||
|
* modes are not supported at all with suspension, so those two are the only
|
||||||
|
* points where markers will be written.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_byte (j_compress_ptr cinfo, int val)
|
||||||
|
/* Emit a byte */
|
||||||
|
{
|
||||||
|
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||||
|
|
||||||
|
*(dest->next_output_byte)++ = (JOCTET) val;
|
||||||
|
if (--dest->free_in_buffer == 0) {
|
||||||
|
if (! (*dest->empty_output_buffer) (cinfo))
|
||||||
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
|
||||||
|
/* Emit a marker code */
|
||||||
|
{
|
||||||
|
emit_byte(cinfo, 0xFF);
|
||||||
|
emit_byte(cinfo, (int) mark);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_2bytes (j_compress_ptr cinfo, int value)
|
||||||
|
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
|
||||||
|
{
|
||||||
|
emit_byte(cinfo, (value >> 8) & 0xFF);
|
||||||
|
emit_byte(cinfo, value & 0xFF);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Routines to write specific marker types.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(int)
|
||||||
|
emit_dqt (j_compress_ptr cinfo, int index)
|
||||||
|
/* Emit a DQT marker */
|
||||||
|
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
|
||||||
|
{
|
||||||
|
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
|
||||||
|
int prec;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
if (qtbl == NULL)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
|
||||||
|
|
||||||
|
prec = 0;
|
||||||
|
for (i = 0; i <= cinfo->lim_Se; i++) {
|
||||||
|
if (qtbl->quantval[cinfo->natural_order[i]] > 255)
|
||||||
|
prec = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (! qtbl->sent_table) {
|
||||||
|
emit_marker(cinfo, M_DQT);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo,
|
||||||
|
prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2);
|
||||||
|
|
||||||
|
emit_byte(cinfo, index + (prec<<4));
|
||||||
|
|
||||||
|
for (i = 0; i <= cinfo->lim_Se; i++) {
|
||||||
|
/* The table entries must be emitted in zigzag order. */
|
||||||
|
unsigned int qval = qtbl->quantval[cinfo->natural_order[i]];
|
||||||
|
if (prec)
|
||||||
|
emit_byte(cinfo, (int) (qval >> 8));
|
||||||
|
emit_byte(cinfo, (int) (qval & 0xFF));
|
||||||
|
}
|
||||||
|
|
||||||
|
qtbl->sent_table = TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
return prec;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
|
||||||
|
/* Emit a DHT marker */
|
||||||
|
{
|
||||||
|
JHUFF_TBL * htbl;
|
||||||
|
int length, i;
|
||||||
|
|
||||||
|
if (is_ac) {
|
||||||
|
htbl = cinfo->ac_huff_tbl_ptrs[index];
|
||||||
|
index += 0x10; /* output index has AC bit set */
|
||||||
|
} else {
|
||||||
|
htbl = cinfo->dc_huff_tbl_ptrs[index];
|
||||||
|
}
|
||||||
|
|
||||||
|
if (htbl == NULL)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
|
||||||
|
|
||||||
|
if (! htbl->sent_table) {
|
||||||
|
emit_marker(cinfo, M_DHT);
|
||||||
|
|
||||||
|
length = 0;
|
||||||
|
for (i = 1; i <= 16; i++)
|
||||||
|
length += htbl->bits[i];
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, length + 2 + 1 + 16);
|
||||||
|
emit_byte(cinfo, index);
|
||||||
|
|
||||||
|
for (i = 1; i <= 16; i++)
|
||||||
|
emit_byte(cinfo, htbl->bits[i]);
|
||||||
|
|
||||||
|
for (i = 0; i < length; i++)
|
||||||
|
emit_byte(cinfo, htbl->huffval[i]);
|
||||||
|
|
||||||
|
htbl->sent_table = TRUE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_dac (j_compress_ptr cinfo)
|
||||||
|
/* Emit a DAC marker */
|
||||||
|
/* Since the useful info is so small, we want to emit all the tables in */
|
||||||
|
/* one DAC marker. Therefore this routine does its own scan of the table. */
|
||||||
|
{
|
||||||
|
#ifdef C_ARITH_CODING_SUPPORTED
|
||||||
|
char dc_in_use[NUM_ARITH_TBLS];
|
||||||
|
char ac_in_use[NUM_ARITH_TBLS];
|
||||||
|
int length, i;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||||
|
dc_in_use[i] = ac_in_use[i] = 0;
|
||||||
|
|
||||||
|
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||||
|
compptr = cinfo->cur_comp_info[i];
|
||||||
|
/* DC needs no table for refinement scan */
|
||||||
|
if (cinfo->Ss == 0 && cinfo->Ah == 0)
|
||||||
|
dc_in_use[compptr->dc_tbl_no] = 1;
|
||||||
|
/* AC needs no table when not present */
|
||||||
|
if (cinfo->Se)
|
||||||
|
ac_in_use[compptr->ac_tbl_no] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
length = 0;
|
||||||
|
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||||
|
length += dc_in_use[i] + ac_in_use[i];
|
||||||
|
|
||||||
|
if (length) {
|
||||||
|
emit_marker(cinfo, M_DAC);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, length*2 + 2);
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||||
|
if (dc_in_use[i]) {
|
||||||
|
emit_byte(cinfo, i);
|
||||||
|
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
|
||||||
|
}
|
||||||
|
if (ac_in_use[i]) {
|
||||||
|
emit_byte(cinfo, i + 0x10);
|
||||||
|
emit_byte(cinfo, cinfo->arith_ac_K[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif /* C_ARITH_CODING_SUPPORTED */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_dri (j_compress_ptr cinfo)
|
||||||
|
/* Emit a DRI marker */
|
||||||
|
{
|
||||||
|
emit_marker(cinfo, M_DRI);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 4); /* fixed length */
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, (int) cinfo->restart_interval);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_lse_ict (j_compress_ptr cinfo)
|
||||||
|
/* Emit an LSE inverse color transform specification marker */
|
||||||
|
{
|
||||||
|
/* Support only 1 transform */
|
||||||
|
if (cinfo->color_transform != JCT_SUBTRACT_GREEN ||
|
||||||
|
cinfo->num_components < 3)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_JPG8);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 24); /* fixed length */
|
||||||
|
|
||||||
|
emit_byte(cinfo, 0x0D); /* ID inverse transform specification */
|
||||||
|
emit_2bytes(cinfo, MAXJSAMPLE); /* MAXTRANS */
|
||||||
|
emit_byte(cinfo, 3); /* Nt=3 */
|
||||||
|
emit_byte(cinfo, cinfo->comp_info[1].component_id);
|
||||||
|
emit_byte(cinfo, cinfo->comp_info[0].component_id);
|
||||||
|
emit_byte(cinfo, cinfo->comp_info[2].component_id);
|
||||||
|
emit_byte(cinfo, 0x80); /* F1: CENTER1=1, NORM1=0 */
|
||||||
|
emit_2bytes(cinfo, 0); /* A(1,1)=0 */
|
||||||
|
emit_2bytes(cinfo, 0); /* A(1,2)=0 */
|
||||||
|
emit_byte(cinfo, 0); /* F2: CENTER2=0, NORM2=0 */
|
||||||
|
emit_2bytes(cinfo, 1); /* A(2,1)=1 */
|
||||||
|
emit_2bytes(cinfo, 0); /* A(2,2)=0 */
|
||||||
|
emit_byte(cinfo, 0); /* F3: CENTER3=0, NORM3=0 */
|
||||||
|
emit_2bytes(cinfo, 1); /* A(3,1)=1 */
|
||||||
|
emit_2bytes(cinfo, 0); /* A(3,2)=0 */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
|
||||||
|
/* Emit a SOF marker */
|
||||||
|
{
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
emit_marker(cinfo, code);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
|
||||||
|
|
||||||
|
/* Make sure image isn't bigger than SOF field can handle */
|
||||||
|
if ((long) cinfo->jpeg_height > 65535L ||
|
||||||
|
(long) cinfo->jpeg_width > 65535L)
|
||||||
|
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
|
||||||
|
|
||||||
|
emit_byte(cinfo, cinfo->data_precision);
|
||||||
|
emit_2bytes(cinfo, (int) cinfo->jpeg_height);
|
||||||
|
emit_2bytes(cinfo, (int) cinfo->jpeg_width);
|
||||||
|
|
||||||
|
emit_byte(cinfo, cinfo->num_components);
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
emit_byte(cinfo, compptr->component_id);
|
||||||
|
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
|
||||||
|
emit_byte(cinfo, compptr->quant_tbl_no);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_sos (j_compress_ptr cinfo)
|
||||||
|
/* Emit a SOS marker */
|
||||||
|
{
|
||||||
|
int i, td, ta;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_SOS);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
|
||||||
|
|
||||||
|
emit_byte(cinfo, cinfo->comps_in_scan);
|
||||||
|
|
||||||
|
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||||
|
compptr = cinfo->cur_comp_info[i];
|
||||||
|
emit_byte(cinfo, compptr->component_id);
|
||||||
|
|
||||||
|
/* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||||
|
* but does not seem to be specified in the standard.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* DC needs no table for refinement scan */
|
||||||
|
td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0;
|
||||||
|
/* AC needs no table when not present */
|
||||||
|
ta = cinfo->Se ? compptr->ac_tbl_no : 0;
|
||||||
|
|
||||||
|
emit_byte(cinfo, (td << 4) + ta);
|
||||||
|
}
|
||||||
|
|
||||||
|
emit_byte(cinfo, cinfo->Ss);
|
||||||
|
emit_byte(cinfo, cinfo->Se);
|
||||||
|
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_pseudo_sos (j_compress_ptr cinfo)
|
||||||
|
/* Emit a pseudo SOS marker */
|
||||||
|
{
|
||||||
|
emit_marker(cinfo, M_SOS);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 2 + 1 + 3); /* length */
|
||||||
|
|
||||||
|
emit_byte(cinfo, 0); /* Ns */
|
||||||
|
|
||||||
|
emit_byte(cinfo, 0); /* Ss */
|
||||||
|
emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */
|
||||||
|
emit_byte(cinfo, 0); /* Ah/Al */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_jfif_app0 (j_compress_ptr cinfo)
|
||||||
|
/* Emit a JFIF-compliant APP0 marker */
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Length of APP0 block (2 bytes)
|
||||||
|
* Block ID (4 bytes - ASCII "JFIF")
|
||||||
|
* Zero byte (1 byte to terminate the ID string)
|
||||||
|
* Version Major, Minor (2 bytes - major first)
|
||||||
|
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
|
||||||
|
* Xdpu (2 bytes - dots per unit horizontal)
|
||||||
|
* Ydpu (2 bytes - dots per unit vertical)
|
||||||
|
* Thumbnail X size (1 byte)
|
||||||
|
* Thumbnail Y size (1 byte)
|
||||||
|
*/
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_APP0);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
|
||||||
|
|
||||||
|
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
|
||||||
|
emit_byte(cinfo, 0x46);
|
||||||
|
emit_byte(cinfo, 0x49);
|
||||||
|
emit_byte(cinfo, 0x46);
|
||||||
|
emit_byte(cinfo, 0);
|
||||||
|
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
|
||||||
|
emit_byte(cinfo, cinfo->JFIF_minor_version);
|
||||||
|
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
|
||||||
|
emit_2bytes(cinfo, (int) cinfo->X_density);
|
||||||
|
emit_2bytes(cinfo, (int) cinfo->Y_density);
|
||||||
|
emit_byte(cinfo, 0); /* No thumbnail image */
|
||||||
|
emit_byte(cinfo, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
emit_adobe_app14 (j_compress_ptr cinfo)
|
||||||
|
/* Emit an Adobe APP14 marker */
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* Length of APP14 block (2 bytes)
|
||||||
|
* Block ID (5 bytes - ASCII "Adobe")
|
||||||
|
* Version Number (2 bytes - currently 100)
|
||||||
|
* Flags0 (2 bytes - currently 0)
|
||||||
|
* Flags1 (2 bytes - currently 0)
|
||||||
|
* Color transform (1 byte)
|
||||||
|
*
|
||||||
|
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
|
||||||
|
* now in circulation seem to use Version = 100, so that's what we write.
|
||||||
|
*
|
||||||
|
* We write the color transform byte as 1 if the JPEG color space is
|
||||||
|
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
|
||||||
|
* whether the encoder performed a transformation, which is pretty useless.
|
||||||
|
*/
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_APP14);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
|
||||||
|
|
||||||
|
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
|
||||||
|
emit_byte(cinfo, 0x64);
|
||||||
|
emit_byte(cinfo, 0x6F);
|
||||||
|
emit_byte(cinfo, 0x62);
|
||||||
|
emit_byte(cinfo, 0x65);
|
||||||
|
emit_2bytes(cinfo, 100); /* Version */
|
||||||
|
emit_2bytes(cinfo, 0); /* Flags0 */
|
||||||
|
emit_2bytes(cinfo, 0); /* Flags1 */
|
||||||
|
switch (cinfo->jpeg_color_space) {
|
||||||
|
case JCS_YCbCr:
|
||||||
|
emit_byte(cinfo, 1); /* Color transform = 1 */
|
||||||
|
break;
|
||||||
|
case JCS_YCCK:
|
||||||
|
emit_byte(cinfo, 2); /* Color transform = 2 */
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
emit_byte(cinfo, 0); /* Color transform = 0 */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These routines allow writing an arbitrary marker with parameters.
|
||||||
|
* The only intended use is to emit COM or APPn markers after calling
|
||||||
|
* write_file_header and before calling write_frame_header.
|
||||||
|
* Other uses are not guaranteed to produce desirable results.
|
||||||
|
* Counting the parameter bytes properly is the caller's responsibility.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||||
|
/* Emit an arbitrary marker header */
|
||||||
|
{
|
||||||
|
if (datalen > (unsigned int) 65533) /* safety check */
|
||||||
|
ERREXIT(cinfo, JERR_BAD_LENGTH);
|
||||||
|
|
||||||
|
emit_marker(cinfo, (JPEG_MARKER) marker);
|
||||||
|
|
||||||
|
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
|
||||||
|
}
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_marker_byte (j_compress_ptr cinfo, int val)
|
||||||
|
/* Emit one byte of marker parameters following write_marker_header */
|
||||||
|
{
|
||||||
|
emit_byte(cinfo, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write datastream header.
|
||||||
|
* This consists of an SOI and optional APPn markers.
|
||||||
|
* We recommend use of the JFIF marker, but not the Adobe marker,
|
||||||
|
* when using YCbCr or grayscale data. The JFIF marker is also used
|
||||||
|
* for other standard JPEG colorspaces. The Adobe marker is helpful
|
||||||
|
* to distinguish RGB, CMYK, and YCCK colorspaces.
|
||||||
|
* Note that an application can write additional header markers after
|
||||||
|
* jpeg_start_compress returns.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_file_header (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_SOI); /* first the SOI */
|
||||||
|
|
||||||
|
/* SOI is defined to reset restart interval to 0 */
|
||||||
|
marker->last_restart_interval = 0;
|
||||||
|
|
||||||
|
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
|
||||||
|
emit_jfif_app0(cinfo);
|
||||||
|
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
|
||||||
|
emit_adobe_app14(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write frame header.
|
||||||
|
* This consists of DQT and SOFn markers,
|
||||||
|
* a conditional LSE marker and a conditional pseudo SOS marker.
|
||||||
|
* Note that we do not emit the SOF until we have emitted the DQT(s).
|
||||||
|
* This avoids compatibility problems with incorrect implementations that
|
||||||
|
* try to error-check the quant table numbers as soon as they see the SOF.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_frame_header (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int ci, prec;
|
||||||
|
boolean is_baseline;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Emit DQT for each quantization table.
|
||||||
|
* Note that emit_dqt() suppresses any duplicate tables.
|
||||||
|
*/
|
||||||
|
prec = 0;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
|
||||||
|
}
|
||||||
|
/* now prec is nonzero iff there are any 16-bit quant tables. */
|
||||||
|
|
||||||
|
/* Check for a non-baseline specification.
|
||||||
|
* Note we assume that Huffman table numbers won't be changed later.
|
||||||
|
*/
|
||||||
|
if (cinfo->arith_code || cinfo->progressive_mode ||
|
||||||
|
cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) {
|
||||||
|
is_baseline = FALSE;
|
||||||
|
} else {
|
||||||
|
is_baseline = TRUE;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
|
||||||
|
is_baseline = FALSE;
|
||||||
|
}
|
||||||
|
if (prec && is_baseline) {
|
||||||
|
is_baseline = FALSE;
|
||||||
|
/* If it's baseline except for quantizer size, warn the user */
|
||||||
|
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Emit the proper SOF marker */
|
||||||
|
if (cinfo->arith_code) {
|
||||||
|
if (cinfo->progressive_mode)
|
||||||
|
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
|
||||||
|
else
|
||||||
|
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
|
||||||
|
} else {
|
||||||
|
if (cinfo->progressive_mode)
|
||||||
|
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
|
||||||
|
else if (is_baseline)
|
||||||
|
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
|
||||||
|
else
|
||||||
|
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check to emit LSE inverse color transform specification marker */
|
||||||
|
if (cinfo->color_transform)
|
||||||
|
emit_lse_ict(cinfo);
|
||||||
|
|
||||||
|
/* Check to emit pseudo SOS marker */
|
||||||
|
if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE)
|
||||||
|
emit_pseudo_sos(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write scan header.
|
||||||
|
* This consists of DHT or DAC markers, optional DRI, and SOS.
|
||||||
|
* Compressed data will be written following the SOS.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_scan_header (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||||
|
int i;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
if (cinfo->arith_code) {
|
||||||
|
/* Emit arith conditioning info. We may have some duplication
|
||||||
|
* if the file has multiple scans, but it's so small it's hardly
|
||||||
|
* worth worrying about.
|
||||||
|
*/
|
||||||
|
emit_dac(cinfo);
|
||||||
|
} else {
|
||||||
|
/* Emit Huffman tables.
|
||||||
|
* Note that emit_dht() suppresses any duplicate tables.
|
||||||
|
*/
|
||||||
|
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||||
|
compptr = cinfo->cur_comp_info[i];
|
||||||
|
/* DC needs no table for refinement scan */
|
||||||
|
if (cinfo->Ss == 0 && cinfo->Ah == 0)
|
||||||
|
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||||
|
/* AC needs no table when not present */
|
||||||
|
if (cinfo->Se)
|
||||||
|
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||||
|
* We avoid wasting space with unnecessary DRIs, however.
|
||||||
|
*/
|
||||||
|
if (cinfo->restart_interval != marker->last_restart_interval) {
|
||||||
|
emit_dri(cinfo);
|
||||||
|
marker->last_restart_interval = cinfo->restart_interval;
|
||||||
|
}
|
||||||
|
|
||||||
|
emit_sos(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write datastream trailer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_file_trailer (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
emit_marker(cinfo, M_EOI);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write an abbreviated table-specification datastream.
|
||||||
|
* This consists of SOI, DQT and DHT tables, and EOI.
|
||||||
|
* Any table that is defined and not marked sent_table = TRUE will be
|
||||||
|
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
write_tables_only (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_SOI);
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||||
|
if (cinfo->quant_tbl_ptrs[i] != NULL)
|
||||||
|
(void) emit_dqt(cinfo, i);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (! cinfo->arith_code) {
|
||||||
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||||
|
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
|
||||||
|
emit_dht(cinfo, i, FALSE);
|
||||||
|
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||||
|
emit_dht(cinfo, i, TRUE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
emit_marker(cinfo, M_EOI);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize the marker writer module.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_marker_writer (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_marker_ptr marker;
|
||||||
|
|
||||||
|
/* Create the subobject */
|
||||||
|
marker = (my_marker_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_marker_writer));
|
||||||
|
cinfo->marker = &marker->pub;
|
||||||
|
/* Initialize method pointers */
|
||||||
|
marker->pub.write_file_header = write_file_header;
|
||||||
|
marker->pub.write_frame_header = write_frame_header;
|
||||||
|
marker->pub.write_scan_header = write_scan_header;
|
||||||
|
marker->pub.write_file_trailer = write_file_trailer;
|
||||||
|
marker->pub.write_tables_only = write_tables_only;
|
||||||
|
marker->pub.write_marker_header = write_marker_header;
|
||||||
|
marker->pub.write_marker_byte = write_marker_byte;
|
||||||
|
/* Initialize private state */
|
||||||
|
marker->last_restart_interval = 0;
|
||||||
|
}
|
675
dep/libjpeg/src/jcmaster.c
Normal file
675
dep/libjpeg/src/jcmaster.c
Normal file
|
@ -0,0 +1,675 @@
|
||||||
|
/*
|
||||||
|
* jcmaster.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 2003-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains master control logic for the JPEG compressor.
|
||||||
|
* These routines are concerned with parameter validation, initial setup,
|
||||||
|
* and inter-pass control (determining the number of passes and the work
|
||||||
|
* to be done in each pass).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Private state */
|
||||||
|
|
||||||
|
typedef enum {
|
||||||
|
main_pass, /* input data, also do first output step */
|
||||||
|
huff_opt_pass, /* Huffman code optimization pass */
|
||||||
|
output_pass /* data output pass */
|
||||||
|
} c_pass_type;
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_comp_master pub; /* public fields */
|
||||||
|
|
||||||
|
c_pass_type pass_type; /* the type of the current pass */
|
||||||
|
|
||||||
|
int pass_number; /* # of passes completed */
|
||||||
|
int total_passes; /* total # of passes needed */
|
||||||
|
|
||||||
|
int scan_number; /* current index in scan_info[] */
|
||||||
|
} my_comp_master;
|
||||||
|
|
||||||
|
typedef my_comp_master * my_master_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Support routines that do various essential calculations.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
initial_setup (j_compress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before master selection phase */
|
||||||
|
{
|
||||||
|
int ci, ssize;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Sanity check on block_size */
|
||||||
|
if (cinfo->block_size < 1 || cinfo->block_size > 16)
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size);
|
||||||
|
|
||||||
|
/* Derive natural_order from block_size */
|
||||||
|
switch (cinfo->block_size) {
|
||||||
|
case 2: cinfo->natural_order = jpeg_natural_order2; break;
|
||||||
|
case 3: cinfo->natural_order = jpeg_natural_order3; break;
|
||||||
|
case 4: cinfo->natural_order = jpeg_natural_order4; break;
|
||||||
|
case 5: cinfo->natural_order = jpeg_natural_order5; break;
|
||||||
|
case 6: cinfo->natural_order = jpeg_natural_order6; break;
|
||||||
|
case 7: cinfo->natural_order = jpeg_natural_order7; break;
|
||||||
|
default: cinfo->natural_order = jpeg_natural_order;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Derive lim_Se from block_size */
|
||||||
|
cinfo->lim_Se = cinfo->block_size < DCTSIZE ?
|
||||||
|
cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1;
|
||||||
|
|
||||||
|
/* Sanity check on image dimensions */
|
||||||
|
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 ||
|
||||||
|
cinfo->num_components <= 0)
|
||||||
|
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||||
|
|
||||||
|
/* Make sure image isn't bigger than I can handle */
|
||||||
|
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
|
||||||
|
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
|
||||||
|
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||||
|
|
||||||
|
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */
|
||||||
|
if (cinfo->data_precision < 8 || cinfo->data_precision > 12)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||||
|
|
||||||
|
/* Check that number of components won't exceed internal array sizes */
|
||||||
|
if (cinfo->num_components > MAX_COMPONENTS)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||||
|
MAX_COMPONENTS);
|
||||||
|
|
||||||
|
/* Compute maximum sampling factors; check factor validity */
|
||||||
|
cinfo->max_h_samp_factor = 1;
|
||||||
|
cinfo->max_v_samp_factor = 1;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||||
|
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||||
|
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||||
|
compptr->h_samp_factor);
|
||||||
|
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||||
|
compptr->v_samp_factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Compute dimensions of components */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Fill in the correct component_index value; don't rely on application */
|
||||||
|
compptr->component_index = ci;
|
||||||
|
/* In selecting the actual DCT scaling for each component, we try to
|
||||||
|
* scale down the chroma components via DCT scaling rather than downsampling.
|
||||||
|
* This saves time if the downsampler gets to use 1:1 scaling.
|
||||||
|
* Note this code adapts subsampling ratios which are powers of 2.
|
||||||
|
*/
|
||||||
|
ssize = 1;
|
||||||
|
#ifdef DCT_SCALING_SUPPORTED
|
||||||
|
if (! cinfo->raw_data_in)
|
||||||
|
while (cinfo->min_DCT_h_scaled_size * ssize <=
|
||||||
|
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||||
|
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) ==
|
||||||
|
0) {
|
||||||
|
ssize = ssize * 2;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
|
||||||
|
ssize = 1;
|
||||||
|
#ifdef DCT_SCALING_SUPPORTED
|
||||||
|
if (! cinfo->raw_data_in)
|
||||||
|
while (cinfo->min_DCT_v_scaled_size * ssize <=
|
||||||
|
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||||
|
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) ==
|
||||||
|
0) {
|
||||||
|
ssize = ssize * 2;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
|
||||||
|
|
||||||
|
/* We don't support DCT ratios larger than 2. */
|
||||||
|
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
|
||||||
|
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
|
||||||
|
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
|
||||||
|
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
|
||||||
|
|
||||||
|
/* Size in DCT blocks */
|
||||||
|
compptr->width_in_blocks = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
|
||||||
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
|
||||||
|
compptr->height_in_blocks = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
|
||||||
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
|
||||||
|
/* Size in samples */
|
||||||
|
compptr->downsampled_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->jpeg_width *
|
||||||
|
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
|
||||||
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
|
||||||
|
compptr->downsampled_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->jpeg_height *
|
||||||
|
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
|
||||||
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
|
||||||
|
/* Don't need quantization scale after DCT,
|
||||||
|
* until color conversion says otherwise.
|
||||||
|
*/
|
||||||
|
compptr->component_needed = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Compute number of fully interleaved MCU rows (number of times that
|
||||||
|
* main controller will call coefficient controller).
|
||||||
|
*/
|
||||||
|
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->jpeg_height,
|
||||||
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
validate_script (j_compress_ptr cinfo)
|
||||||
|
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||||
|
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
const jpeg_scan_info * scanptr;
|
||||||
|
int scanno, ncomps, ci, coefi, thisi;
|
||||||
|
int Ss, Se, Ah, Al;
|
||||||
|
boolean component_sent[MAX_COMPONENTS];
|
||||||
|
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||||
|
int * last_bitpos_ptr;
|
||||||
|
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
|
||||||
|
/* -1 until that coefficient has been seen; then last Al for it */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (cinfo->num_scans <= 0)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
|
||||||
|
|
||||||
|
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||||
|
* for progressive JPEG, no scan can have this.
|
||||||
|
*/
|
||||||
|
scanptr = cinfo->scan_info;
|
||||||
|
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
|
||||||
|
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||||
|
cinfo->progressive_mode = TRUE;
|
||||||
|
last_bitpos_ptr = & last_bitpos[0][0];
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||||
|
for (coefi = 0; coefi < DCTSIZE2; coefi++)
|
||||||
|
*last_bitpos_ptr++ = -1;
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
cinfo->progressive_mode = FALSE;
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||||
|
component_sent[ci] = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
|
||||||
|
/* Validate component indexes */
|
||||||
|
ncomps = scanptr->comps_in_scan;
|
||||||
|
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
|
||||||
|
for (ci = 0; ci < ncomps; ci++) {
|
||||||
|
thisi = scanptr->component_index[ci];
|
||||||
|
if (thisi < 0 || thisi >= cinfo->num_components)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||||
|
/* Components must appear in SOF order within each scan */
|
||||||
|
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||||
|
}
|
||||||
|
/* Validate progression parameters */
|
||||||
|
Ss = scanptr->Ss;
|
||||||
|
Se = scanptr->Se;
|
||||||
|
Ah = scanptr->Ah;
|
||||||
|
Al = scanptr->Al;
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||||
|
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
|
||||||
|
* seems wrong: the upper bound ought to depend on data precision.
|
||||||
|
* Perhaps they really meant 0..N+1 for N-bit precision.
|
||||||
|
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
|
||||||
|
* out-of-range reconstructed DC values during the first DC scan,
|
||||||
|
* which might cause problems for some decoders.
|
||||||
|
*/
|
||||||
|
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
|
||||||
|
Ah < 0 || Ah > (cinfo->data_precision > 8 ? 13 : 10) ||
|
||||||
|
Al < 0 || Al > (cinfo->data_precision > 8 ? 13 : 10))
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
if (Ss == 0) {
|
||||||
|
if (Se != 0) /* DC and AC together not OK */
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
} else {
|
||||||
|
if (ncomps != 1) /* AC scans must be for only one component */
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
}
|
||||||
|
for (ci = 0; ci < ncomps; ci++) {
|
||||||
|
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
|
||||||
|
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
for (coefi = Ss; coefi <= Se; coefi++) {
|
||||||
|
if (last_bitpos_ptr[coefi] < 0) {
|
||||||
|
/* first scan of this coefficient */
|
||||||
|
if (Ah != 0)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
} else {
|
||||||
|
/* not first scan */
|
||||||
|
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
}
|
||||||
|
last_bitpos_ptr[coefi] = Al;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
/* For sequential JPEG, all progression parameters must be these: */
|
||||||
|
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||||
|
/* Make sure components are not sent twice */
|
||||||
|
for (ci = 0; ci < ncomps; ci++) {
|
||||||
|
thisi = scanptr->component_index[ci];
|
||||||
|
if (component_sent[thisi])
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||||
|
component_sent[thisi] = TRUE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Now verify that everything got sent. */
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||||
|
/* For progressive mode, we only check that at least some DC data
|
||||||
|
* got sent for each component; the spec does not require that all bits
|
||||||
|
* of all coefficients be transmitted. Would it be wiser to enforce
|
||||||
|
* transmission of all coefficient bits??
|
||||||
|
*/
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
if (last_bitpos[ci][0] < 0)
|
||||||
|
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
if (! component_sent[ci])
|
||||||
|
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
reduce_script (j_compress_ptr cinfo)
|
||||||
|
/* Adapt scan script for use with reduced block size;
|
||||||
|
* assume that script has been validated before.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
jpeg_scan_info * scanptr;
|
||||||
|
int idxout, idxin;
|
||||||
|
|
||||||
|
/* Circumvent const declaration for this function */
|
||||||
|
scanptr = (jpeg_scan_info *) cinfo->scan_info;
|
||||||
|
idxout = 0;
|
||||||
|
|
||||||
|
for (idxin = 0; idxin < cinfo->num_scans; idxin++) {
|
||||||
|
/* After skipping, idxout becomes smaller than idxin */
|
||||||
|
if (idxin != idxout)
|
||||||
|
/* Copy rest of data;
|
||||||
|
* note we stay in given chunk of allocated memory.
|
||||||
|
*/
|
||||||
|
scanptr[idxout] = scanptr[idxin];
|
||||||
|
if (scanptr[idxout].Ss > cinfo->lim_Se)
|
||||||
|
/* Entire scan out of range - skip this entry */
|
||||||
|
continue;
|
||||||
|
if (scanptr[idxout].Se > cinfo->lim_Se)
|
||||||
|
/* Limit scan to end of block */
|
||||||
|
scanptr[idxout].Se = cinfo->lim_Se;
|
||||||
|
idxout++;
|
||||||
|
}
|
||||||
|
|
||||||
|
cinfo->num_scans = idxout;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* C_MULTISCAN_FILES_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
select_scan_parameters (j_compress_ptr cinfo)
|
||||||
|
/* Set up the scan parameters for the current scan */
|
||||||
|
{
|
||||||
|
int ci;
|
||||||
|
|
||||||
|
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||||
|
if (cinfo->scan_info != NULL) {
|
||||||
|
/* Prepare for current scan --- the script is already validated */
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
|
||||||
|
|
||||||
|
cinfo->comps_in_scan = scanptr->comps_in_scan;
|
||||||
|
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
|
||||||
|
cinfo->cur_comp_info[ci] =
|
||||||
|
&cinfo->comp_info[scanptr->component_index[ci]];
|
||||||
|
}
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
cinfo->Ss = scanptr->Ss;
|
||||||
|
cinfo->Se = scanptr->Se;
|
||||||
|
cinfo->Ah = scanptr->Ah;
|
||||||
|
cinfo->Al = scanptr->Al;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
/* Prepare for single sequential-JPEG scan containing all components */
|
||||||
|
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||||
|
MAX_COMPS_IN_SCAN);
|
||||||
|
cinfo->comps_in_scan = cinfo->num_components;
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
cinfo->Ss = 0;
|
||||||
|
cinfo->Se = cinfo->block_size * cinfo->block_size - 1;
|
||||||
|
cinfo->Ah = 0;
|
||||||
|
cinfo->Al = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
per_scan_setup (j_compress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before processing a JPEG scan */
|
||||||
|
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
|
||||||
|
{
|
||||||
|
int ci, mcublks, tmp;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
if (cinfo->comps_in_scan == 1) {
|
||||||
|
|
||||||
|
/* Noninterleaved (single-component) scan */
|
||||||
|
compptr = cinfo->cur_comp_info[0];
|
||||||
|
|
||||||
|
/* Overall image size in MCUs */
|
||||||
|
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||||
|
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||||
|
|
||||||
|
/* For noninterleaved scan, always one block per MCU */
|
||||||
|
compptr->MCU_width = 1;
|
||||||
|
compptr->MCU_height = 1;
|
||||||
|
compptr->MCU_blocks = 1;
|
||||||
|
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
|
||||||
|
compptr->last_col_width = 1;
|
||||||
|
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||||
|
* as the number of block rows present in the last iMCU row.
|
||||||
|
*/
|
||||||
|
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||||
|
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||||
|
compptr->last_row_height = tmp;
|
||||||
|
|
||||||
|
/* Prepare array describing MCU composition */
|
||||||
|
cinfo->blocks_in_MCU = 1;
|
||||||
|
cinfo->MCU_membership[0] = 0;
|
||||||
|
|
||||||
|
} else {
|
||||||
|
|
||||||
|
/* Interleaved (multi-component) scan */
|
||||||
|
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||||
|
MAX_COMPS_IN_SCAN);
|
||||||
|
|
||||||
|
/* Overall image size in MCUs */
|
||||||
|
cinfo->MCUs_per_row = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->jpeg_width,
|
||||||
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
|
||||||
|
cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows;
|
||||||
|
|
||||||
|
cinfo->blocks_in_MCU = 0;
|
||||||
|
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
/* Sampling factors give # of blocks of component in each MCU */
|
||||||
|
compptr->MCU_width = compptr->h_samp_factor;
|
||||||
|
compptr->MCU_height = compptr->v_samp_factor;
|
||||||
|
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||||
|
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
|
||||||
|
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||||
|
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||||
|
if (tmp == 0) tmp = compptr->MCU_width;
|
||||||
|
compptr->last_col_width = tmp;
|
||||||
|
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||||
|
if (tmp == 0) tmp = compptr->MCU_height;
|
||||||
|
compptr->last_row_height = tmp;
|
||||||
|
/* Prepare array describing MCU composition */
|
||||||
|
mcublks = compptr->MCU_blocks;
|
||||||
|
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||||
|
while (mcublks-- > 0) {
|
||||||
|
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert restart specified in rows to actual MCU count. */
|
||||||
|
/* Note that count must fit in 16 bits, so we provide limiting. */
|
||||||
|
if (cinfo->restart_in_rows > 0) {
|
||||||
|
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
|
||||||
|
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Per-pass setup.
|
||||||
|
* This is called at the beginning of each pass. We determine which modules
|
||||||
|
* will be active during this pass and give them appropriate start_pass calls.
|
||||||
|
* We also set is_last_pass to indicate whether any more passes will be
|
||||||
|
* required.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
prepare_for_pass (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
|
||||||
|
switch (master->pass_type) {
|
||||||
|
case main_pass:
|
||||||
|
/* Initial pass: will collect input data, and do either Huffman
|
||||||
|
* optimization or data output for the first scan.
|
||||||
|
*/
|
||||||
|
select_scan_parameters(cinfo);
|
||||||
|
per_scan_setup(cinfo);
|
||||||
|
if (! cinfo->raw_data_in) {
|
||||||
|
(*cinfo->cconvert->start_pass) (cinfo);
|
||||||
|
(*cinfo->downsample->start_pass) (cinfo);
|
||||||
|
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||||
|
}
|
||||||
|
(*cinfo->fdct->start_pass) (cinfo);
|
||||||
|
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
|
||||||
|
(*cinfo->coef->start_pass) (cinfo,
|
||||||
|
(master->total_passes > 1 ?
|
||||||
|
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||||
|
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||||
|
if (cinfo->optimize_coding) {
|
||||||
|
/* No immediate data output; postpone writing frame/scan headers */
|
||||||
|
master->pub.call_pass_startup = FALSE;
|
||||||
|
} else {
|
||||||
|
/* Will write frame/scan headers at first jpeg_write_scanlines call */
|
||||||
|
master->pub.call_pass_startup = TRUE;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#ifdef ENTROPY_OPT_SUPPORTED
|
||||||
|
case huff_opt_pass:
|
||||||
|
/* Do Huffman optimization for a scan after the first one. */
|
||||||
|
select_scan_parameters(cinfo);
|
||||||
|
per_scan_setup(cinfo);
|
||||||
|
if (cinfo->Ss != 0 || cinfo->Ah == 0) {
|
||||||
|
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||||
|
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||||
|
master->pub.call_pass_startup = FALSE;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||||
|
* and therefore we can skip the optimization pass for them.
|
||||||
|
*/
|
||||||
|
master->pass_type = output_pass;
|
||||||
|
master->pass_number++;
|
||||||
|
/*FALLTHROUGH*/
|
||||||
|
#endif
|
||||||
|
case output_pass:
|
||||||
|
/* Do a data-output pass. */
|
||||||
|
/* We need not repeat per-scan setup if prior optimization pass did it. */
|
||||||
|
if (! cinfo->optimize_coding) {
|
||||||
|
select_scan_parameters(cinfo);
|
||||||
|
per_scan_setup(cinfo);
|
||||||
|
}
|
||||||
|
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||||
|
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||||
|
/* We emit frame/scan headers now */
|
||||||
|
if (master->scan_number == 0)
|
||||||
|
(*cinfo->marker->write_frame_header) (cinfo);
|
||||||
|
(*cinfo->marker->write_scan_header) (cinfo);
|
||||||
|
master->pub.call_pass_startup = FALSE;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
}
|
||||||
|
|
||||||
|
master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
|
||||||
|
|
||||||
|
/* Set up progress monitor's pass info if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->completed_passes = master->pass_number;
|
||||||
|
cinfo->progress->total_passes = master->total_passes;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Special start-of-pass hook.
|
||||||
|
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
|
||||||
|
* In single-pass processing, we need this hook because we don't want to
|
||||||
|
* write frame/scan headers during jpeg_start_compress; we want to let the
|
||||||
|
* application write COM markers etc. between jpeg_start_compress and the
|
||||||
|
* jpeg_write_scanlines loop.
|
||||||
|
* In multi-pass processing, this routine is not used.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
pass_startup (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
|
||||||
|
|
||||||
|
(*cinfo->marker->write_frame_header) (cinfo);
|
||||||
|
(*cinfo->marker->write_scan_header) (cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up at end of pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
finish_pass_master (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
|
||||||
|
/* The entropy coder always needs an end-of-pass call,
|
||||||
|
* either to analyze statistics or to flush its output buffer.
|
||||||
|
*/
|
||||||
|
(*cinfo->entropy->finish_pass) (cinfo);
|
||||||
|
|
||||||
|
/* Update state for next pass */
|
||||||
|
switch (master->pass_type) {
|
||||||
|
case main_pass:
|
||||||
|
/* next pass is either output of scan 0 (after optimization)
|
||||||
|
* or output of scan 1 (if no optimization).
|
||||||
|
*/
|
||||||
|
master->pass_type = output_pass;
|
||||||
|
if (! cinfo->optimize_coding)
|
||||||
|
master->scan_number++;
|
||||||
|
break;
|
||||||
|
case huff_opt_pass:
|
||||||
|
/* next pass is always output of current scan */
|
||||||
|
master->pass_type = output_pass;
|
||||||
|
break;
|
||||||
|
case output_pass:
|
||||||
|
/* next pass is either optimization or output of next scan */
|
||||||
|
if (cinfo->optimize_coding)
|
||||||
|
master->pass_type = huff_opt_pass;
|
||||||
|
master->scan_number++;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
master->pass_number++;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize master compression control.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
|
||||||
|
{
|
||||||
|
my_master_ptr master;
|
||||||
|
|
||||||
|
master = (my_master_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master));
|
||||||
|
cinfo->master = &master->pub;
|
||||||
|
master->pub.prepare_for_pass = prepare_for_pass;
|
||||||
|
master->pub.pass_startup = pass_startup;
|
||||||
|
master->pub.finish_pass = finish_pass_master;
|
||||||
|
master->pub.is_last_pass = FALSE;
|
||||||
|
|
||||||
|
/* Validate parameters, determine derived values */
|
||||||
|
initial_setup(cinfo);
|
||||||
|
|
||||||
|
if (cinfo->scan_info != NULL) {
|
||||||
|
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||||
|
validate_script(cinfo);
|
||||||
|
if (cinfo->block_size < DCTSIZE)
|
||||||
|
reduce_script(cinfo);
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
cinfo->progressive_mode = FALSE;
|
||||||
|
cinfo->num_scans = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cinfo->optimize_coding)
|
||||||
|
cinfo->arith_code = FALSE; /* disable arithmetic coding */
|
||||||
|
else if (! cinfo->arith_code &&
|
||||||
|
(cinfo->progressive_mode ||
|
||||||
|
(cinfo->block_size > 1 && cinfo->block_size < DCTSIZE)))
|
||||||
|
/* TEMPORARY HACK ??? */
|
||||||
|
/* assume default tables no good for progressive or reduced AC mode */
|
||||||
|
cinfo->optimize_coding = TRUE; /* force Huffman optimization */
|
||||||
|
|
||||||
|
/* Initialize my private state */
|
||||||
|
if (transcode_only) {
|
||||||
|
/* no main pass in transcoding */
|
||||||
|
if (cinfo->optimize_coding)
|
||||||
|
master->pass_type = huff_opt_pass;
|
||||||
|
else
|
||||||
|
master->pass_type = output_pass;
|
||||||
|
} else {
|
||||||
|
/* for normal compression, first pass is always this type: */
|
||||||
|
master->pass_type = main_pass;
|
||||||
|
}
|
||||||
|
master->scan_number = 0;
|
||||||
|
master->pass_number = 0;
|
||||||
|
if (cinfo->optimize_coding)
|
||||||
|
master->total_passes = cinfo->num_scans * 2;
|
||||||
|
else
|
||||||
|
master->total_passes = cinfo->num_scans;
|
||||||
|
}
|
244
dep/libjpeg/src/jcomapi.c
Normal file
244
dep/libjpeg/src/jcomapi.c
Normal file
|
@ -0,0 +1,244 @@
|
||||||
|
/*
|
||||||
|
* jcomapi.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||||
|
* Modified 2019 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains application interface routines that are used for both
|
||||||
|
* compression and decompression.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Abort processing of a JPEG compression or decompression operation,
|
||||||
|
* but don't destroy the object itself.
|
||||||
|
*
|
||||||
|
* For this, we merely clean up all the nonpermanent memory pools.
|
||||||
|
* Note that temp files (virtual arrays) are not allowed to belong to
|
||||||
|
* the permanent pool, so we will be able to close all temp files here.
|
||||||
|
* Closing a data source or destination, if necessary, is the application's
|
||||||
|
* responsibility.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_abort (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
int pool;
|
||||||
|
|
||||||
|
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
|
||||||
|
if (cinfo->mem == NULL)
|
||||||
|
return;
|
||||||
|
|
||||||
|
/* Releasing pools in reverse order might help avoid fragmentation
|
||||||
|
* with some (brain-damaged) malloc libraries.
|
||||||
|
*/
|
||||||
|
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
|
||||||
|
(*cinfo->mem->free_pool) (cinfo, pool);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Reset overall state for possible reuse of object */
|
||||||
|
if (cinfo->is_decompressor) {
|
||||||
|
cinfo->global_state = DSTATE_START;
|
||||||
|
/* Try to keep application from accessing now-deleted marker list.
|
||||||
|
* A bit kludgy to do it here, but this is the most central place.
|
||||||
|
*/
|
||||||
|
((j_decompress_ptr) cinfo)->marker_list = NULL;
|
||||||
|
} else {
|
||||||
|
cinfo->global_state = CSTATE_START;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Destruction of a JPEG object.
|
||||||
|
*
|
||||||
|
* Everything gets deallocated except the master jpeg_compress_struct itself
|
||||||
|
* and the error manager struct. Both of these are supplied by the application
|
||||||
|
* and must be freed, if necessary, by the application. (Often they are on
|
||||||
|
* the stack and so don't need to be freed anyway.)
|
||||||
|
* Closing a data source or destination, if necessary, is the application's
|
||||||
|
* responsibility.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_destroy (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* We need only tell the memory manager to release everything. */
|
||||||
|
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
|
||||||
|
if (cinfo->mem != NULL)
|
||||||
|
(*cinfo->mem->self_destruct) (cinfo);
|
||||||
|
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
|
||||||
|
cinfo->global_state = 0; /* mark it destroyed */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convenience routines for allocating quantization and Huffman tables.
|
||||||
|
* (Would jutils.c be a more reasonable place to put these?)
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(JQUANT_TBL *)
|
||||||
|
jpeg_alloc_quant_table (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
JQUANT_TBL *tbl;
|
||||||
|
|
||||||
|
tbl = (JQUANT_TBL *)
|
||||||
|
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
|
||||||
|
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||||
|
return tbl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(JHUFF_TBL *)
|
||||||
|
jpeg_alloc_huff_table (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
JHUFF_TBL *tbl;
|
||||||
|
|
||||||
|
tbl = (JHUFF_TBL *)
|
||||||
|
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
|
||||||
|
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||||
|
return tbl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set up the standard Huffman tables (cf. JPEG standard section K.3).
|
||||||
|
* IMPORTANT: these are only valid for 8-bit data precision!
|
||||||
|
* (Would jutils.c be a more reasonable place to put this?)
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(JHUFF_TBL *)
|
||||||
|
jpeg_std_huff_table (j_common_ptr cinfo, boolean isDC, int tblno)
|
||||||
|
{
|
||||||
|
JHUFF_TBL **htblptr, *htbl;
|
||||||
|
const UINT8 *bits, *val;
|
||||||
|
int nsymbols, len;
|
||||||
|
|
||||||
|
static const UINT8 bits_dc_luminance[17] =
|
||||||
|
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
||||||
|
static const UINT8 val_dc_luminance[] =
|
||||||
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||||
|
|
||||||
|
static const UINT8 bits_dc_chrominance[17] =
|
||||||
|
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
||||||
|
static const UINT8 val_dc_chrominance[] =
|
||||||
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||||
|
|
||||||
|
static const UINT8 bits_ac_luminance[17] =
|
||||||
|
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
||||||
|
static const UINT8 val_ac_luminance[] =
|
||||||
|
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||||
|
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||||
|
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||||
|
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||||
|
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||||
|
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||||
|
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||||
|
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||||
|
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||||
|
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||||
|
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||||
|
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||||
|
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||||
|
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||||
|
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||||
|
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||||
|
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||||
|
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||||
|
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||||
|
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||||
|
0xf9, 0xfa };
|
||||||
|
|
||||||
|
static const UINT8 bits_ac_chrominance[17] =
|
||||||
|
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
||||||
|
static const UINT8 val_ac_chrominance[] =
|
||||||
|
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||||
|
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||||
|
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||||
|
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||||
|
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||||
|
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||||
|
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||||
|
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||||
|
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||||
|
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||||
|
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||||
|
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||||
|
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||||
|
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||||
|
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||||
|
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||||
|
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||||
|
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||||
|
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||||
|
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||||
|
0xf9, 0xfa };
|
||||||
|
|
||||||
|
if (cinfo->is_decompressor) {
|
||||||
|
if (isDC)
|
||||||
|
htblptr = ((j_decompress_ptr) cinfo)->dc_huff_tbl_ptrs;
|
||||||
|
else
|
||||||
|
htblptr = ((j_decompress_ptr) cinfo)->ac_huff_tbl_ptrs;
|
||||||
|
} else {
|
||||||
|
if (isDC)
|
||||||
|
htblptr = ((j_compress_ptr) cinfo)->dc_huff_tbl_ptrs;
|
||||||
|
else
|
||||||
|
htblptr = ((j_compress_ptr) cinfo)->ac_huff_tbl_ptrs;
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (tblno) {
|
||||||
|
case 0:
|
||||||
|
if (isDC) {
|
||||||
|
bits = bits_dc_luminance;
|
||||||
|
val = val_dc_luminance;
|
||||||
|
} else {
|
||||||
|
bits = bits_ac_luminance;
|
||||||
|
val = val_ac_luminance;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
if (isDC) {
|
||||||
|
bits = bits_dc_chrominance;
|
||||||
|
val = val_dc_chrominance;
|
||||||
|
} else {
|
||||||
|
bits = bits_ac_chrominance;
|
||||||
|
val = val_ac_chrominance;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
||||||
|
return NULL; /* avoid compiler warnings for uninitialized variables */
|
||||||
|
}
|
||||||
|
|
||||||
|
if (htblptr[tblno] == NULL)
|
||||||
|
htblptr[tblno] = jpeg_alloc_huff_table(cinfo);
|
||||||
|
|
||||||
|
htbl = htblptr[tblno];
|
||||||
|
|
||||||
|
/* Copy the number-of-symbols-of-each-code-length counts */
|
||||||
|
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
||||||
|
|
||||||
|
/* Validate the counts. We do this here mainly so we can copy the right
|
||||||
|
* number of symbols from the val[] array, without risking marching off
|
||||||
|
* the end of memory. jxhuff.c will do a more thorough test later.
|
||||||
|
*/
|
||||||
|
nsymbols = 0;
|
||||||
|
for (len = 1; len <= 16; len++)
|
||||||
|
nsymbols += bits[len];
|
||||||
|
if (nsymbols > 256)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||||
|
|
||||||
|
if (nsymbols > 0)
|
||||||
|
MEMCOPY(htbl->huffval, val, nsymbols * SIZEOF(UINT8));
|
||||||
|
|
||||||
|
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||||
|
htbl->sent_table = FALSE;
|
||||||
|
|
||||||
|
return htbl;
|
||||||
|
}
|
591
dep/libjpeg/src/jcparam.c
Normal file
591
dep/libjpeg/src/jcparam.c
Normal file
|
@ -0,0 +1,591 @@
|
||||||
|
/*
|
||||||
|
* jcparam.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||||
|
* Modified 2003-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains optional default-setting code for the JPEG compressor.
|
||||||
|
* Applications do not have to use this file, but those that don't use it
|
||||||
|
* must know a lot more about the innards of the JPEG code.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Quantization table setup routines
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
||||||
|
const unsigned int *basic_table,
|
||||||
|
int scale_factor, boolean force_baseline)
|
||||||
|
/* Define a quantization table equal to the basic_table times
|
||||||
|
* a scale factor (given as a percentage).
|
||||||
|
* If force_baseline is TRUE, the computed quantization table entries
|
||||||
|
* are limited to 1..255 for JPEG baseline compatibility.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
JQUANT_TBL ** qtblptr;
|
||||||
|
int i;
|
||||||
|
long temp;
|
||||||
|
|
||||||
|
/* Safety check to ensure start_compress not called yet. */
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
|
||||||
|
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
|
||||||
|
|
||||||
|
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
||||||
|
|
||||||
|
if (*qtblptr == NULL)
|
||||||
|
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
||||||
|
/* limit the values to the valid range */
|
||||||
|
if (temp <= 0L) temp = 1L;
|
||||||
|
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
||||||
|
if (force_baseline && temp > 255L)
|
||||||
|
temp = 255L; /* limit to baseline range if requested */
|
||||||
|
(*qtblptr)->quantval[i] = (UINT16) temp;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||||
|
(*qtblptr)->sent_table = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* These are the sample quantization tables given in JPEG spec section K.1.
|
||||||
|
* NOTE: chrominance DC value is changed from 17 to 16 for lossless support.
|
||||||
|
* The spec says that the values given produce "good" quality,
|
||||||
|
* and when divided by 2, "very good" quality.
|
||||||
|
*/
|
||||||
|
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
||||||
|
16, 11, 10, 16, 24, 40, 51, 61,
|
||||||
|
12, 12, 14, 19, 26, 58, 60, 55,
|
||||||
|
14, 13, 16, 24, 40, 57, 69, 56,
|
||||||
|
14, 17, 22, 29, 51, 87, 80, 62,
|
||||||
|
18, 22, 37, 56, 68, 109, 103, 77,
|
||||||
|
24, 35, 55, 64, 81, 104, 113, 92,
|
||||||
|
49, 64, 78, 87, 103, 121, 120, 101,
|
||||||
|
72, 92, 95, 98, 112, 100, 103, 99
|
||||||
|
};
|
||||||
|
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||||
|
16, 18, 24, 47, 99, 99, 99, 99,
|
||||||
|
18, 21, 26, 66, 99, 99, 99, 99,
|
||||||
|
24, 26, 56, 99, 99, 99, 99, 99,
|
||||||
|
47, 66, 99, 99, 99, 99, 99, 99,
|
||||||
|
99, 99, 99, 99, 99, 99, 99, 99,
|
||||||
|
99, 99, 99, 99, 99, 99, 99, 99,
|
||||||
|
99, 99, 99, 99, 99, 99, 99, 99,
|
||||||
|
99, 99, 99, 99, 99, 99, 99, 99
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
|
||||||
|
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||||
|
* and straight percentage-scaling quality scales.
|
||||||
|
* This entry point allows different scalings for luminance and chrominance.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
/* Set up two quantization tables using the specified scaling */
|
||||||
|
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||||
|
cinfo->q_scale_factor[0], force_baseline);
|
||||||
|
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||||
|
cinfo->q_scale_factor[1], force_baseline);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
||||||
|
boolean force_baseline)
|
||||||
|
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||||
|
* and a straight percentage-scaling quality scale. In most cases it's better
|
||||||
|
* to use jpeg_set_quality (below); this entry point is provided for
|
||||||
|
* applications that insist on a linear percentage scaling.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
/* Set up two quantization tables using the specified scaling */
|
||||||
|
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||||
|
scale_factor, force_baseline);
|
||||||
|
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||||
|
scale_factor, force_baseline);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(int)
|
||||||
|
jpeg_quality_scaling (int quality)
|
||||||
|
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||||
|
* for an underlying quantization table, using our recommended scaling curve.
|
||||||
|
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||||
|
if (quality <= 0) quality = 1;
|
||||||
|
if (quality > 100) quality = 100;
|
||||||
|
|
||||||
|
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||||
|
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||||
|
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
||||||
|
* to make all the table entries 1 (hence, minimum quantization loss).
|
||||||
|
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||||
|
*/
|
||||||
|
if (quality < 50)
|
||||||
|
quality = 5000 / quality;
|
||||||
|
else
|
||||||
|
quality = 200 - quality*2;
|
||||||
|
|
||||||
|
return quality;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
||||||
|
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||||
|
* This is the standard quality-adjusting entry point for typical user
|
||||||
|
* interfaces; only those who want detailed control over quantization tables
|
||||||
|
* would use the preceding routines directly.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
/* Convert user 0-100 rating to percentage scaling */
|
||||||
|
quality = jpeg_quality_scaling(quality);
|
||||||
|
|
||||||
|
/* Set up standard quality tables */
|
||||||
|
jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Reset standard Huffman tables
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
std_huff_tables (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if (cinfo->dc_huff_tbl_ptrs[0] != NULL)
|
||||||
|
(void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 0);
|
||||||
|
|
||||||
|
if (cinfo->ac_huff_tbl_ptrs[0] != NULL)
|
||||||
|
(void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 0);
|
||||||
|
|
||||||
|
if (cinfo->dc_huff_tbl_ptrs[1] != NULL)
|
||||||
|
(void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 1);
|
||||||
|
|
||||||
|
if (cinfo->ac_huff_tbl_ptrs[1] != NULL)
|
||||||
|
(void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Default parameter setup for compression.
|
||||||
|
*
|
||||||
|
* Applications that don't choose to use this routine must do their
|
||||||
|
* own setup of all these parameters. Alternately, you can call this
|
||||||
|
* to establish defaults and then alter parameters selectively. This
|
||||||
|
* is the recommended approach since, if we add any new parameters,
|
||||||
|
* your code will still work (they'll be set to reasonable defaults).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_set_defaults (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
|
||||||
|
/* Safety check to ensure start_compress not called yet. */
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
/* Allocate comp_info array large enough for maximum component count.
|
||||||
|
* Array is made permanent in case application wants to compress
|
||||||
|
* multiple images at same param settings.
|
||||||
|
*/
|
||||||
|
if (cinfo->comp_info == NULL)
|
||||||
|
cinfo->comp_info = (jpeg_component_info *)
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||||
|
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
|
||||||
|
|
||||||
|
/* Initialize everything not dependent on the color space */
|
||||||
|
|
||||||
|
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||||
|
cinfo->scale_denom = 1;
|
||||||
|
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||||
|
/* Set up two quantization tables using default quality of 75 */
|
||||||
|
jpeg_set_quality(cinfo, 75, TRUE);
|
||||||
|
/* Reset standard Huffman tables */
|
||||||
|
std_huff_tables(cinfo);
|
||||||
|
|
||||||
|
/* Initialize default arithmetic coding conditioning */
|
||||||
|
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||||
|
cinfo->arith_dc_L[i] = 0;
|
||||||
|
cinfo->arith_dc_U[i] = 1;
|
||||||
|
cinfo->arith_ac_K[i] = 5;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Default is no multiple-scan output */
|
||||||
|
cinfo->scan_info = NULL;
|
||||||
|
cinfo->num_scans = 0;
|
||||||
|
|
||||||
|
/* Expect normal source image, not raw downsampled data */
|
||||||
|
cinfo->raw_data_in = FALSE;
|
||||||
|
|
||||||
|
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||||
|
* If the precision is higher, use arithmetic coding.
|
||||||
|
* (Alternatively, using Huffman coding would be possible with forcing
|
||||||
|
* optimization on so that usable tables will be computed, or by
|
||||||
|
* supplying default tables that are valid for the desired precision.)
|
||||||
|
* Otherwise, use Huffman coding by default.
|
||||||
|
*/
|
||||||
|
cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE;
|
||||||
|
|
||||||
|
/* By default, don't do extra passes to optimize entropy coding */
|
||||||
|
cinfo->optimize_coding = FALSE;
|
||||||
|
|
||||||
|
/* By default, use the simpler non-cosited sampling alignment */
|
||||||
|
cinfo->CCIR601_sampling = FALSE;
|
||||||
|
|
||||||
|
/* By default, apply fancy downsampling */
|
||||||
|
cinfo->do_fancy_downsampling = TRUE;
|
||||||
|
|
||||||
|
/* No input smoothing */
|
||||||
|
cinfo->smoothing_factor = 0;
|
||||||
|
|
||||||
|
/* DCT algorithm preference */
|
||||||
|
cinfo->dct_method = JDCT_DEFAULT;
|
||||||
|
|
||||||
|
/* No restart markers */
|
||||||
|
cinfo->restart_interval = 0;
|
||||||
|
cinfo->restart_in_rows = 0;
|
||||||
|
|
||||||
|
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||||
|
* will actually be written is determined by jpeg_set_colorspace.
|
||||||
|
*
|
||||||
|
* By default, the library emits JFIF version code 1.01.
|
||||||
|
* An application that wants to emit JFIF 1.02 extension markers should set
|
||||||
|
* JFIF_minor_version to 2. We could probably get away with just defaulting
|
||||||
|
* to 1.02, but there may still be some decoders in use that will complain
|
||||||
|
* about that; saying 1.01 should minimize compatibility problems.
|
||||||
|
*
|
||||||
|
* For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be
|
||||||
|
* overridden by jpeg_set_colorspace and set to 2.
|
||||||
|
*/
|
||||||
|
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
|
||||||
|
cinfo->JFIF_minor_version = 1;
|
||||||
|
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||||
|
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||||
|
cinfo->Y_density = 1;
|
||||||
|
|
||||||
|
/* No color transform */
|
||||||
|
cinfo->color_transform = JCT_NONE;
|
||||||
|
|
||||||
|
/* Choose JPEG colorspace based on input space, set defaults accordingly */
|
||||||
|
|
||||||
|
jpeg_default_colorspace(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Select an appropriate JPEG colorspace for in_color_space.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_default_colorspace (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
switch (cinfo->in_color_space) {
|
||||||
|
case JCS_UNKNOWN:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
||||||
|
break;
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||||
|
break;
|
||||||
|
case JCS_RGB:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||||
|
break;
|
||||||
|
case JCS_YCbCr:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||||
|
break;
|
||||||
|
case JCS_CMYK:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
||||||
|
break;
|
||||||
|
case JCS_YCCK:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_YCCK);
|
||||||
|
break;
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
/* No translation for now -- conversion to BG_YCC not yet supportet */
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_BG_RGB);
|
||||||
|
break;
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
jpeg_set_colorspace(cinfo, JCS_BG_YCC);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set the JPEG colorspace, and choose colorspace-dependent default values.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
||||||
|
{
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
int ci;
|
||||||
|
|
||||||
|
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
|
||||||
|
(compptr = &cinfo->comp_info[index], \
|
||||||
|
compptr->component_id = (id), \
|
||||||
|
compptr->h_samp_factor = (hsamp), \
|
||||||
|
compptr->v_samp_factor = (vsamp), \
|
||||||
|
compptr->quant_tbl_no = (quant), \
|
||||||
|
compptr->dc_tbl_no = (dctbl), \
|
||||||
|
compptr->ac_tbl_no = (actbl) )
|
||||||
|
|
||||||
|
/* Safety check to ensure start_compress not called yet. */
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||||
|
* tables 1 for chrominance components.
|
||||||
|
*/
|
||||||
|
|
||||||
|
cinfo->jpeg_color_space = colorspace;
|
||||||
|
|
||||||
|
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
||||||
|
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
||||||
|
|
||||||
|
switch (colorspace) {
|
||||||
|
case JCS_UNKNOWN:
|
||||||
|
cinfo->num_components = cinfo->input_components;
|
||||||
|
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||||
|
MAX_COMPONENTS);
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
SET_COMP(ci, ci, 1,1, 0, 0,0);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||||
|
cinfo->num_components = 1;
|
||||||
|
/* JFIF specifies component ID 1 */
|
||||||
|
SET_COMP(0, 0x01, 1,1, 0, 0,0);
|
||||||
|
break;
|
||||||
|
case JCS_RGB:
|
||||||
|
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
||||||
|
cinfo->num_components = 3;
|
||||||
|
SET_COMP(0, 0x52 /* 'R' */, 1,1,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
|
||||||
|
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
|
||||||
|
SET_COMP(2, 0x42 /* 'B' */, 1,1,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
|
||||||
|
break;
|
||||||
|
case JCS_YCbCr:
|
||||||
|
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||||
|
cinfo->num_components = 3;
|
||||||
|
/* JFIF specifies component IDs 1,2,3 */
|
||||||
|
/* We default to 2x2 subsamples of chrominance */
|
||||||
|
SET_COMP(0, 0x01, 2,2, 0, 0,0);
|
||||||
|
SET_COMP(1, 0x02, 1,1, 1, 1,1);
|
||||||
|
SET_COMP(2, 0x03, 1,1, 1, 1,1);
|
||||||
|
break;
|
||||||
|
case JCS_CMYK:
|
||||||
|
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
||||||
|
cinfo->num_components = 4;
|
||||||
|
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
|
||||||
|
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
|
||||||
|
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
|
||||||
|
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
|
||||||
|
break;
|
||||||
|
case JCS_YCCK:
|
||||||
|
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
||||||
|
cinfo->num_components = 4;
|
||||||
|
SET_COMP(0, 0x01, 2,2, 0, 0,0);
|
||||||
|
SET_COMP(1, 0x02, 1,1, 1, 1,1);
|
||||||
|
SET_COMP(2, 0x03, 1,1, 1, 1,1);
|
||||||
|
SET_COMP(3, 0x04, 2,2, 0, 0,0);
|
||||||
|
break;
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||||
|
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
|
||||||
|
cinfo->num_components = 3;
|
||||||
|
/* Add offset 0x20 to the normal R/G/B component IDs */
|
||||||
|
SET_COMP(0, 0x72 /* 'r' */, 1,1,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
|
||||||
|
SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0);
|
||||||
|
SET_COMP(2, 0x62 /* 'b' */, 1,1,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
|
||||||
|
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
|
||||||
|
break;
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||||
|
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
|
||||||
|
cinfo->num_components = 3;
|
||||||
|
/* Add offset 0x20 to the normal Cb/Cr component IDs */
|
||||||
|
/* We default to 2x2 subsamples of chrominance */
|
||||||
|
SET_COMP(0, 0x01, 2,2, 0, 0,0);
|
||||||
|
SET_COMP(1, 0x22, 1,1, 1, 1,1);
|
||||||
|
SET_COMP(2, 0x23, 1,1, 1, 1,1);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||||
|
|
||||||
|
LOCAL(jpeg_scan_info *)
|
||||||
|
fill_a_scan (jpeg_scan_info * scanptr, int ci,
|
||||||
|
int Ss, int Se, int Ah, int Al)
|
||||||
|
/* Support routine: generate one scan for specified component */
|
||||||
|
{
|
||||||
|
scanptr->comps_in_scan = 1;
|
||||||
|
scanptr->component_index[0] = ci;
|
||||||
|
scanptr->Ss = Ss;
|
||||||
|
scanptr->Se = Se;
|
||||||
|
scanptr->Ah = Ah;
|
||||||
|
scanptr->Al = Al;
|
||||||
|
scanptr++;
|
||||||
|
return scanptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOCAL(jpeg_scan_info *)
|
||||||
|
fill_scans (jpeg_scan_info * scanptr, int ncomps,
|
||||||
|
int Ss, int Se, int Ah, int Al)
|
||||||
|
/* Support routine: generate one scan for each component */
|
||||||
|
{
|
||||||
|
int ci;
|
||||||
|
|
||||||
|
for (ci = 0; ci < ncomps; ci++) {
|
||||||
|
scanptr->comps_in_scan = 1;
|
||||||
|
scanptr->component_index[0] = ci;
|
||||||
|
scanptr->Ss = Ss;
|
||||||
|
scanptr->Se = Se;
|
||||||
|
scanptr->Ah = Ah;
|
||||||
|
scanptr->Al = Al;
|
||||||
|
scanptr++;
|
||||||
|
}
|
||||||
|
return scanptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOCAL(jpeg_scan_info *)
|
||||||
|
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
|
||||||
|
/* Support routine: generate interleaved DC scan if possible, else N scans */
|
||||||
|
{
|
||||||
|
int ci;
|
||||||
|
|
||||||
|
if (ncomps <= MAX_COMPS_IN_SCAN) {
|
||||||
|
/* Single interleaved DC scan */
|
||||||
|
scanptr->comps_in_scan = ncomps;
|
||||||
|
for (ci = 0; ci < ncomps; ci++)
|
||||||
|
scanptr->component_index[ci] = ci;
|
||||||
|
scanptr->Ss = scanptr->Se = 0;
|
||||||
|
scanptr->Ah = Ah;
|
||||||
|
scanptr->Al = Al;
|
||||||
|
scanptr++;
|
||||||
|
} else {
|
||||||
|
/* Noninterleaved DC scan for each component */
|
||||||
|
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
|
||||||
|
}
|
||||||
|
return scanptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create a recommended progressive-JPEG script.
|
||||||
|
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_simple_progression (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int ncomps = cinfo->num_components;
|
||||||
|
int nscans;
|
||||||
|
jpeg_scan_info * scanptr;
|
||||||
|
|
||||||
|
/* Safety check to ensure start_compress not called yet. */
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
/* Figure space needed for script. Calculation must match code below! */
|
||||||
|
if (ncomps == 3 &&
|
||||||
|
(cinfo->jpeg_color_space == JCS_YCbCr ||
|
||||||
|
cinfo->jpeg_color_space == JCS_BG_YCC)) {
|
||||||
|
/* Custom script for YCC color images. */
|
||||||
|
nscans = 10;
|
||||||
|
} else {
|
||||||
|
/* All-purpose script for other color spaces. */
|
||||||
|
if (ncomps > MAX_COMPS_IN_SCAN)
|
||||||
|
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
|
||||||
|
else
|
||||||
|
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Allocate space for script.
|
||||||
|
* We need to put it in the permanent pool in case the application performs
|
||||||
|
* multiple compressions without changing the settings. To avoid a memory
|
||||||
|
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
|
||||||
|
* object, we try to re-use previously allocated space, and we allocate
|
||||||
|
* enough space to handle YCC even if initially asked for grayscale.
|
||||||
|
*/
|
||||||
|
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
|
||||||
|
cinfo->script_space_size = MAX(nscans, 10);
|
||||||
|
cinfo->script_space = (jpeg_scan_info *)
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||||
|
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
|
||||||
|
}
|
||||||
|
scanptr = cinfo->script_space;
|
||||||
|
cinfo->scan_info = scanptr;
|
||||||
|
cinfo->num_scans = nscans;
|
||||||
|
|
||||||
|
if (ncomps == 3 &&
|
||||||
|
(cinfo->jpeg_color_space == JCS_YCbCr ||
|
||||||
|
cinfo->jpeg_color_space == JCS_BG_YCC)) {
|
||||||
|
/* Custom script for YCC color images. */
|
||||||
|
/* Initial DC scan */
|
||||||
|
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||||
|
/* Initial AC scan: get some luma data out in a hurry */
|
||||||
|
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
|
||||||
|
/* Chroma data is too small to be worth expending many scans on */
|
||||||
|
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
|
||||||
|
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
|
||||||
|
/* Complete spectral selection for luma AC */
|
||||||
|
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
|
||||||
|
/* Refine next bit of luma AC */
|
||||||
|
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
|
||||||
|
/* Finish DC successive approximation */
|
||||||
|
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||||
|
/* Finish AC successive approximation */
|
||||||
|
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
|
||||||
|
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
|
||||||
|
/* Luma bottom bit comes last since it's usually largest scan */
|
||||||
|
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
|
||||||
|
} else {
|
||||||
|
/* All-purpose script for other color spaces. */
|
||||||
|
/* Successive approximation first pass */
|
||||||
|
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||||
|
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
|
||||||
|
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
|
||||||
|
/* Successive approximation second pass */
|
||||||
|
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
|
||||||
|
/* Successive approximation final pass */
|
||||||
|
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||||
|
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* C_PROGRESSIVE_SUPPORTED */
|
358
dep/libjpeg/src/jcprepct.c
Normal file
358
dep/libjpeg/src/jcprepct.c
Normal file
|
@ -0,0 +1,358 @@
|
||||||
|
/*
|
||||||
|
* jcprepct.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2003-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the compression preprocessing controller.
|
||||||
|
* This controller manages the color conversion, downsampling,
|
||||||
|
* and edge expansion steps.
|
||||||
|
*
|
||||||
|
* Most of the complexity here is associated with buffering input rows
|
||||||
|
* as required by the downsampler. See the comments at the head of
|
||||||
|
* jcsample.c for the downsampler's needs.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* At present, jcsample.c can request context rows only for smoothing.
|
||||||
|
* In the future, we might also need context rows for CCIR601 sampling
|
||||||
|
* or other more-complex downsampling procedures. The code to support
|
||||||
|
* context rows should be compiled only if needed.
|
||||||
|
*/
|
||||||
|
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||||
|
#define CONTEXT_ROWS_SUPPORTED
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* For the simple (no-context-row) case, we just need to buffer one
|
||||||
|
* row group's worth of pixels for the downsampling step. At the bottom of
|
||||||
|
* the image, we pad to a full row group by replicating the last pixel row.
|
||||||
|
* The downsampler's last output row is then replicated if needed to pad
|
||||||
|
* out to a full iMCU row.
|
||||||
|
*
|
||||||
|
* When providing context rows, we must buffer three row groups' worth of
|
||||||
|
* pixels. Three row groups are physically allocated, but the row pointer
|
||||||
|
* arrays are made five row groups high, with the extra pointers above and
|
||||||
|
* below "wrapping around" to point to the last and first real row groups.
|
||||||
|
* This allows the downsampler to access the proper context rows.
|
||||||
|
* At the top and bottom of the image, we create dummy context rows by
|
||||||
|
* copying the first or last real pixel row. This copying could be avoided
|
||||||
|
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
|
||||||
|
* trouble on the compression side.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_c_prep_controller pub; /* public fields */
|
||||||
|
|
||||||
|
/* Downsampling input buffer. This buffer holds color-converted data
|
||||||
|
* until we have enough to do a downsample step.
|
||||||
|
*/
|
||||||
|
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
JDIMENSION rows_to_go; /* counts rows remaining in source image */
|
||||||
|
int next_buf_row; /* index of next row to store in color_buf */
|
||||||
|
|
||||||
|
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
|
||||||
|
int this_row_group; /* starting row index of group to process */
|
||||||
|
int next_buf_stop; /* downsample when we reach this index */
|
||||||
|
#endif
|
||||||
|
} my_prep_controller;
|
||||||
|
|
||||||
|
typedef my_prep_controller * my_prep_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||||
|
{
|
||||||
|
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||||
|
|
||||||
|
if (pass_mode != JBUF_PASS_THRU)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
|
||||||
|
/* Initialize total-height counter for detecting bottom of image */
|
||||||
|
prep->rows_to_go = cinfo->image_height;
|
||||||
|
/* Mark the conversion buffer empty */
|
||||||
|
prep->next_buf_row = 0;
|
||||||
|
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||||
|
/* Preset additional state variables for context mode.
|
||||||
|
* These aren't used in non-context mode, so we needn't test which mode.
|
||||||
|
*/
|
||||||
|
prep->this_row_group = 0;
|
||||||
|
/* Set next_buf_stop to stop after two row groups have been read in. */
|
||||||
|
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Expand an image vertically from height input_rows to height output_rows,
|
||||||
|
* by duplicating the bottom row.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
|
||||||
|
int input_rows, int output_rows)
|
||||||
|
{
|
||||||
|
register int row;
|
||||||
|
|
||||||
|
for (row = input_rows; row < output_rows; row++) {
|
||||||
|
jcopy_sample_rows(image_data + input_rows - 1,
|
||||||
|
image_data + row,
|
||||||
|
1, num_cols);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the simple no-context case.
|
||||||
|
*
|
||||||
|
* Preprocessor output data is counted in "row groups". A row group
|
||||||
|
* is defined to be v_samp_factor sample rows of each component.
|
||||||
|
* Downsampling will produce this much data from each max_v_samp_factor
|
||||||
|
* input rows.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
pre_process_data (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||||
|
JDIMENSION in_rows_avail,
|
||||||
|
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||||
|
JDIMENSION out_row_groups_avail)
|
||||||
|
{
|
||||||
|
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||||
|
int numrows, ci;
|
||||||
|
JDIMENSION inrows;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
while (*in_row_ctr < in_rows_avail &&
|
||||||
|
*out_row_group_ctr < out_row_groups_avail) {
|
||||||
|
/* Do color conversion to fill the conversion buffer. */
|
||||||
|
inrows = in_rows_avail - *in_row_ctr;
|
||||||
|
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
|
||||||
|
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||||
|
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||||
|
prep->color_buf,
|
||||||
|
(JDIMENSION) prep->next_buf_row,
|
||||||
|
numrows);
|
||||||
|
*in_row_ctr += numrows;
|
||||||
|
prep->next_buf_row += numrows;
|
||||||
|
prep->rows_to_go -= numrows;
|
||||||
|
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||||
|
if (prep->rows_to_go == 0 &&
|
||||||
|
prep->next_buf_row < cinfo->max_v_samp_factor) {
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||||
|
prep->next_buf_row, cinfo->max_v_samp_factor);
|
||||||
|
}
|
||||||
|
prep->next_buf_row = cinfo->max_v_samp_factor;
|
||||||
|
}
|
||||||
|
/* If we've filled the conversion buffer, empty it. */
|
||||||
|
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
|
||||||
|
(*cinfo->downsample->downsample) (cinfo,
|
||||||
|
prep->color_buf, (JDIMENSION) 0,
|
||||||
|
output_buf, *out_row_group_ctr);
|
||||||
|
prep->next_buf_row = 0;
|
||||||
|
(*out_row_group_ctr)++;
|
||||||
|
}
|
||||||
|
/* If at bottom of image, pad the output to a full iMCU height.
|
||||||
|
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||||
|
*/
|
||||||
|
if (prep->rows_to_go == 0 &&
|
||||||
|
*out_row_group_ctr < out_row_groups_avail) {
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size;
|
||||||
|
expand_bottom_edge(output_buf[ci],
|
||||||
|
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||||
|
(int) (*out_row_group_ctr * numrows),
|
||||||
|
(int) (out_row_groups_avail * numrows));
|
||||||
|
}
|
||||||
|
*out_row_group_ctr = out_row_groups_avail;
|
||||||
|
break; /* can exit outer loop without test */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the context case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
pre_process_context (j_compress_ptr cinfo,
|
||||||
|
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||||
|
JDIMENSION in_rows_avail,
|
||||||
|
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||||
|
JDIMENSION out_row_groups_avail)
|
||||||
|
{
|
||||||
|
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||||
|
int numrows, ci;
|
||||||
|
int buf_height = cinfo->max_v_samp_factor * 3;
|
||||||
|
JDIMENSION inrows;
|
||||||
|
|
||||||
|
while (*out_row_group_ctr < out_row_groups_avail) {
|
||||||
|
if (*in_row_ctr < in_rows_avail) {
|
||||||
|
/* Do color conversion to fill the conversion buffer. */
|
||||||
|
inrows = in_rows_avail - *in_row_ctr;
|
||||||
|
numrows = prep->next_buf_stop - prep->next_buf_row;
|
||||||
|
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||||
|
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||||
|
prep->color_buf,
|
||||||
|
(JDIMENSION) prep->next_buf_row,
|
||||||
|
numrows);
|
||||||
|
/* Pad at top of image, if first time through */
|
||||||
|
if (prep->rows_to_go == cinfo->image_height) {
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
int row;
|
||||||
|
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
|
||||||
|
jcopy_sample_rows(prep->color_buf[ci],
|
||||||
|
prep->color_buf[ci] - row,
|
||||||
|
1, cinfo->image_width);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*in_row_ctr += numrows;
|
||||||
|
prep->next_buf_row += numrows;
|
||||||
|
prep->rows_to_go -= numrows;
|
||||||
|
} else {
|
||||||
|
/* Return for more data, unless we are at the bottom of the image. */
|
||||||
|
if (prep->rows_to_go != 0)
|
||||||
|
break;
|
||||||
|
/* When at bottom of image, pad to fill the conversion buffer. */
|
||||||
|
if (prep->next_buf_row < prep->next_buf_stop) {
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||||
|
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||||
|
prep->next_buf_row, prep->next_buf_stop);
|
||||||
|
}
|
||||||
|
prep->next_buf_row = prep->next_buf_stop;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* If we've gotten enough data, downsample a row group. */
|
||||||
|
if (prep->next_buf_row == prep->next_buf_stop) {
|
||||||
|
(*cinfo->downsample->downsample) (cinfo,
|
||||||
|
prep->color_buf,
|
||||||
|
(JDIMENSION) prep->this_row_group,
|
||||||
|
output_buf, *out_row_group_ctr);
|
||||||
|
(*out_row_group_ctr)++;
|
||||||
|
/* Advance pointers with wraparound as necessary. */
|
||||||
|
prep->this_row_group += cinfo->max_v_samp_factor;
|
||||||
|
if (prep->this_row_group >= buf_height)
|
||||||
|
prep->this_row_group = 0;
|
||||||
|
if (prep->next_buf_row >= buf_height)
|
||||||
|
prep->next_buf_row = 0;
|
||||||
|
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create the wrapped-around downsampling input buffer needed for context mode.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
create_context_buffer (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||||
|
int rgroup_height = cinfo->max_v_samp_factor;
|
||||||
|
int ci, i;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
JSAMPARRAY true_buffer, fake_buffer;
|
||||||
|
|
||||||
|
/* Grab enough space for fake row pointers for all the components;
|
||||||
|
* we need five row groups' worth of pointers for each component.
|
||||||
|
*/
|
||||||
|
fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(cinfo->num_components * 5 * rgroup_height) * SIZEOF(JSAMPROW));
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||||
|
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||||
|
* horizontally within the buffer, if it so chooses.
|
||||||
|
*/
|
||||||
|
true_buffer = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(JDIMENSION) (((long) compptr->width_in_blocks *
|
||||||
|
cinfo->min_DCT_h_scaled_size *
|
||||||
|
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||||
|
(JDIMENSION) (3 * rgroup_height));
|
||||||
|
/* Copy true buffer row pointers into the middle of the fake row array */
|
||||||
|
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
|
||||||
|
3 * rgroup_height * SIZEOF(JSAMPROW));
|
||||||
|
/* Fill in the above and below wraparound pointers */
|
||||||
|
for (i = 0; i < rgroup_height; i++) {
|
||||||
|
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
|
||||||
|
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
|
||||||
|
}
|
||||||
|
prep->color_buf[ci] = fake_buffer + rgroup_height;
|
||||||
|
fake_buffer += 5 * rgroup_height; /* point to space for next component */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* CONTEXT_ROWS_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize preprocessing controller.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||||
|
{
|
||||||
|
my_prep_ptr prep;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
if (need_full_buffer) /* safety check */
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
|
||||||
|
prep = (my_prep_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_prep_controller));
|
||||||
|
cinfo->prep = &prep->pub;
|
||||||
|
prep->pub.start_pass = start_pass_prep;
|
||||||
|
|
||||||
|
/* Allocate the color conversion buffer.
|
||||||
|
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||||
|
* horizontally within the buffer, if it so chooses.
|
||||||
|
*/
|
||||||
|
if (cinfo->downsample->need_context_rows) {
|
||||||
|
/* Set up to provide context rows */
|
||||||
|
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||||
|
prep->pub.pre_process_data = pre_process_context;
|
||||||
|
create_context_buffer(cinfo);
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
/* No context, just make it tall enough for one row group */
|
||||||
|
prep->pub.pre_process_data = pre_process_data;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(JDIMENSION) (((long) compptr->width_in_blocks *
|
||||||
|
cinfo->min_DCT_h_scaled_size *
|
||||||
|
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||||
|
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
545
dep/libjpeg/src/jcsample.c
Normal file
545
dep/libjpeg/src/jcsample.c
Normal file
|
@ -0,0 +1,545 @@
|
||||||
|
/*
|
||||||
|
* jcsample.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||||
|
* Modified 2003-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains downsampling routines.
|
||||||
|
*
|
||||||
|
* Downsampling input data is counted in "row groups". A row group
|
||||||
|
* is defined to be max_v_samp_factor pixel rows of each component,
|
||||||
|
* from which the downsampler produces v_samp_factor sample rows.
|
||||||
|
* A single row group is processed in each call to the downsampler module.
|
||||||
|
*
|
||||||
|
* The downsampler is responsible for edge-expansion of its output data
|
||||||
|
* to fill an integral number of DCT blocks horizontally. The source buffer
|
||||||
|
* may be modified if it is helpful for this purpose (the source buffer is
|
||||||
|
* allocated wide enough to correspond to the desired output width).
|
||||||
|
* The caller (the prep controller) is responsible for vertical padding.
|
||||||
|
*
|
||||||
|
* The downsampler may request "context rows" by setting need_context_rows
|
||||||
|
* during startup. In this case, the input arrays will contain at least
|
||||||
|
* one row group's worth of pixels above and below the passed-in data;
|
||||||
|
* the caller will create dummy rows at image top and bottom by replicating
|
||||||
|
* the first or last real pixel row.
|
||||||
|
*
|
||||||
|
* An excellent reference for image resampling is
|
||||||
|
* Digital Image Warping, George Wolberg, 1990.
|
||||||
|
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||||
|
*
|
||||||
|
* The downsampling algorithm used here is a simple average of the source
|
||||||
|
* pixels covered by the output pixel. The hi-falutin sampling literature
|
||||||
|
* refers to this as a "box filter". In general the characteristics of a box
|
||||||
|
* filter are not very good, but for the specific cases we normally use (1:1
|
||||||
|
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
||||||
|
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
||||||
|
* advised to improve this code.
|
||||||
|
*
|
||||||
|
* A simple input-smoothing capability is provided. This is mainly intended
|
||||||
|
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
||||||
|
* we suggest using an external filtering program such as pnmconvol). When
|
||||||
|
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
||||||
|
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
||||||
|
* where SF = (smoothing_factor / 1024).
|
||||||
|
* Currently, smoothing is only supported for 2h2v sampling factors.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Pointer to routine to downsample a single component */
|
||||||
|
typedef JMETHOD(void, downsample1_ptr,
|
||||||
|
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data));
|
||||||
|
|
||||||
|
/* Private subobject */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_downsampler pub; /* public fields */
|
||||||
|
|
||||||
|
/* Downsampling method pointers, one per component */
|
||||||
|
downsample1_ptr methods[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
/* Height of an output row group for each component. */
|
||||||
|
int rowgroup_height[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
/* These arrays save pixel expansion factors so that int_downsample need not
|
||||||
|
* recompute them each time. They are unused for other downsampling methods.
|
||||||
|
*/
|
||||||
|
UINT8 h_expand[MAX_COMPONENTS];
|
||||||
|
UINT8 v_expand[MAX_COMPONENTS];
|
||||||
|
} my_downsampler;
|
||||||
|
|
||||||
|
typedef my_downsampler * my_downsample_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a downsampling pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_downsample (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work for now */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Expand a component horizontally from width input_cols to width output_cols,
|
||||||
|
* by duplicating the rightmost samples.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
||||||
|
JDIMENSION input_cols, JDIMENSION output_cols)
|
||||||
|
{
|
||||||
|
register JSAMPROW ptr;
|
||||||
|
register JSAMPLE pixval;
|
||||||
|
register int count;
|
||||||
|
int row;
|
||||||
|
int numcols = (int) (output_cols - input_cols);
|
||||||
|
|
||||||
|
if (numcols > 0) {
|
||||||
|
for (row = 0; row < num_rows; row++) {
|
||||||
|
ptr = image_data[row] + input_cols;
|
||||||
|
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
||||||
|
for (count = numcols; count > 0; count--)
|
||||||
|
*ptr++ = pixval;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Do downsampling for a whole row group (all components).
|
||||||
|
*
|
||||||
|
* In this version we simply downsample each component independently.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
sep_downsample (j_compress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||||
|
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
||||||
|
{
|
||||||
|
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
JSAMPARRAY in_ptr, out_ptr;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
in_ptr = input_buf[ci] + in_row_index;
|
||||||
|
out_ptr = output_buf[ci] +
|
||||||
|
(out_row_group_index * downsample->rowgroup_height[ci]);
|
||||||
|
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Downsample pixel values of a single component.
|
||||||
|
* One row group is processed per call.
|
||||||
|
* This version handles arbitrary integral sampling ratios, without smoothing.
|
||||||
|
* Note that this version is not actually used for customary sampling ratios.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||||
|
{
|
||||||
|
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||||
|
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
||||||
|
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
||||||
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||||
|
JSAMPROW inptr, outptr;
|
||||||
|
INT32 outvalue;
|
||||||
|
|
||||||
|
h_expand = downsample->h_expand[compptr->component_index];
|
||||||
|
v_expand = downsample->v_expand[compptr->component_index];
|
||||||
|
numpix = h_expand * v_expand;
|
||||||
|
numpix2 = numpix/2;
|
||||||
|
|
||||||
|
/* Expand input data enough to let all the output samples be generated
|
||||||
|
* by the standard loop. Special-casing padded output would be more
|
||||||
|
* efficient.
|
||||||
|
*/
|
||||||
|
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||||
|
cinfo->image_width, output_cols * h_expand);
|
||||||
|
|
||||||
|
inrow = outrow = 0;
|
||||||
|
while (inrow < cinfo->max_v_samp_factor) {
|
||||||
|
outptr = output_data[outrow];
|
||||||
|
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
||||||
|
outcol++, outcol_h += h_expand) {
|
||||||
|
outvalue = 0;
|
||||||
|
for (v = 0; v < v_expand; v++) {
|
||||||
|
inptr = input_data[inrow+v] + outcol_h;
|
||||||
|
for (h = 0; h < h_expand; h++) {
|
||||||
|
outvalue += (INT32) GETJSAMPLE(*inptr++);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
|
||||||
|
}
|
||||||
|
inrow += v_expand;
|
||||||
|
outrow++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Downsample pixel values of a single component.
|
||||||
|
* This version handles the special case of a full-size component,
|
||||||
|
* without smoothing.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||||
|
{
|
||||||
|
/* Copy the data */
|
||||||
|
jcopy_sample_rows(input_data, output_data,
|
||||||
|
cinfo->max_v_samp_factor, cinfo->image_width);
|
||||||
|
/* Edge-expand */
|
||||||
|
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||||
|
compptr->width_in_blocks * compptr->DCT_h_scaled_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Downsample pixel values of a single component.
|
||||||
|
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
||||||
|
* without smoothing.
|
||||||
|
*
|
||||||
|
* A note about the "bias" calculations: when rounding fractional values to
|
||||||
|
* integer, we do not want to always round 0.5 up to the next integer.
|
||||||
|
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||||
|
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||||
|
* alternate pixel locations (a simple ordered dither pattern).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||||
|
{
|
||||||
|
int inrow;
|
||||||
|
JDIMENSION outcol;
|
||||||
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||||
|
register JSAMPROW inptr, outptr;
|
||||||
|
register int bias;
|
||||||
|
|
||||||
|
/* Expand input data enough to let all the output samples be generated
|
||||||
|
* by the standard loop. Special-casing padded output would be more
|
||||||
|
* efficient.
|
||||||
|
*/
|
||||||
|
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||||
|
cinfo->image_width, output_cols * 2);
|
||||||
|
|
||||||
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||||
|
outptr = output_data[inrow];
|
||||||
|
inptr = input_data[inrow];
|
||||||
|
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
||||||
|
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||||
|
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
||||||
|
+ bias) >> 1);
|
||||||
|
bias ^= 1; /* 0=>1, 1=>0 */
|
||||||
|
inptr += 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Downsample pixel values of a single component.
|
||||||
|
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||||
|
* without smoothing.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||||
|
{
|
||||||
|
int inrow, outrow;
|
||||||
|
JDIMENSION outcol;
|
||||||
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||||
|
register JSAMPROW inptr0, inptr1, outptr;
|
||||||
|
register int bias;
|
||||||
|
|
||||||
|
/* Expand input data enough to let all the output samples be generated
|
||||||
|
* by the standard loop. Special-casing padded output would be more
|
||||||
|
* efficient.
|
||||||
|
*/
|
||||||
|
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||||
|
cinfo->image_width, output_cols * 2);
|
||||||
|
|
||||||
|
inrow = outrow = 0;
|
||||||
|
while (inrow < cinfo->max_v_samp_factor) {
|
||||||
|
outptr = output_data[outrow];
|
||||||
|
inptr0 = input_data[inrow];
|
||||||
|
inptr1 = input_data[inrow+1];
|
||||||
|
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
||||||
|
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||||
|
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||||
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
||||||
|
+ bias) >> 2);
|
||||||
|
bias ^= 3; /* 1=>2, 2=>1 */
|
||||||
|
inptr0 += 2; inptr1 += 2;
|
||||||
|
}
|
||||||
|
inrow += 2;
|
||||||
|
outrow++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Downsample pixel values of a single component.
|
||||||
|
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||||
|
* with smoothing. One row of context is required.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||||
|
{
|
||||||
|
int inrow, outrow;
|
||||||
|
JDIMENSION colctr;
|
||||||
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||||
|
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
||||||
|
INT32 membersum, neighsum, memberscale, neighscale;
|
||||||
|
|
||||||
|
/* Expand input data enough to let all the output samples be generated
|
||||||
|
* by the standard loop. Special-casing padded output would be more
|
||||||
|
* efficient.
|
||||||
|
*/
|
||||||
|
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||||
|
cinfo->image_width, output_cols * 2);
|
||||||
|
|
||||||
|
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||||
|
* we can directly compute the output which is the average of the four
|
||||||
|
* smoothed values. Each of the four member pixels contributes a fraction
|
||||||
|
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
||||||
|
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
||||||
|
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
||||||
|
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
||||||
|
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
||||||
|
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
||||||
|
* factors are scaled by 2^16 = 65536.
|
||||||
|
* Also recall that SF = smoothing_factor / 1024.
|
||||||
|
*/
|
||||||
|
|
||||||
|
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
||||||
|
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
||||||
|
|
||||||
|
inrow = outrow = 0;
|
||||||
|
while (inrow < cinfo->max_v_samp_factor) {
|
||||||
|
outptr = output_data[outrow];
|
||||||
|
inptr0 = input_data[inrow];
|
||||||
|
inptr1 = input_data[inrow+1];
|
||||||
|
above_ptr = input_data[inrow-1];
|
||||||
|
below_ptr = input_data[inrow+2];
|
||||||
|
|
||||||
|
/* Special case for first column: pretend column -1 is same as column 0 */
|
||||||
|
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||||
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||||
|
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||||
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||||
|
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
||||||
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
||||||
|
neighsum += neighsum;
|
||||||
|
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
||||||
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
||||||
|
membersum = membersum * memberscale + neighsum * neighscale;
|
||||||
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||||
|
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||||
|
|
||||||
|
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||||
|
/* sum of pixels directly mapped to this output element */
|
||||||
|
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||||
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||||
|
/* sum of edge-neighbor pixels */
|
||||||
|
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||||
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||||
|
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
||||||
|
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
||||||
|
/* The edge-neighbors count twice as much as corner-neighbors */
|
||||||
|
neighsum += neighsum;
|
||||||
|
/* Add in the corner-neighbors */
|
||||||
|
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
||||||
|
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
||||||
|
/* form final output scaled up by 2^16 */
|
||||||
|
membersum = membersum * memberscale + neighsum * neighscale;
|
||||||
|
/* round, descale and output it */
|
||||||
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||||
|
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Special case for last column */
|
||||||
|
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||||
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||||
|
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||||
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||||
|
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
||||||
|
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
||||||
|
neighsum += neighsum;
|
||||||
|
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
||||||
|
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
||||||
|
membersum = membersum * memberscale + neighsum * neighscale;
|
||||||
|
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||||
|
|
||||||
|
inrow += 2;
|
||||||
|
outrow++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Downsample pixel values of a single component.
|
||||||
|
* This version handles the special case of a full-size component,
|
||||||
|
* with smoothing. One row of context is required.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||||
|
{
|
||||||
|
int inrow;
|
||||||
|
JDIMENSION colctr;
|
||||||
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||||
|
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
||||||
|
INT32 membersum, neighsum, memberscale, neighscale;
|
||||||
|
int colsum, lastcolsum, nextcolsum;
|
||||||
|
|
||||||
|
/* Expand input data enough to let all the output samples be generated
|
||||||
|
* by the standard loop. Special-casing padded output would be more
|
||||||
|
* efficient.
|
||||||
|
*/
|
||||||
|
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||||
|
cinfo->image_width, output_cols);
|
||||||
|
|
||||||
|
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||||
|
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
||||||
|
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
||||||
|
* Also recall that SF = smoothing_factor / 1024.
|
||||||
|
*/
|
||||||
|
|
||||||
|
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
||||||
|
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
||||||
|
|
||||||
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||||
|
outptr = output_data[inrow];
|
||||||
|
inptr = input_data[inrow];
|
||||||
|
above_ptr = input_data[inrow-1];
|
||||||
|
below_ptr = input_data[inrow+1];
|
||||||
|
|
||||||
|
/* Special case for first column */
|
||||||
|
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
||||||
|
GETJSAMPLE(*inptr);
|
||||||
|
membersum = GETJSAMPLE(*inptr++);
|
||||||
|
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||||
|
GETJSAMPLE(*inptr);
|
||||||
|
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
||||||
|
membersum = membersum * memberscale + neighsum * neighscale;
|
||||||
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||||
|
lastcolsum = colsum; colsum = nextcolsum;
|
||||||
|
|
||||||
|
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||||
|
membersum = GETJSAMPLE(*inptr++);
|
||||||
|
above_ptr++; below_ptr++;
|
||||||
|
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||||
|
GETJSAMPLE(*inptr);
|
||||||
|
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
||||||
|
membersum = membersum * memberscale + neighsum * neighscale;
|
||||||
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||||
|
lastcolsum = colsum; colsum = nextcolsum;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Special case for last column */
|
||||||
|
membersum = GETJSAMPLE(*inptr);
|
||||||
|
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
||||||
|
membersum = membersum * memberscale + neighsum * neighscale;
|
||||||
|
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for downsampling.
|
||||||
|
* Note that we must select a routine for each component.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_downsampler (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_downsample_ptr downsample;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
boolean smoothok = TRUE;
|
||||||
|
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||||
|
|
||||||
|
downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler));
|
||||||
|
cinfo->downsample = &downsample->pub;
|
||||||
|
downsample->pub.start_pass = start_pass_downsample;
|
||||||
|
downsample->pub.downsample = sep_downsample;
|
||||||
|
downsample->pub.need_context_rows = FALSE;
|
||||||
|
|
||||||
|
if (cinfo->CCIR601_sampling)
|
||||||
|
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||||
|
|
||||||
|
/* Verify we can handle the sampling factors, and set up method pointers */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Compute size of an "output group" for DCT scaling. This many samples
|
||||||
|
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
|
||||||
|
*/
|
||||||
|
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
|
||||||
|
cinfo->min_DCT_h_scaled_size;
|
||||||
|
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size;
|
||||||
|
h_in_group = cinfo->max_h_samp_factor;
|
||||||
|
v_in_group = cinfo->max_v_samp_factor;
|
||||||
|
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
|
||||||
|
if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||||
|
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||||
|
if (cinfo->smoothing_factor) {
|
||||||
|
downsample->methods[ci] = fullsize_smooth_downsample;
|
||||||
|
downsample->pub.need_context_rows = TRUE;
|
||||||
|
} else
|
||||||
|
#endif
|
||||||
|
downsample->methods[ci] = fullsize_downsample;
|
||||||
|
} else if (h_in_group == h_out_group * 2 &&
|
||||||
|
v_in_group == v_out_group) {
|
||||||
|
smoothok = FALSE;
|
||||||
|
downsample->methods[ci] = h2v1_downsample;
|
||||||
|
} else if (h_in_group == h_out_group * 2 &&
|
||||||
|
v_in_group == v_out_group * 2) {
|
||||||
|
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||||
|
if (cinfo->smoothing_factor) {
|
||||||
|
downsample->methods[ci] = h2v2_smooth_downsample;
|
||||||
|
downsample->pub.need_context_rows = TRUE;
|
||||||
|
} else
|
||||||
|
#endif
|
||||||
|
downsample->methods[ci] = h2v2_downsample;
|
||||||
|
} else if ((h_in_group % h_out_group) == 0 &&
|
||||||
|
(v_in_group % v_out_group) == 0) {
|
||||||
|
smoothok = FALSE;
|
||||||
|
downsample->methods[ci] = int_downsample;
|
||||||
|
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
|
||||||
|
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
|
||||||
|
} else
|
||||||
|
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||||
|
if (cinfo->smoothing_factor && !smoothok)
|
||||||
|
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
||||||
|
#endif
|
||||||
|
}
|
399
dep/libjpeg/src/jctrans.c
Normal file
399
dep/libjpeg/src/jctrans.c
Normal file
|
@ -0,0 +1,399 @@
|
||||||
|
/*
|
||||||
|
* jctrans.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1995-1998, Thomas G. Lane.
|
||||||
|
* Modified 2000-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains library routines for transcoding compression,
|
||||||
|
* that is, writing raw DCT coefficient arrays to an output JPEG file.
|
||||||
|
* The routines in jcapimin.c will also be needed by a transcoder.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
LOCAL(void) transencode_master_selection
|
||||||
|
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||||
|
LOCAL(void) transencode_coef_controller
|
||||||
|
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compression initialization for writing raw-coefficient data.
|
||||||
|
* Before calling this, all parameters and a data destination must be set up.
|
||||||
|
* Call jpeg_finish_compress() to actually write the data.
|
||||||
|
*
|
||||||
|
* The number of passed virtual arrays must match cinfo->num_components.
|
||||||
|
* Note that the virtual arrays need not be filled or even realized at
|
||||||
|
* the time write_coefficients is called; indeed, if the virtual arrays
|
||||||
|
* were requested from this compression object's memory manager, they
|
||||||
|
* typically will be realized during this routine and filled afterwards.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
/* Mark all tables to be written */
|
||||||
|
jpeg_suppress_tables(cinfo, FALSE);
|
||||||
|
/* (Re)initialize error mgr and destination modules */
|
||||||
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||||
|
(*cinfo->dest->init_destination) (cinfo);
|
||||||
|
/* Perform master selection of active modules */
|
||||||
|
transencode_master_selection(cinfo, coef_arrays);
|
||||||
|
/* Wait for jpeg_finish_compress() call */
|
||||||
|
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
||||||
|
cinfo->global_state = CSTATE_WRCOEFS;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize the compression object with default parameters,
|
||||||
|
* then copy from the source object all parameters needed for lossless
|
||||||
|
* transcoding. Parameters that can be varied without loss (such as
|
||||||
|
* scan script and Huffman optimization) are left in their default states.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
|
||||||
|
j_compress_ptr dstinfo)
|
||||||
|
{
|
||||||
|
JQUANT_TBL ** qtblptr;
|
||||||
|
jpeg_component_info *incomp, *outcomp;
|
||||||
|
JQUANT_TBL *c_quant, *slot_quant;
|
||||||
|
int tblno, ci, coefi;
|
||||||
|
|
||||||
|
/* Safety check to ensure start_compress not called yet. */
|
||||||
|
if (dstinfo->global_state != CSTATE_START)
|
||||||
|
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
||||||
|
/* Copy fundamental image dimensions */
|
||||||
|
dstinfo->image_width = srcinfo->image_width;
|
||||||
|
dstinfo->image_height = srcinfo->image_height;
|
||||||
|
dstinfo->input_components = srcinfo->num_components;
|
||||||
|
dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
||||||
|
dstinfo->jpeg_width = srcinfo->output_width;
|
||||||
|
dstinfo->jpeg_height = srcinfo->output_height;
|
||||||
|
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
|
||||||
|
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
|
||||||
|
/* Initialize all parameters to default values */
|
||||||
|
jpeg_set_defaults(dstinfo);
|
||||||
|
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||||
|
* Fix it to get the right header markers for the image colorspace.
|
||||||
|
* Note: Entropy table assignment in jpeg_set_colorspace
|
||||||
|
* depends on color_transform.
|
||||||
|
* Adaption is also required for setting the appropriate
|
||||||
|
* entropy coding mode dependent on image data precision.
|
||||||
|
*/
|
||||||
|
dstinfo->color_transform = srcinfo->color_transform;
|
||||||
|
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
||||||
|
dstinfo->data_precision = srcinfo->data_precision;
|
||||||
|
dstinfo->arith_code = srcinfo->data_precision > 8 ? TRUE : FALSE;
|
||||||
|
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
||||||
|
/* Copy the source's quantization tables. */
|
||||||
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
||||||
|
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
||||||
|
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
|
||||||
|
if (*qtblptr == NULL)
|
||||||
|
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
|
||||||
|
MEMCOPY((*qtblptr)->quantval,
|
||||||
|
srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
||||||
|
SIZEOF((*qtblptr)->quantval));
|
||||||
|
(*qtblptr)->sent_table = FALSE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Copy the source's per-component info.
|
||||||
|
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
||||||
|
*/
|
||||||
|
dstinfo->num_components = srcinfo->num_components;
|
||||||
|
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
||||||
|
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
||||||
|
MAX_COMPONENTS);
|
||||||
|
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
||||||
|
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
||||||
|
outcomp->component_id = incomp->component_id;
|
||||||
|
outcomp->h_samp_factor = incomp->h_samp_factor;
|
||||||
|
outcomp->v_samp_factor = incomp->v_samp_factor;
|
||||||
|
outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
||||||
|
/* Make sure saved quantization table for component matches the qtable
|
||||||
|
* slot. If not, the input file re-used this qtable slot.
|
||||||
|
* IJG encoder currently cannot duplicate this.
|
||||||
|
*/
|
||||||
|
tblno = outcomp->quant_tbl_no;
|
||||||
|
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
||||||
|
srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
||||||
|
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
||||||
|
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
||||||
|
c_quant = incomp->quant_table;
|
||||||
|
if (c_quant != NULL) {
|
||||||
|
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
||||||
|
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
||||||
|
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Note: we do not copy the source's entropy table assignments;
|
||||||
|
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
/* Also copy JFIF version and resolution information, if available.
|
||||||
|
* Strictly speaking this isn't "critical" info, but it's nearly
|
||||||
|
* always appropriate to copy it if available. In particular,
|
||||||
|
* if the application chooses to copy JFIF 1.02 extension markers from
|
||||||
|
* the source file, we need to copy the version to make sure we don't
|
||||||
|
* emit a file that has 1.02 extensions but a claimed version of 1.01.
|
||||||
|
*/
|
||||||
|
if (srcinfo->saw_JFIF_marker) {
|
||||||
|
if (srcinfo->JFIF_major_version == 1 ||
|
||||||
|
srcinfo->JFIF_major_version == 2) {
|
||||||
|
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
||||||
|
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
||||||
|
}
|
||||||
|
dstinfo->density_unit = srcinfo->density_unit;
|
||||||
|
dstinfo->X_density = srcinfo->X_density;
|
||||||
|
dstinfo->Y_density = srcinfo->Y_density;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
jpeg_calc_trans_dimensions (j_compress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before master selection phase */
|
||||||
|
{
|
||||||
|
if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size)
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||||
|
cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size);
|
||||||
|
|
||||||
|
cinfo->block_size = cinfo->min_DCT_h_scaled_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Master selection of compression modules for transcoding.
|
||||||
|
* This substitutes for jcinit.c's initialization of the full compressor.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
transencode_master_selection (j_compress_ptr cinfo,
|
||||||
|
jvirt_barray_ptr * coef_arrays)
|
||||||
|
{
|
||||||
|
/* Do computations that are needed before master selection phase */
|
||||||
|
jpeg_calc_trans_dimensions(cinfo);
|
||||||
|
|
||||||
|
/* Initialize master control (includes parameter checking/processing) */
|
||||||
|
jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
||||||
|
|
||||||
|
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||||
|
if (cinfo->arith_code)
|
||||||
|
jinit_arith_encoder(cinfo);
|
||||||
|
else {
|
||||||
|
jinit_huff_encoder(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* We need a special coefficient buffer controller. */
|
||||||
|
transencode_coef_controller(cinfo, coef_arrays);
|
||||||
|
|
||||||
|
jinit_marker_writer(cinfo);
|
||||||
|
|
||||||
|
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||||
|
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
/* Write the datastream header (SOI, JFIF) immediately.
|
||||||
|
* Frame and scan headers are postponed till later.
|
||||||
|
* This lets application insert special markers after the SOI.
|
||||||
|
*/
|
||||||
|
(*cinfo->marker->write_file_header) (cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The rest of this file is a special implementation of the coefficient
|
||||||
|
* buffer controller. This is similar to jccoefct.c, but it handles only
|
||||||
|
* output from presupplied virtual arrays. Furthermore, we generate any
|
||||||
|
* dummy padding blocks on-the-fly rather than expecting them to be present
|
||||||
|
* in the arrays.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_c_coef_controller pub; /* public fields */
|
||||||
|
|
||||||
|
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||||
|
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||||
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||||
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||||
|
|
||||||
|
/* Virtual block array for each component. */
|
||||||
|
jvirt_barray_ptr * whole_image;
|
||||||
|
|
||||||
|
/* Workspace for constructing dummy blocks at right/bottom edges. */
|
||||||
|
JBLOCK dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||||
|
} my_coef_controller;
|
||||||
|
|
||||||
|
typedef my_coef_controller * my_coef_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
start_iMCU_row (j_compress_ptr cinfo)
|
||||||
|
/* Reset within-iMCU-row counters for a new row */
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
|
||||||
|
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||||
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||||
|
* But at the bottom of the image, process only what's left.
|
||||||
|
*/
|
||||||
|
if (cinfo->comps_in_scan > 1) {
|
||||||
|
coef->MCU_rows_per_iMCU_row = 1;
|
||||||
|
} else {
|
||||||
|
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||||
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||||
|
else
|
||||||
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||||
|
}
|
||||||
|
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
coef->MCU_vert_offset = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
|
||||||
|
if (pass_mode != JBUF_CRANK_DEST)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
|
||||||
|
coef->iMCU_row_num = 0;
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data.
|
||||||
|
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||||
|
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||||
|
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||||
|
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||||
|
*
|
||||||
|
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||||
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||||
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||||
|
int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
||||||
|
JDIMENSION start_col;
|
||||||
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||||
|
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||||
|
JBLOCKROW buffer_ptr;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Align the virtual buffers for the components used in this scan. */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||||
|
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||||
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Loop to process one whole iMCU row */
|
||||||
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||||
|
yoffset++) {
|
||||||
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
||||||
|
MCU_col_num++) {
|
||||||
|
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||||
|
blkn = 0; /* index of current DCT block within MCU */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||||
|
: compptr->last_col_width;
|
||||||
|
start_col = MCU_col_num * compptr->MCU_width;
|
||||||
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||||
|
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||||
|
yoffset + yindex < compptr->last_row_height) {
|
||||||
|
/* Fill in pointers to real blocks in this row */
|
||||||
|
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
|
||||||
|
xindex = blockcnt;
|
||||||
|
do {
|
||||||
|
MCU_buffer[blkn++] = buffer_ptr++;
|
||||||
|
} while (--xindex);
|
||||||
|
/* Dummy blocks at right edge */
|
||||||
|
if ((xindex = compptr->MCU_width - blockcnt) == 0)
|
||||||
|
continue;
|
||||||
|
} else {
|
||||||
|
/* At bottom of image, need a whole row of dummy blocks */
|
||||||
|
xindex = compptr->MCU_width;
|
||||||
|
}
|
||||||
|
/* Fill in any dummy blocks needed in this row.
|
||||||
|
* Dummy blocks are filled in the same way as in jccoefct.c:
|
||||||
|
* all zeroes in the AC entries, DC entries equal to previous
|
||||||
|
* block's DC value. The init routine has already zeroed the
|
||||||
|
* AC entries, so we need only set the DC entries correctly.
|
||||||
|
*/
|
||||||
|
buffer_ptr = coef->dummy_buffer + blkn;
|
||||||
|
do {
|
||||||
|
buffer_ptr[0][0] = MCU_buffer[blkn-1][0][0];
|
||||||
|
MCU_buffer[blkn++] = buffer_ptr++;
|
||||||
|
} while (--xindex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Try to write the MCU. */
|
||||||
|
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
||||||
|
/* Suspension forced; update state counters and exit */
|
||||||
|
coef->MCU_vert_offset = yoffset;
|
||||||
|
coef->MCU_ctr = MCU_col_num;
|
||||||
|
return FALSE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
}
|
||||||
|
/* Completed the iMCU row, advance counters for next one */
|
||||||
|
coef->iMCU_row_num++;
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize coefficient buffer controller.
|
||||||
|
*
|
||||||
|
* Each passed coefficient array must be the right size for that
|
||||||
|
* coefficient: width_in_blocks wide and height_in_blocks high,
|
||||||
|
* with unitheight at least v_samp_factor.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
transencode_coef_controller (j_compress_ptr cinfo,
|
||||||
|
jvirt_barray_ptr * coef_arrays)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef;
|
||||||
|
|
||||||
|
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
|
||||||
|
cinfo->coef = &coef->pub;
|
||||||
|
coef->pub.start_pass = start_pass_coef;
|
||||||
|
coef->pub.compress_data = compress_output;
|
||||||
|
|
||||||
|
/* Save pointer to virtual arrays */
|
||||||
|
coef->whole_image = coef_arrays;
|
||||||
|
|
||||||
|
/* Pre-zero space for dummy DCT blocks */
|
||||||
|
MEMZERO(coef->dummy_buffer, SIZEOF(coef->dummy_buffer));
|
||||||
|
}
|
412
dep/libjpeg/src/jdapimin.c
Normal file
412
dep/libjpeg/src/jdapimin.c
Normal file
|
@ -0,0 +1,412 @@
|
||||||
|
/*
|
||||||
|
* jdapimin.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||||
|
* Modified 2009-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains application interface code for the decompression half
|
||||||
|
* of the JPEG library. These are the "minimum" API routines that may be
|
||||||
|
* needed in either the normal full-decompression case or the
|
||||||
|
* transcoding-only case.
|
||||||
|
*
|
||||||
|
* Most of the routines intended to be called directly by an application
|
||||||
|
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
|
||||||
|
* shared by compression and decompression, and jdtrans.c for the transcoding
|
||||||
|
* case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialization of a JPEG decompression object.
|
||||||
|
* The error manager must already be set up (in case memory manager fails).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
|
||||||
|
/* Guard against version mismatches between library and caller. */
|
||||||
|
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||||
|
if (version != JPEG_LIB_VERSION)
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||||
|
if (structsize != SIZEOF(struct jpeg_decompress_struct))
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||||
|
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
|
||||||
|
|
||||||
|
/* For debugging purposes, we zero the whole master structure.
|
||||||
|
* But the application has already set the err pointer, and may have set
|
||||||
|
* client_data, so we have to save and restore those fields.
|
||||||
|
* Note: if application hasn't set client_data, tools like Purify may
|
||||||
|
* complain here.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
struct jpeg_error_mgr * err = cinfo->err;
|
||||||
|
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||||
|
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
|
||||||
|
cinfo->err = err;
|
||||||
|
cinfo->client_data = client_data;
|
||||||
|
}
|
||||||
|
cinfo->is_decompressor = TRUE;
|
||||||
|
|
||||||
|
/* Initialize a memory manager instance for this object */
|
||||||
|
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
/* Zero out pointers to permanent structures. */
|
||||||
|
cinfo->progress = NULL;
|
||||||
|
cinfo->src = NULL;
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||||
|
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||||
|
|
||||||
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||||
|
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||||
|
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize marker processor so application can override methods
|
||||||
|
* for COM, APPn markers before calling jpeg_read_header.
|
||||||
|
*/
|
||||||
|
cinfo->marker_list = NULL;
|
||||||
|
jinit_marker_reader(cinfo);
|
||||||
|
|
||||||
|
/* And initialize the overall input controller. */
|
||||||
|
jinit_input_controller(cinfo);
|
||||||
|
|
||||||
|
/* OK, I'm ready */
|
||||||
|
cinfo->global_state = DSTATE_START;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Destruction of a JPEG decompression object
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_destroy_decompress (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Abort processing of a JPEG decompression operation,
|
||||||
|
* but don't destroy the object itself.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_abort_decompress (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set default decompression parameters.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
default_decompress_parms (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int cid0, cid1, cid2, cid3;
|
||||||
|
|
||||||
|
/* Guess the input colorspace, and set output colorspace accordingly. */
|
||||||
|
/* Note application may override our guesses. */
|
||||||
|
switch (cinfo->num_components) {
|
||||||
|
case 1:
|
||||||
|
cinfo->jpeg_color_space = JCS_GRAYSCALE;
|
||||||
|
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
cid0 = cinfo->comp_info[0].component_id;
|
||||||
|
cid1 = cinfo->comp_info[1].component_id;
|
||||||
|
cid2 = cinfo->comp_info[2].component_id;
|
||||||
|
|
||||||
|
/* For robust detection of standard colorspaces
|
||||||
|
* regardless of the presence of special markers,
|
||||||
|
* check component IDs from SOF marker first.
|
||||||
|
*/
|
||||||
|
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03)
|
||||||
|
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||||
|
else if (cid0 == 0x01 && cid1 == 0x22 && cid2 == 0x23)
|
||||||
|
cinfo->jpeg_color_space = JCS_BG_YCC;
|
||||||
|
else if (cid0 == 0x52 && cid1 == 0x47 && cid2 == 0x42)
|
||||||
|
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
|
||||||
|
else if (cid0 == 0x72 && cid1 == 0x67 && cid2 == 0x62)
|
||||||
|
cinfo->jpeg_color_space = JCS_BG_RGB; /* ASCII 'r', 'g', 'b' */
|
||||||
|
else if (cinfo->saw_JFIF_marker)
|
||||||
|
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||||
|
else if (cinfo->saw_Adobe_marker) {
|
||||||
|
switch (cinfo->Adobe_transform) {
|
||||||
|
case 0:
|
||||||
|
cinfo->jpeg_color_space = JCS_RGB;
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||||
|
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
|
||||||
|
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||||
|
}
|
||||||
|
/* Always guess RGB is proper output colorspace. */
|
||||||
|
cinfo->out_color_space = JCS_RGB;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 4:
|
||||||
|
cid0 = cinfo->comp_info[0].component_id;
|
||||||
|
cid1 = cinfo->comp_info[1].component_id;
|
||||||
|
cid2 = cinfo->comp_info[2].component_id;
|
||||||
|
cid3 = cinfo->comp_info[3].component_id;
|
||||||
|
|
||||||
|
/* For robust detection of standard colorspaces
|
||||||
|
* regardless of the presence of special markers,
|
||||||
|
* check component IDs from SOF marker first.
|
||||||
|
*/
|
||||||
|
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03 && cid3 == 0x04)
|
||||||
|
cinfo->jpeg_color_space = JCS_YCCK;
|
||||||
|
else if (cid0 == 0x43 && cid1 == 0x4D && cid2 == 0x59 && cid3 == 0x4B)
|
||||||
|
cinfo->jpeg_color_space = JCS_CMYK; /* ASCII 'C', 'M', 'Y', 'K' */
|
||||||
|
else if (cinfo->saw_Adobe_marker) {
|
||||||
|
switch (cinfo->Adobe_transform) {
|
||||||
|
case 0:
|
||||||
|
cinfo->jpeg_color_space = JCS_CMYK;
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
cinfo->jpeg_color_space = JCS_YCCK;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||||
|
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
/* Unknown IDs and no special markers, assume straight CMYK. */
|
||||||
|
cinfo->jpeg_color_space = JCS_CMYK;
|
||||||
|
}
|
||||||
|
cinfo->out_color_space = JCS_CMYK;
|
||||||
|
break;
|
||||||
|
|
||||||
|
default:
|
||||||
|
cinfo->jpeg_color_space = JCS_UNKNOWN;
|
||||||
|
cinfo->out_color_space = JCS_UNKNOWN;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set defaults for other decompression parameters. */
|
||||||
|
cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */
|
||||||
|
cinfo->scale_denom = cinfo->block_size;
|
||||||
|
cinfo->output_gamma = 1.0;
|
||||||
|
cinfo->buffered_image = FALSE;
|
||||||
|
cinfo->raw_data_out = FALSE;
|
||||||
|
cinfo->dct_method = JDCT_DEFAULT;
|
||||||
|
cinfo->do_fancy_upsampling = TRUE;
|
||||||
|
cinfo->do_block_smoothing = TRUE;
|
||||||
|
cinfo->quantize_colors = FALSE;
|
||||||
|
/* We set these in case application only sets quantize_colors. */
|
||||||
|
cinfo->dither_mode = JDITHER_FS;
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
cinfo->two_pass_quantize = TRUE;
|
||||||
|
#else
|
||||||
|
cinfo->two_pass_quantize = FALSE;
|
||||||
|
#endif
|
||||||
|
cinfo->desired_number_of_colors = 256;
|
||||||
|
cinfo->colormap = NULL;
|
||||||
|
/* Initialize for no mode change in buffered-image mode. */
|
||||||
|
cinfo->enable_1pass_quant = FALSE;
|
||||||
|
cinfo->enable_external_quant = FALSE;
|
||||||
|
cinfo->enable_2pass_quant = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Decompression startup: read start of JPEG datastream to see what's there.
|
||||||
|
* Need only initialize JPEG object and supply a data source before calling.
|
||||||
|
*
|
||||||
|
* This routine will read as far as the first SOS marker (ie, actual start of
|
||||||
|
* compressed data), and will save all tables and parameters in the JPEG
|
||||||
|
* object. It will also initialize the decompression parameters to default
|
||||||
|
* values, and finally return JPEG_HEADER_OK. On return, the application may
|
||||||
|
* adjust the decompression parameters and then call jpeg_start_decompress.
|
||||||
|
* (Or, if the application only wanted to determine the image parameters,
|
||||||
|
* the data need not be decompressed. In that case, call jpeg_abort or
|
||||||
|
* jpeg_destroy to release any temporary space.)
|
||||||
|
* If an abbreviated (tables only) datastream is presented, the routine will
|
||||||
|
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
|
||||||
|
* re-use the JPEG object to read the abbreviated image datastream(s).
|
||||||
|
* It is unnecessary (but OK) to call jpeg_abort in this case.
|
||||||
|
* The JPEG_SUSPENDED return code only occurs if the data source module
|
||||||
|
* requests suspension of the decompressor. In this case the application
|
||||||
|
* should load more source data and then re-call jpeg_read_header to resume
|
||||||
|
* processing.
|
||||||
|
* If a non-suspending data source is used and require_image is TRUE, then the
|
||||||
|
* return code need not be inspected since only JPEG_HEADER_OK is possible.
|
||||||
|
*
|
||||||
|
* This routine is now just a front end to jpeg_consume_input, with some
|
||||||
|
* extra error checking.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(int)
|
||||||
|
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
|
||||||
|
{
|
||||||
|
int retcode;
|
||||||
|
|
||||||
|
if (cinfo->global_state != DSTATE_START &&
|
||||||
|
cinfo->global_state != DSTATE_INHEADER)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
retcode = jpeg_consume_input(cinfo);
|
||||||
|
|
||||||
|
switch (retcode) {
|
||||||
|
case JPEG_REACHED_SOS:
|
||||||
|
retcode = JPEG_HEADER_OK;
|
||||||
|
break;
|
||||||
|
case JPEG_REACHED_EOI:
|
||||||
|
if (require_image) /* Complain if application wanted an image */
|
||||||
|
ERREXIT(cinfo, JERR_NO_IMAGE);
|
||||||
|
/* Reset to start state; it would be safer to require the application to
|
||||||
|
* call jpeg_abort, but we can't change it now for compatibility reasons.
|
||||||
|
* A side effect is to free any temporary memory (there shouldn't be any).
|
||||||
|
*/
|
||||||
|
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
|
||||||
|
retcode = JPEG_HEADER_TABLES_ONLY;
|
||||||
|
break;
|
||||||
|
case JPEG_SUSPENDED:
|
||||||
|
/* no work */
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
return retcode;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Consume data in advance of what the decompressor requires.
|
||||||
|
* This can be called at any time once the decompressor object has
|
||||||
|
* been created and a data source has been set up.
|
||||||
|
*
|
||||||
|
* This routine is essentially a state machine that handles a couple
|
||||||
|
* of critical state-transition actions, namely initial setup and
|
||||||
|
* transition from header scanning to ready-for-start_decompress.
|
||||||
|
* All the actual input is done via the input controller's consume_input
|
||||||
|
* method.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(int)
|
||||||
|
jpeg_consume_input (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int retcode = JPEG_SUSPENDED;
|
||||||
|
|
||||||
|
/* NB: every possible DSTATE value should be listed in this switch */
|
||||||
|
switch (cinfo->global_state) {
|
||||||
|
case DSTATE_START:
|
||||||
|
/* Start-of-datastream actions: reset appropriate modules */
|
||||||
|
(*cinfo->inputctl->reset_input_controller) (cinfo);
|
||||||
|
/* Initialize application's data source module */
|
||||||
|
(*cinfo->src->init_source) (cinfo);
|
||||||
|
cinfo->global_state = DSTATE_INHEADER;
|
||||||
|
/*FALLTHROUGH*/
|
||||||
|
case DSTATE_INHEADER:
|
||||||
|
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||||
|
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
|
||||||
|
/* Set up default parameters based on header data */
|
||||||
|
default_decompress_parms(cinfo);
|
||||||
|
/* Set global state: ready for start_decompress */
|
||||||
|
cinfo->global_state = DSTATE_READY;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case DSTATE_READY:
|
||||||
|
/* Can't advance past first SOS until start_decompress is called */
|
||||||
|
retcode = JPEG_REACHED_SOS;
|
||||||
|
break;
|
||||||
|
case DSTATE_PRELOAD:
|
||||||
|
case DSTATE_PRESCAN:
|
||||||
|
case DSTATE_SCANNING:
|
||||||
|
case DSTATE_RAW_OK:
|
||||||
|
case DSTATE_BUFIMAGE:
|
||||||
|
case DSTATE_BUFPOST:
|
||||||
|
case DSTATE_STOPPING:
|
||||||
|
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
}
|
||||||
|
return retcode;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Have we finished reading the input file?
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(boolean)
|
||||||
|
jpeg_input_complete (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* Check for valid jpeg object */
|
||||||
|
if (cinfo->global_state < DSTATE_START ||
|
||||||
|
cinfo->global_state > DSTATE_STOPPING)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
return cinfo->inputctl->eoi_reached;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Is there more than one scan?
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(boolean)
|
||||||
|
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* Only valid after jpeg_read_header completes */
|
||||||
|
if (cinfo->global_state < DSTATE_READY ||
|
||||||
|
cinfo->global_state > DSTATE_STOPPING)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
return cinfo->inputctl->has_multiple_scans;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish JPEG decompression.
|
||||||
|
*
|
||||||
|
* This will normally just verify the file trailer and release temp storage.
|
||||||
|
*
|
||||||
|
* Returns FALSE if suspended. The return value need be inspected only if
|
||||||
|
* a suspending data source is used.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(boolean)
|
||||||
|
jpeg_finish_decompress (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||||
|
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
|
||||||
|
/* Terminate final pass of non-buffered mode */
|
||||||
|
if (cinfo->output_scanline < cinfo->output_height)
|
||||||
|
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||||
|
(*cinfo->master->finish_output_pass) (cinfo);
|
||||||
|
cinfo->global_state = DSTATE_STOPPING;
|
||||||
|
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
|
||||||
|
/* Finishing after a buffered-image operation */
|
||||||
|
cinfo->global_state = DSTATE_STOPPING;
|
||||||
|
} else if (cinfo->global_state != DSTATE_STOPPING) {
|
||||||
|
/* STOPPING = repeat call after a suspension, anything else is error */
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
}
|
||||||
|
/* Read until EOI */
|
||||||
|
while (! cinfo->inputctl->eoi_reached) {
|
||||||
|
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||||
|
return FALSE; /* Suspend, come back later */
|
||||||
|
}
|
||||||
|
/* Do final cleanup */
|
||||||
|
(*cinfo->src->term_source) (cinfo);
|
||||||
|
/* We can use jpeg_abort to release memory and reset global_state */
|
||||||
|
jpeg_abort((j_common_ptr) cinfo);
|
||||||
|
return TRUE;
|
||||||
|
}
|
276
dep/libjpeg/src/jdapistd.c
Normal file
276
dep/libjpeg/src/jdapistd.c
Normal file
|
@ -0,0 +1,276 @@
|
||||||
|
/*
|
||||||
|
* jdapistd.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2002-2013 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains application interface code for the decompression half
|
||||||
|
* of the JPEG library. These are the "standard" API routines that are
|
||||||
|
* used in the normal full-decompression case. They are not used by a
|
||||||
|
* transcoding-only application. Note that if an application links in
|
||||||
|
* jpeg_start_decompress, it will end up linking in the entire decompressor.
|
||||||
|
* We thus must separate this file from jdapimin.c to avoid linking the
|
||||||
|
* whole decompression library into a transcoder.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Decompression initialization.
|
||||||
|
* jpeg_read_header must be completed before calling this.
|
||||||
|
*
|
||||||
|
* If a multipass operating mode was selected, this will do all but the
|
||||||
|
* last pass, and thus may take a great deal of time.
|
||||||
|
*
|
||||||
|
* Returns FALSE if suspended. The return value need be inspected only if
|
||||||
|
* a suspending data source is used.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(boolean)
|
||||||
|
jpeg_start_decompress (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state == DSTATE_READY) {
|
||||||
|
/* First call: initialize master control, select active modules */
|
||||||
|
jinit_master_decompress(cinfo);
|
||||||
|
if (cinfo->buffered_image) {
|
||||||
|
/* No more work here; expecting jpeg_start_output next */
|
||||||
|
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
cinfo->global_state = DSTATE_PRELOAD;
|
||||||
|
}
|
||||||
|
if (cinfo->global_state == DSTATE_PRELOAD) {
|
||||||
|
/* If file has multiple scans, absorb them all into the coef buffer */
|
||||||
|
if (cinfo->inputctl->has_multiple_scans) {
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
for (;;) {
|
||||||
|
int retcode;
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL)
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
/* Absorb some more input */
|
||||||
|
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||||
|
if (retcode == JPEG_SUSPENDED)
|
||||||
|
return FALSE;
|
||||||
|
if (retcode == JPEG_REACHED_EOI)
|
||||||
|
break;
|
||||||
|
/* Advance progress counter if appropriate */
|
||||||
|
if (cinfo->progress != NULL &&
|
||||||
|
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||||
|
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||||
|
/* jdmaster underestimated number of scans; ratchet up one scan */
|
||||||
|
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||||
|
}
|
||||||
|
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||||
|
} else if (cinfo->global_state != DSTATE_PRESCAN)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
/* Perform any dummy output passes, and set up for the final pass */
|
||||||
|
return output_pass_setup(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set up for an output pass, and perform any dummy pass(es) needed.
|
||||||
|
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
|
||||||
|
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
|
||||||
|
* Exit: If done, returns TRUE and sets global_state for proper output mode.
|
||||||
|
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(boolean)
|
||||||
|
output_pass_setup (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state != DSTATE_PRESCAN) {
|
||||||
|
/* First call: do pass setup */
|
||||||
|
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||||
|
cinfo->output_scanline = 0;
|
||||||
|
cinfo->global_state = DSTATE_PRESCAN;
|
||||||
|
}
|
||||||
|
/* Loop over any required dummy passes */
|
||||||
|
while (cinfo->master->is_dummy_pass) {
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
/* Crank through the dummy pass */
|
||||||
|
while (cinfo->output_scanline < cinfo->output_height) {
|
||||||
|
JDIMENSION last_scanline;
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
/* Process some data */
|
||||||
|
last_scanline = cinfo->output_scanline;
|
||||||
|
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
|
||||||
|
&cinfo->output_scanline, (JDIMENSION) 0);
|
||||||
|
if (cinfo->output_scanline == last_scanline)
|
||||||
|
return FALSE; /* No progress made, must suspend */
|
||||||
|
}
|
||||||
|
/* Finish up dummy pass, and set up for another one */
|
||||||
|
(*cinfo->master->finish_output_pass) (cinfo);
|
||||||
|
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||||
|
cinfo->output_scanline = 0;
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif /* QUANT_2PASS_SUPPORTED */
|
||||||
|
}
|
||||||
|
/* Ready for application to drive output pass through
|
||||||
|
* jpeg_read_scanlines or jpeg_read_raw_data.
|
||||||
|
*/
|
||||||
|
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Read some scanlines of data from the JPEG decompressor.
|
||||||
|
*
|
||||||
|
* The return value will be the number of lines actually read.
|
||||||
|
* This may be less than the number requested in several cases,
|
||||||
|
* including bottom of image, data source suspension, and operating
|
||||||
|
* modes that emit multiple scanlines at a time.
|
||||||
|
*
|
||||||
|
* Note: we warn about excess calls to jpeg_read_scanlines() since
|
||||||
|
* this likely signals an application programmer error. However,
|
||||||
|
* an oversize buffer (max_lines > scanlines remaining) is not an error.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(JDIMENSION)
|
||||||
|
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
|
||||||
|
JDIMENSION max_lines)
|
||||||
|
{
|
||||||
|
JDIMENSION row_ctr;
|
||||||
|
|
||||||
|
if (cinfo->global_state != DSTATE_SCANNING)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||||
|
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Process some data */
|
||||||
|
row_ctr = 0;
|
||||||
|
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
|
||||||
|
cinfo->output_scanline += row_ctr;
|
||||||
|
return row_ctr;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Alternate entry point to read raw data.
|
||||||
|
* Processes exactly one iMCU row per call, unless suspended.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(JDIMENSION)
|
||||||
|
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
|
||||||
|
JDIMENSION max_lines)
|
||||||
|
{
|
||||||
|
JDIMENSION lines_per_iMCU_row;
|
||||||
|
|
||||||
|
if (cinfo->global_state != DSTATE_RAW_OK)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||||
|
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Verify that at least one iMCU row can be returned. */
|
||||||
|
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
|
||||||
|
if (max_lines < lines_per_iMCU_row)
|
||||||
|
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||||
|
|
||||||
|
/* Decompress directly into user's buffer. */
|
||||||
|
if (! (*cinfo->coef->decompress_data) (cinfo, data))
|
||||||
|
return 0; /* suspension forced, can do nothing more */
|
||||||
|
|
||||||
|
/* OK, we processed one iMCU row. */
|
||||||
|
cinfo->output_scanline += lines_per_iMCU_row;
|
||||||
|
return lines_per_iMCU_row;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Additional entry points for buffered-image mode. */
|
||||||
|
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an output pass in buffered-image mode.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(boolean)
|
||||||
|
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state != DSTATE_BUFIMAGE &&
|
||||||
|
cinfo->global_state != DSTATE_PRESCAN)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
/* Limit scan number to valid range */
|
||||||
|
if (scan_number <= 0)
|
||||||
|
scan_number = 1;
|
||||||
|
if (cinfo->inputctl->eoi_reached &&
|
||||||
|
scan_number > cinfo->input_scan_number)
|
||||||
|
scan_number = cinfo->input_scan_number;
|
||||||
|
cinfo->output_scan_number = scan_number;
|
||||||
|
/* Perform any dummy output passes, and set up for the real pass */
|
||||||
|
return output_pass_setup(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up after an output pass in buffered-image mode.
|
||||||
|
*
|
||||||
|
* Returns FALSE if suspended. The return value need be inspected only if
|
||||||
|
* a suspending data source is used.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(boolean)
|
||||||
|
jpeg_finish_output (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||||
|
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
|
||||||
|
/* Terminate this pass. */
|
||||||
|
/* We do not require the whole pass to have been completed. */
|
||||||
|
(*cinfo->master->finish_output_pass) (cinfo);
|
||||||
|
cinfo->global_state = DSTATE_BUFPOST;
|
||||||
|
} else if (cinfo->global_state != DSTATE_BUFPOST) {
|
||||||
|
/* BUFPOST = repeat call after a suspension, anything else is error */
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
}
|
||||||
|
/* Read markers looking for SOS or EOI */
|
||||||
|
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||||
|
! cinfo->inputctl->eoi_reached) {
|
||||||
|
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||||
|
return FALSE; /* Suspend, come back later */
|
||||||
|
}
|
||||||
|
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
796
dep/libjpeg/src/jdarith.c
Normal file
796
dep/libjpeg/src/jdarith.c
Normal file
|
@ -0,0 +1,796 @@
|
||||||
|
/*
|
||||||
|
* jdarith.c
|
||||||
|
*
|
||||||
|
* Developed 1997-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains portable arithmetic entropy decoding routines for JPEG
|
||||||
|
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||||
|
*
|
||||||
|
* Both sequential and progressive modes are supported in this single module.
|
||||||
|
*
|
||||||
|
* Suspension is not currently supported in this module.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Expanded entropy decoder object for arithmetic decoding. */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_entropy_decoder pub; /* public fields */
|
||||||
|
|
||||||
|
INT32 c; /* C register, base of coding interval + input bit buffer */
|
||||||
|
INT32 a; /* A register, normalized size of coding interval */
|
||||||
|
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
|
||||||
|
/* init: ct = -16 */
|
||||||
|
/* run: ct = 0..7 */
|
||||||
|
/* error: ct = -1 */
|
||||||
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||||
|
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||||
|
|
||||||
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||||
|
|
||||||
|
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||||
|
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||||
|
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||||
|
|
||||||
|
/* Statistics bin for coding with fixed probability 0.5 */
|
||||||
|
unsigned char fixed_bin[4];
|
||||||
|
} arith_entropy_decoder;
|
||||||
|
|
||||||
|
typedef arith_entropy_decoder * arith_entropy_ptr;
|
||||||
|
|
||||||
|
/* The following two definitions specify the allocation chunk size
|
||||||
|
* for the statistics area.
|
||||||
|
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||||
|
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||||
|
*
|
||||||
|
* We use a compact representation with 1 byte per statistics bin,
|
||||||
|
* thus the numbers directly represent byte sizes.
|
||||||
|
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||||
|
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||||
|
* index into the probability estimation state machine table
|
||||||
|
* in the lower bits (mask 0x7F).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define DC_STAT_BINS 64
|
||||||
|
#define AC_STAT_BINS 256
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(int)
|
||||||
|
get_byte (j_decompress_ptr cinfo)
|
||||||
|
/* Read next input byte; we do not support suspension in this module. */
|
||||||
|
{
|
||||||
|
struct jpeg_source_mgr * src = cinfo->src;
|
||||||
|
|
||||||
|
if (src->bytes_in_buffer == 0)
|
||||||
|
if (! (*src->fill_input_buffer) (cinfo))
|
||||||
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||||
|
src->bytes_in_buffer--;
|
||||||
|
return GETJOCTET(*src->next_input_byte++);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The core arithmetic decoding routine (common in JPEG and JBIG).
|
||||||
|
* This needs to go as fast as possible.
|
||||||
|
* Machine-dependent optimization facilities
|
||||||
|
* are not utilized in this portable implementation.
|
||||||
|
* However, this code should be fairly efficient and
|
||||||
|
* may be a good base for further optimizations anyway.
|
||||||
|
*
|
||||||
|
* Return value is 0 or 1 (binary decision).
|
||||||
|
*
|
||||||
|
* Note: I've changed the handling of the code base & bit
|
||||||
|
* buffer register C compared to other implementations
|
||||||
|
* based on the standards layout & procedures.
|
||||||
|
* While it also contains both the actual base of the
|
||||||
|
* coding interval (16 bits) and the next-bits buffer,
|
||||||
|
* the cut-point between these two parts is floating
|
||||||
|
* (instead of fixed) with the bit shift counter CT.
|
||||||
|
* Thus, we also need only one (variable instead of
|
||||||
|
* fixed size) shift for the LPS/MPS decision, and
|
||||||
|
* we can do away with any renormalization update
|
||||||
|
* of C (except for new data insertion, of course).
|
||||||
|
*
|
||||||
|
* I've also introduced a new scheme for accessing
|
||||||
|
* the probability estimation state machine table,
|
||||||
|
* derived from Markus Kuhn's JBIG implementation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(int)
|
||||||
|
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
|
||||||
|
{
|
||||||
|
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
register unsigned char nl, nm;
|
||||||
|
register INT32 qe, temp;
|
||||||
|
register int sv, data;
|
||||||
|
|
||||||
|
/* Renormalization & data input per section D.2.6 */
|
||||||
|
while (e->a < 0x8000L) {
|
||||||
|
if (--e->ct < 0) {
|
||||||
|
/* Need to fetch next data byte */
|
||||||
|
if (cinfo->unread_marker)
|
||||||
|
data = 0; /* stuff zero data */
|
||||||
|
else {
|
||||||
|
data = get_byte(cinfo); /* read next input byte */
|
||||||
|
if (data == 0xFF) { /* zero stuff or marker code */
|
||||||
|
do data = get_byte(cinfo);
|
||||||
|
while (data == 0xFF); /* swallow extra 0xFF bytes */
|
||||||
|
if (data == 0)
|
||||||
|
data = 0xFF; /* discard stuffed zero byte */
|
||||||
|
else {
|
||||||
|
/* Note: Different from the Huffman decoder, hitting
|
||||||
|
* a marker while processing the compressed data
|
||||||
|
* segment is legal in arithmetic coding.
|
||||||
|
* The convention is to supply zero data
|
||||||
|
* then until decoding is complete.
|
||||||
|
*/
|
||||||
|
cinfo->unread_marker = data;
|
||||||
|
data = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
e->c = (e->c << 8) | data; /* insert data into C register */
|
||||||
|
if ((e->ct += 8) < 0) /* update bit shift counter */
|
||||||
|
/* Need more initial bytes */
|
||||||
|
if (++e->ct == 0)
|
||||||
|
/* Got 2 initial bytes -> re-init A and exit loop */
|
||||||
|
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
|
||||||
|
}
|
||||||
|
e->a <<= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Fetch values from our compact representation of Table D.3(D.2):
|
||||||
|
* Qe values and probability estimation state machine
|
||||||
|
*/
|
||||||
|
sv = *st;
|
||||||
|
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
|
||||||
|
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||||
|
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||||
|
|
||||||
|
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
|
||||||
|
temp = e->a - qe;
|
||||||
|
e->a = temp;
|
||||||
|
temp <<= e->ct;
|
||||||
|
if (e->c >= temp) {
|
||||||
|
e->c -= temp;
|
||||||
|
/* Conditional LPS (less probable symbol) exchange */
|
||||||
|
if (e->a < qe) {
|
||||||
|
e->a = qe;
|
||||||
|
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||||
|
} else {
|
||||||
|
e->a = qe;
|
||||||
|
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||||
|
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||||
|
}
|
||||||
|
} else if (e->a < 0x8000L) {
|
||||||
|
/* Conditional MPS (more probable symbol) exchange */
|
||||||
|
if (e->a < qe) {
|
||||||
|
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||||
|
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||||
|
} else {
|
||||||
|
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return sv >> 7;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Check for a restart marker & resynchronize decoder.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
process_restart (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
/* Advance past the RSTn marker */
|
||||||
|
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||||
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||||
|
|
||||||
|
/* Re-initialize statistics areas */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||||
|
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||||
|
/* Reset DC predictions to 0 */
|
||||||
|
entropy->last_dc_val[ci] = 0;
|
||||||
|
entropy->dc_context[ci] = 0;
|
||||||
|
}
|
||||||
|
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
|
||||||
|
(cinfo->progressive_mode && cinfo->Ss)) {
|
||||||
|
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Reset arithmetic decoding variables */
|
||||||
|
entropy->c = 0;
|
||||||
|
entropy->a = 0;
|
||||||
|
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||||
|
|
||||||
|
/* Reset restart counter */
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Arithmetic MCU decoding.
|
||||||
|
* Each of these routines decodes and returns one MCU's worth of
|
||||||
|
* arithmetic-compressed coefficients.
|
||||||
|
* The coefficients are reordered from zigzag order into natural array order,
|
||||||
|
* but are not dequantized.
|
||||||
|
*
|
||||||
|
* The i'th block of the MCU is stored into the block pointed to by
|
||||||
|
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU decoding for DC initial scan (either spectral selection,
|
||||||
|
* or first pass of successive approximation).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
JBLOCKROW block;
|
||||||
|
unsigned char *st;
|
||||||
|
int blkn, ci, tbl, sign;
|
||||||
|
int v, m;
|
||||||
|
|
||||||
|
/* Process restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0)
|
||||||
|
process_restart(cinfo);
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||||
|
|
||||||
|
/* Outer loop handles each block in the MCU */
|
||||||
|
|
||||||
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||||
|
block = MCU_data[blkn];
|
||||||
|
ci = cinfo->MCU_membership[blkn];
|
||||||
|
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||||
|
|
||||||
|
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||||
|
|
||||||
|
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||||
|
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||||
|
|
||||||
|
/* Figure F.19: Decode_DC_DIFF */
|
||||||
|
if (arith_decode(cinfo, st) == 0)
|
||||||
|
entropy->dc_context[ci] = 0;
|
||||||
|
else {
|
||||||
|
/* Figure F.21: Decoding nonzero value v */
|
||||||
|
/* Figure F.22: Decoding the sign of v */
|
||||||
|
sign = arith_decode(cinfo, st + 1);
|
||||||
|
st += 2; st += sign;
|
||||||
|
/* Figure F.23: Decoding the magnitude category of v */
|
||||||
|
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||||
|
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||||
|
while (arith_decode(cinfo, st)) {
|
||||||
|
if ((m <<= 1) == (int) 0x8000U) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* magnitude overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||||
|
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||||
|
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||||
|
else
|
||||||
|
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||||
|
v = m;
|
||||||
|
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
if (arith_decode(cinfo, st)) v |= m;
|
||||||
|
v += 1; if (sign) v = -v;
|
||||||
|
entropy->last_dc_val[ci] += v;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
|
||||||
|
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU decoding for AC initial scan (either spectral selection,
|
||||||
|
* or first pass of successive approximation).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
JBLOCKROW block;
|
||||||
|
unsigned char *st;
|
||||||
|
int tbl, sign, k;
|
||||||
|
int v, m;
|
||||||
|
const int * natural_order;
|
||||||
|
|
||||||
|
/* Process restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0)
|
||||||
|
process_restart(cinfo);
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||||
|
|
||||||
|
natural_order = cinfo->natural_order;
|
||||||
|
|
||||||
|
/* There is always only one block per MCU */
|
||||||
|
block = MCU_data[0];
|
||||||
|
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||||
|
|
||||||
|
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||||
|
|
||||||
|
/* Figure F.20: Decode_AC_coefficients */
|
||||||
|
k = cinfo->Ss - 1;
|
||||||
|
do {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||||
|
for (;;) {
|
||||||
|
k++;
|
||||||
|
if (arith_decode(cinfo, st + 1)) break;
|
||||||
|
st += 3;
|
||||||
|
if (k >= cinfo->Se) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* spectral overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Figure F.21: Decoding nonzero value v */
|
||||||
|
/* Figure F.22: Decoding the sign of v */
|
||||||
|
sign = arith_decode(cinfo, entropy->fixed_bin);
|
||||||
|
st += 2;
|
||||||
|
/* Figure F.23: Decoding the magnitude category of v */
|
||||||
|
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||||
|
if (arith_decode(cinfo, st)) {
|
||||||
|
m <<= 1;
|
||||||
|
st = entropy->ac_stats[tbl] +
|
||||||
|
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||||
|
while (arith_decode(cinfo, st)) {
|
||||||
|
if ((m <<= 1) == (int) 0x8000U) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* magnitude overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
v = m;
|
||||||
|
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
if (arith_decode(cinfo, st)) v |= m;
|
||||||
|
v += 1; if (sign) v = -v;
|
||||||
|
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||||
|
(*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
|
||||||
|
} while (k < cinfo->Se);
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU decoding for DC successive approximation refinement scan.
|
||||||
|
* Note: we assume such scans can be multi-component,
|
||||||
|
* although the spec is not very clear on the point.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
unsigned char *st;
|
||||||
|
JCOEF p1;
|
||||||
|
int blkn;
|
||||||
|
|
||||||
|
/* Process restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0)
|
||||||
|
process_restart(cinfo);
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
st = entropy->fixed_bin; /* use fixed probability estimation */
|
||||||
|
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||||
|
|
||||||
|
/* Outer loop handles each block in the MCU */
|
||||||
|
|
||||||
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||||
|
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||||
|
if (arith_decode(cinfo, st))
|
||||||
|
MCU_data[blkn][0][0] |= p1;
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* MCU decoding for AC successive approximation refinement scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
JBLOCKROW block;
|
||||||
|
JCOEFPTR thiscoef;
|
||||||
|
unsigned char *st;
|
||||||
|
int tbl, k, kex;
|
||||||
|
JCOEF p1, m1;
|
||||||
|
const int * natural_order;
|
||||||
|
|
||||||
|
/* Process restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0)
|
||||||
|
process_restart(cinfo);
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||||
|
|
||||||
|
natural_order = cinfo->natural_order;
|
||||||
|
|
||||||
|
/* There is always only one block per MCU */
|
||||||
|
block = MCU_data[0];
|
||||||
|
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||||
|
|
||||||
|
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||||
|
m1 = -p1; /* -1 in the bit position being coded */
|
||||||
|
|
||||||
|
/* Establish EOBx (previous stage end-of-block) index */
|
||||||
|
kex = cinfo->Se;
|
||||||
|
do {
|
||||||
|
if ((*block)[natural_order[kex]]) break;
|
||||||
|
} while (--kex);
|
||||||
|
|
||||||
|
k = cinfo->Ss - 1;
|
||||||
|
do {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
if (k >= kex)
|
||||||
|
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||||
|
for (;;) {
|
||||||
|
thiscoef = *block + natural_order[++k];
|
||||||
|
if (*thiscoef) { /* previously nonzero coef */
|
||||||
|
if (arith_decode(cinfo, st + 2)) {
|
||||||
|
if (*thiscoef < 0)
|
||||||
|
*thiscoef += m1;
|
||||||
|
else
|
||||||
|
*thiscoef += p1;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
|
||||||
|
if (arith_decode(cinfo, entropy->fixed_bin))
|
||||||
|
*thiscoef = m1;
|
||||||
|
else
|
||||||
|
*thiscoef = p1;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
st += 3;
|
||||||
|
if (k >= cinfo->Se) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* spectral overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} while (k < cinfo->Se);
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Decode one MCU's worth of arithmetic-compressed coefficients.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
JBLOCKROW block;
|
||||||
|
unsigned char *st;
|
||||||
|
int blkn, ci, tbl, sign, k;
|
||||||
|
int v, m;
|
||||||
|
const int * natural_order;
|
||||||
|
|
||||||
|
/* Process restart marker if needed */
|
||||||
|
if (cinfo->restart_interval) {
|
||||||
|
if (entropy->restarts_to_go == 0)
|
||||||
|
process_restart(cinfo);
|
||||||
|
entropy->restarts_to_go--;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||||
|
|
||||||
|
natural_order = cinfo->natural_order;
|
||||||
|
|
||||||
|
/* Outer loop handles each block in the MCU */
|
||||||
|
|
||||||
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||||
|
block = MCU_data[blkn];
|
||||||
|
ci = cinfo->MCU_membership[blkn];
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
|
||||||
|
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||||
|
|
||||||
|
tbl = compptr->dc_tbl_no;
|
||||||
|
|
||||||
|
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||||
|
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||||
|
|
||||||
|
/* Figure F.19: Decode_DC_DIFF */
|
||||||
|
if (arith_decode(cinfo, st) == 0)
|
||||||
|
entropy->dc_context[ci] = 0;
|
||||||
|
else {
|
||||||
|
/* Figure F.21: Decoding nonzero value v */
|
||||||
|
/* Figure F.22: Decoding the sign of v */
|
||||||
|
sign = arith_decode(cinfo, st + 1);
|
||||||
|
st += 2; st += sign;
|
||||||
|
/* Figure F.23: Decoding the magnitude category of v */
|
||||||
|
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||||
|
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||||
|
while (arith_decode(cinfo, st)) {
|
||||||
|
if ((m <<= 1) == (int) 0x8000U) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* magnitude overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||||
|
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||||
|
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
||||||
|
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||||
|
else
|
||||||
|
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||||
|
v = m;
|
||||||
|
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
if (arith_decode(cinfo, st)) v |= m;
|
||||||
|
v += 1; if (sign) v = -v;
|
||||||
|
entropy->last_dc_val[ci] += v;
|
||||||
|
}
|
||||||
|
|
||||||
|
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
|
||||||
|
|
||||||
|
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||||
|
|
||||||
|
if (cinfo->lim_Se == 0) continue;
|
||||||
|
tbl = compptr->ac_tbl_no;
|
||||||
|
k = 0;
|
||||||
|
|
||||||
|
/* Figure F.20: Decode_AC_coefficients */
|
||||||
|
do {
|
||||||
|
st = entropy->ac_stats[tbl] + 3 * k;
|
||||||
|
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||||
|
for (;;) {
|
||||||
|
k++;
|
||||||
|
if (arith_decode(cinfo, st + 1)) break;
|
||||||
|
st += 3;
|
||||||
|
if (k >= cinfo->lim_Se) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* spectral overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Figure F.21: Decoding nonzero value v */
|
||||||
|
/* Figure F.22: Decoding the sign of v */
|
||||||
|
sign = arith_decode(cinfo, entropy->fixed_bin);
|
||||||
|
st += 2;
|
||||||
|
/* Figure F.23: Decoding the magnitude category of v */
|
||||||
|
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||||
|
if (arith_decode(cinfo, st)) {
|
||||||
|
m <<= 1;
|
||||||
|
st = entropy->ac_stats[tbl] +
|
||||||
|
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||||
|
while (arith_decode(cinfo, st)) {
|
||||||
|
if ((m <<= 1) == (int) 0x8000U) {
|
||||||
|
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||||
|
entropy->ct = -1; /* magnitude overflow */
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
st += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
v = m;
|
||||||
|
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||||
|
st += 14;
|
||||||
|
while (m >>= 1)
|
||||||
|
if (arith_decode(cinfo, st)) v |= m;
|
||||||
|
v += 1; if (sign) v = -v;
|
||||||
|
(*block)[natural_order[k]] = (JCOEF) v;
|
||||||
|
} while (k < cinfo->lim_Se);
|
||||||
|
}
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an arithmetic-compressed scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||||
|
int ci, tbl;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
/* Validate progressive scan parameters */
|
||||||
|
if (cinfo->Ss == 0) {
|
||||||
|
if (cinfo->Se != 0)
|
||||||
|
goto bad;
|
||||||
|
} else {
|
||||||
|
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||||
|
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
|
||||||
|
goto bad;
|
||||||
|
/* AC scans may have only one component */
|
||||||
|
if (cinfo->comps_in_scan != 1)
|
||||||
|
goto bad;
|
||||||
|
}
|
||||||
|
if (cinfo->Ah != 0) {
|
||||||
|
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||||
|
if (cinfo->Ah-1 != cinfo->Al)
|
||||||
|
goto bad;
|
||||||
|
}
|
||||||
|
if (cinfo->Al > 13) { /* need not check for < 0 */
|
||||||
|
bad:
|
||||||
|
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||||
|
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||||
|
}
|
||||||
|
/* Update progression status, and verify that scan order is legal.
|
||||||
|
* Note that inter-scan inconsistencies are treated as warnings
|
||||||
|
* not fatal errors ... not clear if this is right way to behave.
|
||||||
|
*/
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||||
|
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
||||||
|
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||||
|
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||||
|
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||||
|
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||||
|
if (cinfo->Ah != expected)
|
||||||
|
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||||
|
coef_bit_ptr[coefi] = cinfo->Al;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Select MCU decoding routine */
|
||||||
|
if (cinfo->Ah == 0) {
|
||||||
|
if (cinfo->Ss == 0)
|
||||||
|
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||||
|
else
|
||||||
|
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||||
|
} else {
|
||||||
|
if (cinfo->Ss == 0)
|
||||||
|
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||||
|
else
|
||||||
|
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||||
|
* This ought to be an error condition, but we make it a warning.
|
||||||
|
*/
|
||||||
|
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
|
||||||
|
(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
|
||||||
|
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||||
|
/* Select MCU decoding routine */
|
||||||
|
entropy->pub.decode_mcu = decode_mcu;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Allocate & initialize requested statistics areas */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||||
|
tbl = compptr->dc_tbl_no;
|
||||||
|
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||||
|
if (entropy->dc_stats[tbl] == NULL)
|
||||||
|
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||||
|
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||||
|
/* Initialize DC predictions to 0 */
|
||||||
|
entropy->last_dc_val[ci] = 0;
|
||||||
|
entropy->dc_context[ci] = 0;
|
||||||
|
}
|
||||||
|
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
|
||||||
|
(cinfo->progressive_mode && cinfo->Ss)) {
|
||||||
|
tbl = compptr->ac_tbl_no;
|
||||||
|
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||||
|
if (entropy->ac_stats[tbl] == NULL)
|
||||||
|
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||||
|
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize arithmetic decoding variables */
|
||||||
|
entropy->c = 0;
|
||||||
|
entropy->a = 0;
|
||||||
|
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||||
|
|
||||||
|
/* Initialize restart counter */
|
||||||
|
entropy->restarts_to_go = cinfo->restart_interval;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up at the end of an arithmetic-compressed scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
finish_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work necessary here */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for arithmetic entropy decoding.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_arith_decoder (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
arith_entropy_ptr entropy;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder));
|
||||||
|
cinfo->entropy = &entropy->pub;
|
||||||
|
entropy->pub.start_pass = start_pass;
|
||||||
|
entropy->pub.finish_pass = finish_pass;
|
||||||
|
|
||||||
|
/* Mark tables unallocated */
|
||||||
|
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||||
|
entropy->dc_stats[i] = NULL;
|
||||||
|
entropy->ac_stats[i] = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize index for fixed probability estimation */
|
||||||
|
entropy->fixed_bin[0] = 113;
|
||||||
|
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
/* Create progression status table */
|
||||||
|
int *coef_bit_ptr, ci;
|
||||||
|
cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
cinfo->num_components * DCTSIZE2 * SIZEOF(int));
|
||||||
|
coef_bit_ptr = & cinfo->coef_bits[0][0];
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||||
|
for (i = 0; i < DCTSIZE2; i++)
|
||||||
|
*coef_bit_ptr++ = -1;
|
||||||
|
}
|
||||||
|
}
|
263
dep/libjpeg/src/jdatadst.c
Normal file
263
dep/libjpeg/src/jdatadst.c
Normal file
|
@ -0,0 +1,263 @@
|
||||||
|
/*
|
||||||
|
* jdatadst.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2009-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains compression data destination routines for the case of
|
||||||
|
* emitting JPEG data to memory or to a file (or any stdio stream).
|
||||||
|
* While these routines are sufficient for most applications,
|
||||||
|
* some will want to use a different destination manager.
|
||||||
|
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||||
|
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||||
|
* than 8 bits on your machine, you may need to do some tweaking.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jerror.h"
|
||||||
|
|
||||||
|
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||||
|
extern void * malloc JPP((size_t size));
|
||||||
|
extern void free JPP((void *ptr));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Expanded data destination object for stdio output */
|
||||||
|
|
||||||
|
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_destination_mgr pub; /* public fields */
|
||||||
|
|
||||||
|
FILE * outfile; /* target stream */
|
||||||
|
JOCTET buffer[OUTPUT_BUF_SIZE]; /* output buffer */
|
||||||
|
} my_destination_mgr;
|
||||||
|
|
||||||
|
typedef my_destination_mgr * my_dest_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Expanded data destination object for memory output */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_destination_mgr pub; /* public fields */
|
||||||
|
|
||||||
|
unsigned char ** outbuffer; /* target buffer */
|
||||||
|
size_t * outsize;
|
||||||
|
unsigned char * newbuffer; /* newly allocated buffer */
|
||||||
|
JOCTET * buffer; /* start of buffer */
|
||||||
|
size_t bufsize;
|
||||||
|
} my_mem_destination_mgr;
|
||||||
|
|
||||||
|
typedef my_mem_destination_mgr * my_mem_dest_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize destination --- called by jpeg_start_compress
|
||||||
|
* before any data is actually written.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
init_destination (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||||
|
|
||||||
|
dest->pub.next_output_byte = dest->buffer;
|
||||||
|
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||||
|
}
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
init_mem_destination (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work necessary here */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Empty the output buffer --- called whenever buffer fills up.
|
||||||
|
*
|
||||||
|
* In typical applications, this should write the entire output buffer
|
||||||
|
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||||
|
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||||
|
* indicating that the buffer has been dumped.
|
||||||
|
*
|
||||||
|
* In applications that need to be able to suspend compression due to output
|
||||||
|
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||||
|
* In this situation, the compressor will return to its caller (possibly with
|
||||||
|
* an indication that it has not accepted all the supplied scanlines). The
|
||||||
|
* application should resume compression after it has made more room in the
|
||||||
|
* output buffer. Note that there are substantial restrictions on the use of
|
||||||
|
* suspension --- see the documentation.
|
||||||
|
*
|
||||||
|
* When suspending, the compressor will back up to a convenient restart point
|
||||||
|
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||||
|
* indicate where the restart point will be if the current call returns FALSE.
|
||||||
|
* Data beyond this point will be regenerated after resumption, so do not
|
||||||
|
* write it out when emptying the buffer externally.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
empty_output_buffer (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||||
|
|
||||||
|
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
|
||||||
|
(size_t) OUTPUT_BUF_SIZE)
|
||||||
|
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||||
|
|
||||||
|
dest->pub.next_output_byte = dest->buffer;
|
||||||
|
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
empty_mem_output_buffer (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
size_t nextsize;
|
||||||
|
JOCTET * nextbuffer;
|
||||||
|
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
|
||||||
|
|
||||||
|
/* Try to allocate new buffer with double size */
|
||||||
|
nextsize = dest->bufsize * 2;
|
||||||
|
nextbuffer = (JOCTET *) malloc(nextsize);
|
||||||
|
|
||||||
|
if (nextbuffer == NULL)
|
||||||
|
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 11);
|
||||||
|
|
||||||
|
MEMCOPY(nextbuffer, dest->buffer, dest->bufsize);
|
||||||
|
|
||||||
|
if (dest->newbuffer != NULL)
|
||||||
|
free(dest->newbuffer);
|
||||||
|
|
||||||
|
dest->newbuffer = nextbuffer;
|
||||||
|
|
||||||
|
dest->pub.next_output_byte = nextbuffer + dest->bufsize;
|
||||||
|
dest->pub.free_in_buffer = dest->bufsize;
|
||||||
|
|
||||||
|
dest->buffer = nextbuffer;
|
||||||
|
dest->bufsize = nextsize;
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Terminate destination --- called by jpeg_finish_compress
|
||||||
|
* after all data has been written. Usually needs to flush buffer.
|
||||||
|
*
|
||||||
|
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||||
|
* application must deal with any cleanup that should happen even
|
||||||
|
* for error exit.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
term_destination (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||||
|
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
|
||||||
|
|
||||||
|
/* Write any data remaining in the buffer */
|
||||||
|
if (datacount > 0) {
|
||||||
|
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
|
||||||
|
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||||
|
}
|
||||||
|
JFFLUSH(dest->outfile);
|
||||||
|
/* Make sure we wrote the output file OK */
|
||||||
|
if (JFERROR(dest->outfile))
|
||||||
|
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||||
|
}
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
term_mem_destination (j_compress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
|
||||||
|
|
||||||
|
*dest->outbuffer = dest->buffer;
|
||||||
|
*dest->outsize = dest->bufsize - dest->pub.free_in_buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare for output to a stdio stream.
|
||||||
|
* The caller must have already opened the stream,
|
||||||
|
* and is responsible for closing it after finishing compression.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
|
||||||
|
{
|
||||||
|
my_dest_ptr dest;
|
||||||
|
|
||||||
|
/* The destination object is made permanent so that multiple JPEG images
|
||||||
|
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||||||
|
* This makes it dangerous to use this manager and a different destination
|
||||||
|
* manager serially with the same JPEG object, because their private object
|
||||||
|
* sizes may be different. Caveat programmer.
|
||||||
|
*/
|
||||||
|
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||||
|
cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_destination_mgr));
|
||||||
|
}
|
||||||
|
|
||||||
|
dest = (my_dest_ptr) cinfo->dest;
|
||||||
|
dest->pub.init_destination = init_destination;
|
||||||
|
dest->pub.empty_output_buffer = empty_output_buffer;
|
||||||
|
dest->pub.term_destination = term_destination;
|
||||||
|
dest->outfile = outfile;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare for output to a memory buffer.
|
||||||
|
* The caller may supply an own initial buffer with appropriate size.
|
||||||
|
* Otherwise, or when the actual data output exceeds the given size,
|
||||||
|
* the library adapts the buffer size as necessary.
|
||||||
|
* The standard library functions malloc/free are used for allocating
|
||||||
|
* larger memory, so the buffer is available to the application after
|
||||||
|
* finishing compression, and then the application is responsible for
|
||||||
|
* freeing the requested memory.
|
||||||
|
* Note: An initial buffer supplied by the caller is expected to be
|
||||||
|
* managed by the application. The library does not free such buffer
|
||||||
|
* when allocating a larger buffer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_mem_dest (j_compress_ptr cinfo,
|
||||||
|
unsigned char ** outbuffer, size_t * outsize)
|
||||||
|
{
|
||||||
|
my_mem_dest_ptr dest;
|
||||||
|
|
||||||
|
if (outbuffer == NULL || outsize == NULL) /* sanity check */
|
||||||
|
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||||
|
|
||||||
|
/* The destination object is made permanent so that multiple JPEG images
|
||||||
|
* can be written to the same buffer without re-executing jpeg_mem_dest.
|
||||||
|
*/
|
||||||
|
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||||
|
cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_mem_destination_mgr));
|
||||||
|
}
|
||||||
|
|
||||||
|
dest = (my_mem_dest_ptr) cinfo->dest;
|
||||||
|
dest->pub.init_destination = init_mem_destination;
|
||||||
|
dest->pub.empty_output_buffer = empty_mem_output_buffer;
|
||||||
|
dest->pub.term_destination = term_mem_destination;
|
||||||
|
dest->outbuffer = outbuffer;
|
||||||
|
dest->outsize = outsize;
|
||||||
|
dest->newbuffer = NULL;
|
||||||
|
|
||||||
|
if (*outbuffer == NULL || *outsize == 0) {
|
||||||
|
/* Allocate initial buffer */
|
||||||
|
dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE);
|
||||||
|
if (dest->newbuffer == NULL)
|
||||||
|
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
|
||||||
|
*outsize = OUTPUT_BUF_SIZE;
|
||||||
|
}
|
||||||
|
|
||||||
|
dest->pub.next_output_byte = dest->buffer = *outbuffer;
|
||||||
|
dest->pub.free_in_buffer = dest->bufsize = *outsize;
|
||||||
|
}
|
271
dep/libjpeg/src/jdatasrc.c
Normal file
271
dep/libjpeg/src/jdatasrc.c
Normal file
|
@ -0,0 +1,271 @@
|
||||||
|
/*
|
||||||
|
* jdatasrc.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2009-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains decompression data source routines for the case of
|
||||||
|
* reading JPEG data from memory or from a file (or any stdio stream).
|
||||||
|
* While these routines are sufficient for most applications,
|
||||||
|
* some will want to use a different source manager.
|
||||||
|
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||||
|
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||||
|
* than 8 bits on your machine, you may need to do some tweaking.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jerror.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Expanded data source object for stdio input */
|
||||||
|
|
||||||
|
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_source_mgr pub; /* public fields */
|
||||||
|
|
||||||
|
FILE * infile; /* source stream */
|
||||||
|
JOCTET buffer[INPUT_BUF_SIZE]; /* input buffer */
|
||||||
|
boolean start_of_file; /* have we gotten any data yet? */
|
||||||
|
} my_source_mgr;
|
||||||
|
|
||||||
|
typedef my_source_mgr * my_src_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize source --- called by jpeg_read_header
|
||||||
|
* before any data is actually read.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
init_source (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||||
|
|
||||||
|
/* We reset the empty-input-file flag for each image,
|
||||||
|
* but we don't clear the input buffer.
|
||||||
|
* This is correct behavior for reading a series of images from one source.
|
||||||
|
*/
|
||||||
|
src->start_of_file = TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
init_mem_source (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work necessary here */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Fill the input buffer --- called whenever buffer is emptied.
|
||||||
|
*
|
||||||
|
* In typical applications, this should read fresh data into the buffer
|
||||||
|
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||||
|
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||||
|
* indicating that the buffer has been reloaded. It is not necessary to
|
||||||
|
* fill the buffer entirely, only to obtain at least one more byte.
|
||||||
|
*
|
||||||
|
* There is no such thing as an EOF return. If the end of the file has been
|
||||||
|
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||||
|
* the buffer. In most cases, generating a warning message and inserting a
|
||||||
|
* fake EOI marker is the best course of action --- this will allow the
|
||||||
|
* decompressor to output however much of the image is there. However,
|
||||||
|
* the resulting error message is misleading if the real problem is an empty
|
||||||
|
* input file, so we handle that case specially.
|
||||||
|
*
|
||||||
|
* In applications that need to be able to suspend compression due to input
|
||||||
|
* not being available yet, a FALSE return indicates that no more data can be
|
||||||
|
* obtained right now, but more may be forthcoming later. In this situation,
|
||||||
|
* the decompressor will return to its caller (with an indication of the
|
||||||
|
* number of scanlines it has read, if any). The application should resume
|
||||||
|
* decompression after it has loaded more data into the input buffer. Note
|
||||||
|
* that there are substantial restrictions on the use of suspension --- see
|
||||||
|
* the documentation.
|
||||||
|
*
|
||||||
|
* When suspending, the decompressor will back up to a convenient restart point
|
||||||
|
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||||
|
* indicate where the restart point will be if the current call returns FALSE.
|
||||||
|
* Data beyond this point must be rescanned after resumption, so move it to
|
||||||
|
* the front of the buffer rather than discarding it.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
fill_input_buffer (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||||
|
size_t nbytes;
|
||||||
|
|
||||||
|
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
|
||||||
|
|
||||||
|
if (nbytes <= 0) {
|
||||||
|
if (src->start_of_file) /* Treat empty input file as fatal error */
|
||||||
|
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||||
|
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||||
|
/* Insert a fake EOI marker */
|
||||||
|
src->buffer[0] = (JOCTET) 0xFF;
|
||||||
|
src->buffer[1] = (JOCTET) JPEG_EOI;
|
||||||
|
nbytes = 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
src->pub.next_input_byte = src->buffer;
|
||||||
|
src->pub.bytes_in_buffer = nbytes;
|
||||||
|
src->start_of_file = FALSE;
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
METHODDEF(boolean)
|
||||||
|
fill_mem_input_buffer (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
static const JOCTET mybuffer[4] = {
|
||||||
|
(JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0
|
||||||
|
};
|
||||||
|
|
||||||
|
/* The whole JPEG data is expected to reside in the supplied memory
|
||||||
|
* buffer, so any request for more data beyond the given buffer size
|
||||||
|
* is treated as an error.
|
||||||
|
*/
|
||||||
|
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||||
|
|
||||||
|
/* Insert a fake EOI marker */
|
||||||
|
|
||||||
|
cinfo->src->next_input_byte = mybuffer;
|
||||||
|
cinfo->src->bytes_in_buffer = 2;
|
||||||
|
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Skip data --- used to skip over a potentially large amount of
|
||||||
|
* uninteresting data (such as an APPn marker).
|
||||||
|
*
|
||||||
|
* Writers of suspendable-input applications must note that skip_input_data
|
||||||
|
* is not granted the right to give a suspension return. If the skip extends
|
||||||
|
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||||
|
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||||
|
* Arranging for additional bytes to be discarded before reloading the input
|
||||||
|
* buffer is the application writer's problem.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
|
||||||
|
{
|
||||||
|
struct jpeg_source_mgr * src = cinfo->src;
|
||||||
|
size_t nbytes;
|
||||||
|
|
||||||
|
/* Just a dumb implementation for now. Could use fseek() except
|
||||||
|
* it doesn't work on pipes. Not clear that being smart is worth
|
||||||
|
* any trouble anyway --- large skips are infrequent.
|
||||||
|
*/
|
||||||
|
if (num_bytes > 0) {
|
||||||
|
nbytes = (size_t) num_bytes;
|
||||||
|
while (nbytes > src->bytes_in_buffer) {
|
||||||
|
nbytes -= src->bytes_in_buffer;
|
||||||
|
(void) (*src->fill_input_buffer) (cinfo);
|
||||||
|
/* note we assume that fill_input_buffer will never return FALSE,
|
||||||
|
* so suspension need not be handled.
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
src->next_input_byte += nbytes;
|
||||||
|
src->bytes_in_buffer -= nbytes;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* An additional method that can be provided by data source modules is the
|
||||||
|
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||||
|
* For the moment, this source module just uses the default resync method
|
||||||
|
* provided by the JPEG library. That method assumes that no backtracking
|
||||||
|
* is possible.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Terminate source --- called by jpeg_finish_decompress
|
||||||
|
* after all data has been read. Often a no-op.
|
||||||
|
*
|
||||||
|
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||||
|
* application must deal with any cleanup that should happen even
|
||||||
|
* for error exit.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
term_source (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work necessary here */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare for input from a stdio stream.
|
||||||
|
* The caller must have already opened the stream,
|
||||||
|
* and is responsible for closing it after finishing decompression.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
|
||||||
|
{
|
||||||
|
my_src_ptr src;
|
||||||
|
|
||||||
|
/* The source object including the input buffer is made permanent so that
|
||||||
|
* a series of JPEG images can be read from the same file by calling
|
||||||
|
* jpeg_stdio_src only before the first one. (If we discarded the buffer
|
||||||
|
* at the end of one image, we'd likely lose the start of the next one.)
|
||||||
|
* This makes it unsafe to use this manager and a different source
|
||||||
|
* manager serially with the same JPEG object. Caveat programmer.
|
||||||
|
*/
|
||||||
|
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||||
|
cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_source_mgr));
|
||||||
|
}
|
||||||
|
|
||||||
|
src = (my_src_ptr) cinfo->src;
|
||||||
|
src->pub.init_source = init_source;
|
||||||
|
src->pub.fill_input_buffer = fill_input_buffer;
|
||||||
|
src->pub.skip_input_data = skip_input_data;
|
||||||
|
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||||
|
src->pub.term_source = term_source;
|
||||||
|
src->infile = infile;
|
||||||
|
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
|
||||||
|
src->pub.next_input_byte = NULL; /* until buffer loaded */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare for input from a supplied memory buffer.
|
||||||
|
* The buffer must contain the whole JPEG data.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_mem_src (j_decompress_ptr cinfo,
|
||||||
|
const unsigned char * inbuffer, size_t insize)
|
||||||
|
{
|
||||||
|
struct jpeg_source_mgr * src;
|
||||||
|
|
||||||
|
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
|
||||||
|
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||||
|
|
||||||
|
/* The source object is made permanent so that a series of JPEG images
|
||||||
|
* can be read from the same buffer by calling jpeg_mem_src only before
|
||||||
|
* the first one.
|
||||||
|
*/
|
||||||
|
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||||
|
cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(struct jpeg_source_mgr));
|
||||||
|
}
|
||||||
|
|
||||||
|
src = cinfo->src;
|
||||||
|
src->init_source = init_mem_source;
|
||||||
|
src->fill_input_buffer = fill_mem_input_buffer;
|
||||||
|
src->skip_input_data = skip_input_data;
|
||||||
|
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||||
|
src->term_source = term_source;
|
||||||
|
src->bytes_in_buffer = insize;
|
||||||
|
src->next_input_byte = (const JOCTET *) inbuffer;
|
||||||
|
}
|
744
dep/libjpeg/src/jdcoefct.c
Normal file
744
dep/libjpeg/src/jdcoefct.c
Normal file
|
@ -0,0 +1,744 @@
|
||||||
|
/*
|
||||||
|
* jdcoefct.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||||
|
* Modified 2002-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the coefficient buffer controller for decompression.
|
||||||
|
* This controller is the top level of the JPEG decompressor proper.
|
||||||
|
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
||||||
|
*
|
||||||
|
* In buffered-image mode, this controller is the interface between
|
||||||
|
* input-oriented processing and output-oriented processing.
|
||||||
|
* Also, the input side (only) is used when reading a file for transcoding.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Block smoothing is only applicable for progressive JPEG, so: */
|
||||||
|
#ifndef D_PROGRESSIVE_SUPPORTED
|
||||||
|
#undef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_d_coef_controller pub; /* public fields */
|
||||||
|
|
||||||
|
/* These variables keep track of the current location of the input side. */
|
||||||
|
/* cinfo->input_iMCU_row is also used for this. */
|
||||||
|
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||||
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||||
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||||
|
|
||||||
|
/* The output side's location is represented by cinfo->output_iMCU_row. */
|
||||||
|
|
||||||
|
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
||||||
|
* We append a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
|
||||||
|
* and let the entropy decoder write into that workspace each time.
|
||||||
|
* In multi-pass modes, this array points to the current MCU's blocks
|
||||||
|
* within the virtual arrays; it is used only by the input side.
|
||||||
|
*/
|
||||||
|
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
|
||||||
|
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||||
|
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
/* When doing block smoothing, we latch coefficient Al values here */
|
||||||
|
int * coef_bits_latch;
|
||||||
|
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Workspace for single-pass modes (omitted otherwise). */
|
||||||
|
JBLOCK blk_buffer[D_MAX_BLOCKS_IN_MCU];
|
||||||
|
} my_coef_controller;
|
||||||
|
|
||||||
|
typedef my_coef_controller * my_coef_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
METHODDEF(int) decompress_onepass
|
||||||
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
METHODDEF(int) decompress_data
|
||||||
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||||
|
#endif
|
||||||
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
|
||||||
|
METHODDEF(int) decompress_smooth_data
|
||||||
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
start_iMCU_row (j_decompress_ptr cinfo)
|
||||||
|
/* Reset within-iMCU-row counters for a new row (input side) */
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
|
||||||
|
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||||
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||||
|
* But at the bottom of the image, process only what's left.
|
||||||
|
*/
|
||||||
|
if (cinfo->comps_in_scan > 1) {
|
||||||
|
coef->MCU_rows_per_iMCU_row = 1;
|
||||||
|
} else {
|
||||||
|
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
|
||||||
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||||
|
else
|
||||||
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||||
|
}
|
||||||
|
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
coef->MCU_vert_offset = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an input processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_input_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
cinfo->input_iMCU_row = 0;
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an output processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_output_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
|
||||||
|
/* If multipass, check to see whether to use block smoothing on this pass */
|
||||||
|
if (coef->pub.coef_arrays != NULL) {
|
||||||
|
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
||||||
|
coef->pub.decompress_data = decompress_smooth_data;
|
||||||
|
else
|
||||||
|
coef->pub.decompress_data = decompress_data;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
cinfo->output_iMCU_row = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Decompress and return some data in the single-pass case.
|
||||||
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||||
|
* Input and output must run in lockstep since we have only a one-MCU buffer.
|
||||||
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||||
|
*
|
||||||
|
* NB: output_buf contains a plane for each component in image,
|
||||||
|
* which we index according to the component's SOF position.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(int)
|
||||||
|
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||||
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||||
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||||
|
int ci, xindex, yindex, yoffset, useful_width;
|
||||||
|
JBLOCKROW blkp;
|
||||||
|
JSAMPARRAY output_ptr;
|
||||||
|
JDIMENSION start_col, output_col;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
inverse_DCT_method_ptr inverse_DCT;
|
||||||
|
|
||||||
|
/* Loop to process as much as one whole iMCU row */
|
||||||
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||||
|
yoffset++) {
|
||||||
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
||||||
|
MCU_col_num++) {
|
||||||
|
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */
|
||||||
|
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
||||||
|
if (cinfo->lim_Se) /* can bypass in DC only case */
|
||||||
|
MEMZERO(blkp, cinfo->blocks_in_MCU * SIZEOF(JBLOCK));
|
||||||
|
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||||
|
/* Suspension forced; update state counters and exit */
|
||||||
|
coef->MCU_vert_offset = yoffset;
|
||||||
|
coef->MCU_ctr = MCU_col_num;
|
||||||
|
return JPEG_SUSPENDED;
|
||||||
|
}
|
||||||
|
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||||
|
* We skip dummy blocks at the right and bottom edges (but blkp gets
|
||||||
|
* incremented past them!).
|
||||||
|
*/
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
/* Don't bother to IDCT an uninteresting component. */
|
||||||
|
if (! compptr->component_needed) {
|
||||||
|
blkp += compptr->MCU_blocks;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
||||||
|
output_ptr = output_buf[compptr->component_index] +
|
||||||
|
yoffset * compptr->DCT_v_scaled_size;
|
||||||
|
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||||
|
: compptr->last_col_width;
|
||||||
|
start_col = MCU_col_num * compptr->MCU_sample_width;
|
||||||
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||||
|
if (cinfo->input_iMCU_row < last_iMCU_row ||
|
||||||
|
yoffset + yindex < compptr->last_row_height) {
|
||||||
|
output_col = start_col;
|
||||||
|
for (xindex = 0; xindex < useful_width; xindex++) {
|
||||||
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) (blkp + xindex),
|
||||||
|
output_ptr, output_col);
|
||||||
|
output_col += compptr->DCT_h_scaled_size;
|
||||||
|
}
|
||||||
|
output_ptr += compptr->DCT_v_scaled_size;
|
||||||
|
}
|
||||||
|
blkp += compptr->MCU_width;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
}
|
||||||
|
/* Completed the iMCU row, advance counters for next one */
|
||||||
|
cinfo->output_iMCU_row++;
|
||||||
|
if (++(cinfo->input_iMCU_row) <= last_iMCU_row) {
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
return JPEG_ROW_COMPLETED;
|
||||||
|
}
|
||||||
|
/* Completed the scan */
|
||||||
|
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||||
|
return JPEG_SCAN_COMPLETED;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Dummy consume-input routine for single-pass operation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(int)
|
||||||
|
dummy_consume_data (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Consume input data and store it in the full-image coefficient buffer.
|
||||||
|
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
||||||
|
* ie, v_samp_factor block rows for each component in the scan.
|
||||||
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(int)
|
||||||
|
consume_data (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||||
|
int ci, xindex, yindex, yoffset;
|
||||||
|
JDIMENSION start_col;
|
||||||
|
JBLOCKARRAY blkp;
|
||||||
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||||
|
JBLOCKROW buffer_ptr;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Align the virtual buffers for the components used in this scan. */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||||
|
cinfo->input_iMCU_row * compptr->v_samp_factor,
|
||||||
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||||
|
/* Note: entropy decoder expects buffer to be zeroed,
|
||||||
|
* but this is handled automatically by the memory manager
|
||||||
|
* because we requested a pre-zeroed array.
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Loop to process one whole iMCU row */
|
||||||
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||||
|
yoffset++) {
|
||||||
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||||
|
MCU_col_num++) {
|
||||||
|
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||||
|
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
start_col = MCU_col_num * compptr->MCU_width;
|
||||||
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||||
|
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
|
||||||
|
xindex = compptr->MCU_width;
|
||||||
|
do {
|
||||||
|
*blkp++ = buffer_ptr++;
|
||||||
|
} while (--xindex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Try to fetch the MCU. */
|
||||||
|
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||||
|
/* Suspension forced; update state counters and exit */
|
||||||
|
coef->MCU_vert_offset = yoffset;
|
||||||
|
coef->MCU_ctr = MCU_col_num;
|
||||||
|
return JPEG_SUSPENDED;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||||
|
coef->MCU_ctr = 0;
|
||||||
|
}
|
||||||
|
/* Completed the iMCU row, advance counters for next one */
|
||||||
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||||
|
start_iMCU_row(cinfo);
|
||||||
|
return JPEG_ROW_COMPLETED;
|
||||||
|
}
|
||||||
|
/* Completed the scan */
|
||||||
|
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||||
|
return JPEG_SCAN_COMPLETED;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Decompress and return some data in the multi-pass case.
|
||||||
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||||
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||||
|
*
|
||||||
|
* NB: output_buf contains a plane for each component in image.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(int)
|
||||||
|
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||||
|
JDIMENSION block_num;
|
||||||
|
int ci, block_row, block_rows;
|
||||||
|
JBLOCKARRAY buffer;
|
||||||
|
JBLOCKROW buffer_ptr;
|
||||||
|
JSAMPARRAY output_ptr;
|
||||||
|
JDIMENSION output_col;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
inverse_DCT_method_ptr inverse_DCT;
|
||||||
|
|
||||||
|
/* Force some input to be done if we are getting ahead of the input. */
|
||||||
|
while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
||||||
|
(cinfo->input_scan_number == cinfo->output_scan_number &&
|
||||||
|
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
||||||
|
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
||||||
|
return JPEG_SUSPENDED;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* OK, output from the virtual arrays. */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Don't bother to IDCT an uninteresting component. */
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue;
|
||||||
|
/* Align the virtual buffer for this component. */
|
||||||
|
buffer = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||||
|
cinfo->output_iMCU_row * compptr->v_samp_factor,
|
||||||
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||||
|
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||||
|
if (cinfo->output_iMCU_row < last_iMCU_row)
|
||||||
|
block_rows = compptr->v_samp_factor;
|
||||||
|
else {
|
||||||
|
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||||
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||||
|
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||||
|
}
|
||||||
|
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||||
|
output_ptr = output_buf[ci];
|
||||||
|
/* Loop over all DCT blocks to be processed. */
|
||||||
|
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||||
|
buffer_ptr = buffer[block_row];
|
||||||
|
output_col = 0;
|
||||||
|
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
|
||||||
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
|
||||||
|
output_ptr, output_col);
|
||||||
|
buffer_ptr++;
|
||||||
|
output_col += compptr->DCT_h_scaled_size;
|
||||||
|
}
|
||||||
|
output_ptr += compptr->DCT_v_scaled_size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
|
||||||
|
return JPEG_ROW_COMPLETED;
|
||||||
|
return JPEG_SCAN_COMPLETED;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This code applies interblock smoothing as described by section K.8
|
||||||
|
* of the JPEG standard: the first 5 AC coefficients are estimated from
|
||||||
|
* the DC values of a DCT block and its 8 neighboring blocks.
|
||||||
|
* We apply smoothing only for progressive JPEG decoding, and only if
|
||||||
|
* the coefficients it can estimate are not yet known to full precision.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Natural-order array positions of the first 5 zigzag-order coefficients */
|
||||||
|
#define Q01_POS 1
|
||||||
|
#define Q10_POS 8
|
||||||
|
#define Q20_POS 16
|
||||||
|
#define Q11_POS 9
|
||||||
|
#define Q02_POS 2
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Determine whether block smoothing is applicable and safe.
|
||||||
|
* We also latch the current states of the coef_bits[] entries for the
|
||||||
|
* AC coefficients; otherwise, if the input side of the decompressor
|
||||||
|
* advances into a new scan, we might think the coefficients are known
|
||||||
|
* more accurately than they really are.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(boolean)
|
||||||
|
smoothing_ok (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
boolean smoothing_useful = FALSE;
|
||||||
|
int ci, coefi;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JQUANT_TBL * qtable;
|
||||||
|
int * coef_bits;
|
||||||
|
int * coef_bits_latch;
|
||||||
|
|
||||||
|
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
||||||
|
return FALSE;
|
||||||
|
|
||||||
|
/* Allocate latch area if not already done */
|
||||||
|
if (coef->coef_bits_latch == NULL)
|
||||||
|
coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
cinfo->num_components * (SAVED_COEFS * SIZEOF(int)));
|
||||||
|
coef_bits_latch = coef->coef_bits_latch;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* All components' quantization values must already be latched. */
|
||||||
|
if ((qtable = compptr->quant_table) == NULL)
|
||||||
|
return FALSE;
|
||||||
|
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
|
||||||
|
if (qtable->quantval[0] == 0 ||
|
||||||
|
qtable->quantval[Q01_POS] == 0 ||
|
||||||
|
qtable->quantval[Q10_POS] == 0 ||
|
||||||
|
qtable->quantval[Q20_POS] == 0 ||
|
||||||
|
qtable->quantval[Q11_POS] == 0 ||
|
||||||
|
qtable->quantval[Q02_POS] == 0)
|
||||||
|
return FALSE;
|
||||||
|
/* DC values must be at least partly known for all components. */
|
||||||
|
coef_bits = cinfo->coef_bits[ci];
|
||||||
|
if (coef_bits[0] < 0)
|
||||||
|
return FALSE;
|
||||||
|
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
||||||
|
for (coefi = 1; coefi <= 5; coefi++) {
|
||||||
|
coef_bits_latch[coefi] = coef_bits[coefi];
|
||||||
|
if (coef_bits[coefi] != 0)
|
||||||
|
smoothing_useful = TRUE;
|
||||||
|
}
|
||||||
|
coef_bits_latch += SAVED_COEFS;
|
||||||
|
}
|
||||||
|
|
||||||
|
return smoothing_useful;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Variant of decompress_data for use when doing block smoothing.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(int)
|
||||||
|
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||||
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||||
|
JDIMENSION block_num, last_block_column;
|
||||||
|
int ci, block_row, block_rows, access_rows;
|
||||||
|
JBLOCKARRAY buffer;
|
||||||
|
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
|
||||||
|
JSAMPARRAY output_ptr;
|
||||||
|
JDIMENSION output_col;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
inverse_DCT_method_ptr inverse_DCT;
|
||||||
|
boolean first_row, last_row;
|
||||||
|
JBLOCK workspace;
|
||||||
|
int *coef_bits;
|
||||||
|
JQUANT_TBL *quanttbl;
|
||||||
|
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
|
||||||
|
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
|
||||||
|
int Al, pred;
|
||||||
|
|
||||||
|
/* Force some input to be done if we are getting ahead of the input. */
|
||||||
|
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||||
|
! cinfo->inputctl->eoi_reached) {
|
||||||
|
if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
||||||
|
/* If input is working on current scan, we ordinarily want it to
|
||||||
|
* have completed the current row. But if input scan is DC,
|
||||||
|
* we want it to keep one row ahead so that next block row's DC
|
||||||
|
* values are up to date.
|
||||||
|
*/
|
||||||
|
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
|
||||||
|
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
||||||
|
return JPEG_SUSPENDED;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* OK, output from the virtual arrays. */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Don't bother to IDCT an uninteresting component. */
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue;
|
||||||
|
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||||
|
if (cinfo->output_iMCU_row < last_iMCU_row) {
|
||||||
|
block_rows = compptr->v_samp_factor;
|
||||||
|
access_rows = block_rows * 2; /* this and next iMCU row */
|
||||||
|
last_row = FALSE;
|
||||||
|
} else {
|
||||||
|
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||||
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||||
|
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||||
|
access_rows = block_rows; /* this iMCU row only */
|
||||||
|
last_row = TRUE;
|
||||||
|
}
|
||||||
|
/* Align the virtual buffer for this component. */
|
||||||
|
if (cinfo->output_iMCU_row > 0) {
|
||||||
|
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
|
||||||
|
buffer = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||||
|
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
||||||
|
(JDIMENSION) access_rows, FALSE);
|
||||||
|
buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
||||||
|
first_row = FALSE;
|
||||||
|
} else {
|
||||||
|
buffer = (*cinfo->mem->access_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||||
|
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
|
||||||
|
first_row = TRUE;
|
||||||
|
}
|
||||||
|
/* Fetch component-dependent info */
|
||||||
|
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
||||||
|
quanttbl = compptr->quant_table;
|
||||||
|
Q00 = quanttbl->quantval[0];
|
||||||
|
Q01 = quanttbl->quantval[Q01_POS];
|
||||||
|
Q10 = quanttbl->quantval[Q10_POS];
|
||||||
|
Q20 = quanttbl->quantval[Q20_POS];
|
||||||
|
Q11 = quanttbl->quantval[Q11_POS];
|
||||||
|
Q02 = quanttbl->quantval[Q02_POS];
|
||||||
|
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||||
|
output_ptr = output_buf[ci];
|
||||||
|
/* Loop over all DCT blocks to be processed. */
|
||||||
|
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||||
|
buffer_ptr = buffer[block_row];
|
||||||
|
if (first_row && block_row == 0)
|
||||||
|
prev_block_row = buffer_ptr;
|
||||||
|
else
|
||||||
|
prev_block_row = buffer[block_row-1];
|
||||||
|
if (last_row && block_row == block_rows-1)
|
||||||
|
next_block_row = buffer_ptr;
|
||||||
|
else
|
||||||
|
next_block_row = buffer[block_row+1];
|
||||||
|
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||||
|
* Initialize all nine here so as to do the right thing on narrow pics.
|
||||||
|
*/
|
||||||
|
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
|
||||||
|
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
|
||||||
|
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
|
||||||
|
output_col = 0;
|
||||||
|
last_block_column = compptr->width_in_blocks - 1;
|
||||||
|
for (block_num = 0; block_num <= last_block_column; block_num++) {
|
||||||
|
/* Fetch current DCT block into workspace so we can modify it. */
|
||||||
|
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
|
||||||
|
/* Update DC values */
|
||||||
|
if (block_num < last_block_column) {
|
||||||
|
DC3 = (int) prev_block_row[1][0];
|
||||||
|
DC6 = (int) buffer_ptr[1][0];
|
||||||
|
DC9 = (int) next_block_row[1][0];
|
||||||
|
}
|
||||||
|
/* Compute coefficient estimates per K.8.
|
||||||
|
* An estimate is applied only if coefficient is still zero,
|
||||||
|
* and is not known to be fully accurate.
|
||||||
|
*/
|
||||||
|
/* AC01 */
|
||||||
|
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
|
||||||
|
num = 36 * Q00 * (DC4 - DC6);
|
||||||
|
if (num >= 0) {
|
||||||
|
pred = (int) (((Q01<<7) + num) / (Q01<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
} else {
|
||||||
|
pred = (int) (((Q01<<7) - num) / (Q01<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
pred = -pred;
|
||||||
|
}
|
||||||
|
workspace[1] = (JCOEF) pred;
|
||||||
|
}
|
||||||
|
/* AC10 */
|
||||||
|
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
|
||||||
|
num = 36 * Q00 * (DC2 - DC8);
|
||||||
|
if (num >= 0) {
|
||||||
|
pred = (int) (((Q10<<7) + num) / (Q10<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
} else {
|
||||||
|
pred = (int) (((Q10<<7) - num) / (Q10<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
pred = -pred;
|
||||||
|
}
|
||||||
|
workspace[8] = (JCOEF) pred;
|
||||||
|
}
|
||||||
|
/* AC20 */
|
||||||
|
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
|
||||||
|
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
|
||||||
|
if (num >= 0) {
|
||||||
|
pred = (int) (((Q20<<7) + num) / (Q20<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
} else {
|
||||||
|
pred = (int) (((Q20<<7) - num) / (Q20<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
pred = -pred;
|
||||||
|
}
|
||||||
|
workspace[16] = (JCOEF) pred;
|
||||||
|
}
|
||||||
|
/* AC11 */
|
||||||
|
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
|
||||||
|
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
|
||||||
|
if (num >= 0) {
|
||||||
|
pred = (int) (((Q11<<7) + num) / (Q11<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
} else {
|
||||||
|
pred = (int) (((Q11<<7) - num) / (Q11<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
pred = -pred;
|
||||||
|
}
|
||||||
|
workspace[9] = (JCOEF) pred;
|
||||||
|
}
|
||||||
|
/* AC02 */
|
||||||
|
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
|
||||||
|
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
|
||||||
|
if (num >= 0) {
|
||||||
|
pred = (int) (((Q02<<7) + num) / (Q02<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
} else {
|
||||||
|
pred = (int) (((Q02<<7) - num) / (Q02<<8));
|
||||||
|
if (Al > 0 && pred >= (1<<Al))
|
||||||
|
pred = (1<<Al)-1;
|
||||||
|
pred = -pred;
|
||||||
|
}
|
||||||
|
workspace[2] = (JCOEF) pred;
|
||||||
|
}
|
||||||
|
/* OK, do the IDCT */
|
||||||
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
|
||||||
|
output_ptr, output_col);
|
||||||
|
/* Advance for next column */
|
||||||
|
DC1 = DC2; DC2 = DC3;
|
||||||
|
DC4 = DC5; DC5 = DC6;
|
||||||
|
DC7 = DC8; DC8 = DC9;
|
||||||
|
buffer_ptr++, prev_block_row++, next_block_row++;
|
||||||
|
output_col += compptr->DCT_h_scaled_size;
|
||||||
|
}
|
||||||
|
output_ptr += compptr->DCT_v_scaled_size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
|
||||||
|
return JPEG_ROW_COMPLETED;
|
||||||
|
return JPEG_SCAN_COMPLETED;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize coefficient buffer controller.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||||
|
{
|
||||||
|
my_coef_ptr coef;
|
||||||
|
|
||||||
|
if (need_full_buffer) {
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
/* Allocate a full-image virtual array for each component, */
|
||||||
|
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||||
|
/* Note we ask for a pre-zeroed array. */
|
||||||
|
int ci, access_rows;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer));
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
access_rows = compptr->v_samp_factor;
|
||||||
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
/* If block smoothing could be used, need a bigger window */
|
||||||
|
if (cinfo->progressive_mode)
|
||||||
|
access_rows *= 3;
|
||||||
|
#endif
|
||||||
|
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
|
||||||
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||||
|
(long) compptr->h_samp_factor),
|
||||||
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||||
|
(long) compptr->v_samp_factor),
|
||||||
|
(JDIMENSION) access_rows);
|
||||||
|
}
|
||||||
|
coef->pub.consume_data = consume_data;
|
||||||
|
coef->pub.decompress_data = decompress_data;
|
||||||
|
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
/* We only need a single-MCU buffer. */
|
||||||
|
JBLOCKARRAY blkp;
|
||||||
|
JBLOCKROW buffer_ptr;
|
||||||
|
int bi;
|
||||||
|
|
||||||
|
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
|
||||||
|
buffer_ptr = coef->blk_buffer;
|
||||||
|
if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */
|
||||||
|
MEMZERO(buffer_ptr, SIZEOF(coef->blk_buffer));
|
||||||
|
blkp = coef->MCU_buffer;
|
||||||
|
bi = D_MAX_BLOCKS_IN_MCU;
|
||||||
|
do {
|
||||||
|
*blkp++ = buffer_ptr++;
|
||||||
|
} while (--bi);
|
||||||
|
coef->pub.consume_data = dummy_consume_data;
|
||||||
|
coef->pub.decompress_data = decompress_onepass;
|
||||||
|
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
||||||
|
}
|
||||||
|
|
||||||
|
coef->pub.start_input_pass = start_input_pass;
|
||||||
|
coef->pub.start_output_pass = start_output_pass;
|
||||||
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||||
|
coef->coef_bits_latch = NULL;
|
||||||
|
#endif
|
||||||
|
cinfo->coef = &coef->pub;
|
||||||
|
}
|
769
dep/libjpeg/src/jdcolor.c
Normal file
769
dep/libjpeg/src/jdcolor.c
Normal file
|
@ -0,0 +1,769 @@
|
||||||
|
/*
|
||||||
|
* jdcolor.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 2011-2023 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains output colorspace conversion routines.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
#if RANGE_BITS < 2
|
||||||
|
/* Deliberate syntax err */
|
||||||
|
Sorry, this code requires 2 or more range extension bits.
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Private subobject */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_color_deconverter pub; /* public fields */
|
||||||
|
|
||||||
|
/* Private state for YCbCr->RGB and BG_YCC->RGB conversion */
|
||||||
|
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||||
|
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||||
|
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||||
|
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||||
|
|
||||||
|
/* Private state for RGB->Y conversion */
|
||||||
|
INT32 * R_y_tab; /* => table for R to Y conversion */
|
||||||
|
INT32 * G_y_tab; /* => table for G to Y conversion */
|
||||||
|
INT32 * B_y_tab; /* => table for B to Y conversion */
|
||||||
|
} my_color_deconverter;
|
||||||
|
|
||||||
|
typedef my_color_deconverter * my_cconvert_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*************** YCbCr -> RGB conversion: most common case **************/
|
||||||
|
/*************** BG_YCC -> RGB conversion: less common case **************/
|
||||||
|
/*************** RGB -> Y conversion: less common case **************/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
|
||||||
|
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
|
||||||
|
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||||
|
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
|
||||||
|
* sYCC (standard luma-chroma-chroma color space with extended gamut)
|
||||||
|
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
|
||||||
|
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
|
||||||
|
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
|
||||||
|
* Note that the derived conversion coefficients given in some of these
|
||||||
|
* documents are imprecise. The general conversion equations are
|
||||||
|
*
|
||||||
|
* R = Y + K * (1 - Kr) * Cr
|
||||||
|
* G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb)
|
||||||
|
* B = Y + K * (1 - Kb) * Cb
|
||||||
|
*
|
||||||
|
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
|
||||||
|
*
|
||||||
|
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
|
||||||
|
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC,
|
||||||
|
* the conversion equations to be implemented are therefore
|
||||||
|
*
|
||||||
|
* R = Y + 1.402 * Cr
|
||||||
|
* G = Y - 0.344136286 * Cb - 0.714136286 * Cr
|
||||||
|
* B = Y + 1.772 * Cb
|
||||||
|
*
|
||||||
|
* Y = 0.299 * R + 0.587 * G + 0.114 * B
|
||||||
|
*
|
||||||
|
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
|
||||||
|
* For bg-sYCC, with K = 4, the equations are
|
||||||
|
*
|
||||||
|
* R = Y + 2.804 * Cr
|
||||||
|
* G = Y - 0.688272572 * Cb - 1.428272572 * Cr
|
||||||
|
* B = Y + 3.544 * Cb
|
||||||
|
*
|
||||||
|
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||||
|
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||||
|
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||||
|
* Notice that Y, being an integral input, does not contribute any fraction
|
||||||
|
* so it need not participate in the rounding.
|
||||||
|
*
|
||||||
|
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||||
|
* by precalculating the constants times Cb and Cr for all possible values.
|
||||||
|
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||||
|
* for 9-bit to 12-bit samples it is still acceptable. It's not very
|
||||||
|
* reasonable for 16-bit samples, but if you want lossless storage
|
||||||
|
* you shouldn't be changing colorspace anyway.
|
||||||
|
* The Cr=>R and Cb=>B values can be rounded to integers in advance;
|
||||||
|
* the values for the G calculation are left scaled up,
|
||||||
|
* since we must add them together before rounding.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||||
|
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||||
|
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||||
|
/* Normal case, sYCC */
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
int i;
|
||||||
|
INT32 x;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
|
||||||
|
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||||
|
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||||
|
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||||
|
/* Cr=>R value is nearest int to 1.402 * x */
|
||||||
|
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS);
|
||||||
|
/* Cb=>B value is nearest int to 1.772 * x */
|
||||||
|
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS);
|
||||||
|
/* Cr=>G value is scaled-up -0.714136286 * x */
|
||||||
|
cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x;
|
||||||
|
/* Cb=>G value is scaled-up -0.344136286 * x */
|
||||||
|
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||||
|
cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
build_bg_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||||
|
/* Wide gamut case, bg-sYCC */
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
int i;
|
||||||
|
INT32 x;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
|
||||||
|
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||||
|
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||||
|
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||||
|
/* Cr=>R value is nearest int to 2.804 * x */
|
||||||
|
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS);
|
||||||
|
/* Cb=>B value is nearest int to 3.544 * x */
|
||||||
|
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS);
|
||||||
|
/* Cr=>G value is scaled-up -1.428272572 * x */
|
||||||
|
cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x;
|
||||||
|
/* Cb=>G value is scaled-up -0.688272572 * x */
|
||||||
|
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||||
|
cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the output colorspace.
|
||||||
|
*
|
||||||
|
* Note that we change from noninterleaved, one-plane-per-component format
|
||||||
|
* to interleaved-pixel format. The output buffer is therefore three times
|
||||||
|
* as wide as the input buffer.
|
||||||
|
*
|
||||||
|
* A starting row offset is provided only for the input buffer. The caller
|
||||||
|
* can easily adjust the passed output_buf value to accommodate any row
|
||||||
|
* offset required on that side.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
ycc_rgb_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register int y, cb, cr;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
/* copy these pointers into registers if possible */
|
||||||
|
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||||
|
register int * Crrtab = cconvert->Cr_r_tab;
|
||||||
|
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||||
|
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||||
|
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
y = GETJSAMPLE(inptr0[col]);
|
||||||
|
cb = GETJSAMPLE(inptr1[col]);
|
||||||
|
cr = GETJSAMPLE(inptr2[col]);
|
||||||
|
/* Range-limiting is essential due to noise introduced by DCT losses,
|
||||||
|
* for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings.
|
||||||
|
*/
|
||||||
|
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||||
|
outptr[RGB_GREEN] = range_limit[y +
|
||||||
|
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||||
|
SCALEBITS))];
|
||||||
|
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||||
|
outptr += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**************** Cases other than YCC -> RGB ****************/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for RGB->grayscale colorspace conversion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
build_rgb_y_table (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
INT32 i;
|
||||||
|
|
||||||
|
cconvert->R_y_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
cconvert->G_y_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
cconvert->B_y_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
|
||||||
|
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||||
|
cconvert->R_y_tab[i] = FIX(0.299) * i;
|
||||||
|
cconvert->G_y_tab[i] = FIX(0.587) * i;
|
||||||
|
cconvert->B_y_tab[i] = FIX(0.114) * i + ONE_HALF;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert RGB to grayscale.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_gray_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register INT32 y;
|
||||||
|
register INT32 * Rytab = cconvert->R_y_tab;
|
||||||
|
register INT32 * Gytab = cconvert->G_y_tab;
|
||||||
|
register INT32 * Bytab = cconvert->B_y_tab;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
y = Rytab[GETJSAMPLE(inptr0[col])];
|
||||||
|
y += Gytab[GETJSAMPLE(inptr1[col])];
|
||||||
|
y += Bytab[GETJSAMPLE(inptr2[col])];
|
||||||
|
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the output colorspace.
|
||||||
|
* [R-G,G,B-G] to [R,G,B] conversion with modulo calculation
|
||||||
|
* (inverse color transform).
|
||||||
|
* This can be seen as an adaption of the general YCbCr->RGB
|
||||||
|
* conversion equation with Kr = Kb = 0, while replacing the
|
||||||
|
* normalization by modulo calculation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb1_rgb_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
register int r, g, b;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
r = GETJSAMPLE(inptr0[col]);
|
||||||
|
g = GETJSAMPLE(inptr1[col]);
|
||||||
|
b = GETJSAMPLE(inptr2[col]);
|
||||||
|
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
|
||||||
|
* (modulo) operator is equivalent to the bitmask operator AND.
|
||||||
|
*/
|
||||||
|
outptr[RGB_RED] = (JSAMPLE) ((r + g - CENTERJSAMPLE) & MAXJSAMPLE);
|
||||||
|
outptr[RGB_GREEN] = (JSAMPLE) g;
|
||||||
|
outptr[RGB_BLUE] = (JSAMPLE) ((b + g - CENTERJSAMPLE) & MAXJSAMPLE);
|
||||||
|
outptr += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* [R-G,G,B-G] to grayscale conversion with modulo calculation
|
||||||
|
* (inverse color transform).
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb1_gray_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register int r, g, b;
|
||||||
|
register INT32 y;
|
||||||
|
register INT32 * Rytab = cconvert->R_y_tab;
|
||||||
|
register INT32 * Gytab = cconvert->G_y_tab;
|
||||||
|
register INT32 * Bytab = cconvert->B_y_tab;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
r = GETJSAMPLE(inptr0[col]);
|
||||||
|
g = GETJSAMPLE(inptr1[col]);
|
||||||
|
b = GETJSAMPLE(inptr2[col]);
|
||||||
|
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
|
||||||
|
* (modulo) operator is equivalent to the bitmask operator AND.
|
||||||
|
*/
|
||||||
|
y = Rytab[(r + g - CENTERJSAMPLE) & MAXJSAMPLE];
|
||||||
|
y += Gytab[g];
|
||||||
|
y += Bytab[(b + g - CENTERJSAMPLE) & MAXJSAMPLE];
|
||||||
|
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the output colorspace.
|
||||||
|
* No colorspace change, but conversion from separate-planes
|
||||||
|
* to interleaved representation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
rgb_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
/* We can dispense with GETJSAMPLE() here */
|
||||||
|
outptr[RGB_RED] = inptr0[col];
|
||||||
|
outptr[RGB_GREEN] = inptr1[col];
|
||||||
|
outptr[RGB_BLUE] = inptr2[col];
|
||||||
|
outptr += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Color conversion for no colorspace change: just copy the data,
|
||||||
|
* converting from separate-planes to interleaved representation.
|
||||||
|
* Note: Omit uninteresting components in output buffer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
null_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JDIMENSION count;
|
||||||
|
register int out_comps = cinfo->out_color_components;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
JSAMPROW startptr;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
/* It seems fastest to make a separate pass for each component. */
|
||||||
|
startptr = *output_buf++;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue; /* skip uninteresting component */
|
||||||
|
inptr = input_buf[ci][input_row];
|
||||||
|
outptr = startptr++;
|
||||||
|
for (count = num_cols; count > 0; count--) {
|
||||||
|
*outptr = *inptr++; /* don't need GETJSAMPLE() here */
|
||||||
|
outptr += out_comps;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
input_row++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Color conversion for grayscale: just copy the data.
|
||||||
|
* This also works for YCC -> grayscale conversion, in which
|
||||||
|
* we just copy the Y (luminance) component and ignore chrominance.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
grayscale_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
jcopy_sample_rows(input_buf[0] + input_row, output_buf,
|
||||||
|
num_rows, cinfo->output_width);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert grayscale to RGB: just duplicate the graylevel three times.
|
||||||
|
* This is provided to support applications that don't want to cope
|
||||||
|
* with grayscale as a separate case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
gray_rgb_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr = input_buf[0][input_row++];
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
/* We can dispense with GETJSAMPLE() here */
|
||||||
|
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
|
||||||
|
outptr += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert some rows of samples to the output colorspace.
|
||||||
|
* This version handles Adobe-style YCCK->CMYK conversion,
|
||||||
|
* where we convert YCbCr to R=1-C, G=1-M, and B=1-Y using the
|
||||||
|
* same conversion as above, while passing K (black) unchanged.
|
||||||
|
* We assume build_ycc_rgb_table has been called.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
ycck_cmyk_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register int y, cb, cr;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
/* copy these pointers into registers if possible */
|
||||||
|
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||||
|
register int * Crrtab = cconvert->Cr_r_tab;
|
||||||
|
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||||
|
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||||
|
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
inptr3 = input_buf[3][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
y = GETJSAMPLE(inptr0[col]);
|
||||||
|
cb = GETJSAMPLE(inptr1[col]);
|
||||||
|
cr = GETJSAMPLE(inptr2[col]);
|
||||||
|
/* Range-limiting is essential due to noise introduced by DCT losses,
|
||||||
|
* and for extended gamut encodings (sYCC).
|
||||||
|
*/
|
||||||
|
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
|
||||||
|
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
|
||||||
|
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||||
|
SCALEBITS)))];
|
||||||
|
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
|
||||||
|
/* K passes through unchanged */
|
||||||
|
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
|
||||||
|
outptr += 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Convert CMYK to YK part of YCCK for colorless output.
|
||||||
|
* We assume build_rgb_y_table has been called.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
cmyk_yk_convert (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||||
|
register INT32 y;
|
||||||
|
register INT32 * Rytab = cconvert->R_y_tab;
|
||||||
|
register INT32 * Gytab = cconvert->G_y_tab;
|
||||||
|
register INT32 * Bytab = cconvert->B_y_tab;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||||
|
register JDIMENSION col;
|
||||||
|
JDIMENSION num_cols = cinfo->output_width;
|
||||||
|
|
||||||
|
while (--num_rows >= 0) {
|
||||||
|
inptr0 = input_buf[0][input_row];
|
||||||
|
inptr1 = input_buf[1][input_row];
|
||||||
|
inptr2 = input_buf[2][input_row];
|
||||||
|
inptr3 = input_buf[3][input_row];
|
||||||
|
input_row++;
|
||||||
|
outptr = *output_buf++;
|
||||||
|
for (col = 0; col < num_cols; col++) {
|
||||||
|
y = Rytab[MAXJSAMPLE - GETJSAMPLE(inptr0[col])];
|
||||||
|
y += Gytab[MAXJSAMPLE - GETJSAMPLE(inptr1[col])];
|
||||||
|
y += Bytab[MAXJSAMPLE - GETJSAMPLE(inptr2[col])];
|
||||||
|
outptr[0] = (JSAMPLE) (y >> SCALEBITS);
|
||||||
|
/* K passes through unchanged */
|
||||||
|
outptr[1] = inptr3[col]; /* don't need GETJSAMPLE here */
|
||||||
|
outptr += 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Empty method for start_pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_dcolor (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work needed */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for output colorspace conversion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_color_deconverter (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cconvert_ptr cconvert;
|
||||||
|
int ci, i;
|
||||||
|
|
||||||
|
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter));
|
||||||
|
cinfo->cconvert = &cconvert->pub;
|
||||||
|
cconvert->pub.start_pass = start_pass_dcolor;
|
||||||
|
|
||||||
|
/* Make sure num_components agrees with jpeg_color_space */
|
||||||
|
switch (cinfo->jpeg_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
if (cinfo->num_components != 1)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_RGB:
|
||||||
|
case JCS_YCbCr:
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
if (cinfo->num_components != 3)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_CMYK:
|
||||||
|
case JCS_YCCK:
|
||||||
|
if (cinfo->num_components != 4)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
break;
|
||||||
|
|
||||||
|
default: /* JCS_UNKNOWN can be anything */
|
||||||
|
if (cinfo->num_components < 1)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Support color transform only for RGB colorspaces */
|
||||||
|
if (cinfo->color_transform &&
|
||||||
|
cinfo->jpeg_color_space != JCS_RGB &&
|
||||||
|
cinfo->jpeg_color_space != JCS_BG_RGB)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
|
||||||
|
/* Set out_color_components and conversion method based on requested space.
|
||||||
|
* Also adjust the component_needed flags for any unused components,
|
||||||
|
* so that earlier pipeline stages can avoid useless computation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
switch (cinfo->out_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
cinfo->out_color_components = 1;
|
||||||
|
switch (cinfo->jpeg_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
case JCS_YCbCr:
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
cconvert->pub.color_convert = grayscale_convert;
|
||||||
|
/* For color->grayscale conversion, only the Y (0) component is needed */
|
||||||
|
for (ci = 1; ci < cinfo->num_components; ci++)
|
||||||
|
cinfo->comp_info[ci].component_needed = FALSE;
|
||||||
|
break;
|
||||||
|
case JCS_RGB:
|
||||||
|
switch (cinfo->color_transform) {
|
||||||
|
case JCT_NONE:
|
||||||
|
cconvert->pub.color_convert = rgb_gray_convert;
|
||||||
|
break;
|
||||||
|
case JCT_SUBTRACT_GREEN:
|
||||||
|
cconvert->pub.color_convert = rgb1_gray_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
build_rgb_y_table(cinfo);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_RGB:
|
||||||
|
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||||
|
switch (cinfo->jpeg_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
cconvert->pub.color_convert = gray_rgb_convert;
|
||||||
|
break;
|
||||||
|
case JCS_YCbCr:
|
||||||
|
cconvert->pub.color_convert = ycc_rgb_convert;
|
||||||
|
build_ycc_rgb_table(cinfo);
|
||||||
|
break;
|
||||||
|
case JCS_BG_YCC:
|
||||||
|
cconvert->pub.color_convert = ycc_rgb_convert;
|
||||||
|
build_bg_ycc_rgb_table(cinfo);
|
||||||
|
break;
|
||||||
|
case JCS_RGB:
|
||||||
|
switch (cinfo->color_transform) {
|
||||||
|
case JCT_NONE:
|
||||||
|
cconvert->pub.color_convert = rgb_convert;
|
||||||
|
break;
|
||||||
|
case JCT_SUBTRACT_GREEN:
|
||||||
|
cconvert->pub.color_convert = rgb1_rgb_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
if (cinfo->jpeg_color_space != JCS_BG_RGB)
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||||
|
switch (cinfo->color_transform) {
|
||||||
|
case JCT_NONE:
|
||||||
|
cconvert->pub.color_convert = rgb_convert;
|
||||||
|
break;
|
||||||
|
case JCT_SUBTRACT_GREEN:
|
||||||
|
cconvert->pub.color_convert = rgb1_rgb_convert;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_CMYK:
|
||||||
|
if (cinfo->jpeg_color_space != JCS_YCCK)
|
||||||
|
goto def_label;
|
||||||
|
cinfo->out_color_components = 4;
|
||||||
|
cconvert->pub.color_convert = ycck_cmyk_convert;
|
||||||
|
build_ycc_rgb_table(cinfo);
|
||||||
|
break;
|
||||||
|
|
||||||
|
case JCS_YCCK:
|
||||||
|
if (cinfo->jpeg_color_space != JCS_CMYK ||
|
||||||
|
/* Support only YK part of YCCK for colorless output */
|
||||||
|
! cinfo->comp_info[0].component_needed ||
|
||||||
|
cinfo->comp_info[1].component_needed ||
|
||||||
|
cinfo->comp_info[2].component_needed ||
|
||||||
|
! cinfo->comp_info[3].component_needed)
|
||||||
|
goto def_label;
|
||||||
|
cinfo->out_color_components = 2;
|
||||||
|
/* Need all components on input side */
|
||||||
|
cinfo->comp_info[1].component_needed = TRUE;
|
||||||
|
cinfo->comp_info[2].component_needed = TRUE;
|
||||||
|
cconvert->pub.color_convert = cmyk_yk_convert;
|
||||||
|
build_rgb_y_table(cinfo);
|
||||||
|
break;
|
||||||
|
|
||||||
|
default: def_label: /* permit null conversion to same output space */
|
||||||
|
if (cinfo->out_color_space != cinfo->jpeg_color_space)
|
||||||
|
/* unsupported non-null conversion */
|
||||||
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||||
|
i = 0;
|
||||||
|
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||||
|
if (cinfo->comp_info[ci].component_needed)
|
||||||
|
i++; /* count output color components */
|
||||||
|
cinfo->out_color_components = i;
|
||||||
|
cconvert->pub.color_convert = null_convert;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cinfo->quantize_colors)
|
||||||
|
cinfo->output_components = 1; /* single colormapped output component */
|
||||||
|
else
|
||||||
|
cinfo->output_components = cinfo->out_color_components;
|
||||||
|
}
|
409
dep/libjpeg/src/jdct.h
Normal file
409
dep/libjpeg/src/jdct.h
Normal file
|
@ -0,0 +1,409 @@
|
||||||
|
/*
|
||||||
|
* jdct.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2002-2023 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This include file contains common declarations for the forward and
|
||||||
|
* inverse DCT modules. These declarations are private to the DCT managers
|
||||||
|
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
||||||
|
* The individual DCT algorithms are kept in separate files to ease
|
||||||
|
* machine-dependent tuning (e.g., assembly coding).
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* A forward DCT routine is given a pointer to an input sample array and
|
||||||
|
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed
|
||||||
|
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
|
||||||
|
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an
|
||||||
|
* array of type FAST_FLOAT, instead.)
|
||||||
|
* The input data is to be fetched from the sample array starting at a
|
||||||
|
* specified column. (Any row offset needed will be applied to the array
|
||||||
|
* pointer before it is passed to the FDCT code.)
|
||||||
|
* Note that the number of samples fetched by the FDCT routine is
|
||||||
|
* DCT_h_scaled_size * DCT_v_scaled_size.
|
||||||
|
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
||||||
|
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
||||||
|
* convention improves accuracy in integer implementations and saves some
|
||||||
|
* work in floating-point ones.
|
||||||
|
* Quantization of the output coefficients is done by jcdctmgr.c.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
typedef int DCTELEM; /* 16 or 32 bits is fine */
|
||||||
|
#else
|
||||||
|
typedef INT32 DCTELEM; /* must have 32 bits */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
|
||||||
|
JSAMPARRAY sample_data,
|
||||||
|
JDIMENSION start_col));
|
||||||
|
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
|
||||||
|
JSAMPARRAY sample_data,
|
||||||
|
JDIMENSION start_col));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
||||||
|
* to an output sample array. The routine must dequantize the input data as
|
||||||
|
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
||||||
|
* pointed to by compptr->dct_table. The output data is to be placed into the
|
||||||
|
* sample array starting at a specified column. (Any row offset needed will
|
||||||
|
* be applied to the array pointer before it is passed to the IDCT code.)
|
||||||
|
* Note that the number of samples emitted by the IDCT routine is
|
||||||
|
* DCT_h_scaled_size * DCT_v_scaled_size.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Each IDCT routine has its own ideas about the best dct_table element type.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
||||||
|
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
||||||
|
#else
|
||||||
|
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
||||||
|
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
||||||
|
#endif
|
||||||
|
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Each IDCT routine is responsible for range-limiting its results and
|
||||||
|
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
||||||
|
* be quite far out of range if the input data is corrupt, so a bulletproof
|
||||||
|
* range-limiting step is required. We use a mask-and-table-lookup method
|
||||||
|
* to do the combined operations quickly, assuming that RANGE_CENTER
|
||||||
|
* (defined in jpegint.h) is a power of 2. See the comments with
|
||||||
|
* prepare_range_limit_table (in jdmaster.c) for more info.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define RANGE_MASK (RANGE_CENTER * 2 - 1)
|
||||||
|
#define RANGE_SUBSET (RANGE_CENTER - CENTERJSAMPLE)
|
||||||
|
|
||||||
|
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit - RANGE_SUBSET)
|
||||||
|
|
||||||
|
|
||||||
|
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||||
|
|
||||||
|
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||||
|
#define jpeg_fdct_islow jFDislow
|
||||||
|
#define jpeg_fdct_ifast jFDifast
|
||||||
|
#define jpeg_fdct_float jFDfloat
|
||||||
|
#define jpeg_fdct_7x7 jFD7x7
|
||||||
|
#define jpeg_fdct_6x6 jFD6x6
|
||||||
|
#define jpeg_fdct_5x5 jFD5x5
|
||||||
|
#define jpeg_fdct_4x4 jFD4x4
|
||||||
|
#define jpeg_fdct_3x3 jFD3x3
|
||||||
|
#define jpeg_fdct_2x2 jFD2x2
|
||||||
|
#define jpeg_fdct_1x1 jFD1x1
|
||||||
|
#define jpeg_fdct_9x9 jFD9x9
|
||||||
|
#define jpeg_fdct_10x10 jFD10x10
|
||||||
|
#define jpeg_fdct_11x11 jFD11x11
|
||||||
|
#define jpeg_fdct_12x12 jFD12x12
|
||||||
|
#define jpeg_fdct_13x13 jFD13x13
|
||||||
|
#define jpeg_fdct_14x14 jFD14x14
|
||||||
|
#define jpeg_fdct_15x15 jFD15x15
|
||||||
|
#define jpeg_fdct_16x16 jFD16x16
|
||||||
|
#define jpeg_fdct_16x8 jFD16x8
|
||||||
|
#define jpeg_fdct_14x7 jFD14x7
|
||||||
|
#define jpeg_fdct_12x6 jFD12x6
|
||||||
|
#define jpeg_fdct_10x5 jFD10x5
|
||||||
|
#define jpeg_fdct_8x4 jFD8x4
|
||||||
|
#define jpeg_fdct_6x3 jFD6x3
|
||||||
|
#define jpeg_fdct_4x2 jFD4x2
|
||||||
|
#define jpeg_fdct_2x1 jFD2x1
|
||||||
|
#define jpeg_fdct_8x16 jFD8x16
|
||||||
|
#define jpeg_fdct_7x14 jFD7x14
|
||||||
|
#define jpeg_fdct_6x12 jFD6x12
|
||||||
|
#define jpeg_fdct_5x10 jFD5x10
|
||||||
|
#define jpeg_fdct_4x8 jFD4x8
|
||||||
|
#define jpeg_fdct_3x6 jFD3x6
|
||||||
|
#define jpeg_fdct_2x4 jFD2x4
|
||||||
|
#define jpeg_fdct_1x2 jFD1x2
|
||||||
|
#define jpeg_idct_islow jRDislow
|
||||||
|
#define jpeg_idct_ifast jRDifast
|
||||||
|
#define jpeg_idct_float jRDfloat
|
||||||
|
#define jpeg_idct_7x7 jRD7x7
|
||||||
|
#define jpeg_idct_6x6 jRD6x6
|
||||||
|
#define jpeg_idct_5x5 jRD5x5
|
||||||
|
#define jpeg_idct_4x4 jRD4x4
|
||||||
|
#define jpeg_idct_3x3 jRD3x3
|
||||||
|
#define jpeg_idct_2x2 jRD2x2
|
||||||
|
#define jpeg_idct_1x1 jRD1x1
|
||||||
|
#define jpeg_idct_9x9 jRD9x9
|
||||||
|
#define jpeg_idct_10x10 jRD10x10
|
||||||
|
#define jpeg_idct_11x11 jRD11x11
|
||||||
|
#define jpeg_idct_12x12 jRD12x12
|
||||||
|
#define jpeg_idct_13x13 jRD13x13
|
||||||
|
#define jpeg_idct_14x14 jRD14x14
|
||||||
|
#define jpeg_idct_15x15 jRD15x15
|
||||||
|
#define jpeg_idct_16x16 jRD16x16
|
||||||
|
#define jpeg_idct_16x8 jRD16x8
|
||||||
|
#define jpeg_idct_14x7 jRD14x7
|
||||||
|
#define jpeg_idct_12x6 jRD12x6
|
||||||
|
#define jpeg_idct_10x5 jRD10x5
|
||||||
|
#define jpeg_idct_8x4 jRD8x4
|
||||||
|
#define jpeg_idct_6x3 jRD6x3
|
||||||
|
#define jpeg_idct_4x2 jRD4x2
|
||||||
|
#define jpeg_idct_2x1 jRD2x1
|
||||||
|
#define jpeg_idct_8x16 jRD8x16
|
||||||
|
#define jpeg_idct_7x14 jRD7x14
|
||||||
|
#define jpeg_idct_6x12 jRD6x12
|
||||||
|
#define jpeg_idct_5x10 jRD5x10
|
||||||
|
#define jpeg_idct_4x8 jRD4x8
|
||||||
|
#define jpeg_idct_3x6 jRD3x6
|
||||||
|
#define jpeg_idct_2x4 jRD2x4
|
||||||
|
#define jpeg_idct_1x2 jRD1x2
|
||||||
|
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||||
|
|
||||||
|
/* Extern declarations for the forward and inverse DCT routines. */
|
||||||
|
|
||||||
|
EXTERN(void) jpeg_fdct_islow
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_ifast
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_float
|
||||||
|
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_7x7
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_6x6
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_5x5
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_4x4
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_3x3
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_2x2
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_1x1
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_9x9
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_10x10
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_11x11
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_12x12
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_13x13
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_14x14
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_15x15
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_16x16
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_16x8
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_14x7
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_12x6
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_10x5
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_8x4
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_6x3
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_4x2
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_2x1
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_8x16
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_7x14
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_6x12
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_5x10
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_4x8
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_3x6
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_2x4
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
EXTERN(void) jpeg_fdct_1x2
|
||||||
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||||
|
|
||||||
|
EXTERN(void) jpeg_idct_islow
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_ifast
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_float
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_7x7
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_6x6
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_5x5
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_4x4
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_3x3
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_2x2
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_1x1
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_9x9
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_10x10
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_11x11
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_12x12
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_13x13
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_14x14
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_15x15
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_16x16
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_16x8
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_14x7
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_12x6
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_10x5
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_8x4
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_6x3
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_4x2
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_2x1
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_8x16
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_7x14
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_6x12
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_5x10
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_4x8
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_3x6
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_2x4
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
EXTERN(void) jpeg_idct_1x2
|
||||||
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Macros for handling fixed-point arithmetic; these are used by many
|
||||||
|
* but not all of the DCT/IDCT modules.
|
||||||
|
*
|
||||||
|
* All values are expected to be of type INT32.
|
||||||
|
* Fractional constants are scaled left by CONST_BITS bits.
|
||||||
|
* CONST_BITS is defined within each module using these macros,
|
||||||
|
* and may differ from one module to the next.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define ONE ((INT32) 1)
|
||||||
|
#define CONST_SCALE (ONE << CONST_BITS)
|
||||||
|
|
||||||
|
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||||
|
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
||||||
|
* thus causing a lot of useless floating-point operations at run time.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
||||||
|
|
||||||
|
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||||
|
* This macro is used only when the two inputs will actually be no more than
|
||||||
|
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
||||||
|
* full 32x32 multiply. This provides a useful speedup on many machines.
|
||||||
|
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
||||||
|
* in C, but some C compilers will do the right thing if you provide the
|
||||||
|
* correct combination of casts.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||||
|
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
||||||
|
#endif
|
||||||
|
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
||||||
|
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef MULTIPLY16C16 /* default definition */
|
||||||
|
#define MULTIPLY16C16(var,const) ((var) * (const))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Same except both inputs are variables. */
|
||||||
|
|
||||||
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||||
|
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef MULTIPLY16V16 /* default definition */
|
||||||
|
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Like RIGHT_SHIFT, but applies to a DCTELEM.
|
||||||
|
* We assume that int right shift is unsigned if INT32 right shift is.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||||
|
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
||||||
|
#else
|
||||||
|
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
||||||
|
#endif
|
||||||
|
#define IRIGHT_SHIFT(x,shft) \
|
||||||
|
((ishift_temp = (x)) < 0 ? \
|
||||||
|
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||||||
|
(ishift_temp >> (shft)))
|
||||||
|
#else
|
||||||
|
#define ISHIFT_TEMPS
|
||||||
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||||
|
#endif
|
384
dep/libjpeg/src/jddctmgr.c
Normal file
384
dep/libjpeg/src/jddctmgr.c
Normal file
|
@ -0,0 +1,384 @@
|
||||||
|
/*
|
||||||
|
* jddctmgr.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2002-2013 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the inverse-DCT management logic.
|
||||||
|
* This code selects a particular IDCT implementation to be used,
|
||||||
|
* and it performs related housekeeping chores. No code in this file
|
||||||
|
* is executed per IDCT step, only during output pass setup.
|
||||||
|
*
|
||||||
|
* Note that the IDCT routines are responsible for performing coefficient
|
||||||
|
* dequantization as well as the IDCT proper. This module sets up the
|
||||||
|
* dequantization multiplier table needed by the IDCT routine.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The decompressor input side (jdinput.c) saves away the appropriate
|
||||||
|
* quantization table for each component at the start of the first scan
|
||||||
|
* involving that component. (This is necessary in order to correctly
|
||||||
|
* decode files that reuse Q-table slots.)
|
||||||
|
* When we are ready to make an output pass, the saved Q-table is converted
|
||||||
|
* to a multiplier table that will actually be used by the IDCT routine.
|
||||||
|
* The multiplier table contents are IDCT-method-dependent. To support
|
||||||
|
* application changes in IDCT method between scans, we can remake the
|
||||||
|
* multiplier tables if necessary.
|
||||||
|
* In buffered-image mode, the first output pass may occur before any data
|
||||||
|
* has been seen for some components, and thus before their Q-tables have
|
||||||
|
* been saved away. To handle this case, multiplier tables are preset
|
||||||
|
* to zeroes; the result of the IDCT will be a neutral gray level.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Private subobject for this module */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_inverse_dct pub; /* public fields */
|
||||||
|
|
||||||
|
/* This array contains the IDCT method code that each multiplier table
|
||||||
|
* is currently set up for, or -1 if it's not yet set up.
|
||||||
|
* The actual multiplier tables are pointed to by dct_table in the
|
||||||
|
* per-component comp_info structures.
|
||||||
|
*/
|
||||||
|
int cur_method[MAX_COMPONENTS];
|
||||||
|
} my_idct_controller;
|
||||||
|
|
||||||
|
typedef my_idct_controller * my_idct_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Allocated multiplier tables: big enough for any supported variant */
|
||||||
|
|
||||||
|
typedef union {
|
||||||
|
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
||||||
|
#endif
|
||||||
|
} multiplier_table;
|
||||||
|
|
||||||
|
|
||||||
|
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||||
|
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||||
|
*/
|
||||||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||||||
|
#define PROVIDE_ISLOW_TABLES
|
||||||
|
#else
|
||||||
|
#ifdef IDCT_SCALING_SUPPORTED
|
||||||
|
#define PROVIDE_ISLOW_TABLES
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare for an output pass.
|
||||||
|
* Here we select the proper IDCT routine for each component and build
|
||||||
|
* a matching multiplier table.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
||||||
|
int ci, i;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
int method = 0;
|
||||||
|
inverse_DCT_method_ptr method_ptr = NULL;
|
||||||
|
JQUANT_TBL * qtbl;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Select the proper IDCT routine for this component's scaling */
|
||||||
|
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
||||||
|
#ifdef IDCT_SCALING_SUPPORTED
|
||||||
|
case ((1 << 8) + 1):
|
||||||
|
method_ptr = jpeg_idct_1x1;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((2 << 8) + 2):
|
||||||
|
method_ptr = jpeg_idct_2x2;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((3 << 8) + 3):
|
||||||
|
method_ptr = jpeg_idct_3x3;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((4 << 8) + 4):
|
||||||
|
method_ptr = jpeg_idct_4x4;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((5 << 8) + 5):
|
||||||
|
method_ptr = jpeg_idct_5x5;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((6 << 8) + 6):
|
||||||
|
method_ptr = jpeg_idct_6x6;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((7 << 8) + 7):
|
||||||
|
method_ptr = jpeg_idct_7x7;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((9 << 8) + 9):
|
||||||
|
method_ptr = jpeg_idct_9x9;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((10 << 8) + 10):
|
||||||
|
method_ptr = jpeg_idct_10x10;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((11 << 8) + 11):
|
||||||
|
method_ptr = jpeg_idct_11x11;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((12 << 8) + 12):
|
||||||
|
method_ptr = jpeg_idct_12x12;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((13 << 8) + 13):
|
||||||
|
method_ptr = jpeg_idct_13x13;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((14 << 8) + 14):
|
||||||
|
method_ptr = jpeg_idct_14x14;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((15 << 8) + 15):
|
||||||
|
method_ptr = jpeg_idct_15x15;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((16 << 8) + 16):
|
||||||
|
method_ptr = jpeg_idct_16x16;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((16 << 8) + 8):
|
||||||
|
method_ptr = jpeg_idct_16x8;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((14 << 8) + 7):
|
||||||
|
method_ptr = jpeg_idct_14x7;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((12 << 8) + 6):
|
||||||
|
method_ptr = jpeg_idct_12x6;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((10 << 8) + 5):
|
||||||
|
method_ptr = jpeg_idct_10x5;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((8 << 8) + 4):
|
||||||
|
method_ptr = jpeg_idct_8x4;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((6 << 8) + 3):
|
||||||
|
method_ptr = jpeg_idct_6x3;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((4 << 8) + 2):
|
||||||
|
method_ptr = jpeg_idct_4x2;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((2 << 8) + 1):
|
||||||
|
method_ptr = jpeg_idct_2x1;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((8 << 8) + 16):
|
||||||
|
method_ptr = jpeg_idct_8x16;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((7 << 8) + 14):
|
||||||
|
method_ptr = jpeg_idct_7x14;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((6 << 8) + 12):
|
||||||
|
method_ptr = jpeg_idct_6x12;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((5 << 8) + 10):
|
||||||
|
method_ptr = jpeg_idct_5x10;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((4 << 8) + 8):
|
||||||
|
method_ptr = jpeg_idct_4x8;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((3 << 8) + 6):
|
||||||
|
method_ptr = jpeg_idct_3x6;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((2 << 8) + 4):
|
||||||
|
method_ptr = jpeg_idct_2x4;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
case ((1 << 8) + 2):
|
||||||
|
method_ptr = jpeg_idct_1x2;
|
||||||
|
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
case ((DCTSIZE << 8) + DCTSIZE):
|
||||||
|
switch (cinfo->dct_method) {
|
||||||
|
#ifdef DCT_ISLOW_SUPPORTED
|
||||||
|
case JDCT_ISLOW:
|
||||||
|
method_ptr = jpeg_idct_islow;
|
||||||
|
method = JDCT_ISLOW;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
case JDCT_IFAST:
|
||||||
|
method_ptr = jpeg_idct_ifast;
|
||||||
|
method = JDCT_IFAST;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
case JDCT_FLOAT:
|
||||||
|
method_ptr = jpeg_idct_float;
|
||||||
|
method = JDCT_FLOAT;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||||
|
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
idct->pub.inverse_DCT[ci] = method_ptr;
|
||||||
|
/* Create multiplier table from quant table.
|
||||||
|
* However, we can skip this if the component is uninteresting
|
||||||
|
* or if we already built the table. Also, if no quant table
|
||||||
|
* has yet been saved for the component, we leave the
|
||||||
|
* multiplier table all-zero; we'll be reading zeroes from the
|
||||||
|
* coefficient controller's buffer anyway.
|
||||||
|
*/
|
||||||
|
if (! compptr->component_needed || idct->cur_method[ci] == method)
|
||||||
|
continue;
|
||||||
|
qtbl = compptr->quant_table;
|
||||||
|
if (qtbl == NULL) /* happens if no data yet for component */
|
||||||
|
continue;
|
||||||
|
idct->cur_method[ci] = method;
|
||||||
|
switch (method) {
|
||||||
|
#ifdef PROVIDE_ISLOW_TABLES
|
||||||
|
case JDCT_ISLOW:
|
||||||
|
{
|
||||||
|
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||||
|
* coefficients, but are stored as ints to ensure access efficiency.
|
||||||
|
*/
|
||||||
|
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
case JDCT_IFAST:
|
||||||
|
{
|
||||||
|
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||||
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||||
|
* scalefactor[0] = 1
|
||||||
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||||
|
* For integer operation, the multiplier table is to be scaled by
|
||||||
|
* IFAST_SCALE_BITS.
|
||||||
|
*/
|
||||||
|
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||||
|
#define CONST_BITS 14
|
||||||
|
static const INT16 aanscales[DCTSIZE2] = {
|
||||||
|
/* precomputed values scaled up by 14 bits */
|
||||||
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||||
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||||
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||||
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||||
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||||
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||||
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||||
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||||
|
};
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
for (i = 0; i < DCTSIZE2; i++) {
|
||||||
|
ifmtbl[i] = (IFAST_MULT_TYPE)
|
||||||
|
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||||
|
(INT32) aanscales[i]),
|
||||||
|
CONST_BITS-IFAST_SCALE_BITS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
case JDCT_FLOAT:
|
||||||
|
{
|
||||||
|
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||||
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||||
|
* scalefactor[0] = 1
|
||||||
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||||
|
* We apply a further scale factor of 1/8.
|
||||||
|
*/
|
||||||
|
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||||
|
int row, col;
|
||||||
|
static const double aanscalefactor[DCTSIZE] = {
|
||||||
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||||
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||||
|
};
|
||||||
|
|
||||||
|
i = 0;
|
||||||
|
for (row = 0; row < DCTSIZE; row++) {
|
||||||
|
for (col = 0; col < DCTSIZE; col++) {
|
||||||
|
fmtbl[i] = (FLOAT_MULT_TYPE)
|
||||||
|
((double) qtbl->quantval[i] *
|
||||||
|
aanscalefactor[row] * aanscalefactor[col] * 0.125);
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize IDCT manager.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_inverse_dct (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_idct_ptr idct;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
idct = (my_idct_ptr)
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
SIZEOF(my_idct_controller));
|
||||||
|
cinfo->idct = &idct->pub;
|
||||||
|
idct->pub.start_pass = start_pass;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Allocate and pre-zero a multiplier table for each component */
|
||||||
|
compptr->dct_table =
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
SIZEOF(multiplier_table));
|
||||||
|
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
||||||
|
/* Mark multiplier table not yet set up for any method */
|
||||||
|
idct->cur_method[ci] = -1;
|
||||||
|
}
|
||||||
|
}
|
1559
dep/libjpeg/src/jdhuff.c
Normal file
1559
dep/libjpeg/src/jdhuff.c
Normal file
File diff suppressed because it is too large
Load diff
657
dep/libjpeg/src/jdinput.c
Normal file
657
dep/libjpeg/src/jdinput.c
Normal file
|
@ -0,0 +1,657 @@
|
||||||
|
/*
|
||||||
|
* jdinput.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 2002-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains input control logic for the JPEG decompressor.
|
||||||
|
* These routines are concerned with controlling the decompressor's input
|
||||||
|
* processing (marker reading and coefficient decoding). The actual input
|
||||||
|
* reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Private state */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_input_controller pub; /* public fields */
|
||||||
|
|
||||||
|
int inheaders; /* Nonzero until first SOS is reached */
|
||||||
|
} my_input_controller;
|
||||||
|
|
||||||
|
typedef my_input_controller * my_inputctl_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Routines to calculate various quantities related to the size of the image.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compute output image dimensions and related values.
|
||||||
|
* NOTE: this is exported for possible use by application.
|
||||||
|
* Hence it mustn't do anything that can't be done twice.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_core_output_dimensions (j_decompress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before master selection phase.
|
||||||
|
* This function is used for transcoding and full decompression.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
#ifdef IDCT_SCALING_SUPPORTED
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Compute actual output image dimensions and DCT scaling choices. */
|
||||||
|
if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) {
|
||||||
|
/* Provide 1/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 1;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 1;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) {
|
||||||
|
/* Provide 2/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 2;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 2;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) {
|
||||||
|
/* Provide 3/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 3;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 3;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) {
|
||||||
|
/* Provide 4/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 4;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 4;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) {
|
||||||
|
/* Provide 5/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 5;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 5;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) {
|
||||||
|
/* Provide 6/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 6;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 6;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) {
|
||||||
|
/* Provide 7/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 7;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 7;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) {
|
||||||
|
/* Provide 8/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 8;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 8;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) {
|
||||||
|
/* Provide 9/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 9;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 9;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) {
|
||||||
|
/* Provide 10/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 10;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 10;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) {
|
||||||
|
/* Provide 11/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 11;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 11;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) {
|
||||||
|
/* Provide 12/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 12;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 12;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) {
|
||||||
|
/* Provide 13/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 13;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 13;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) {
|
||||||
|
/* Provide 14/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 14;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 14;
|
||||||
|
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) {
|
||||||
|
/* Provide 15/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 15;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 15;
|
||||||
|
} else {
|
||||||
|
/* Provide 16/block_size scaling */
|
||||||
|
cinfo->output_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size);
|
||||||
|
cinfo->output_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size);
|
||||||
|
cinfo->min_DCT_h_scaled_size = 16;
|
||||||
|
cinfo->min_DCT_v_scaled_size = 16;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Recompute dimensions of components */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size;
|
||||||
|
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
#else /* !IDCT_SCALING_SUPPORTED */
|
||||||
|
|
||||||
|
/* Hardwire it to "no scaling" */
|
||||||
|
cinfo->output_width = cinfo->image_width;
|
||||||
|
cinfo->output_height = cinfo->image_height;
|
||||||
|
/* initial_setup has already initialized DCT_scaled_size,
|
||||||
|
* and has computed unscaled downsampled_width and downsampled_height.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#endif /* IDCT_SCALING_SUPPORTED */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
initial_setup (j_decompress_ptr cinfo)
|
||||||
|
/* Called once, when first SOS marker is reached */
|
||||||
|
{
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Make sure image isn't bigger than I can handle */
|
||||||
|
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
|
||||||
|
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
|
||||||
|
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||||
|
|
||||||
|
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */
|
||||||
|
if (cinfo->data_precision < 8 || cinfo->data_precision > 12)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||||
|
|
||||||
|
/* Check that number of components won't exceed internal array sizes */
|
||||||
|
if (cinfo->num_components > MAX_COMPONENTS)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||||
|
MAX_COMPONENTS);
|
||||||
|
|
||||||
|
/* Compute maximum sampling factors; check factor validity */
|
||||||
|
cinfo->max_h_samp_factor = 1;
|
||||||
|
cinfo->max_v_samp_factor = 1;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||||
|
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||||
|
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||||
|
compptr->h_samp_factor);
|
||||||
|
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||||
|
compptr->v_samp_factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Derive block_size, natural_order, and lim_Se */
|
||||||
|
if (cinfo->is_baseline || (cinfo->progressive_mode &&
|
||||||
|
cinfo->comps_in_scan)) { /* no pseudo SOS marker */
|
||||||
|
cinfo->block_size = DCTSIZE;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
} else
|
||||||
|
switch (cinfo->Se) {
|
||||||
|
case (1*1-1):
|
||||||
|
cinfo->block_size = 1;
|
||||||
|
cinfo->natural_order = jpeg_natural_order; /* not needed */
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (2*2-1):
|
||||||
|
cinfo->block_size = 2;
|
||||||
|
cinfo->natural_order = jpeg_natural_order2;
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (3*3-1):
|
||||||
|
cinfo->block_size = 3;
|
||||||
|
cinfo->natural_order = jpeg_natural_order3;
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (4*4-1):
|
||||||
|
cinfo->block_size = 4;
|
||||||
|
cinfo->natural_order = jpeg_natural_order4;
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (5*5-1):
|
||||||
|
cinfo->block_size = 5;
|
||||||
|
cinfo->natural_order = jpeg_natural_order5;
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (6*6-1):
|
||||||
|
cinfo->block_size = 6;
|
||||||
|
cinfo->natural_order = jpeg_natural_order6;
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (7*7-1):
|
||||||
|
cinfo->block_size = 7;
|
||||||
|
cinfo->natural_order = jpeg_natural_order7;
|
||||||
|
cinfo->lim_Se = cinfo->Se;
|
||||||
|
break;
|
||||||
|
case (8*8-1):
|
||||||
|
cinfo->block_size = 8;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (9*9-1):
|
||||||
|
cinfo->block_size = 9;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (10*10-1):
|
||||||
|
cinfo->block_size = 10;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (11*11-1):
|
||||||
|
cinfo->block_size = 11;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (12*12-1):
|
||||||
|
cinfo->block_size = 12;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (13*13-1):
|
||||||
|
cinfo->block_size = 13;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (14*14-1):
|
||||||
|
cinfo->block_size = 14;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (15*15-1):
|
||||||
|
cinfo->block_size = 15;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
case (16*16-1):
|
||||||
|
cinfo->block_size = 16;
|
||||||
|
cinfo->natural_order = jpeg_natural_order;
|
||||||
|
cinfo->lim_Se = DCTSIZE2-1;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||||
|
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
|
||||||
|
* In the full decompressor,
|
||||||
|
* this will be overridden by jpeg_calc_output_dimensions in jdmaster.c;
|
||||||
|
* but in the transcoder,
|
||||||
|
* jpeg_calc_output_dimensions is not used, so we must do it here.
|
||||||
|
*/
|
||||||
|
cinfo->min_DCT_h_scaled_size = cinfo->block_size;
|
||||||
|
cinfo->min_DCT_v_scaled_size = cinfo->block_size;
|
||||||
|
|
||||||
|
/* Compute dimensions of components */
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
compptr->DCT_h_scaled_size = cinfo->block_size;
|
||||||
|
compptr->DCT_v_scaled_size = cinfo->block_size;
|
||||||
|
/* Size in DCT blocks */
|
||||||
|
compptr->width_in_blocks = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||||
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
|
||||||
|
compptr->height_in_blocks = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||||
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
|
||||||
|
/* downsampled_width and downsampled_height will also be overridden by
|
||||||
|
* jdmaster.c if we are doing full decompression. The transcoder library
|
||||||
|
* doesn't use these values, but the calling application might.
|
||||||
|
*/
|
||||||
|
/* Size in samples */
|
||||||
|
compptr->downsampled_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||||
|
(long) cinfo->max_h_samp_factor);
|
||||||
|
compptr->downsampled_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||||
|
(long) cinfo->max_v_samp_factor);
|
||||||
|
/* Mark component needed, until color conversion says otherwise */
|
||||||
|
compptr->component_needed = TRUE;
|
||||||
|
/* Mark no quantization table yet saved for component */
|
||||||
|
compptr->quant_table = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Compute number of fully interleaved MCU rows. */
|
||||||
|
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height,
|
||||||
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
|
||||||
|
|
||||||
|
/* Decide whether file contains multiple scans */
|
||||||
|
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
|
||||||
|
cinfo->inputctl->has_multiple_scans = TRUE;
|
||||||
|
else
|
||||||
|
cinfo->inputctl->has_multiple_scans = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
per_scan_setup (j_decompress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before processing a JPEG scan */
|
||||||
|
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
|
||||||
|
{
|
||||||
|
int ci, mcublks, tmp;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
if (cinfo->comps_in_scan == 1) {
|
||||||
|
|
||||||
|
/* Noninterleaved (single-component) scan */
|
||||||
|
compptr = cinfo->cur_comp_info[0];
|
||||||
|
|
||||||
|
/* Overall image size in MCUs */
|
||||||
|
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||||
|
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||||
|
|
||||||
|
/* For noninterleaved scan, always one block per MCU */
|
||||||
|
compptr->MCU_width = 1;
|
||||||
|
compptr->MCU_height = 1;
|
||||||
|
compptr->MCU_blocks = 1;
|
||||||
|
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
|
||||||
|
compptr->last_col_width = 1;
|
||||||
|
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||||
|
* as the number of block rows present in the last iMCU row.
|
||||||
|
*/
|
||||||
|
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||||
|
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||||
|
compptr->last_row_height = tmp;
|
||||||
|
|
||||||
|
/* Prepare array describing MCU composition */
|
||||||
|
cinfo->blocks_in_MCU = 1;
|
||||||
|
cinfo->MCU_membership[0] = 0;
|
||||||
|
|
||||||
|
} else {
|
||||||
|
|
||||||
|
/* Interleaved (multi-component) scan */
|
||||||
|
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||||
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||||
|
MAX_COMPS_IN_SCAN);
|
||||||
|
|
||||||
|
/* Overall image size in MCUs */
|
||||||
|
cinfo->MCUs_per_row = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width,
|
||||||
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
|
||||||
|
cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows;
|
||||||
|
|
||||||
|
cinfo->blocks_in_MCU = 0;
|
||||||
|
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
/* Sampling factors give # of blocks of component in each MCU */
|
||||||
|
compptr->MCU_width = compptr->h_samp_factor;
|
||||||
|
compptr->MCU_height = compptr->v_samp_factor;
|
||||||
|
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||||
|
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
|
||||||
|
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||||
|
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||||
|
if (tmp == 0) tmp = compptr->MCU_width;
|
||||||
|
compptr->last_col_width = tmp;
|
||||||
|
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||||
|
if (tmp == 0) tmp = compptr->MCU_height;
|
||||||
|
compptr->last_row_height = tmp;
|
||||||
|
/* Prepare array describing MCU composition */
|
||||||
|
mcublks = compptr->MCU_blocks;
|
||||||
|
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||||
|
while (mcublks-- > 0) {
|
||||||
|
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Save away a copy of the Q-table referenced by each component present
|
||||||
|
* in the current scan, unless already saved during a prior scan.
|
||||||
|
*
|
||||||
|
* In a multiple-scan JPEG file, the encoder could assign different components
|
||||||
|
* the same Q-table slot number, but change table definitions between scans
|
||||||
|
* so that each component uses a different Q-table. (The IJG encoder is not
|
||||||
|
* currently capable of doing this, but other encoders might.) Since we want
|
||||||
|
* to be able to dequantize all the components at the end of the file, this
|
||||||
|
* means that we have to save away the table actually used for each component.
|
||||||
|
* We do this by copying the table at the start of the first scan containing
|
||||||
|
* the component.
|
||||||
|
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
|
||||||
|
* slot between scans of a component using that slot. If the encoder does so
|
||||||
|
* anyway, this decoder will simply use the Q-table values that were current
|
||||||
|
* at the start of the first scan for the component.
|
||||||
|
*
|
||||||
|
* The decompressor output side looks only at the saved quant tables,
|
||||||
|
* not at the current Q-table slots.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
latch_quant_tables (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
int ci, qtblno;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JQUANT_TBL * qtbl;
|
||||||
|
|
||||||
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||||
|
compptr = cinfo->cur_comp_info[ci];
|
||||||
|
/* No work if we already saved Q-table for this component */
|
||||||
|
if (compptr->quant_table != NULL)
|
||||||
|
continue;
|
||||||
|
/* Make sure specified quantization table is present */
|
||||||
|
qtblno = compptr->quant_tbl_no;
|
||||||
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||||
|
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||||
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||||
|
/* OK, save away the quantization table */
|
||||||
|
qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(JQUANT_TBL));
|
||||||
|
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
|
||||||
|
compptr->quant_table = qtbl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize the input modules to read a scan of compressed data.
|
||||||
|
* The first call to this is done by jdmaster.c after initializing
|
||||||
|
* the entire decompressor (during jpeg_start_decompress).
|
||||||
|
* Subsequent calls come from consume_markers, below.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_input_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
per_scan_setup(cinfo);
|
||||||
|
latch_quant_tables(cinfo);
|
||||||
|
(*cinfo->entropy->start_pass) (cinfo);
|
||||||
|
(*cinfo->coef->start_input_pass) (cinfo);
|
||||||
|
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up after inputting a compressed-data scan.
|
||||||
|
* This is called by the coefficient controller after it's read all
|
||||||
|
* the expected data of the scan.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
finish_input_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
(*cinfo->entropy->finish_pass) (cinfo);
|
||||||
|
cinfo->inputctl->consume_input = consume_markers;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Read JPEG markers before, between, or after compressed-data scans.
|
||||||
|
* Change state as necessary when a new scan is reached.
|
||||||
|
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||||
|
*
|
||||||
|
* The consume_input method pointer points either here or to the
|
||||||
|
* coefficient controller's consume_data routine, depending on whether
|
||||||
|
* we are reading a compressed data segment or inter-segment markers.
|
||||||
|
*
|
||||||
|
* Note: This function should NOT return a pseudo SOS marker (with zero
|
||||||
|
* component number) to the caller. A pseudo marker received by
|
||||||
|
* read_markers is processed and then skipped for other markers.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(int)
|
||||||
|
consume_markers (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||||
|
int val;
|
||||||
|
|
||||||
|
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
|
||||||
|
return JPEG_REACHED_EOI;
|
||||||
|
|
||||||
|
for (;;) { /* Loop to pass pseudo SOS marker */
|
||||||
|
val = (*cinfo->marker->read_markers) (cinfo);
|
||||||
|
|
||||||
|
switch (val) {
|
||||||
|
case JPEG_REACHED_SOS: /* Found SOS */
|
||||||
|
if (inputctl->inheaders) { /* 1st SOS */
|
||||||
|
if (inputctl->inheaders == 1)
|
||||||
|
initial_setup(cinfo);
|
||||||
|
if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */
|
||||||
|
inputctl->inheaders = 2;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
inputctl->inheaders = 0;
|
||||||
|
/* Note: start_input_pass must be called by jdmaster.c
|
||||||
|
* before any more input can be consumed. jdapimin.c is
|
||||||
|
* responsible for enforcing this sequencing.
|
||||||
|
*/
|
||||||
|
} else { /* 2nd or later SOS marker */
|
||||||
|
if (! inputctl->pub.has_multiple_scans)
|
||||||
|
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
|
||||||
|
if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */
|
||||||
|
break;
|
||||||
|
start_input_pass(cinfo);
|
||||||
|
}
|
||||||
|
return val;
|
||||||
|
case JPEG_REACHED_EOI: /* Found EOI */
|
||||||
|
inputctl->pub.eoi_reached = TRUE;
|
||||||
|
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
|
||||||
|
if (cinfo->marker->saw_SOF)
|
||||||
|
ERREXIT(cinfo, JERR_SOF_NO_SOS);
|
||||||
|
} else {
|
||||||
|
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||||
|
* if user set output_scan_number larger than number of scans.
|
||||||
|
*/
|
||||||
|
if (cinfo->output_scan_number > cinfo->input_scan_number)
|
||||||
|
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||||
|
}
|
||||||
|
return val;
|
||||||
|
case JPEG_SUSPENDED:
|
||||||
|
return val;
|
||||||
|
default:
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Reset state to begin a fresh datastream.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
reset_input_controller (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||||
|
|
||||||
|
inputctl->pub.consume_input = consume_markers;
|
||||||
|
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||||
|
inputctl->pub.eoi_reached = FALSE;
|
||||||
|
inputctl->inheaders = 1;
|
||||||
|
/* Reset other modules */
|
||||||
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||||
|
(*cinfo->marker->reset_marker_reader) (cinfo);
|
||||||
|
/* Reset progression state -- would be cleaner if entropy decoder did this */
|
||||||
|
cinfo->coef_bits = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize the input controller module.
|
||||||
|
* This is called only once, when the decompression object is created.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_input_controller (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_inputctl_ptr inputctl;
|
||||||
|
|
||||||
|
/* Create subobject in permanent pool */
|
||||||
|
inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_input_controller));
|
||||||
|
cinfo->inputctl = &inputctl->pub;
|
||||||
|
/* Initialize method pointers */
|
||||||
|
inputctl->pub.consume_input = consume_markers;
|
||||||
|
inputctl->pub.reset_input_controller = reset_input_controller;
|
||||||
|
inputctl->pub.start_input_pass = start_input_pass;
|
||||||
|
inputctl->pub.finish_input_pass = finish_input_pass;
|
||||||
|
/* Initialize state: can't use reset_input_controller since we don't
|
||||||
|
* want to try to reset other modules yet.
|
||||||
|
*/
|
||||||
|
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||||
|
inputctl->pub.eoi_reached = FALSE;
|
||||||
|
inputctl->inheaders = 1;
|
||||||
|
}
|
511
dep/libjpeg/src/jdmainct.c
Normal file
511
dep/libjpeg/src/jdmainct.c
Normal file
|
@ -0,0 +1,511 @@
|
||||||
|
/*
|
||||||
|
* jdmainct.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2002-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the main buffer controller for decompression.
|
||||||
|
* The main buffer lies between the JPEG decompressor proper and the
|
||||||
|
* post-processor; it holds downsampled data in the JPEG colorspace.
|
||||||
|
*
|
||||||
|
* Note that this code is bypassed in raw-data mode, since the application
|
||||||
|
* supplies the equivalent of the main buffer in that case.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* In the current system design, the main buffer need never be a full-image
|
||||||
|
* buffer; any full-height buffers will be found inside the coefficient or
|
||||||
|
* postprocessing controllers. Nonetheless, the main controller is not
|
||||||
|
* trivial. Its responsibility is to provide context rows for upsampling/
|
||||||
|
* rescaling, and doing this in an efficient fashion is a bit tricky.
|
||||||
|
*
|
||||||
|
* Postprocessor input data is counted in "row groups". A row group is
|
||||||
|
* defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
|
||||||
|
* sample rows of each component. (We require DCT_scaled_size values to be
|
||||||
|
* chosen such that these numbers are integers. In practice DCT_scaled_size
|
||||||
|
* values will likely be powers of two, so we actually have the stronger
|
||||||
|
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
|
||||||
|
* Upsampling will typically produce max_v_samp_factor pixel rows from each
|
||||||
|
* row group (times any additional scale factor that the upsampler is
|
||||||
|
* applying).
|
||||||
|
*
|
||||||
|
* The coefficient controller will deliver data to us one iMCU row at a time;
|
||||||
|
* each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or
|
||||||
|
* exactly min_DCT_v_scaled_size row groups. (This amount of data corresponds
|
||||||
|
* to one row of MCUs when the image is fully interleaved.) Note that the
|
||||||
|
* number of sample rows varies across components, but the number of row
|
||||||
|
* groups does not. Some garbage sample rows may be included in the last iMCU
|
||||||
|
* row at the bottom of the image.
|
||||||
|
*
|
||||||
|
* Depending on the vertical scaling algorithm used, the upsampler may need
|
||||||
|
* access to the sample row(s) above and below its current input row group.
|
||||||
|
* The upsampler is required to set need_context_rows TRUE at global selection
|
||||||
|
* time if so. When need_context_rows is FALSE, this controller can simply
|
||||||
|
* obtain one iMCU row at a time from the coefficient controller and dole it
|
||||||
|
* out as row groups to the postprocessor.
|
||||||
|
*
|
||||||
|
* When need_context_rows is TRUE, this controller guarantees that the buffer
|
||||||
|
* passed to postprocessing contains at least one row group's worth of samples
|
||||||
|
* above and below the row group(s) being processed. Note that the context
|
||||||
|
* rows "above" the first passed row group appear at negative row offsets in
|
||||||
|
* the passed buffer. At the top and bottom of the image, the required
|
||||||
|
* context rows are manufactured by duplicating the first or last real sample
|
||||||
|
* row; this avoids having special cases in the upsampling inner loops.
|
||||||
|
*
|
||||||
|
* The amount of context is fixed at one row group just because that's a
|
||||||
|
* convenient number for this controller to work with. The existing
|
||||||
|
* upsamplers really only need one sample row of context. An upsampler
|
||||||
|
* supporting arbitrary output rescaling might wish for more than one row
|
||||||
|
* group of context when shrinking the image; tough, we don't handle that.
|
||||||
|
* (This is justified by the assumption that downsizing will be handled mostly
|
||||||
|
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
|
||||||
|
* the upsample step needn't be much less than one.)
|
||||||
|
*
|
||||||
|
* To provide the desired context, we have to retain the last two row groups
|
||||||
|
* of one iMCU row while reading in the next iMCU row. (The last row group
|
||||||
|
* can't be processed until we have another row group for its below-context,
|
||||||
|
* and so we have to save the next-to-last group too for its above-context.)
|
||||||
|
* We could do this most simply by copying data around in our buffer, but
|
||||||
|
* that'd be very slow. We can avoid copying any data by creating a rather
|
||||||
|
* strange pointer structure. Here's how it works. We allocate a workspace
|
||||||
|
* consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number
|
||||||
|
* of row groups per iMCU row). We create two sets of redundant pointers to
|
||||||
|
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
|
||||||
|
* pointer lists look like this:
|
||||||
|
* M+1 M-1
|
||||||
|
* master pointer --> 0 master pointer --> 0
|
||||||
|
* 1 1
|
||||||
|
* ... ...
|
||||||
|
* M-3 M-3
|
||||||
|
* M-2 M
|
||||||
|
* M-1 M+1
|
||||||
|
* M M-2
|
||||||
|
* M+1 M-1
|
||||||
|
* 0 0
|
||||||
|
* We read alternate iMCU rows using each master pointer; thus the last two
|
||||||
|
* row groups of the previous iMCU row remain un-overwritten in the workspace.
|
||||||
|
* The pointer lists are set up so that the required context rows appear to
|
||||||
|
* be adjacent to the proper places when we pass the pointer lists to the
|
||||||
|
* upsampler.
|
||||||
|
*
|
||||||
|
* The above pictures describe the normal state of the pointer lists.
|
||||||
|
* At top and bottom of the image, we diddle the pointer lists to duplicate
|
||||||
|
* the first or last sample row as necessary (this is cheaper than copying
|
||||||
|
* sample rows around).
|
||||||
|
*
|
||||||
|
* This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1. In that
|
||||||
|
* situation each iMCU row provides only one row group so the buffering logic
|
||||||
|
* must be different (eg, we must read two iMCU rows before we can emit the
|
||||||
|
* first row group). For now, we simply do not support providing context
|
||||||
|
* rows when min_DCT_v_scaled_size is 1. That combination seems unlikely to
|
||||||
|
* be worth providing --- if someone wants a 1/8th-size preview, they probably
|
||||||
|
* want it quick and dirty, so a context-free upsampler is sufficient.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_d_main_controller pub; /* public fields */
|
||||||
|
|
||||||
|
/* Pointer to allocated workspace (M or M+2 row groups). */
|
||||||
|
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
|
||||||
|
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
|
||||||
|
|
||||||
|
/* Remaining fields are only used in the context case. */
|
||||||
|
|
||||||
|
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
|
||||||
|
|
||||||
|
/* These are the master pointers to the funny-order pointer lists. */
|
||||||
|
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
|
||||||
|
|
||||||
|
int whichptr; /* indicates which pointer set is now in use */
|
||||||
|
int context_state; /* process_data state machine status */
|
||||||
|
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
|
||||||
|
} my_main_controller;
|
||||||
|
|
||||||
|
typedef my_main_controller * my_main_ptr;
|
||||||
|
|
||||||
|
/* context_state values: */
|
||||||
|
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
|
||||||
|
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
|
||||||
|
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
METHODDEF(void) process_data_simple_main
|
||||||
|
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||||
|
METHODDEF(void) process_data_context_main
|
||||||
|
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
METHODDEF(void) process_data_crank_post
|
||||||
|
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
alloc_funny_pointers (j_decompress_ptr cinfo)
|
||||||
|
/* Allocate space for the funny pointer lists.
|
||||||
|
* This is done only once, not once per pass.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
int ci, rgroup;
|
||||||
|
int M = cinfo->min_DCT_v_scaled_size;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JSAMPARRAY xbuf;
|
||||||
|
|
||||||
|
/* Get top-level space for component array pointers.
|
||||||
|
* We alloc both arrays with one call to save a few cycles.
|
||||||
|
*/
|
||||||
|
mainp->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
|
||||||
|
mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue; /* skip uninteresting component */
|
||||||
|
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||||
|
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||||
|
* We alloc both pointer lists with one call to save a few cycles.
|
||||||
|
*/
|
||||||
|
xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo,
|
||||||
|
JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
|
||||||
|
xbuf += rgroup; /* want one row group at negative offsets */
|
||||||
|
mainp->xbuffer[0][ci] = xbuf;
|
||||||
|
xbuf += rgroup * (M + 4);
|
||||||
|
mainp->xbuffer[1][ci] = xbuf;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
make_funny_pointers (j_decompress_ptr cinfo)
|
||||||
|
/* Create the funny pointer lists discussed in the comments above.
|
||||||
|
* The actual workspace is already allocated (in mainp->buffer),
|
||||||
|
* and the space for the pointer lists is allocated too.
|
||||||
|
* This routine just fills in the curiously ordered lists.
|
||||||
|
* This will be repeated at the beginning of each pass.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
int ci, i, rgroup;
|
||||||
|
int M = cinfo->min_DCT_v_scaled_size;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JSAMPARRAY buf, xbuf0, xbuf1;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue; /* skip uninteresting component */
|
||||||
|
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||||
|
xbuf0 = mainp->xbuffer[0][ci];
|
||||||
|
xbuf1 = mainp->xbuffer[1][ci];
|
||||||
|
/* First copy the workspace pointers as-is */
|
||||||
|
buf = mainp->buffer[ci];
|
||||||
|
for (i = 0; i < rgroup * (M + 2); i++) {
|
||||||
|
xbuf0[i] = xbuf1[i] = buf[i];
|
||||||
|
}
|
||||||
|
/* In the second list, put the last four row groups in swapped order */
|
||||||
|
for (i = 0; i < rgroup * 2; i++) {
|
||||||
|
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
|
||||||
|
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
|
||||||
|
}
|
||||||
|
/* The wraparound pointers at top and bottom will be filled later
|
||||||
|
* (see set_wraparound_pointers, below). Initially we want the "above"
|
||||||
|
* pointers to duplicate the first actual data line. This only needs
|
||||||
|
* to happen in xbuffer[0].
|
||||||
|
*/
|
||||||
|
for (i = 0; i < rgroup; i++) {
|
||||||
|
xbuf0[i - rgroup] = xbuf0[0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
set_wraparound_pointers (j_decompress_ptr cinfo)
|
||||||
|
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||||
|
* This changes the pointer list state from top-of-image to the normal state.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
int ci, i, rgroup;
|
||||||
|
int M = cinfo->min_DCT_v_scaled_size;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JSAMPARRAY xbuf0, xbuf1;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue; /* skip uninteresting component */
|
||||||
|
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||||
|
xbuf0 = mainp->xbuffer[0][ci];
|
||||||
|
xbuf1 = mainp->xbuffer[1][ci];
|
||||||
|
for (i = 0; i < rgroup; i++) {
|
||||||
|
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
|
||||||
|
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
|
||||||
|
xbuf0[rgroup*(M+2) + i] = xbuf0[i];
|
||||||
|
xbuf1[rgroup*(M+2) + i] = xbuf1[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
set_bottom_pointers (j_decompress_ptr cinfo)
|
||||||
|
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||||
|
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
|
||||||
|
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
int ci, i, rgroup, iMCUheight, rows_left;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
JSAMPARRAY xbuf;
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue; /* skip uninteresting component */
|
||||||
|
/* Count sample rows in one iMCU row and in one row group */
|
||||||
|
iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
|
||||||
|
rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
|
||||||
|
/* Count nondummy sample rows remaining for this component */
|
||||||
|
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
|
||||||
|
if (rows_left == 0) rows_left = iMCUheight;
|
||||||
|
/* Count nondummy row groups. Should get same answer for each component,
|
||||||
|
* so we need only do it once.
|
||||||
|
*/
|
||||||
|
if (ci == 0) {
|
||||||
|
mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
|
||||||
|
}
|
||||||
|
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||||
|
* last partial rowgroup and ensures at least one full rowgroup of context.
|
||||||
|
*/
|
||||||
|
xbuf = mainp->xbuffer[mainp->whichptr][ci];
|
||||||
|
for (i = 0; i < rgroup * 2; i++) {
|
||||||
|
xbuf[rows_left + i] = xbuf[rows_left-1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
|
||||||
|
switch (pass_mode) {
|
||||||
|
case JBUF_PASS_THRU:
|
||||||
|
if (cinfo->upsample->need_context_rows) {
|
||||||
|
mainp->pub.process_data = process_data_context_main;
|
||||||
|
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
|
||||||
|
mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
|
||||||
|
mainp->context_state = CTX_PREPARE_FOR_IMCU;
|
||||||
|
mainp->iMCU_row_ctr = 0;
|
||||||
|
mainp->buffer_full = FALSE; /* Mark buffer empty */
|
||||||
|
} else {
|
||||||
|
/* Simple case with no context needed */
|
||||||
|
mainp->pub.process_data = process_data_simple_main;
|
||||||
|
mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
case JBUF_CRANK_DEST:
|
||||||
|
/* For last pass of 2-pass quantization, just crank the postprocessor */
|
||||||
|
mainp->pub.process_data = process_data_crank_post;
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data.
|
||||||
|
* This handles the simple case where no context is required.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
|
||||||
|
/* Read input data if we haven't filled the main buffer yet */
|
||||||
|
if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) {
|
||||||
|
if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer))
|
||||||
|
return; /* suspension forced, can do nothing more */
|
||||||
|
mainp->rowgroup_ctr = 0; /* OK, we have an iMCU row to work with */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||||
|
* to the postprocessor. The postprocessor has to check for bottom
|
||||||
|
* of image anyway (at row resolution), so no point in us doing it too.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Feed the postprocessor */
|
||||||
|
(*cinfo->post->post_process_data) (cinfo, mainp->buffer,
|
||||||
|
&mainp->rowgroup_ctr, mainp->rowgroups_avail,
|
||||||
|
output_buf, out_row_ctr, out_rows_avail);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data.
|
||||||
|
* This handles the case where context rows must be provided.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp = (my_main_ptr) cinfo->main;
|
||||||
|
|
||||||
|
/* Read input data if we haven't filled the main buffer yet */
|
||||||
|
if (! mainp->buffer_full) {
|
||||||
|
if (! (*cinfo->coef->decompress_data) (cinfo,
|
||||||
|
mainp->xbuffer[mainp->whichptr]))
|
||||||
|
return; /* suspension forced, can do nothing more */
|
||||||
|
mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||||
|
mainp->iMCU_row_ctr++; /* count rows received */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Postprocessor typically will not swallow all the input data it is handed
|
||||||
|
* in one call (due to filling the output buffer first). Must be prepared
|
||||||
|
* to exit and restart. This switch lets us keep track of how far we got.
|
||||||
|
* Note that each case falls through to the next on successful completion.
|
||||||
|
*/
|
||||||
|
switch (mainp->context_state) {
|
||||||
|
case CTX_POSTPONED_ROW:
|
||||||
|
/* Call postprocessor using previously set pointers for postponed row */
|
||||||
|
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
|
||||||
|
&mainp->rowgroup_ctr, mainp->rowgroups_avail,
|
||||||
|
output_buf, out_row_ctr, out_rows_avail);
|
||||||
|
if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
|
||||||
|
return; /* Need to suspend */
|
||||||
|
mainp->context_state = CTX_PREPARE_FOR_IMCU;
|
||||||
|
if (*out_row_ctr >= out_rows_avail)
|
||||||
|
return; /* Postprocessor exactly filled output buf */
|
||||||
|
/*FALLTHROUGH*/
|
||||||
|
case CTX_PREPARE_FOR_IMCU:
|
||||||
|
/* Prepare to process first M-1 row groups of this iMCU row */
|
||||||
|
mainp->rowgroup_ctr = 0;
|
||||||
|
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
|
||||||
|
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||||
|
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
|
||||||
|
*/
|
||||||
|
if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows)
|
||||||
|
set_bottom_pointers(cinfo);
|
||||||
|
mainp->context_state = CTX_PROCESS_IMCU;
|
||||||
|
/*FALLTHROUGH*/
|
||||||
|
case CTX_PROCESS_IMCU:
|
||||||
|
/* Call postprocessor using previously set pointers */
|
||||||
|
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
|
||||||
|
&mainp->rowgroup_ctr, mainp->rowgroups_avail,
|
||||||
|
output_buf, out_row_ctr, out_rows_avail);
|
||||||
|
if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
|
||||||
|
return; /* Need to suspend */
|
||||||
|
/* After the first iMCU, change wraparound pointers to normal state */
|
||||||
|
if (mainp->iMCU_row_ctr == 1)
|
||||||
|
set_wraparound_pointers(cinfo);
|
||||||
|
/* Prepare to load new iMCU row using other xbuffer list */
|
||||||
|
mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */
|
||||||
|
mainp->buffer_full = FALSE;
|
||||||
|
/* Still need to process last row group of this iMCU row, */
|
||||||
|
/* which is saved at index M+1 of the other xbuffer */
|
||||||
|
mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
|
||||||
|
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
|
||||||
|
mainp->context_state = CTX_POSTPONED_ROW;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data.
|
||||||
|
* Final pass of two-pass quantization: just call the postprocessor.
|
||||||
|
* Source data will be the postprocessor controller's internal buffer.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||||
|
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
|
||||||
|
(JDIMENSION *) NULL, (JDIMENSION) 0,
|
||||||
|
output_buf, out_row_ctr, out_rows_avail);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* QUANT_2PASS_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize main buffer controller.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||||
|
{
|
||||||
|
my_main_ptr mainp;
|
||||||
|
int ci, rgroup, ngroups;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
mainp = (my_main_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller));
|
||||||
|
cinfo->main = &mainp->pub;
|
||||||
|
mainp->pub.start_pass = start_pass_main;
|
||||||
|
|
||||||
|
if (need_full_buffer) /* shouldn't happen */
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
|
||||||
|
/* Allocate the workspace.
|
||||||
|
* ngroups is the number of row groups we need.
|
||||||
|
*/
|
||||||
|
if (cinfo->upsample->need_context_rows) {
|
||||||
|
if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
|
||||||
|
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||||
|
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
|
||||||
|
ngroups = cinfo->min_DCT_v_scaled_size + 2;
|
||||||
|
} else {
|
||||||
|
/* There are always min_DCT_v_scaled_size row groups in an iMCU row. */
|
||||||
|
ngroups = cinfo->min_DCT_v_scaled_size;
|
||||||
|
mainp->rowgroups_avail = (JDIMENSION) ngroups;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue; /* skip uninteresting component */
|
||||||
|
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||||
|
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
|
||||||
|
(JDIMENSION) (rgroup * ngroups));
|
||||||
|
}
|
||||||
|
}
|
1505
dep/libjpeg/src/jdmarker.c
Normal file
1505
dep/libjpeg/src/jdmarker.c
Normal file
File diff suppressed because it is too large
Load diff
532
dep/libjpeg/src/jdmaster.c
Normal file
532
dep/libjpeg/src/jdmaster.c
Normal file
|
@ -0,0 +1,532 @@
|
||||||
|
/*
|
||||||
|
* jdmaster.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||||
|
* Modified 2002-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains master control logic for the JPEG decompressor.
|
||||||
|
* These routines are concerned with selecting the modules to be executed
|
||||||
|
* and with determining the number of passes and the work to be done in each
|
||||||
|
* pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Private state */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_decomp_master pub; /* public fields */
|
||||||
|
|
||||||
|
int pass_number; /* # of passes completed */
|
||||||
|
|
||||||
|
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
||||||
|
|
||||||
|
/* Saved references to initialized quantizer modules,
|
||||||
|
* in case we need to switch modes.
|
||||||
|
*/
|
||||||
|
struct jpeg_color_quantizer * quantizer_1pass;
|
||||||
|
struct jpeg_color_quantizer * quantizer_2pass;
|
||||||
|
} my_decomp_master;
|
||||||
|
|
||||||
|
typedef my_decomp_master * my_master_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Determine whether merged upsample/color conversion should be used.
|
||||||
|
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(boolean)
|
||||||
|
use_merged_upsample (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||||
|
/* Merging is the equivalent of plain box-filter upsampling. */
|
||||||
|
/* The following condition is only needed if fancy shall select
|
||||||
|
* a different upsampling method. In our current implementation
|
||||||
|
* fancy only affects the DCT scaling, thus we can use fancy
|
||||||
|
* upsampling and merged upsample simultaneously, in particular
|
||||||
|
* with scaled DCT sizes larger than the default DCTSIZE.
|
||||||
|
*/
|
||||||
|
#if 0
|
||||||
|
if (cinfo->do_fancy_upsampling)
|
||||||
|
return FALSE;
|
||||||
|
#endif
|
||||||
|
if (cinfo->CCIR601_sampling)
|
||||||
|
return FALSE;
|
||||||
|
/* jdmerge.c only supports YCC=>RGB color conversion */
|
||||||
|
if ((cinfo->jpeg_color_space != JCS_YCbCr &&
|
||||||
|
cinfo->jpeg_color_space != JCS_BG_YCC) ||
|
||||||
|
cinfo->num_components != 3 ||
|
||||||
|
cinfo->out_color_space != JCS_RGB ||
|
||||||
|
cinfo->out_color_components != RGB_PIXELSIZE ||
|
||||||
|
cinfo->color_transform)
|
||||||
|
return FALSE;
|
||||||
|
/* and it only handles 2h1v or 2h2v sampling ratios */
|
||||||
|
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
||||||
|
cinfo->comp_info[1].h_samp_factor != 1 ||
|
||||||
|
cinfo->comp_info[2].h_samp_factor != 1 ||
|
||||||
|
cinfo->comp_info[0].v_samp_factor > 2 ||
|
||||||
|
cinfo->comp_info[1].v_samp_factor != 1 ||
|
||||||
|
cinfo->comp_info[2].v_samp_factor != 1)
|
||||||
|
return FALSE;
|
||||||
|
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
||||||
|
if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||||
|
cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||||
|
cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||||
|
cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
|
||||||
|
cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
|
||||||
|
cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
|
||||||
|
return FALSE;
|
||||||
|
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
||||||
|
return TRUE; /* by golly, it'll work... */
|
||||||
|
#else
|
||||||
|
return FALSE;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compute output image dimensions and related values.
|
||||||
|
* NOTE: this is exported for possible use by application.
|
||||||
|
* Hence it mustn't do anything that can't be done twice.
|
||||||
|
* Also note that it may be called before the master module is initialized!
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
|
||||||
|
/* Do computations that are needed before master selection phase.
|
||||||
|
* This function is used for full decompression.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
int ci, i;
|
||||||
|
jpeg_component_info *compptr;
|
||||||
|
|
||||||
|
/* Prevent application from calling me at wrong times */
|
||||||
|
if (cinfo->global_state != DSTATE_READY)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
/* Compute core output image dimensions and DCT scaling choices. */
|
||||||
|
jpeg_core_output_dimensions(cinfo);
|
||||||
|
|
||||||
|
#ifdef IDCT_SCALING_SUPPORTED
|
||||||
|
|
||||||
|
/* In selecting the actual DCT scaling for each component, we try to
|
||||||
|
* scale up the chroma components via IDCT scaling rather than upsampling.
|
||||||
|
* This saves time if the upsampler gets to use 1:1 scaling.
|
||||||
|
* Note this code adapts subsampling ratios which are powers of 2.
|
||||||
|
*/
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
int ssize = 1;
|
||||||
|
if (! cinfo->raw_data_out)
|
||||||
|
while (cinfo->min_DCT_h_scaled_size * ssize <=
|
||||||
|
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||||
|
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) ==
|
||||||
|
0) {
|
||||||
|
ssize = ssize * 2;
|
||||||
|
}
|
||||||
|
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
|
||||||
|
ssize = 1;
|
||||||
|
if (! cinfo->raw_data_out)
|
||||||
|
while (cinfo->min_DCT_v_scaled_size * ssize <=
|
||||||
|
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||||
|
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) ==
|
||||||
|
0) {
|
||||||
|
ssize = ssize * 2;
|
||||||
|
}
|
||||||
|
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
|
||||||
|
|
||||||
|
/* We don't support IDCT ratios larger than 2. */
|
||||||
|
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
|
||||||
|
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
|
||||||
|
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
|
||||||
|
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
|
||||||
|
|
||||||
|
/* Recompute downsampled dimensions of components;
|
||||||
|
* application needs to know these if using raw downsampled data.
|
||||||
|
*/
|
||||||
|
/* Size in samples, after IDCT scaling */
|
||||||
|
compptr->downsampled_width = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_width *
|
||||||
|
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
|
||||||
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
|
||||||
|
compptr->downsampled_height = (JDIMENSION)
|
||||||
|
jdiv_round_up((long) cinfo->image_height *
|
||||||
|
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
|
||||||
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* IDCT_SCALING_SUPPORTED */
|
||||||
|
|
||||||
|
/* Report number of components in selected colorspace. */
|
||||||
|
/* This should correspond to the actual code in the color conversion module. */
|
||||||
|
switch (cinfo->out_color_space) {
|
||||||
|
case JCS_GRAYSCALE:
|
||||||
|
cinfo->out_color_components = 1;
|
||||||
|
break;
|
||||||
|
case JCS_RGB:
|
||||||
|
case JCS_BG_RGB:
|
||||||
|
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||||
|
break;
|
||||||
|
default: /* YCCK <=> CMYK conversion or same colorspace as in file */
|
||||||
|
i = 0;
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++)
|
||||||
|
if (compptr->component_needed)
|
||||||
|
i++; /* count output color components */
|
||||||
|
cinfo->out_color_components = i;
|
||||||
|
}
|
||||||
|
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
||||||
|
cinfo->out_color_components);
|
||||||
|
|
||||||
|
/* See if upsampler will want to emit more than one row at a time */
|
||||||
|
if (use_merged_upsample(cinfo))
|
||||||
|
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
||||||
|
else
|
||||||
|
cinfo->rec_outbuf_height = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Several decompression processes need to range-limit values to the range
|
||||||
|
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
||||||
|
* due to noise introduced by quantization, roundoff error, etc. These
|
||||||
|
* processes are inner loops and need to be as fast as possible. On most
|
||||||
|
* machines, particularly CPUs with pipelines or instruction prefetch,
|
||||||
|
* a (subscript-check-less) C table lookup
|
||||||
|
* x = sample_range_limit[x];
|
||||||
|
* is faster than explicit tests
|
||||||
|
* if (x < 0) x = 0;
|
||||||
|
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||||
|
* These processes all use a common table prepared by the routine below.
|
||||||
|
*
|
||||||
|
* For most steps we can mathematically guarantee that the initial value
|
||||||
|
* of x is within 2*(MAXJSAMPLE+1) of the legal range, so a table running
|
||||||
|
* from -2*(MAXJSAMPLE+1) to 3*MAXJSAMPLE+2 is sufficient. But for the
|
||||||
|
* initial limiting step (just after the IDCT), a wildly out-of-range value
|
||||||
|
* is possible if the input data is corrupt. To avoid any chance of indexing
|
||||||
|
* off the end of memory and getting a bad-pointer trap, we perform the
|
||||||
|
* post-IDCT limiting thus:
|
||||||
|
* x = (sample_range_limit - SUBSET)[(x + CENTER) & MASK];
|
||||||
|
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
||||||
|
* samples. Under normal circumstances this is more than enough range and
|
||||||
|
* a correct output will be generated; with bogus input data the mask will
|
||||||
|
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
||||||
|
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
||||||
|
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
||||||
|
* This is accomplished with SUBSET = CENTER - CENTERJSAMPLE.
|
||||||
|
*
|
||||||
|
* Note that the table is allocated in near data space on PCs; it's small
|
||||||
|
* enough and used often enough to justify this.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
prepare_range_limit_table (j_decompress_ptr cinfo)
|
||||||
|
/* Allocate and fill in the sample_range_limit table */
|
||||||
|
{
|
||||||
|
JSAMPLE * table;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo,
|
||||||
|
JPOOL_IMAGE, (RANGE_CENTER * 2 + MAXJSAMPLE + 1) * SIZEOF(JSAMPLE));
|
||||||
|
/* First segment of range limit table: limit[x] = 0 for x < 0 */
|
||||||
|
MEMZERO(table, RANGE_CENTER * SIZEOF(JSAMPLE));
|
||||||
|
table += RANGE_CENTER; /* allow negative subscripts of table */
|
||||||
|
cinfo->sample_range_limit = table;
|
||||||
|
/* Main part of range limit table: limit[x] = x */
|
||||||
|
for (i = 0; i <= MAXJSAMPLE; i++)
|
||||||
|
table[i] = (JSAMPLE) i;
|
||||||
|
/* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */
|
||||||
|
for (; i <= MAXJSAMPLE + RANGE_CENTER; i++)
|
||||||
|
table[i] = MAXJSAMPLE;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Master selection of decompression modules.
|
||||||
|
* This is done once at jpeg_start_decompress time. We determine
|
||||||
|
* which modules will be used and give them appropriate initialization calls.
|
||||||
|
* We also initialize the decompressor input side to begin consuming data.
|
||||||
|
*
|
||||||
|
* Since jpeg_read_header has finished, we know what is in the SOF
|
||||||
|
* and (first) SOS markers. We also have all the application parameter
|
||||||
|
* settings.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
master_selection (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
boolean use_c_buffer;
|
||||||
|
long samplesperrow;
|
||||||
|
JDIMENSION jd_samplesperrow;
|
||||||
|
|
||||||
|
/* For now, precision must match compiled-in value... */
|
||||||
|
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||||
|
|
||||||
|
/* Initialize dimensions and other stuff */
|
||||||
|
jpeg_calc_output_dimensions(cinfo);
|
||||||
|
prepare_range_limit_table(cinfo);
|
||||||
|
|
||||||
|
/* Sanity check on image dimensions */
|
||||||
|
if (cinfo->output_height <= 0 || cinfo->output_width <= 0 ||
|
||||||
|
cinfo->out_color_components <= 0)
|
||||||
|
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||||
|
|
||||||
|
/* Width of an output scanline must be representable as JDIMENSION. */
|
||||||
|
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
|
||||||
|
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||||
|
if ((long) jd_samplesperrow != samplesperrow)
|
||||||
|
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||||
|
|
||||||
|
/* Initialize my private state */
|
||||||
|
master->pass_number = 0;
|
||||||
|
master->using_merged_upsample = use_merged_upsample(cinfo);
|
||||||
|
|
||||||
|
/* Color quantizer selection */
|
||||||
|
master->quantizer_1pass = NULL;
|
||||||
|
master->quantizer_2pass = NULL;
|
||||||
|
/* No mode changes if not using buffered-image mode. */
|
||||||
|
if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
|
||||||
|
cinfo->enable_1pass_quant = FALSE;
|
||||||
|
cinfo->enable_external_quant = FALSE;
|
||||||
|
cinfo->enable_2pass_quant = FALSE;
|
||||||
|
}
|
||||||
|
if (cinfo->quantize_colors) {
|
||||||
|
if (cinfo->raw_data_out)
|
||||||
|
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||||
|
/* 2-pass quantizer only works in 3-component color space. */
|
||||||
|
if (cinfo->out_color_components != 3) {
|
||||||
|
cinfo->enable_1pass_quant = TRUE;
|
||||||
|
cinfo->enable_external_quant = FALSE;
|
||||||
|
cinfo->enable_2pass_quant = FALSE;
|
||||||
|
cinfo->colormap = NULL;
|
||||||
|
} else if (cinfo->colormap != NULL) {
|
||||||
|
cinfo->enable_external_quant = TRUE;
|
||||||
|
} else if (cinfo->two_pass_quantize) {
|
||||||
|
cinfo->enable_2pass_quant = TRUE;
|
||||||
|
} else {
|
||||||
|
cinfo->enable_1pass_quant = TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cinfo->enable_1pass_quant) {
|
||||||
|
#ifdef QUANT_1PASS_SUPPORTED
|
||||||
|
jinit_1pass_quantizer(cinfo);
|
||||||
|
master->quantizer_1pass = cinfo->cquantize;
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/* We use the 2-pass code to map to external colormaps. */
|
||||||
|
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
jinit_2pass_quantizer(cinfo);
|
||||||
|
master->quantizer_2pass = cinfo->cquantize;
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||||
|
* this is necessary for starting with quantization to an external map.
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Post-processing: in particular, color conversion first */
|
||||||
|
if (! cinfo->raw_data_out) {
|
||||||
|
if (master->using_merged_upsample) {
|
||||||
|
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||||
|
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
jinit_color_deconverter(cinfo);
|
||||||
|
jinit_upsampler(cinfo);
|
||||||
|
}
|
||||||
|
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||||
|
}
|
||||||
|
/* Inverse DCT */
|
||||||
|
jinit_inverse_dct(cinfo);
|
||||||
|
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||||
|
if (cinfo->arith_code)
|
||||||
|
jinit_arith_decoder(cinfo);
|
||||||
|
else {
|
||||||
|
jinit_huff_decoder(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialize principal buffer controllers. */
|
||||||
|
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
|
||||||
|
jinit_d_coef_controller(cinfo, use_c_buffer);
|
||||||
|
|
||||||
|
if (! cinfo->raw_data_out)
|
||||||
|
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||||
|
|
||||||
|
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||||
|
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
/* Initialize input side of decompressor to consume first scan. */
|
||||||
|
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||||
|
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
/* If jpeg_start_decompress will read the whole file, initialize
|
||||||
|
* progress monitoring appropriately. The input step is counted
|
||||||
|
* as one pass.
|
||||||
|
*/
|
||||||
|
if (cinfo->progress != NULL && ! cinfo->buffered_image &&
|
||||||
|
cinfo->inputctl->has_multiple_scans) {
|
||||||
|
int nscans;
|
||||||
|
/* Estimate number of scans to set pass_limit. */
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||||
|
nscans = 2 + 3 * cinfo->num_components;
|
||||||
|
} else {
|
||||||
|
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||||
|
nscans = cinfo->num_components;
|
||||||
|
}
|
||||||
|
cinfo->progress->pass_counter = 0L;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||||
|
cinfo->progress->completed_passes = 0;
|
||||||
|
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
|
||||||
|
/* Count the input pass as done */
|
||||||
|
master->pass_number++;
|
||||||
|
}
|
||||||
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Per-pass setup.
|
||||||
|
* This is called at the beginning of each output pass. We determine which
|
||||||
|
* modules will be active during this pass and give them appropriate
|
||||||
|
* start_pass calls. We also set is_dummy_pass to indicate whether this
|
||||||
|
* is a "real" output pass or a dummy pass for color quantization.
|
||||||
|
* (In the latter case, jdapistd.c will crank the pass to completion.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
prepare_for_output_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
|
||||||
|
if (master->pub.is_dummy_pass) {
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
/* Final pass of 2-pass quantization */
|
||||||
|
master->pub.is_dummy_pass = FALSE;
|
||||||
|
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
||||||
|
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||||
|
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
#endif /* QUANT_2PASS_SUPPORTED */
|
||||||
|
} else {
|
||||||
|
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
|
||||||
|
/* Select new quantization method */
|
||||||
|
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
|
||||||
|
cinfo->cquantize = master->quantizer_2pass;
|
||||||
|
master->pub.is_dummy_pass = TRUE;
|
||||||
|
} else if (cinfo->enable_1pass_quant) {
|
||||||
|
cinfo->cquantize = master->quantizer_1pass;
|
||||||
|
} else {
|
||||||
|
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
(*cinfo->idct->start_pass) (cinfo);
|
||||||
|
(*cinfo->coef->start_output_pass) (cinfo);
|
||||||
|
if (! cinfo->raw_data_out) {
|
||||||
|
if (! master->using_merged_upsample)
|
||||||
|
(*cinfo->cconvert->start_pass) (cinfo);
|
||||||
|
(*cinfo->upsample->start_pass) (cinfo);
|
||||||
|
if (cinfo->quantize_colors)
|
||||||
|
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
|
||||||
|
(*cinfo->post->start_pass) (cinfo,
|
||||||
|
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||||
|
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Set up progress monitor's pass info if present */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
cinfo->progress->completed_passes = master->pass_number;
|
||||||
|
cinfo->progress->total_passes = master->pass_number +
|
||||||
|
(master->pub.is_dummy_pass ? 2 : 1);
|
||||||
|
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||||
|
* yet reached, but no more passes if EOI has been reached.
|
||||||
|
*/
|
||||||
|
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
|
||||||
|
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up at end of an output pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
finish_output_pass (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
|
||||||
|
if (cinfo->quantize_colors)
|
||||||
|
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||||
|
master->pass_number++;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Switch to a new external colormap between output passes.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_new_colormap (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||||
|
|
||||||
|
/* Prevent application from calling me at wrong times */
|
||||||
|
if (cinfo->global_state != DSTATE_BUFIMAGE)
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
|
||||||
|
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
|
||||||
|
cinfo->colormap != NULL) {
|
||||||
|
/* Select 2-pass quantizer for external colormap use */
|
||||||
|
cinfo->cquantize = master->quantizer_2pass;
|
||||||
|
/* Notify quantizer of colormap change */
|
||||||
|
(*cinfo->cquantize->new_color_map) (cinfo);
|
||||||
|
master->pub.is_dummy_pass = FALSE; /* just in case */
|
||||||
|
} else
|
||||||
|
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize master decompression control and select active modules.
|
||||||
|
* This is performed at the start of jpeg_start_decompress.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_master_decompress (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_master_ptr master;
|
||||||
|
|
||||||
|
master = (my_master_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master));
|
||||||
|
cinfo->master = &master->pub;
|
||||||
|
master->pub.prepare_for_output_pass = prepare_for_output_pass;
|
||||||
|
master->pub.finish_output_pass = finish_output_pass;
|
||||||
|
|
||||||
|
master->pub.is_dummy_pass = FALSE;
|
||||||
|
|
||||||
|
master_selection(cinfo);
|
||||||
|
}
|
437
dep/libjpeg/src/jdmerge.c
Normal file
437
dep/libjpeg/src/jdmerge.c
Normal file
|
@ -0,0 +1,437 @@
|
||||||
|
/*
|
||||||
|
* jdmerge.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2013-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains code for merged upsampling/color conversion.
|
||||||
|
*
|
||||||
|
* This file combines functions from jdsample.c and jdcolor.c;
|
||||||
|
* read those files first to understand what's going on.
|
||||||
|
*
|
||||||
|
* When the chroma components are to be upsampled by simple replication
|
||||||
|
* (ie, box filtering), we can save some work in color conversion by
|
||||||
|
* calculating all the output pixels corresponding to a pair of chroma
|
||||||
|
* samples at one time. In the conversion equations
|
||||||
|
* R = Y + K1 * Cr
|
||||||
|
* G = Y + K2 * Cb + K3 * Cr
|
||||||
|
* B = Y + K4 * Cb
|
||||||
|
* only the Y term varies among the group of pixels corresponding to a pair
|
||||||
|
* of chroma samples, so the rest of the terms can be calculated just once.
|
||||||
|
* At typical sampling ratios, this eliminates half or three-quarters
|
||||||
|
* of the multiplications needed for color conversion.
|
||||||
|
*
|
||||||
|
* This file currently provides implementations for the following cases:
|
||||||
|
* YCC => RGB color conversion only (YCbCr or BG_YCC).
|
||||||
|
* Sampling ratios of 2h1v or 2h2v.
|
||||||
|
* No scaling needed at upsample time.
|
||||||
|
* Corner-aligned (non-CCIR601) sampling alignment.
|
||||||
|
* Other special cases could be added, but in most applications these
|
||||||
|
* are the only common cases. (For uncommon cases we fall back on
|
||||||
|
* the more general code in jdsample.c and jdcolor.c.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
#if RANGE_BITS < 2
|
||||||
|
/* Deliberate syntax err */
|
||||||
|
Sorry, this code requires 2 or more range extension bits.
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Private subobject */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_upsampler pub; /* public fields */
|
||||||
|
|
||||||
|
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||||
|
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||||
|
JSAMPARRAY output_buf));
|
||||||
|
|
||||||
|
/* Private state for YCC->RGB conversion */
|
||||||
|
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||||
|
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||||
|
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||||
|
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||||
|
|
||||||
|
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||||
|
* We need a "spare" row buffer to hold the second output row if the
|
||||||
|
* application provides just a one-row buffer; we also use the spare
|
||||||
|
* to discard the dummy last row if the image height is odd.
|
||||||
|
*/
|
||||||
|
JSAMPROW spare_row;
|
||||||
|
boolean spare_full; /* T if spare buffer is occupied */
|
||||||
|
|
||||||
|
JDIMENSION out_row_width; /* samples per output row */
|
||||||
|
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||||
|
} my_upsampler;
|
||||||
|
|
||||||
|
typedef my_upsampler * my_upsample_ptr;
|
||||||
|
|
||||||
|
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||||
|
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||||
|
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion.
|
||||||
|
* This is taken directly from jdcolor.c; see that file for more info.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||||
|
/* Normal case, sYCC */
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
int i;
|
||||||
|
INT32 x;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
|
||||||
|
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||||
|
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||||
|
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||||
|
/* Cr=>R value is nearest int to 1.402 * x */
|
||||||
|
upsample->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS);
|
||||||
|
/* Cb=>B value is nearest int to 1.772 * x */
|
||||||
|
upsample->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS);
|
||||||
|
/* Cr=>G value is scaled-up -0.714136286 * x */
|
||||||
|
upsample->Cr_g_tab[i] = (- FIX(0.714136286)) * x;
|
||||||
|
/* Cb=>G value is scaled-up -0.344136286 * x */
|
||||||
|
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||||
|
upsample->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
build_bg_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||||
|
/* Wide gamut case, bg-sYCC */
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
int i;
|
||||||
|
INT32 x;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
|
||||||
|
upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||||
|
|
||||||
|
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||||
|
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||||
|
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||||
|
/* Cr=>R value is nearest int to 2.804 * x */
|
||||||
|
upsample->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS);
|
||||||
|
/* Cb=>B value is nearest int to 3.544 * x */
|
||||||
|
upsample->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS);
|
||||||
|
/* Cr=>G value is scaled-up -1.428272572 * x */
|
||||||
|
upsample->Cr_g_tab[i] = (- FIX(1.428272572)) * x;
|
||||||
|
/* Cb=>G value is scaled-up -0.688272572 * x */
|
||||||
|
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||||
|
upsample->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an upsampling pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_merged_upsample (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
|
||||||
|
/* Mark the spare buffer empty */
|
||||||
|
upsample->spare_full = FALSE;
|
||||||
|
/* Initialize total-height counter for detecting bottom of image */
|
||||||
|
upsample->rows_to_go = cinfo->output_height;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Control routine to do upsampling (and color conversion).
|
||||||
|
*
|
||||||
|
* The control routine just handles the row buffering considerations.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
merged_2v_upsample (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail)
|
||||||
|
/* 2:1 vertical sampling case: may need a spare row. */
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
JSAMPROW work_ptrs[2];
|
||||||
|
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||||
|
|
||||||
|
if (upsample->spare_full) {
|
||||||
|
/* If we have a spare row saved from a previous cycle, just return it. */
|
||||||
|
jcopy_sample_rows(& upsample->spare_row, output_buf + *out_row_ctr,
|
||||||
|
1, upsample->out_row_width);
|
||||||
|
num_rows = 1;
|
||||||
|
upsample->spare_full = FALSE;
|
||||||
|
} else {
|
||||||
|
/* Figure number of rows to return to caller. */
|
||||||
|
num_rows = 2;
|
||||||
|
/* Not more than the distance to the end of the image. */
|
||||||
|
if (num_rows > upsample->rows_to_go)
|
||||||
|
num_rows = upsample->rows_to_go;
|
||||||
|
/* And not more than what the client can accept: */
|
||||||
|
out_rows_avail -= *out_row_ctr;
|
||||||
|
if (num_rows > out_rows_avail)
|
||||||
|
num_rows = out_rows_avail;
|
||||||
|
/* Create output pointer array for upsampler. */
|
||||||
|
work_ptrs[0] = output_buf[*out_row_ctr];
|
||||||
|
if (num_rows > 1) {
|
||||||
|
work_ptrs[1] = output_buf[*out_row_ctr + 1];
|
||||||
|
} else {
|
||||||
|
work_ptrs[1] = upsample->spare_row;
|
||||||
|
upsample->spare_full = TRUE;
|
||||||
|
}
|
||||||
|
/* Now do the upsampling. */
|
||||||
|
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Adjust counts */
|
||||||
|
*out_row_ctr += num_rows;
|
||||||
|
upsample->rows_to_go -= num_rows;
|
||||||
|
/* When the buffer is emptied, declare this input row group consumed */
|
||||||
|
if (! upsample->spare_full)
|
||||||
|
(*in_row_group_ctr)++;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
merged_1v_upsample (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail)
|
||||||
|
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
|
||||||
|
/* Just do the upsampling. */
|
||||||
|
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||||
|
output_buf + *out_row_ctr);
|
||||||
|
/* Adjust counts */
|
||||||
|
(*out_row_ctr)++;
|
||||||
|
(*in_row_group_ctr)++;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These are the routines invoked by the control routines to do
|
||||||
|
* the actual upsampling/conversion. One row group is processed per call.
|
||||||
|
*
|
||||||
|
* Note: since we may be writing directly into application-supplied buffers,
|
||||||
|
* we have to be honest about the output width; we can't assume the buffer
|
||||||
|
* has been rounded up to an even width.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v1_merged_upsample (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||||
|
JSAMPARRAY output_buf)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
register int y, cred, cgreen, cblue;
|
||||||
|
int cb, cr;
|
||||||
|
register JSAMPROW outptr;
|
||||||
|
JSAMPROW inptr0, inptr1, inptr2;
|
||||||
|
JDIMENSION col;
|
||||||
|
/* copy these pointers into registers if possible */
|
||||||
|
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||||
|
int * Crrtab = upsample->Cr_r_tab;
|
||||||
|
int * Cbbtab = upsample->Cb_b_tab;
|
||||||
|
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||||
|
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
inptr0 = input_buf[0][in_row_group_ctr];
|
||||||
|
inptr1 = input_buf[1][in_row_group_ctr];
|
||||||
|
inptr2 = input_buf[2][in_row_group_ctr];
|
||||||
|
outptr = output_buf[0];
|
||||||
|
/* Loop for each pair of output pixels */
|
||||||
|
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||||
|
/* Do the chroma part of the calculation */
|
||||||
|
cb = GETJSAMPLE(*inptr1++);
|
||||||
|
cr = GETJSAMPLE(*inptr2++);
|
||||||
|
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||||
|
cblue = Cbbtab[cb];
|
||||||
|
cred = Crrtab[cr];
|
||||||
|
/* Fetch 2 Y values and emit 2 pixels */
|
||||||
|
y = GETJSAMPLE(*inptr0++);
|
||||||
|
outptr[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
outptr += RGB_PIXELSIZE;
|
||||||
|
y = GETJSAMPLE(*inptr0++);
|
||||||
|
outptr[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
outptr += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
/* If image width is odd, do the last output column separately */
|
||||||
|
if (cinfo->output_width & 1) {
|
||||||
|
y = GETJSAMPLE(*inptr0);
|
||||||
|
cb = GETJSAMPLE(*inptr1);
|
||||||
|
cr = GETJSAMPLE(*inptr2);
|
||||||
|
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||||
|
outptr[RGB_GREEN] = range_limit[y +
|
||||||
|
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||||
|
SCALEBITS))];
|
||||||
|
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v2_merged_upsample (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||||
|
JSAMPARRAY output_buf)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
register int y, cred, cgreen, cblue;
|
||||||
|
int cb, cr;
|
||||||
|
register JSAMPROW outptr0, outptr1;
|
||||||
|
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||||
|
JDIMENSION col;
|
||||||
|
/* copy these pointers into registers if possible */
|
||||||
|
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||||
|
int * Crrtab = upsample->Cr_r_tab;
|
||||||
|
int * Cbbtab = upsample->Cb_b_tab;
|
||||||
|
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||||
|
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||||
|
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||||
|
inptr1 = input_buf[1][in_row_group_ctr];
|
||||||
|
inptr2 = input_buf[2][in_row_group_ctr];
|
||||||
|
outptr0 = output_buf[0];
|
||||||
|
outptr1 = output_buf[1];
|
||||||
|
/* Loop for each group of output pixels */
|
||||||
|
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||||
|
/* Do the chroma part of the calculation */
|
||||||
|
cb = GETJSAMPLE(*inptr1++);
|
||||||
|
cr = GETJSAMPLE(*inptr2++);
|
||||||
|
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||||
|
cblue = Cbbtab[cb];
|
||||||
|
cred = Crrtab[cr];
|
||||||
|
/* Fetch 4 Y values and emit 4 pixels */
|
||||||
|
y = GETJSAMPLE(*inptr00++);
|
||||||
|
outptr0[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
outptr0 += RGB_PIXELSIZE;
|
||||||
|
y = GETJSAMPLE(*inptr00++);
|
||||||
|
outptr0[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
outptr0 += RGB_PIXELSIZE;
|
||||||
|
y = GETJSAMPLE(*inptr01++);
|
||||||
|
outptr1[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
outptr1 += RGB_PIXELSIZE;
|
||||||
|
y = GETJSAMPLE(*inptr01++);
|
||||||
|
outptr1[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
outptr1 += RGB_PIXELSIZE;
|
||||||
|
}
|
||||||
|
/* If image width is odd, do the last output column separately */
|
||||||
|
if (cinfo->output_width & 1) {
|
||||||
|
cb = GETJSAMPLE(*inptr1);
|
||||||
|
cr = GETJSAMPLE(*inptr2);
|
||||||
|
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||||
|
cblue = Cbbtab[cb];
|
||||||
|
cred = Crrtab[cr];
|
||||||
|
y = GETJSAMPLE(*inptr00);
|
||||||
|
outptr0[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
y = GETJSAMPLE(*inptr01);
|
||||||
|
outptr1[RGB_RED] = range_limit[y + cred];
|
||||||
|
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||||
|
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for merged upsampling/color conversion.
|
||||||
|
*
|
||||||
|
* NB: this is called under the conditions determined by use_merged_upsample()
|
||||||
|
* in jdmaster.c. That routine MUST correspond to the actual capabilities
|
||||||
|
* of this module; no safety checks are made here.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_merged_upsampler (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample;
|
||||||
|
|
||||||
|
upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler));
|
||||||
|
cinfo->upsample = &upsample->pub;
|
||||||
|
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||||
|
upsample->pub.need_context_rows = FALSE;
|
||||||
|
|
||||||
|
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
|
||||||
|
|
||||||
|
if (cinfo->max_v_samp_factor == 2) {
|
||||||
|
upsample->pub.upsample = merged_2v_upsample;
|
||||||
|
upsample->upmethod = h2v2_merged_upsample;
|
||||||
|
/* Allocate a spare row buffer */
|
||||||
|
upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(size_t) upsample->out_row_width * SIZEOF(JSAMPLE));
|
||||||
|
} else {
|
||||||
|
upsample->pub.upsample = merged_1v_upsample;
|
||||||
|
upsample->upmethod = h2v1_merged_upsample;
|
||||||
|
/* No spare row needed */
|
||||||
|
upsample->spare_row = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cinfo->jpeg_color_space == JCS_BG_YCC)
|
||||||
|
build_bg_ycc_rgb_table(cinfo);
|
||||||
|
else
|
||||||
|
build_ycc_rgb_table(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
290
dep/libjpeg/src/jdpostct.c
Normal file
290
dep/libjpeg/src/jdpostct.c
Normal file
|
@ -0,0 +1,290 @@
|
||||||
|
/*
|
||||||
|
* jdpostct.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains the decompression postprocessing controller.
|
||||||
|
* This controller manages the upsampling, color conversion, and color
|
||||||
|
* quantization/reduction steps; specifically, it controls the buffering
|
||||||
|
* between upsample/color conversion and color quantization/reduction.
|
||||||
|
*
|
||||||
|
* If no color quantization/reduction is required, then this module has no
|
||||||
|
* work to do, and it just hands off to the upsample/color conversion code.
|
||||||
|
* An integrated upsample/convert/quantize process would replace this module
|
||||||
|
* entirely.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Private buffer controller object */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_d_post_controller pub; /* public fields */
|
||||||
|
|
||||||
|
/* Color quantization source buffer: this holds output data from
|
||||||
|
* the upsample/color conversion step to be passed to the quantizer.
|
||||||
|
* For two-pass color quantization, we need a full-image buffer;
|
||||||
|
* for one-pass operation, a strip buffer is sufficient.
|
||||||
|
*/
|
||||||
|
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
|
||||||
|
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
|
||||||
|
JDIMENSION strip_height; /* buffer size in rows */
|
||||||
|
/* for two-pass mode only: */
|
||||||
|
JDIMENSION starting_row; /* row # of first row in current strip */
|
||||||
|
JDIMENSION next_row; /* index of next row to fill/empty in strip */
|
||||||
|
} my_post_controller;
|
||||||
|
|
||||||
|
typedef my_post_controller * my_post_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
METHODDEF(void) post_process_1pass
|
||||||
|
JPP((j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail));
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
METHODDEF(void) post_process_prepass
|
||||||
|
JPP((j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail));
|
||||||
|
METHODDEF(void) post_process_2pass
|
||||||
|
JPP((j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for a processing pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||||
|
{
|
||||||
|
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||||
|
|
||||||
|
switch (pass_mode) {
|
||||||
|
case JBUF_PASS_THRU:
|
||||||
|
if (cinfo->quantize_colors) {
|
||||||
|
/* Single-pass processing with color quantization. */
|
||||||
|
post->pub.post_process_data = post_process_1pass;
|
||||||
|
/* We could be doing buffered-image output before starting a 2-pass
|
||||||
|
* color quantization; in that case, jinit_d_post_controller did not
|
||||||
|
* allocate a strip buffer. Use the virtual-array buffer as workspace.
|
||||||
|
*/
|
||||||
|
if (post->buffer == NULL) {
|
||||||
|
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||||
|
((j_common_ptr) cinfo, post->whole_image,
|
||||||
|
(JDIMENSION) 0, post->strip_height, TRUE);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
/* For single-pass processing without color quantization,
|
||||||
|
* I have no work to do; just call the upsampler directly.
|
||||||
|
*/
|
||||||
|
post->pub.post_process_data = cinfo->upsample->upsample;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
case JBUF_SAVE_AND_PASS:
|
||||||
|
/* First pass of 2-pass quantization */
|
||||||
|
if (post->whole_image == NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
post->pub.post_process_data = post_process_prepass;
|
||||||
|
break;
|
||||||
|
case JBUF_CRANK_DEST:
|
||||||
|
/* Second pass of 2-pass quantization */
|
||||||
|
if (post->whole_image == NULL)
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
post->pub.post_process_data = post_process_2pass;
|
||||||
|
break;
|
||||||
|
#endif /* QUANT_2PASS_SUPPORTED */
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
post->starting_row = post->next_row = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the one-pass (strip buffer) case.
|
||||||
|
* This is used for color precision reduction as well as one-pass quantization.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
post_process_1pass (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||||
|
JDIMENSION num_rows, max_rows;
|
||||||
|
|
||||||
|
/* Fill the buffer, but not more than what we can dump out in one go. */
|
||||||
|
/* Note we rely on the upsampler to detect bottom of image. */
|
||||||
|
max_rows = out_rows_avail - *out_row_ctr;
|
||||||
|
if (max_rows > post->strip_height)
|
||||||
|
max_rows = post->strip_height;
|
||||||
|
num_rows = 0;
|
||||||
|
(*cinfo->upsample->upsample) (cinfo,
|
||||||
|
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||||
|
post->buffer, &num_rows, max_rows);
|
||||||
|
/* Quantize and emit data. */
|
||||||
|
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||||
|
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
|
||||||
|
*out_row_ctr += num_rows;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the first pass of 2-pass quantization.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
post_process_prepass (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||||
|
JDIMENSION old_next_row, num_rows;
|
||||||
|
|
||||||
|
/* Reposition virtual buffer if at start of strip. */
|
||||||
|
if (post->next_row == 0) {
|
||||||
|
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||||
|
((j_common_ptr) cinfo, post->whole_image,
|
||||||
|
post->starting_row, post->strip_height, TRUE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Upsample some data (up to a strip height's worth). */
|
||||||
|
old_next_row = post->next_row;
|
||||||
|
(*cinfo->upsample->upsample) (cinfo,
|
||||||
|
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||||
|
post->buffer, &post->next_row, post->strip_height);
|
||||||
|
|
||||||
|
/* Allow quantizer to scan new data. No data is emitted, */
|
||||||
|
/* but we advance out_row_ctr so outer loop can tell when we're done. */
|
||||||
|
if (post->next_row > old_next_row) {
|
||||||
|
num_rows = post->next_row - old_next_row;
|
||||||
|
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
|
||||||
|
(JSAMPARRAY) NULL, (int) num_rows);
|
||||||
|
*out_row_ctr += num_rows;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Advance if we filled the strip. */
|
||||||
|
if (post->next_row >= post->strip_height) {
|
||||||
|
post->starting_row += post->strip_height;
|
||||||
|
post->next_row = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Process some data in the second pass of 2-pass quantization.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
post_process_2pass (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||||
|
JDIMENSION num_rows, max_rows;
|
||||||
|
|
||||||
|
/* Reposition virtual buffer if at start of strip. */
|
||||||
|
if (post->next_row == 0) {
|
||||||
|
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||||
|
((j_common_ptr) cinfo, post->whole_image,
|
||||||
|
post->starting_row, post->strip_height, FALSE);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Determine number of rows to emit. */
|
||||||
|
num_rows = post->strip_height - post->next_row; /* available in strip */
|
||||||
|
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
|
||||||
|
if (num_rows > max_rows)
|
||||||
|
num_rows = max_rows;
|
||||||
|
/* We have to check bottom of image here, can't depend on upsampler. */
|
||||||
|
max_rows = cinfo->output_height - post->starting_row;
|
||||||
|
if (num_rows > max_rows)
|
||||||
|
num_rows = max_rows;
|
||||||
|
|
||||||
|
/* Quantize and emit data. */
|
||||||
|
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||||
|
post->buffer + post->next_row, output_buf + *out_row_ctr,
|
||||||
|
(int) num_rows);
|
||||||
|
*out_row_ctr += num_rows;
|
||||||
|
|
||||||
|
/* Advance if we filled the strip. */
|
||||||
|
post->next_row += num_rows;
|
||||||
|
if (post->next_row >= post->strip_height) {
|
||||||
|
post->starting_row += post->strip_height;
|
||||||
|
post->next_row = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* QUANT_2PASS_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize postprocessing controller.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||||
|
{
|
||||||
|
my_post_ptr post;
|
||||||
|
|
||||||
|
post = (my_post_ptr)
|
||||||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
SIZEOF(my_post_controller));
|
||||||
|
cinfo->post = (struct jpeg_d_post_controller *) post;
|
||||||
|
post->pub.start_pass = start_pass_dpost;
|
||||||
|
post->whole_image = NULL; /* flag for no virtual arrays */
|
||||||
|
post->buffer = NULL; /* flag for no strip buffer */
|
||||||
|
|
||||||
|
/* Create the quantization buffer, if needed */
|
||||||
|
if (cinfo->quantize_colors) {
|
||||||
|
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||||
|
* an efficient number of rows for upsampling to return.
|
||||||
|
* (In the presence of output rescaling, we might want to be smarter?)
|
||||||
|
*/
|
||||||
|
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
|
||||||
|
if (need_full_buffer) {
|
||||||
|
/* Two-pass color quantization: need full-image storage. */
|
||||||
|
/* We round up the number of rows to a multiple of the strip height. */
|
||||||
|
#ifdef QUANT_2PASS_SUPPORTED
|
||||||
|
post->whole_image = (*cinfo->mem->request_virt_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||||
|
cinfo->output_width * cinfo->out_color_components,
|
||||||
|
(JDIMENSION) jround_up((long) cinfo->output_height,
|
||||||
|
(long) post->strip_height),
|
||||||
|
post->strip_height);
|
||||||
|
#else
|
||||||
|
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||||
|
#endif /* QUANT_2PASS_SUPPORTED */
|
||||||
|
} else {
|
||||||
|
/* One-pass color quantization: just make a strip buffer. */
|
||||||
|
post->buffer = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
cinfo->output_width * cinfo->out_color_components,
|
||||||
|
post->strip_height);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
341
dep/libjpeg/src/jdsample.c
Normal file
341
dep/libjpeg/src/jdsample.c
Normal file
|
@ -0,0 +1,341 @@
|
||||||
|
/*
|
||||||
|
* jdsample.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||||
|
* Modified 2002-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains upsampling routines.
|
||||||
|
*
|
||||||
|
* Upsampling input data is counted in "row groups". A row group
|
||||||
|
* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
|
||||||
|
* sample rows of each component. Upsampling will normally produce
|
||||||
|
* max_v_samp_factor pixel rows from each row group (but this could vary
|
||||||
|
* if the upsampler is applying a scale factor of its own).
|
||||||
|
*
|
||||||
|
* An excellent reference for image resampling is
|
||||||
|
* Digital Image Warping, George Wolberg, 1990.
|
||||||
|
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Pointer to routine to upsample a single component */
|
||||||
|
typedef JMETHOD(void, upsample1_ptr,
|
||||||
|
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr));
|
||||||
|
|
||||||
|
/* Private subobject */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_upsampler pub; /* public fields */
|
||||||
|
|
||||||
|
/* Color conversion buffer. When using separate upsampling and color
|
||||||
|
* conversion steps, this buffer holds one upsampled row group until it
|
||||||
|
* has been color converted and output.
|
||||||
|
* Note: we do not allocate any storage for component(s) which are full-size,
|
||||||
|
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
||||||
|
* simply set to point to the input data array, thereby avoiding copying.
|
||||||
|
*/
|
||||||
|
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
/* Per-component upsampling method pointers */
|
||||||
|
upsample1_ptr methods[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
int next_row_out; /* counts rows emitted from color_buf */
|
||||||
|
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||||
|
|
||||||
|
/* Height of an input row group for each component. */
|
||||||
|
int rowgroup_height[MAX_COMPONENTS];
|
||||||
|
|
||||||
|
/* These arrays save pixel expansion factors so that int_expand need not
|
||||||
|
* recompute them each time. They are unused for other upsampling methods.
|
||||||
|
*/
|
||||||
|
UINT8 h_expand[MAX_COMPONENTS];
|
||||||
|
UINT8 v_expand[MAX_COMPONENTS];
|
||||||
|
} my_upsampler;
|
||||||
|
|
||||||
|
typedef my_upsampler * my_upsample_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for an upsampling pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_upsample (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
|
||||||
|
/* Mark the conversion buffer empty */
|
||||||
|
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||||
|
/* Initialize total-height counter for detecting bottom of image */
|
||||||
|
upsample->rows_to_go = cinfo->output_height;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Control routine to do upsampling (and color conversion).
|
||||||
|
*
|
||||||
|
* In this version we upsample each component independently.
|
||||||
|
* We upsample one row group into the conversion buffer, then apply
|
||||||
|
* color conversion a row at a time.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
sep_upsample (j_decompress_ptr cinfo,
|
||||||
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||||
|
JDIMENSION in_row_groups_avail,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||||
|
JDIMENSION out_rows_avail)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
JDIMENSION num_rows;
|
||||||
|
|
||||||
|
/* Fill the conversion buffer, if it's empty */
|
||||||
|
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Don't bother to upsample an uninteresting component. */
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue;
|
||||||
|
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||||
|
* to color_buf[ci], so that fullsize_upsample can change it.
|
||||||
|
*/
|
||||||
|
(*upsample->methods[ci]) (cinfo, compptr,
|
||||||
|
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
||||||
|
upsample->color_buf + ci);
|
||||||
|
}
|
||||||
|
upsample->next_row_out = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Color-convert and emit rows */
|
||||||
|
|
||||||
|
/* How many we have in the buffer: */
|
||||||
|
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
|
||||||
|
/* Not more than the distance to the end of the image. Need this test
|
||||||
|
* in case the image height is not a multiple of max_v_samp_factor:
|
||||||
|
*/
|
||||||
|
if (num_rows > upsample->rows_to_go)
|
||||||
|
num_rows = upsample->rows_to_go;
|
||||||
|
/* And not more than what the client can accept: */
|
||||||
|
out_rows_avail -= *out_row_ctr;
|
||||||
|
if (num_rows > out_rows_avail)
|
||||||
|
num_rows = out_rows_avail;
|
||||||
|
|
||||||
|
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
||||||
|
(JDIMENSION) upsample->next_row_out,
|
||||||
|
output_buf + *out_row_ctr,
|
||||||
|
(int) num_rows);
|
||||||
|
|
||||||
|
/* Adjust counts */
|
||||||
|
*out_row_ctr += num_rows;
|
||||||
|
upsample->rows_to_go -= num_rows;
|
||||||
|
upsample->next_row_out += num_rows;
|
||||||
|
/* When the buffer is emptied, declare this input row group consumed */
|
||||||
|
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
||||||
|
(*in_row_group_ctr)++;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These are the routines invoked by sep_upsample to upsample pixel values
|
||||||
|
* of a single component. One row group is processed per call.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* For full-size components, we just make color_buf[ci] point at the
|
||||||
|
* input buffer, and thus avoid copying any data. Note that this is
|
||||||
|
* safe only because sep_upsample doesn't declare the input row group
|
||||||
|
* "consumed" until we are done color converting and emitting it.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
|
||||||
|
{
|
||||||
|
*output_data_ptr = input_data;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This version handles any integral sampling ratios.
|
||||||
|
* This is not used for typical JPEG files, so it need not be fast.
|
||||||
|
* Nor, for that matter, is it particularly accurate: the algorithm is
|
||||||
|
* simple replication of the input pixel onto the corresponding output
|
||||||
|
* pixels. The hi-falutin sampling literature refers to this as a
|
||||||
|
* "box filter". A box filter tends to introduce visible artifacts,
|
||||||
|
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
||||||
|
* you would be well advised to improve this code.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||||
|
JSAMPARRAY output_data, output_end;
|
||||||
|
register JSAMPROW inptr, outptr;
|
||||||
|
register JSAMPLE invalue;
|
||||||
|
register int h;
|
||||||
|
JSAMPROW outend;
|
||||||
|
int h_expand, v_expand;
|
||||||
|
|
||||||
|
h_expand = upsample->h_expand[compptr->component_index];
|
||||||
|
v_expand = upsample->v_expand[compptr->component_index];
|
||||||
|
|
||||||
|
output_data = *output_data_ptr;
|
||||||
|
output_end = output_data + cinfo->max_v_samp_factor;
|
||||||
|
for (; output_data < output_end; output_data += v_expand) {
|
||||||
|
/* Generate one output row with proper horizontal expansion */
|
||||||
|
inptr = *input_data++;
|
||||||
|
outptr = *output_data;
|
||||||
|
outend = outptr + cinfo->output_width;
|
||||||
|
while (outptr < outend) {
|
||||||
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||||
|
for (h = h_expand; h > 0; h--) {
|
||||||
|
*outptr++ = invalue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Generate any additional output rows by duplicating the first one */
|
||||||
|
if (v_expand > 1) {
|
||||||
|
jcopy_sample_rows(output_data, output_data + 1,
|
||||||
|
v_expand - 1, cinfo->output_width);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||||
|
* It's still a box filter.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
|
||||||
|
{
|
||||||
|
JSAMPARRAY output_data = *output_data_ptr;
|
||||||
|
register JSAMPROW inptr, outptr;
|
||||||
|
register JSAMPLE invalue;
|
||||||
|
JSAMPROW outend;
|
||||||
|
int outrow;
|
||||||
|
|
||||||
|
for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
|
||||||
|
inptr = input_data[outrow];
|
||||||
|
outptr = output_data[outrow];
|
||||||
|
outend = outptr + cinfo->output_width;
|
||||||
|
while (outptr < outend) {
|
||||||
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||||
|
*outptr++ = invalue;
|
||||||
|
*outptr++ = invalue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||||
|
* It's still a box filter.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
|
||||||
|
{
|
||||||
|
JSAMPARRAY output_data, output_end;
|
||||||
|
register JSAMPROW inptr, outptr;
|
||||||
|
register JSAMPLE invalue;
|
||||||
|
JSAMPROW outend;
|
||||||
|
|
||||||
|
output_data = *output_data_ptr;
|
||||||
|
output_end = output_data + cinfo->max_v_samp_factor;
|
||||||
|
for (; output_data < output_end; output_data += 2) {
|
||||||
|
inptr = *input_data++;
|
||||||
|
outptr = *output_data;
|
||||||
|
outend = outptr + cinfo->output_width;
|
||||||
|
while (outptr < outend) {
|
||||||
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||||
|
*outptr++ = invalue;
|
||||||
|
*outptr++ = invalue;
|
||||||
|
}
|
||||||
|
jcopy_sample_rows(output_data, output_data + 1,
|
||||||
|
1, cinfo->output_width);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for upsampling.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_upsampler (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_upsample_ptr upsample;
|
||||||
|
int ci;
|
||||||
|
jpeg_component_info * compptr;
|
||||||
|
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||||
|
|
||||||
|
upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler));
|
||||||
|
cinfo->upsample = &upsample->pub;
|
||||||
|
upsample->pub.start_pass = start_pass_upsample;
|
||||||
|
upsample->pub.upsample = sep_upsample;
|
||||||
|
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
||||||
|
|
||||||
|
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
||||||
|
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||||
|
|
||||||
|
/* Verify we can handle the sampling factors, select per-component methods,
|
||||||
|
* and create storage as needed.
|
||||||
|
*/
|
||||||
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||||
|
ci++, compptr++) {
|
||||||
|
/* Don't bother to upsample an uninteresting component. */
|
||||||
|
if (! compptr->component_needed)
|
||||||
|
continue;
|
||||||
|
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||||
|
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
||||||
|
*/
|
||||||
|
h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
|
||||||
|
cinfo->min_DCT_h_scaled_size;
|
||||||
|
v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||||
|
cinfo->min_DCT_v_scaled_size;
|
||||||
|
h_out_group = cinfo->max_h_samp_factor;
|
||||||
|
v_out_group = cinfo->max_v_samp_factor;
|
||||||
|
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
||||||
|
if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||||
|
/* Fullsize components can be processed without any work. */
|
||||||
|
upsample->methods[ci] = fullsize_upsample;
|
||||||
|
continue; /* don't need to allocate buffer */
|
||||||
|
}
|
||||||
|
if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) {
|
||||||
|
/* Special case for 2h1v upsampling */
|
||||||
|
upsample->methods[ci] = h2v1_upsample;
|
||||||
|
} else if (h_in_group * 2 == h_out_group &&
|
||||||
|
v_in_group * 2 == v_out_group) {
|
||||||
|
/* Special case for 2h2v upsampling */
|
||||||
|
upsample->methods[ci] = h2v2_upsample;
|
||||||
|
} else if ((h_out_group % h_in_group) == 0 &&
|
||||||
|
(v_out_group % v_in_group) == 0) {
|
||||||
|
/* Generic integral-factors upsampling method */
|
||||||
|
upsample->methods[ci] = int_upsample;
|
||||||
|
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
|
||||||
|
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
|
||||||
|
} else
|
||||||
|
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||||
|
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(JDIMENSION) jround_up((long) cinfo->output_width,
|
||||||
|
(long) cinfo->max_h_samp_factor),
|
||||||
|
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||||
|
}
|
||||||
|
}
|
140
dep/libjpeg/src/jdtrans.c
Normal file
140
dep/libjpeg/src/jdtrans.c
Normal file
|
@ -0,0 +1,140 @@
|
||||||
|
/*
|
||||||
|
* jdtrans.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||||
|
* Modified 2000-2009 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains library routines for transcoding decompression,
|
||||||
|
* that is, reading raw DCT coefficient arrays from an input JPEG file.
|
||||||
|
* The routines in jdapimin.c will also be needed by a transcoder.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* Forward declarations */
|
||||||
|
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Read the coefficient arrays from a JPEG file.
|
||||||
|
* jpeg_read_header must be completed before calling this.
|
||||||
|
*
|
||||||
|
* The entire image is read into a set of virtual coefficient-block arrays,
|
||||||
|
* one per component. The return value is a pointer to the array of
|
||||||
|
* virtual-array descriptors. These can be manipulated directly via the
|
||||||
|
* JPEG memory manager, or handed off to jpeg_write_coefficients().
|
||||||
|
* To release the memory occupied by the virtual arrays, call
|
||||||
|
* jpeg_finish_decompress() when done with the data.
|
||||||
|
*
|
||||||
|
* An alternative usage is to simply obtain access to the coefficient arrays
|
||||||
|
* during a buffered-image-mode decompression operation. This is allowed
|
||||||
|
* after any jpeg_finish_output() call. The arrays can be accessed until
|
||||||
|
* jpeg_finish_decompress() is called. (Note that any call to the library
|
||||||
|
* may reposition the arrays, so don't rely on access_virt_barray() results
|
||||||
|
* to stay valid across library calls.)
|
||||||
|
*
|
||||||
|
* Returns NULL if suspended. This case need be checked only if
|
||||||
|
* a suspending data source is used.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(jvirt_barray_ptr *)
|
||||||
|
jpeg_read_coefficients (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
if (cinfo->global_state == DSTATE_READY) {
|
||||||
|
/* First call: initialize active modules */
|
||||||
|
transdecode_master_selection(cinfo);
|
||||||
|
cinfo->global_state = DSTATE_RDCOEFS;
|
||||||
|
}
|
||||||
|
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||||
|
/* Absorb whole file into the coef buffer */
|
||||||
|
for (;;) {
|
||||||
|
int retcode;
|
||||||
|
/* Call progress monitor hook if present */
|
||||||
|
if (cinfo->progress != NULL)
|
||||||
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||||
|
/* Absorb some more input */
|
||||||
|
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||||
|
if (retcode == JPEG_SUSPENDED)
|
||||||
|
return NULL;
|
||||||
|
if (retcode == JPEG_REACHED_EOI)
|
||||||
|
break;
|
||||||
|
/* Advance progress counter if appropriate */
|
||||||
|
if (cinfo->progress != NULL &&
|
||||||
|
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||||
|
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||||
|
/* startup underestimated number of scans; ratchet up one scan */
|
||||||
|
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Set state so that jpeg_finish_decompress does the right thing */
|
||||||
|
cinfo->global_state = DSTATE_STOPPING;
|
||||||
|
}
|
||||||
|
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||||
|
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||||
|
* to the coefficients during a full buffered-image-mode decompression.
|
||||||
|
*/
|
||||||
|
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||||
|
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||||
|
return cinfo->coef->coef_arrays;
|
||||||
|
}
|
||||||
|
/* Oops, improper usage */
|
||||||
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||||
|
return NULL; /* keep compiler happy */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Master selection of decompression modules for transcoding.
|
||||||
|
* This substitutes for jdmaster.c's initialization of the full decompressor.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
transdecode_master_selection (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* This is effectively a buffered-image operation. */
|
||||||
|
cinfo->buffered_image = TRUE;
|
||||||
|
|
||||||
|
/* Compute output image dimensions and related values. */
|
||||||
|
jpeg_core_output_dimensions(cinfo);
|
||||||
|
|
||||||
|
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||||
|
if (cinfo->arith_code)
|
||||||
|
jinit_arith_decoder(cinfo);
|
||||||
|
else {
|
||||||
|
jinit_huff_decoder(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Always get a full-image coefficient buffer. */
|
||||||
|
jinit_d_coef_controller(cinfo, TRUE);
|
||||||
|
|
||||||
|
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||||
|
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||||
|
|
||||||
|
/* Initialize input side of decompressor to consume first scan. */
|
||||||
|
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||||
|
|
||||||
|
/* Initialize progress monitoring. */
|
||||||
|
if (cinfo->progress != NULL) {
|
||||||
|
int nscans;
|
||||||
|
/* Estimate number of scans to set pass_limit. */
|
||||||
|
if (cinfo->progressive_mode) {
|
||||||
|
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||||
|
nscans = 2 + 3 * cinfo->num_components;
|
||||||
|
} else if (cinfo->inputctl->has_multiple_scans) {
|
||||||
|
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||||
|
nscans = cinfo->num_components;
|
||||||
|
} else {
|
||||||
|
nscans = 1;
|
||||||
|
}
|
||||||
|
cinfo->progress->pass_counter = 0L;
|
||||||
|
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||||
|
cinfo->progress->completed_passes = 0;
|
||||||
|
cinfo->progress->total_passes = 1;
|
||||||
|
}
|
||||||
|
}
|
253
dep/libjpeg/src/jerror.c
Normal file
253
dep/libjpeg/src/jerror.c
Normal file
|
@ -0,0 +1,253 @@
|
||||||
|
/*
|
||||||
|
* jerror.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||||
|
* Modified 2012-2015 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains simple error-reporting and trace-message routines.
|
||||||
|
* These are suitable for Unix-like systems and others where writing to
|
||||||
|
* stderr is the right thing to do. Many applications will want to replace
|
||||||
|
* some or all of these routines.
|
||||||
|
*
|
||||||
|
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
|
||||||
|
* you get a Windows-specific hack to display error messages in a dialog box.
|
||||||
|
* It ain't much, but it beats dropping error messages into the bit bucket,
|
||||||
|
* which is what happens to output to stderr under most Windows C compilers.
|
||||||
|
*
|
||||||
|
* These routines are used by both the compression and decompression code.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||||
|
#include <windows.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jversion.h"
|
||||||
|
#include "jerror.h"
|
||||||
|
|
||||||
|
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||||
|
#define EXIT_FAILURE 1
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create the message string table.
|
||||||
|
* We do this from the master message list in jerror.h by re-reading
|
||||||
|
* jerror.h with a suitable definition for macro JMESSAGE.
|
||||||
|
* The message table is made an external symbol just in case any applications
|
||||||
|
* want to refer to it directly.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||||
|
#define jpeg_std_message_table jMsgTable
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define JMESSAGE(code,string) string ,
|
||||||
|
|
||||||
|
const char * const jpeg_std_message_table[] = {
|
||||||
|
#include "jerror.h"
|
||||||
|
NULL
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Error exit handler: must not return to caller.
|
||||||
|
*
|
||||||
|
* Applications may override this if they want to get control back after
|
||||||
|
* an error. Typically one would longjmp somewhere instead of exiting.
|
||||||
|
* The setjmp buffer can be made a private field within an expanded error
|
||||||
|
* handler object. Note that the info needed to generate an error message
|
||||||
|
* is stored in the error object, so you can generate the message now or
|
||||||
|
* later, at your convenience.
|
||||||
|
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
|
||||||
|
* or jpeg_destroy) at some point.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(noreturn_t)
|
||||||
|
error_exit (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* Always display the message */
|
||||||
|
(*cinfo->err->output_message) (cinfo);
|
||||||
|
|
||||||
|
/* Let the memory manager delete any temp files before we die */
|
||||||
|
jpeg_destroy(cinfo);
|
||||||
|
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Actual output of an error or trace message.
|
||||||
|
* Applications may override this method to send JPEG messages somewhere
|
||||||
|
* other than stderr.
|
||||||
|
*
|
||||||
|
* On Windows, printing to stderr is generally completely useless,
|
||||||
|
* so we provide optional code to produce an error-dialog popup.
|
||||||
|
* Most Windows applications will still prefer to override this routine,
|
||||||
|
* but if they don't, it'll do something at least marginally useful.
|
||||||
|
*
|
||||||
|
* NOTE: to use the library in an environment that doesn't support the
|
||||||
|
* C stdio library, you may have to delete the call to fprintf() entirely,
|
||||||
|
* not just not use this routine.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
output_message (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
char buffer[JMSG_LENGTH_MAX];
|
||||||
|
|
||||||
|
/* Create the message */
|
||||||
|
(*cinfo->err->format_message) (cinfo, buffer);
|
||||||
|
|
||||||
|
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||||
|
/* Display it in a message dialog box */
|
||||||
|
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
|
||||||
|
MB_OK | MB_ICONERROR);
|
||||||
|
#else
|
||||||
|
/* Send it to stderr, adding a newline */
|
||||||
|
fprintf(stderr, "%s\n", buffer);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Decide whether to emit a trace or warning message.
|
||||||
|
* msg_level is one of:
|
||||||
|
* -1: recoverable corrupt-data warning, may want to abort.
|
||||||
|
* 0: important advisory messages (always display to user).
|
||||||
|
* 1: first level of tracing detail.
|
||||||
|
* 2,3,...: successively more detailed tracing messages.
|
||||||
|
* An application might override this method if it wanted to abort on warnings
|
||||||
|
* or change the policy about which messages to display.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
emit_message (j_common_ptr cinfo, int msg_level)
|
||||||
|
{
|
||||||
|
struct jpeg_error_mgr * err = cinfo->err;
|
||||||
|
|
||||||
|
if (msg_level < 0) {
|
||||||
|
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||||
|
* the policy implemented here is to show only the first warning,
|
||||||
|
* unless trace_level >= 3.
|
||||||
|
*/
|
||||||
|
if (err->num_warnings == 0 || err->trace_level >= 3)
|
||||||
|
(*err->output_message) (cinfo);
|
||||||
|
/* Always count warnings in num_warnings. */
|
||||||
|
err->num_warnings++;
|
||||||
|
} else {
|
||||||
|
/* It's a trace message. Show it if trace_level >= msg_level. */
|
||||||
|
if (err->trace_level >= msg_level)
|
||||||
|
(*err->output_message) (cinfo);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Format a message string for the most recent JPEG error or message.
|
||||||
|
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
|
||||||
|
* characters. Note that no '\n' character is added to the string.
|
||||||
|
* Few applications should need to override this method.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
format_message (j_common_ptr cinfo, char * buffer)
|
||||||
|
{
|
||||||
|
struct jpeg_error_mgr * err = cinfo->err;
|
||||||
|
int msg_code = err->msg_code;
|
||||||
|
const char * msgtext = NULL;
|
||||||
|
const char * msgptr;
|
||||||
|
char ch;
|
||||||
|
boolean isstring;
|
||||||
|
|
||||||
|
/* Look up message string in proper table */
|
||||||
|
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
|
||||||
|
msgtext = err->jpeg_message_table[msg_code];
|
||||||
|
} else if (err->addon_message_table != NULL &&
|
||||||
|
msg_code >= err->first_addon_message &&
|
||||||
|
msg_code <= err->last_addon_message) {
|
||||||
|
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Defend against bogus message number */
|
||||||
|
if (msgtext == NULL) {
|
||||||
|
err->msg_parm.i[0] = msg_code;
|
||||||
|
msgtext = err->jpeg_message_table[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check for string parameter, as indicated by %s in the message text */
|
||||||
|
isstring = FALSE;
|
||||||
|
msgptr = msgtext;
|
||||||
|
while ((ch = *msgptr++) != '\0') {
|
||||||
|
if (ch == '%') {
|
||||||
|
if (*msgptr == 's') isstring = TRUE;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Format the message into the passed buffer */
|
||||||
|
if (isstring)
|
||||||
|
sprintf(buffer, msgtext, err->msg_parm.s);
|
||||||
|
else
|
||||||
|
sprintf(buffer, msgtext,
|
||||||
|
err->msg_parm.i[0], err->msg_parm.i[1],
|
||||||
|
err->msg_parm.i[2], err->msg_parm.i[3],
|
||||||
|
err->msg_parm.i[4], err->msg_parm.i[5],
|
||||||
|
err->msg_parm.i[6], err->msg_parm.i[7]);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Reset error state variables at start of a new image.
|
||||||
|
* This is called during compression startup to reset trace/error
|
||||||
|
* processing to default state, without losing any application-specific
|
||||||
|
* method pointers. An application might possibly want to override
|
||||||
|
* this method if it has additional error processing state.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
reset_error_mgr (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
cinfo->err->num_warnings = 0;
|
||||||
|
/* trace_level is not reset since it is an application-supplied parameter */
|
||||||
|
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
|
||||||
|
* Typical call is:
|
||||||
|
* struct jpeg_compress_struct cinfo;
|
||||||
|
* struct jpeg_error_mgr err;
|
||||||
|
*
|
||||||
|
* cinfo.err = jpeg_std_error(&err);
|
||||||
|
* after which the application may override some of the methods.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(struct jpeg_error_mgr *)
|
||||||
|
jpeg_std_error (struct jpeg_error_mgr * err)
|
||||||
|
{
|
||||||
|
err->error_exit = error_exit;
|
||||||
|
err->emit_message = emit_message;
|
||||||
|
err->output_message = output_message;
|
||||||
|
err->format_message = format_message;
|
||||||
|
err->reset_error_mgr = reset_error_mgr;
|
||||||
|
|
||||||
|
err->trace_level = 0; /* default = no tracing */
|
||||||
|
err->num_warnings = 0; /* no warnings emitted yet */
|
||||||
|
err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||||
|
|
||||||
|
/* Initialize message table pointers */
|
||||||
|
err->jpeg_message_table = jpeg_std_message_table;
|
||||||
|
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
|
||||||
|
|
||||||
|
err->addon_message_table = NULL;
|
||||||
|
err->first_addon_message = 0; /* for safety */
|
||||||
|
err->last_addon_message = 0;
|
||||||
|
|
||||||
|
return err;
|
||||||
|
}
|
176
dep/libjpeg/src/jfdctflt.c
Normal file
176
dep/libjpeg/src/jfdctflt.c
Normal file
|
@ -0,0 +1,176 @@
|
||||||
|
/*
|
||||||
|
* jfdctflt.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2003-2017 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains a floating-point implementation of the
|
||||||
|
* forward DCT (Discrete Cosine Transform).
|
||||||
|
*
|
||||||
|
* This implementation should be more accurate than either of the integer
|
||||||
|
* DCT implementations. However, it may not give the same results on all
|
||||||
|
* machines because of differences in roundoff behavior. Speed will depend
|
||||||
|
* on the hardware's floating point capacity.
|
||||||
|
*
|
||||||
|
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||||
|
* on each column. Direct algorithms are also available, but they are
|
||||||
|
* much more complex and seem not to be any faster when reduced to code.
|
||||||
|
*
|
||||||
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||||
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||||
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||||
|
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||||
|
* is based directly on figure 4-8 in P&M.
|
||||||
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||||
|
* possible to arrange the computation so that many of the multiplies are
|
||||||
|
* simple scalings of the final outputs. These multiplies can then be
|
||||||
|
* folded into the multiplications or divisions by the JPEG quantization
|
||||||
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||||
|
* to be done in the DCT itself.
|
||||||
|
* The primary disadvantage of this method is that with a fixed-point
|
||||||
|
* implementation, accuracy is lost due to imprecise representation of the
|
||||||
|
* scaled quantization values. However, that problem does not arise if
|
||||||
|
* we use floating point arithmetic.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||||
|
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This module is specialized to the case DCTSIZE = 8.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if DCTSIZE != 8
|
||||||
|
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform the forward DCT on one block of samples.
|
||||||
|
*
|
||||||
|
* cK represents cos(K*pi/16).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
||||||
|
{
|
||||||
|
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||||
|
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||||
|
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
||||||
|
FAST_FLOAT *dataptr;
|
||||||
|
JSAMPROW elemptr;
|
||||||
|
int ctr;
|
||||||
|
|
||||||
|
/* Pass 1: process rows. */
|
||||||
|
|
||||||
|
dataptr = data;
|
||||||
|
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||||
|
elemptr = sample_data[ctr] + start_col;
|
||||||
|
|
||||||
|
/* Load data into workspace */
|
||||||
|
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
|
||||||
|
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
|
||||||
|
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
|
||||||
|
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
|
||||||
|
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
|
||||||
|
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
|
||||||
|
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
|
||||||
|
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||||
|
tmp13 = tmp0 - tmp3;
|
||||||
|
tmp11 = tmp1 + tmp2;
|
||||||
|
tmp12 = tmp1 - tmp2;
|
||||||
|
|
||||||
|
/* Apply unsigned->signed conversion. */
|
||||||
|
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
||||||
|
dataptr[4] = tmp10 - tmp11;
|
||||||
|
|
||||||
|
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||||
|
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||||
|
dataptr[6] = tmp13 - z1;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||||
|
tmp11 = tmp5 + tmp6;
|
||||||
|
tmp12 = tmp6 + tmp7;
|
||||||
|
|
||||||
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||||
|
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||||
|
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||||
|
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||||
|
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||||
|
|
||||||
|
z11 = tmp7 + z3; /* phase 5 */
|
||||||
|
z13 = tmp7 - z3;
|
||||||
|
|
||||||
|
dataptr[5] = z13 + z2; /* phase 6 */
|
||||||
|
dataptr[3] = z13 - z2;
|
||||||
|
dataptr[1] = z11 + z4;
|
||||||
|
dataptr[7] = z11 - z4;
|
||||||
|
|
||||||
|
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Pass 2: process columns. */
|
||||||
|
|
||||||
|
dataptr = data;
|
||||||
|
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||||
|
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||||
|
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||||
|
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||||
|
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||||
|
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||||
|
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||||
|
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||||
|
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||||
|
tmp13 = tmp0 - tmp3;
|
||||||
|
tmp11 = tmp1 + tmp2;
|
||||||
|
tmp12 = tmp1 - tmp2;
|
||||||
|
|
||||||
|
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||||
|
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||||
|
|
||||||
|
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||||
|
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||||
|
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||||
|
tmp11 = tmp5 + tmp6;
|
||||||
|
tmp12 = tmp6 + tmp7;
|
||||||
|
|
||||||
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||||
|
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||||
|
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||||
|
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||||
|
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||||
|
|
||||||
|
z11 = tmp7 + z3; /* phase 5 */
|
||||||
|
z13 = tmp7 - z3;
|
||||||
|
|
||||||
|
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||||
|
dataptr[DCTSIZE*3] = z13 - z2;
|
||||||
|
dataptr[DCTSIZE*1] = z11 + z4;
|
||||||
|
dataptr[DCTSIZE*7] = z11 - z4;
|
||||||
|
|
||||||
|
dataptr++; /* advance pointer to next column */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* DCT_FLOAT_SUPPORTED */
|
232
dep/libjpeg/src/jfdctfst.c
Normal file
232
dep/libjpeg/src/jfdctfst.c
Normal file
|
@ -0,0 +1,232 @@
|
||||||
|
/*
|
||||||
|
* jfdctfst.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||||
|
* Modified 2003-2017 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains a fast, not so accurate integer implementation of the
|
||||||
|
* forward DCT (Discrete Cosine Transform).
|
||||||
|
*
|
||||||
|
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||||
|
* on each column. Direct algorithms are also available, but they are
|
||||||
|
* much more complex and seem not to be any faster when reduced to code.
|
||||||
|
*
|
||||||
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||||
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||||
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||||
|
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||||
|
* is based directly on figure 4-8 in P&M.
|
||||||
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||||
|
* possible to arrange the computation so that many of the multiplies are
|
||||||
|
* simple scalings of the final outputs. These multiplies can then be
|
||||||
|
* folded into the multiplications or divisions by the JPEG quantization
|
||||||
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||||
|
* to be done in the DCT itself.
|
||||||
|
* The primary disadvantage of this method is that with fixed-point math,
|
||||||
|
* accuracy is lost due to imprecise representation of the scaled
|
||||||
|
* quantization values. The smaller the quantization table entry, the less
|
||||||
|
* precise the scaled value, so this implementation does worse with high-
|
||||||
|
* quality-setting files than with low-quality ones.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||||
|
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This module is specialized to the case DCTSIZE = 8.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if DCTSIZE != 8
|
||||||
|
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||||
|
* see jfdctint.c for more details. However, we choose to descale
|
||||||
|
* (right shift) multiplication products as soon as they are formed,
|
||||||
|
* rather than carrying additional fractional bits into subsequent additions.
|
||||||
|
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||||
|
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||||
|
* everywhere except in the multiplications proper; this saves a good deal
|
||||||
|
* of work on 16-bit-int machines.
|
||||||
|
*
|
||||||
|
* Again to save a few shifts, the intermediate results between pass 1 and
|
||||||
|
* pass 2 are not upscaled, but are represented only to integral precision.
|
||||||
|
*
|
||||||
|
* A final compromise is to represent the multiplicative constants to only
|
||||||
|
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||||
|
* machines, and may also reduce the cost of multiplication (since there
|
||||||
|
* are fewer one-bits in the constants).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define CONST_BITS 8
|
||||||
|
|
||||||
|
|
||||||
|
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||||
|
* causing a lot of useless floating-point operations at run time.
|
||||||
|
* To get around this we use the following pre-calculated constants.
|
||||||
|
* If you change CONST_BITS you may want to add appropriate values.
|
||||||
|
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if CONST_BITS == 8
|
||||||
|
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
||||||
|
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
||||||
|
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
||||||
|
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
||||||
|
#else
|
||||||
|
#define FIX_0_382683433 FIX(0.382683433)
|
||||||
|
#define FIX_0_541196100 FIX(0.541196100)
|
||||||
|
#define FIX_0_707106781 FIX(0.707106781)
|
||||||
|
#define FIX_1_306562965 FIX(1.306562965)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||||
|
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||||
|
* rounded result half the time...
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef USE_ACCURATE_ROUNDING
|
||||||
|
#undef DESCALE
|
||||||
|
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||||
|
* descale to yield a DCTELEM result.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform the forward DCT on one block of samples.
|
||||||
|
*
|
||||||
|
* cK represents cos(K*pi/16).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
||||||
|
{
|
||||||
|
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||||
|
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||||
|
DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
||||||
|
DCTELEM *dataptr;
|
||||||
|
JSAMPROW elemptr;
|
||||||
|
int ctr;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
/* Pass 1: process rows. */
|
||||||
|
|
||||||
|
dataptr = data;
|
||||||
|
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||||
|
elemptr = sample_data[ctr] + start_col;
|
||||||
|
|
||||||
|
/* Load data into workspace */
|
||||||
|
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
|
||||||
|
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
|
||||||
|
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
|
||||||
|
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
|
||||||
|
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
|
||||||
|
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
|
||||||
|
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
|
||||||
|
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||||
|
tmp13 = tmp0 - tmp3;
|
||||||
|
tmp11 = tmp1 + tmp2;
|
||||||
|
tmp12 = tmp1 - tmp2;
|
||||||
|
|
||||||
|
/* Apply unsigned->signed conversion. */
|
||||||
|
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
||||||
|
dataptr[4] = tmp10 - tmp11;
|
||||||
|
|
||||||
|
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||||
|
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||||
|
dataptr[6] = tmp13 - z1;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||||
|
tmp11 = tmp5 + tmp6;
|
||||||
|
tmp12 = tmp6 + tmp7;
|
||||||
|
|
||||||
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||||
|
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||||
|
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||||
|
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||||
|
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||||
|
|
||||||
|
z11 = tmp7 + z3; /* phase 5 */
|
||||||
|
z13 = tmp7 - z3;
|
||||||
|
|
||||||
|
dataptr[5] = z13 + z2; /* phase 6 */
|
||||||
|
dataptr[3] = z13 - z2;
|
||||||
|
dataptr[1] = z11 + z4;
|
||||||
|
dataptr[7] = z11 - z4;
|
||||||
|
|
||||||
|
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Pass 2: process columns. */
|
||||||
|
|
||||||
|
dataptr = data;
|
||||||
|
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||||
|
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||||
|
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||||
|
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||||
|
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||||
|
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||||
|
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||||
|
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||||
|
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||||
|
tmp13 = tmp0 - tmp3;
|
||||||
|
tmp11 = tmp1 + tmp2;
|
||||||
|
tmp12 = tmp1 - tmp2;
|
||||||
|
|
||||||
|
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||||
|
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||||
|
|
||||||
|
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||||
|
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||||
|
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||||
|
tmp11 = tmp5 + tmp6;
|
||||||
|
tmp12 = tmp6 + tmp7;
|
||||||
|
|
||||||
|
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||||
|
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||||
|
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||||
|
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||||
|
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||||
|
|
||||||
|
z11 = tmp7 + z3; /* phase 5 */
|
||||||
|
z13 = tmp7 - z3;
|
||||||
|
|
||||||
|
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||||
|
dataptr[DCTSIZE*3] = z13 - z2;
|
||||||
|
dataptr[DCTSIZE*1] = z11 + z4;
|
||||||
|
dataptr[DCTSIZE*7] = z11 - z4;
|
||||||
|
|
||||||
|
dataptr++; /* advance pointer to next column */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* DCT_IFAST_SUPPORTED */
|
4415
dep/libjpeg/src/jfdctint.c
Normal file
4415
dep/libjpeg/src/jfdctint.c
Normal file
File diff suppressed because it is too large
Load diff
238
dep/libjpeg/src/jidctflt.c
Normal file
238
dep/libjpeg/src/jidctflt.c
Normal file
|
@ -0,0 +1,238 @@
|
||||||
|
/*
|
||||||
|
* jidctflt.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||||
|
* Modified 2010-2017 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains a floating-point implementation of the
|
||||||
|
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||||
|
* must also perform dequantization of the input coefficients.
|
||||||
|
*
|
||||||
|
* This implementation should be more accurate than either of the integer
|
||||||
|
* IDCT implementations. However, it may not give the same results on all
|
||||||
|
* machines because of differences in roundoff behavior. Speed will depend
|
||||||
|
* on the hardware's floating point capacity.
|
||||||
|
*
|
||||||
|
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||||
|
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||||
|
* a time). Direct algorithms are also available, but they are much more
|
||||||
|
* complex and seem not to be any faster when reduced to code.
|
||||||
|
*
|
||||||
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||||
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||||
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||||
|
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||||
|
* is based directly on figure 4-8 in P&M.
|
||||||
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||||
|
* possible to arrange the computation so that many of the multiplies are
|
||||||
|
* simple scalings of the final outputs. These multiplies can then be
|
||||||
|
* folded into the multiplications or divisions by the JPEG quantization
|
||||||
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||||
|
* to be done in the DCT itself.
|
||||||
|
* The primary disadvantage of this method is that with a fixed-point
|
||||||
|
* implementation, accuracy is lost due to imprecise representation of the
|
||||||
|
* scaled quantization values. However, that problem does not arise if
|
||||||
|
* we use floating point arithmetic.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||||
|
|
||||||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This module is specialized to the case DCTSIZE = 8.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if DCTSIZE != 8
|
||||||
|
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||||
|
* entry; produce a float result.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||||
|
*
|
||||||
|
* cK represents cos(K*pi/16).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||||
|
{
|
||||||
|
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||||
|
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||||
|
FAST_FLOAT z5, z10, z11, z12, z13;
|
||||||
|
JCOEFPTR inptr;
|
||||||
|
FLOAT_MULT_TYPE * quantptr;
|
||||||
|
FAST_FLOAT * wsptr;
|
||||||
|
JSAMPROW outptr;
|
||||||
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||||
|
int ctr;
|
||||||
|
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||||
|
|
||||||
|
/* Pass 1: process columns from input, store into work array. */
|
||||||
|
|
||||||
|
inptr = coef_block;
|
||||||
|
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||||
|
wsptr = workspace;
|
||||||
|
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||||
|
/* Due to quantization, we will usually find that many of the input
|
||||||
|
* coefficients are zero, especially the AC terms. We can exploit this
|
||||||
|
* by short-circuiting the IDCT calculation for any column in which all
|
||||||
|
* the AC terms are zero. In that case each output is equal to the
|
||||||
|
* DC coefficient (with scale factor as needed).
|
||||||
|
* With typical images and quantization tables, half or more of the
|
||||||
|
* column DCT calculations can be simplified this way.
|
||||||
|
*/
|
||||||
|
|
||||||
|
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||||
|
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||||
|
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||||
|
inptr[DCTSIZE*7] == 0) {
|
||||||
|
/* AC terms all zero */
|
||||||
|
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||||
|
|
||||||
|
wsptr[DCTSIZE*0] = dcval;
|
||||||
|
wsptr[DCTSIZE*1] = dcval;
|
||||||
|
wsptr[DCTSIZE*2] = dcval;
|
||||||
|
wsptr[DCTSIZE*3] = dcval;
|
||||||
|
wsptr[DCTSIZE*4] = dcval;
|
||||||
|
wsptr[DCTSIZE*5] = dcval;
|
||||||
|
wsptr[DCTSIZE*6] = dcval;
|
||||||
|
wsptr[DCTSIZE*7] = dcval;
|
||||||
|
|
||||||
|
inptr++; /* advance pointers to next column */
|
||||||
|
quantptr++;
|
||||||
|
wsptr++;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||||
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||||
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||||
|
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||||
|
|
||||||
|
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||||
|
tmp11 = tmp0 - tmp2;
|
||||||
|
|
||||||
|
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||||
|
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
||||||
|
|
||||||
|
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||||
|
tmp3 = tmp10 - tmp13;
|
||||||
|
tmp1 = tmp11 + tmp12;
|
||||||
|
tmp2 = tmp11 - tmp12;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||||
|
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||||
|
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||||
|
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||||
|
|
||||||
|
z13 = tmp6 + tmp5; /* phase 6 */
|
||||||
|
z10 = tmp6 - tmp5;
|
||||||
|
z11 = tmp4 + tmp7;
|
||||||
|
z12 = tmp4 - tmp7;
|
||||||
|
|
||||||
|
tmp7 = z11 + z13; /* phase 5 */
|
||||||
|
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||||
|
|
||||||
|
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||||
|
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
||||||
|
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
||||||
|
|
||||||
|
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||||
|
tmp5 = tmp11 - tmp6;
|
||||||
|
tmp4 = tmp10 - tmp5;
|
||||||
|
|
||||||
|
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||||
|
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||||
|
wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
||||||
|
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||||
|
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||||
|
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||||
|
wsptr[DCTSIZE*3] = tmp3 + tmp4;
|
||||||
|
wsptr[DCTSIZE*4] = tmp3 - tmp4;
|
||||||
|
|
||||||
|
inptr++; /* advance pointers to next column */
|
||||||
|
quantptr++;
|
||||||
|
wsptr++;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Pass 2: process rows from work array, store into output array. */
|
||||||
|
|
||||||
|
wsptr = workspace;
|
||||||
|
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||||
|
outptr = output_buf[ctr] + output_col;
|
||||||
|
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||||
|
* However, the column calculation has created many nonzero AC terms, so
|
||||||
|
* the simplification applies less often (typically 5% to 10% of the time).
|
||||||
|
* And testing floats for zero is relatively expensive, so we don't bother.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
/* Prepare range-limit and float->int conversion */
|
||||||
|
z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5));
|
||||||
|
tmp10 = z5 + wsptr[4];
|
||||||
|
tmp11 = z5 - wsptr[4];
|
||||||
|
|
||||||
|
tmp13 = wsptr[2] + wsptr[6];
|
||||||
|
tmp12 = (wsptr[2] - wsptr[6]) *
|
||||||
|
((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
||||||
|
|
||||||
|
tmp0 = tmp10 + tmp13;
|
||||||
|
tmp3 = tmp10 - tmp13;
|
||||||
|
tmp1 = tmp11 + tmp12;
|
||||||
|
tmp2 = tmp11 - tmp12;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
z13 = wsptr[5] + wsptr[3];
|
||||||
|
z10 = wsptr[5] - wsptr[3];
|
||||||
|
z11 = wsptr[1] + wsptr[7];
|
||||||
|
z12 = wsptr[1] - wsptr[7];
|
||||||
|
|
||||||
|
tmp7 = z11 + z13; /* phase 5 */
|
||||||
|
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||||
|
|
||||||
|
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||||
|
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
||||||
|
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
||||||
|
|
||||||
|
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||||
|
tmp5 = tmp11 - tmp6;
|
||||||
|
tmp4 = tmp10 - tmp5;
|
||||||
|
|
||||||
|
/* Final output stage: float->int conversion and range-limit */
|
||||||
|
|
||||||
|
outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK];
|
||||||
|
outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK];
|
||||||
|
outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK];
|
||||||
|
outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK];
|
||||||
|
outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK];
|
||||||
|
outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK];
|
||||||
|
outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK];
|
||||||
|
outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK];
|
||||||
|
|
||||||
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* DCT_FLOAT_SUPPORTED */
|
351
dep/libjpeg/src/jidctfst.c
Normal file
351
dep/libjpeg/src/jidctfst.c
Normal file
|
@ -0,0 +1,351 @@
|
||||||
|
/*
|
||||||
|
* jidctfst.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||||
|
* Modified 2015-2017 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains a fast, not so accurate integer implementation of the
|
||||||
|
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||||
|
* must also perform dequantization of the input coefficients.
|
||||||
|
*
|
||||||
|
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||||
|
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||||
|
* a time). Direct algorithms are also available, but they are much more
|
||||||
|
* complex and seem not to be any faster when reduced to code.
|
||||||
|
*
|
||||||
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||||
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||||
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||||
|
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||||
|
* is based directly on figure 4-8 in P&M.
|
||||||
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||||
|
* possible to arrange the computation so that many of the multiplies are
|
||||||
|
* simple scalings of the final outputs. These multiplies can then be
|
||||||
|
* folded into the multiplications or divisions by the JPEG quantization
|
||||||
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||||
|
* to be done in the DCT itself.
|
||||||
|
* The primary disadvantage of this method is that with fixed-point math,
|
||||||
|
* accuracy is lost due to imprecise representation of the scaled
|
||||||
|
* quantization values. The smaller the quantization table entry, the less
|
||||||
|
* precise the scaled value, so this implementation does worse with high-
|
||||||
|
* quality-setting files than with low-quality ones.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||||
|
|
||||||
|
#ifdef DCT_IFAST_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This module is specialized to the case DCTSIZE = 8.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if DCTSIZE != 8
|
||||||
|
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||||
|
* see jidctint.c for more details. However, we choose to descale
|
||||||
|
* (right shift) multiplication products as soon as they are formed,
|
||||||
|
* rather than carrying additional fractional bits into subsequent additions.
|
||||||
|
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||||
|
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||||
|
* everywhere except in the multiplications proper; this saves a good deal
|
||||||
|
* of work on 16-bit-int machines.
|
||||||
|
*
|
||||||
|
* The dequantized coefficients are not integers because the AA&N scaling
|
||||||
|
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||||||
|
* so that the first and second IDCT rounds have the same input scaling.
|
||||||
|
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||||||
|
* avoid a descaling shift; this compromises accuracy rather drastically
|
||||||
|
* for small quantization table entries, but it saves a lot of shifts.
|
||||||
|
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
||||||
|
* so we use a much larger scaling factor to preserve accuracy.
|
||||||
|
*
|
||||||
|
* A final compromise is to represent the multiplicative constants to only
|
||||||
|
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||||
|
* machines, and may also reduce the cost of multiplication (since there
|
||||||
|
* are fewer one-bits in the constants).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
#define CONST_BITS 8
|
||||||
|
#define PASS1_BITS 2
|
||||||
|
#else
|
||||||
|
#define CONST_BITS 8
|
||||||
|
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||||
|
* causing a lot of useless floating-point operations at run time.
|
||||||
|
* To get around this we use the following pre-calculated constants.
|
||||||
|
* If you change CONST_BITS you may want to add appropriate values.
|
||||||
|
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if CONST_BITS == 8
|
||||||
|
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
||||||
|
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
||||||
|
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
||||||
|
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
||||||
|
#else
|
||||||
|
#define FIX_1_082392200 FIX(1.082392200)
|
||||||
|
#define FIX_1_414213562 FIX(1.414213562)
|
||||||
|
#define FIX_1_847759065 FIX(1.847759065)
|
||||||
|
#define FIX_2_613125930 FIX(2.613125930)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||||
|
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||||
|
* rounded result half the time...
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef USE_ACCURATE_ROUNDING
|
||||||
|
#undef DESCALE
|
||||||
|
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||||
|
* descale to yield a DCTELEM result.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||||
|
|
||||||
|
|
||||||
|
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||||
|
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||||||
|
* multiplication will do. For 12-bit data, the multiplier table is
|
||||||
|
* declared INT32, so a 32-bit multiply will be used.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
||||||
|
#else
|
||||||
|
#define DEQUANTIZE(coef,quantval) \
|
||||||
|
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||||
|
*
|
||||||
|
* cK represents cos(K*pi/16).
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||||
|
JCOEFPTR coef_block,
|
||||||
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||||
|
{
|
||||||
|
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||||
|
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||||
|
DCTELEM z5, z10, z11, z12, z13;
|
||||||
|
JCOEFPTR inptr;
|
||||||
|
IFAST_MULT_TYPE * quantptr;
|
||||||
|
int * wsptr;
|
||||||
|
JSAMPROW outptr;
|
||||||
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||||
|
int ctr;
|
||||||
|
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||||
|
SHIFT_TEMPS /* for DESCALE */
|
||||||
|
ISHIFT_TEMPS /* for IRIGHT_SHIFT */
|
||||||
|
|
||||||
|
/* Pass 1: process columns from input, store into work array. */
|
||||||
|
|
||||||
|
inptr = coef_block;
|
||||||
|
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||||
|
wsptr = workspace;
|
||||||
|
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||||
|
/* Due to quantization, we will usually find that many of the input
|
||||||
|
* coefficients are zero, especially the AC terms. We can exploit this
|
||||||
|
* by short-circuiting the IDCT calculation for any column in which all
|
||||||
|
* the AC terms are zero. In that case each output is equal to the
|
||||||
|
* DC coefficient (with scale factor as needed).
|
||||||
|
* With typical images and quantization tables, half or more of the
|
||||||
|
* column DCT calculations can be simplified this way.
|
||||||
|
*/
|
||||||
|
|
||||||
|
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||||
|
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||||
|
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||||
|
inptr[DCTSIZE*7] == 0) {
|
||||||
|
/* AC terms all zero */
|
||||||
|
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||||
|
|
||||||
|
wsptr[DCTSIZE*0] = dcval;
|
||||||
|
wsptr[DCTSIZE*1] = dcval;
|
||||||
|
wsptr[DCTSIZE*2] = dcval;
|
||||||
|
wsptr[DCTSIZE*3] = dcval;
|
||||||
|
wsptr[DCTSIZE*4] = dcval;
|
||||||
|
wsptr[DCTSIZE*5] = dcval;
|
||||||
|
wsptr[DCTSIZE*6] = dcval;
|
||||||
|
wsptr[DCTSIZE*7] = dcval;
|
||||||
|
|
||||||
|
inptr++; /* advance pointers to next column */
|
||||||
|
quantptr++;
|
||||||
|
wsptr++;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||||
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||||
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||||
|
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||||
|
|
||||||
|
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||||
|
tmp11 = tmp0 - tmp2;
|
||||||
|
|
||||||
|
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||||
|
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||||
|
|
||||||
|
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||||
|
tmp3 = tmp10 - tmp13;
|
||||||
|
tmp1 = tmp11 + tmp12;
|
||||||
|
tmp2 = tmp11 - tmp12;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||||
|
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||||
|
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||||
|
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||||
|
|
||||||
|
z13 = tmp6 + tmp5; /* phase 6 */
|
||||||
|
z10 = tmp6 - tmp5;
|
||||||
|
z11 = tmp4 + tmp7;
|
||||||
|
z12 = tmp4 - tmp7;
|
||||||
|
|
||||||
|
tmp7 = z11 + z13; /* phase 5 */
|
||||||
|
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||||
|
|
||||||
|
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||||
|
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
|
||||||
|
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
|
||||||
|
|
||||||
|
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||||
|
tmp5 = tmp11 - tmp6;
|
||||||
|
tmp4 = tmp10 - tmp5;
|
||||||
|
|
||||||
|
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
|
||||||
|
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
|
||||||
|
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
|
||||||
|
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
|
||||||
|
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
|
||||||
|
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
|
||||||
|
wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);
|
||||||
|
wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);
|
||||||
|
|
||||||
|
inptr++; /* advance pointers to next column */
|
||||||
|
quantptr++;
|
||||||
|
wsptr++;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Pass 2: process rows from work array, store into output array.
|
||||||
|
* Note that we must descale the results by a factor of 8 == 2**3,
|
||||||
|
* and also undo the PASS1_BITS scaling.
|
||||||
|
*/
|
||||||
|
|
||||||
|
wsptr = workspace;
|
||||||
|
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||||
|
outptr = output_buf[ctr] + output_col;
|
||||||
|
|
||||||
|
/* Add range center and fudge factor for final descale and range-limit. */
|
||||||
|
z5 = (DCTELEM) wsptr[0] +
|
||||||
|
((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) +
|
||||||
|
(1 << (PASS1_BITS+2)));
|
||||||
|
|
||||||
|
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||||
|
* However, the column calculation has created many nonzero AC terms, so
|
||||||
|
* the simplification applies less often (typically 5% to 10% of the time).
|
||||||
|
* On machines with very fast multiplication, it's possible that the
|
||||||
|
* test takes more time than it's worth. In that case this section
|
||||||
|
* may be commented out.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef NO_ZERO_ROW_TEST
|
||||||
|
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
||||||
|
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||||
|
/* AC terms all zero */
|
||||||
|
JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
|
||||||
|
outptr[0] = dcval;
|
||||||
|
outptr[1] = dcval;
|
||||||
|
outptr[2] = dcval;
|
||||||
|
outptr[3] = dcval;
|
||||||
|
outptr[4] = dcval;
|
||||||
|
outptr[5] = dcval;
|
||||||
|
outptr[6] = dcval;
|
||||||
|
outptr[7] = dcval;
|
||||||
|
|
||||||
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* Even part */
|
||||||
|
|
||||||
|
tmp10 = z5 + (DCTELEM) wsptr[4];
|
||||||
|
tmp11 = z5 - (DCTELEM) wsptr[4];
|
||||||
|
|
||||||
|
tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];
|
||||||
|
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],
|
||||||
|
FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||||
|
|
||||||
|
tmp0 = tmp10 + tmp13;
|
||||||
|
tmp3 = tmp10 - tmp13;
|
||||||
|
tmp1 = tmp11 + tmp12;
|
||||||
|
tmp2 = tmp11 - tmp12;
|
||||||
|
|
||||||
|
/* Odd part */
|
||||||
|
|
||||||
|
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
|
||||||
|
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
|
||||||
|
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
|
||||||
|
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
|
||||||
|
|
||||||
|
tmp7 = z11 + z13; /* phase 5 */
|
||||||
|
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||||
|
|
||||||
|
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||||
|
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
|
||||||
|
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
|
||||||
|
|
||||||
|
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||||
|
tmp5 = tmp11 - tmp6;
|
||||||
|
tmp4 = tmp10 - tmp5;
|
||||||
|
|
||||||
|
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||||
|
|
||||||
|
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3)
|
||||||
|
& RANGE_MASK];
|
||||||
|
|
||||||
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* DCT_IFAST_SUPPORTED */
|
5240
dep/libjpeg/src/jidctint.c
Normal file
5240
dep/libjpeg/src/jidctint.c
Normal file
File diff suppressed because it is too large
Load diff
157
dep/libjpeg/src/jinclude.h
Normal file
157
dep/libjpeg/src/jinclude.h
Normal file
|
@ -0,0 +1,157 @@
|
||||||
|
/*
|
||||||
|
* jinclude.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||||
|
* Modified 2017-2022 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file exists to provide a single place to fix any problems with
|
||||||
|
* including the wrong system include files. (Common problems are taken
|
||||||
|
* care of by the standard jconfig symbols, but on really weird systems
|
||||||
|
* you may have to edit this file.)
|
||||||
|
*
|
||||||
|
* NOTE: this file is NOT intended to be included by applications using
|
||||||
|
* the JPEG library. Most applications need only include jpeglib.h.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Include auto-config file to find out which system include files we need. */
|
||||||
|
|
||||||
|
#include "jconfig.h" /* auto configuration options */
|
||||||
|
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* We need the NULL macro and size_t typedef.
|
||||||
|
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
|
||||||
|
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
|
||||||
|
* pull in <sys/types.h> as well.
|
||||||
|
* Note that the core JPEG library does not require <stdio.h>;
|
||||||
|
* only the default error handler and data source/destination modules do.
|
||||||
|
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||||
|
* You can remove those references if you want to compile without <stdio.h>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef HAVE_STDDEF_H
|
||||||
|
#include <stddef.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef HAVE_STDLIB_H
|
||||||
|
#include <stdlib.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef NEED_SYS_TYPES_H
|
||||||
|
#include <sys/types.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* We need memory copying and zeroing functions, plus strncpy().
|
||||||
|
* ANSI and System V implementations declare these in <string.h>.
|
||||||
|
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||||
|
* Some systems may declare memset and memcpy in <memory.h>.
|
||||||
|
*
|
||||||
|
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||||
|
* Change the casts in these macros if not!
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef NEED_BSD_STRINGS
|
||||||
|
|
||||||
|
#include <strings.h>
|
||||||
|
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
|
||||||
|
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
|
||||||
|
|
||||||
|
#else /* not BSD, assume ANSI/SysV string lib */
|
||||||
|
|
||||||
|
#include <string.h>
|
||||||
|
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
|
||||||
|
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* In ANSI C, and indeed any rational implementation, size_t is also the
|
||||||
|
* type returned by sizeof(). However, it seems there are some irrational
|
||||||
|
* implementations out there, in which sizeof() returns an int even though
|
||||||
|
* size_t is defined as long or unsigned long. To ensure consistent results
|
||||||
|
* we always use this SIZEOF() macro in place of using sizeof() directly.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define SIZEOF(object) ((size_t) sizeof(object))
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The modules that use fread() and fwrite() always invoke them through
|
||||||
|
* these macros. On some systems you may need to twiddle the argument casts.
|
||||||
|
* CAUTION: argument order is different from underlying functions!
|
||||||
|
*
|
||||||
|
* Furthermore, macros are provided for fflush() and ferror() in order
|
||||||
|
* to facilitate adaption by applications using an own FILE class.
|
||||||
|
*
|
||||||
|
* You can define your own custom file I/O functions in jconfig.h and
|
||||||
|
* #define JPEG_HAVE_FILE_IO_CUSTOM there to prevent redefinition here.
|
||||||
|
*
|
||||||
|
* You can #define JPEG_USE_FILE_IO_CUSTOM in jconfig.h to use custom file
|
||||||
|
* I/O functions implemented in Delphi VCL (Visual Component Library)
|
||||||
|
* in Vcl.Imaging.jpeg.pas for the TJPEGImage component utilizing
|
||||||
|
* the Delphi RTL (Run-Time Library) TMemoryStream component:
|
||||||
|
*
|
||||||
|
* procedure jpeg_stdio_src(var cinfo: jpeg_decompress_struct;
|
||||||
|
* input_file: TStream); external;
|
||||||
|
*
|
||||||
|
* procedure jpeg_stdio_dest(var cinfo: jpeg_compress_struct;
|
||||||
|
* output_file: TStream); external;
|
||||||
|
*
|
||||||
|
* function jfread(var buf; recsize, reccount: Integer; S: TStream): Integer;
|
||||||
|
* begin
|
||||||
|
* Result := S.Read(buf, recsize * reccount);
|
||||||
|
* end;
|
||||||
|
*
|
||||||
|
* function jfwrite(const buf; recsize, reccount: Integer; S: TStream): Integer;
|
||||||
|
* begin
|
||||||
|
* Result := S.Write(buf, recsize * reccount);
|
||||||
|
* end;
|
||||||
|
*
|
||||||
|
* function jfflush(S: TStream): Integer;
|
||||||
|
* begin
|
||||||
|
* Result := 0;
|
||||||
|
* end;
|
||||||
|
*
|
||||||
|
* function jferror(S: TStream): Integer;
|
||||||
|
* begin
|
||||||
|
* Result := 0;
|
||||||
|
* end;
|
||||||
|
*
|
||||||
|
* TMemoryStream of Delphi RTL has the distinctive feature to provide dynamic
|
||||||
|
* memory buffer management with a file/stream-based interface, particularly for
|
||||||
|
* the write (output) operation, which is easier to apply compared with direct
|
||||||
|
* implementations as given in jdatadst.c for memory destination. Those direct
|
||||||
|
* implementations of dynamic memory write tend to be more difficult to use,
|
||||||
|
* so providing an option like TMemoryStream may be a useful alternative.
|
||||||
|
*
|
||||||
|
* The CFile/CMemFile classes of the Microsoft Foundation Class (MFC) Library
|
||||||
|
* may be used in a similar fashion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef JPEG_HAVE_FILE_IO_CUSTOM
|
||||||
|
#ifdef JPEG_USE_FILE_IO_CUSTOM
|
||||||
|
extern size_t jfread(void * __ptr, size_t __size, size_t __n, FILE * __stream);
|
||||||
|
extern size_t jfwrite(const void * __ptr, size_t __size, size_t __n, FILE * __stream);
|
||||||
|
extern int jfflush(FILE * __stream);
|
||||||
|
extern int jferror(FILE * __fp);
|
||||||
|
|
||||||
|
#define JFREAD(file,buf,sizeofbuf) \
|
||||||
|
((size_t) jfread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||||
|
#define JFWRITE(file,buf,sizeofbuf) \
|
||||||
|
((size_t) jfwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||||
|
#define JFFLUSH(file) jfflush(file)
|
||||||
|
#define JFERROR(file) jferror(file)
|
||||||
|
#else
|
||||||
|
#define JFREAD(file,buf,sizeofbuf) \
|
||||||
|
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||||
|
#define JFWRITE(file,buf,sizeofbuf) \
|
||||||
|
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||||
|
#define JFFLUSH(file) fflush(file)
|
||||||
|
#define JFERROR(file) ferror(file)
|
||||||
|
#endif
|
||||||
|
#endif
|
1115
dep/libjpeg/src/jmemmgr.c
Normal file
1115
dep/libjpeg/src/jmemmgr.c
Normal file
File diff suppressed because it is too large
Load diff
113
dep/libjpeg/src/jmemnobs.c
Normal file
113
dep/libjpeg/src/jmemnobs.c
Normal file
|
@ -0,0 +1,113 @@
|
||||||
|
/*
|
||||||
|
* jmemnobs.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||||
|
* Modified 2019 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file provides a really simple implementation of the system-
|
||||||
|
* dependent portion of the JPEG memory manager. This implementation
|
||||||
|
* assumes that no backing-store files are needed: all required space
|
||||||
|
* can be obtained from malloc().
|
||||||
|
* This is very portable in the sense that it'll compile on almost anything,
|
||||||
|
* but you'd better have lots of main memory (or virtual memory) if you want
|
||||||
|
* to process big images.
|
||||||
|
* Note that the max_memory_to_use option is respected by this implementation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||||
|
|
||||||
|
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||||
|
extern void * malloc JPP((size_t size));
|
||||||
|
extern void free JPP((void *ptr));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Memory allocation and freeing are controlled by the regular library
|
||||||
|
* routines malloc() and free().
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void *)
|
||||||
|
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||||
|
{
|
||||||
|
return (void *) malloc(sizeofobject);
|
||||||
|
}
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||||
|
{
|
||||||
|
free(object);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* "Large" objects are treated the same as "small" ones.
|
||||||
|
* NB: although we include FAR keywords in the routine declarations,
|
||||||
|
* this file won't actually work in 80x86 small/medium model; at least,
|
||||||
|
* you probably won't be able to process useful-size images in only 64KB.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void FAR *)
|
||||||
|
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||||
|
{
|
||||||
|
return (void FAR *) malloc(sizeofobject);
|
||||||
|
}
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||||
|
{
|
||||||
|
free(object);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This routine computes the total memory space available for allocation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(long)
|
||||||
|
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||||
|
long max_bytes_needed, long already_allocated)
|
||||||
|
{
|
||||||
|
if (cinfo->mem->max_memory_to_use)
|
||||||
|
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||||
|
|
||||||
|
/* Here we say, "we got all you want bud!" */
|
||||||
|
return max_bytes_needed;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Backing store (temporary file) management.
|
||||||
|
* Since jpeg_mem_available always promised the moon,
|
||||||
|
* this should never be called and we can just error out.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||||
|
long total_bytes_needed)
|
||||||
|
{
|
||||||
|
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These routines take care of any system-dependent initialization and
|
||||||
|
* cleanup required. Here, there isn't any.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(long)
|
||||||
|
jpeg_mem_init (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
return 0; /* just set max_memory_to_use to 0 */
|
||||||
|
}
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jpeg_mem_term (j_common_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work */
|
||||||
|
}
|
198
dep/libjpeg/src/jmemsys.h
Normal file
198
dep/libjpeg/src/jmemsys.h
Normal file
|
@ -0,0 +1,198 @@
|
||||||
|
/*
|
||||||
|
* jmemsys.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This include file defines the interface between the system-independent
|
||||||
|
* and system-dependent portions of the JPEG memory manager. No other
|
||||||
|
* modules need include it. (The system-independent portion is jmemmgr.c;
|
||||||
|
* there are several different versions of the system-dependent portion.)
|
||||||
|
*
|
||||||
|
* This file works as-is for the system-dependent memory managers supplied
|
||||||
|
* in the IJG distribution. You may need to modify it if you write a
|
||||||
|
* custom memory manager. If system-dependent changes are needed in
|
||||||
|
* this file, the best method is to #ifdef them based on a configuration
|
||||||
|
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
|
||||||
|
* and USE_MAC_MEMMGR.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||||
|
|
||||||
|
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||||
|
#define jpeg_get_small jGetSmall
|
||||||
|
#define jpeg_free_small jFreeSmall
|
||||||
|
#define jpeg_get_large jGetLarge
|
||||||
|
#define jpeg_free_large jFreeLarge
|
||||||
|
#define jpeg_mem_available jMemAvail
|
||||||
|
#define jpeg_open_backing_store jOpenBackStore
|
||||||
|
#define jpeg_mem_init jMemInit
|
||||||
|
#define jpeg_mem_term jMemTerm
|
||||||
|
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These two functions are used to allocate and release small chunks of
|
||||||
|
* memory. (Typically the total amount requested through jpeg_get_small is
|
||||||
|
* no more than 20K or so; this will be requested in chunks of a few K each.)
|
||||||
|
* Behavior should be the same as for the standard library functions malloc
|
||||||
|
* and free; in particular, jpeg_get_small must return NULL on failure.
|
||||||
|
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
|
||||||
|
* size of the object being freed, just in case it's needed.
|
||||||
|
* On an 80x86 machine using small-data memory model, these manage near heap.
|
||||||
|
*/
|
||||||
|
|
||||||
|
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
|
||||||
|
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
|
||||||
|
size_t sizeofobject));
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These two functions are used to allocate and release large chunks of
|
||||||
|
* memory (up to the total free space designated by jpeg_mem_available).
|
||||||
|
* The interface is the same as above, except that on an 80x86 machine,
|
||||||
|
* far pointers are used. On most other machines these are identical to
|
||||||
|
* the jpeg_get/free_small routines; but we keep them separate anyway,
|
||||||
|
* in case a different allocation strategy is desirable for large chunks.
|
||||||
|
*/
|
||||||
|
|
||||||
|
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
|
||||||
|
size_t sizeofobject));
|
||||||
|
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
|
||||||
|
size_t sizeofobject));
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||||
|
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
|
||||||
|
* matter, but that case should never come into play). This macro is needed
|
||||||
|
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||||
|
* On those machines, we expect that jconfig.h will provide a proper value.
|
||||||
|
* On machines with 32-bit flat address spaces, any large constant may be used.
|
||||||
|
*
|
||||||
|
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
|
||||||
|
* size_t and will be a multiple of sizeof(align_type).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
|
||||||
|
#define MAX_ALLOC_CHUNK 1000000000L
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This routine computes the total space still available for allocation by
|
||||||
|
* jpeg_get_large. If more space than this is needed, backing store will be
|
||||||
|
* used. NOTE: any memory already allocated must not be counted.
|
||||||
|
*
|
||||||
|
* There is a minimum space requirement, corresponding to the minimum
|
||||||
|
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||||
|
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
|
||||||
|
* all working storage in memory, is also passed in case it is useful.
|
||||||
|
* Finally, the total space already allocated is passed. If no better
|
||||||
|
* method is available, cinfo->mem->max_memory_to_use - already_allocated
|
||||||
|
* is often a suitable calculation.
|
||||||
|
*
|
||||||
|
* It is OK for jpeg_mem_available to underestimate the space available
|
||||||
|
* (that'll just lead to more backing-store access than is really necessary).
|
||||||
|
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||||
|
* a slop factor from the true available space. 5% should be enough.
|
||||||
|
*
|
||||||
|
* On machines with lots of virtual memory, any large constant may be returned.
|
||||||
|
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||||
|
*/
|
||||||
|
|
||||||
|
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
|
||||||
|
long min_bytes_needed,
|
||||||
|
long max_bytes_needed,
|
||||||
|
long already_allocated));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This structure holds whatever state is needed to access a single
|
||||||
|
* backing-store object. The read/write/close method pointers are called
|
||||||
|
* by jmemmgr.c to manipulate the backing-store object; all other fields
|
||||||
|
* are private to the system-dependent backing store routines.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
|
||||||
|
|
||||||
|
typedef unsigned short XMSH; /* type of extended-memory handles */
|
||||||
|
typedef unsigned short EMSH; /* type of expanded-memory handles */
|
||||||
|
|
||||||
|
typedef union {
|
||||||
|
short file_handle; /* DOS file handle if it's a temp file */
|
||||||
|
XMSH xms_handle; /* handle if it's a chunk of XMS */
|
||||||
|
EMSH ems_handle; /* handle if it's a chunk of EMS */
|
||||||
|
} handle_union;
|
||||||
|
|
||||||
|
#endif /* USE_MSDOS_MEMMGR */
|
||||||
|
|
||||||
|
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
|
||||||
|
#include <Files.h>
|
||||||
|
#endif /* USE_MAC_MEMMGR */
|
||||||
|
|
||||||
|
|
||||||
|
typedef struct backing_store_struct * backing_store_ptr;
|
||||||
|
|
||||||
|
typedef struct backing_store_struct {
|
||||||
|
/* Methods for reading/writing/closing this backing-store object */
|
||||||
|
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
|
||||||
|
backing_store_ptr info,
|
||||||
|
void FAR * buffer_address,
|
||||||
|
long file_offset, long byte_count));
|
||||||
|
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
|
||||||
|
backing_store_ptr info,
|
||||||
|
void FAR * buffer_address,
|
||||||
|
long file_offset, long byte_count));
|
||||||
|
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
|
||||||
|
backing_store_ptr info));
|
||||||
|
|
||||||
|
/* Private fields for system-dependent backing-store management */
|
||||||
|
#ifdef USE_MSDOS_MEMMGR
|
||||||
|
/* For the MS-DOS manager (jmemdos.c), we need: */
|
||||||
|
handle_union handle; /* reference to backing-store storage object */
|
||||||
|
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||||
|
#else
|
||||||
|
#ifdef USE_MAC_MEMMGR
|
||||||
|
/* For the Mac manager (jmemmac.c), we need: */
|
||||||
|
short temp_file; /* file reference number to temp file */
|
||||||
|
FSSpec tempSpec; /* the FSSpec for the temp file */
|
||||||
|
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||||
|
#else
|
||||||
|
/* For a typical implementation with temp files, we need: */
|
||||||
|
FILE * temp_file; /* stdio reference to temp file */
|
||||||
|
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
} backing_store_info;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initial opening of a backing-store object. This must fill in the
|
||||||
|
* read/write/close pointers in the object. The read/write routines
|
||||||
|
* may take an error exit if the specified maximum file size is exceeded.
|
||||||
|
* (If jpeg_mem_available always returns a large value, this routine can
|
||||||
|
* just take an error exit.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
|
||||||
|
backing_store_ptr info,
|
||||||
|
long total_bytes_needed));
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* These routines take care of any system-dependent initialization and
|
||||||
|
* cleanup required. jpeg_mem_init will be called before anything is
|
||||||
|
* allocated (and, therefore, nothing in cinfo is of use except the error
|
||||||
|
* manager pointer). It should return a suitable default value for
|
||||||
|
* max_memory_to_use; this may subsequently be overridden by the surrounding
|
||||||
|
* application. (Note that max_memory_to_use is only important if
|
||||||
|
* jpeg_mem_available chooses to consult it ... no one else will.)
|
||||||
|
* jpeg_mem_term may assume that all requested memory has been freed and that
|
||||||
|
* all opened backing-store objects have been closed.
|
||||||
|
*/
|
||||||
|
|
||||||
|
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
|
||||||
|
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
|
851
dep/libjpeg/src/jquant1.c
Normal file
851
dep/libjpeg/src/jquant1.c
Normal file
|
@ -0,0 +1,851 @@
|
||||||
|
/*
|
||||||
|
* jquant1.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||||
|
* Modified 2011-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains 1-pass color quantization (color mapping) routines.
|
||||||
|
* These routines provide mapping to a fixed color map using equally spaced
|
||||||
|
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
#ifdef QUANT_1PASS_SUPPORTED
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The main purpose of 1-pass quantization is to provide a fast, if not very
|
||||||
|
* high quality, colormapped output capability. A 2-pass quantizer usually
|
||||||
|
* gives better visual quality; however, for quantized grayscale output this
|
||||||
|
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
||||||
|
* quantizer, though you can turn it off if you really want to.
|
||||||
|
*
|
||||||
|
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
||||||
|
* image. We use a map consisting of all combinations of Ncolors[i] color
|
||||||
|
* values for the i'th component. The Ncolors[] values are chosen so that
|
||||||
|
* their product, the total number of colors, is no more than that requested.
|
||||||
|
* (In most cases, the product will be somewhat less.)
|
||||||
|
*
|
||||||
|
* Since the colormap is orthogonal, the representative value for each color
|
||||||
|
* component can be determined without considering the other components;
|
||||||
|
* then these indexes can be combined into a colormap index by a standard
|
||||||
|
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
||||||
|
* can be precalculated and stored in the lookup table colorindex[].
|
||||||
|
* colorindex[i][j] maps pixel value j in component i to the nearest
|
||||||
|
* representative value (grid plane) for that component; this index is
|
||||||
|
* multiplied by the array stride for component i, so that the
|
||||||
|
* index of the colormap entry closest to a given pixel value is just
|
||||||
|
* sum( colorindex[component-number][pixel-component-value] )
|
||||||
|
* Aside from being fast, this scheme allows for variable spacing between
|
||||||
|
* representative values with no additional lookup cost.
|
||||||
|
*
|
||||||
|
* If gamma correction has been applied in color conversion, it might be wise
|
||||||
|
* to adjust the color grid spacing so that the representative colors are
|
||||||
|
* equidistant in linear space. At this writing, gamma correction is not
|
||||||
|
* implemented by jdcolor, so nothing is done here.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Declarations for ordered dithering.
|
||||||
|
*
|
||||||
|
* We use a standard 16x16 ordered dither array. The basic concept of ordered
|
||||||
|
* dithering is described in many references, for instance Dale Schumacher's
|
||||||
|
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
||||||
|
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
||||||
|
* "dither" value to the input pixel and then round the result to the nearest
|
||||||
|
* output value. The dither value is equivalent to (0.5 - threshold) times
|
||||||
|
* the distance between output values. For ordered dithering, we assume that
|
||||||
|
* the output colors are equally spaced; if not, results will probably be
|
||||||
|
* worse, since the dither may be too much or too little at a given point.
|
||||||
|
*
|
||||||
|
* The normal calculation would be to form pixel value + dither, range-limit
|
||||||
|
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
||||||
|
* We can skip the separate range-limiting step by extending the colorindex
|
||||||
|
* table in both directions.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define ODITHER_SIZE 16 /* dimension of dither matrix */
|
||||||
|
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
||||||
|
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
||||||
|
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
||||||
|
|
||||||
|
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
||||||
|
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
||||||
|
|
||||||
|
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
||||||
|
/* Bayer's order-4 dither array. Generated by the code given in
|
||||||
|
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
||||||
|
* The values in this array must range from 0 to ODITHER_CELLS-1.
|
||||||
|
*/
|
||||||
|
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
||||||
|
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
||||||
|
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
||||||
|
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
||||||
|
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
||||||
|
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
||||||
|
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
||||||
|
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
||||||
|
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
||||||
|
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
||||||
|
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
||||||
|
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
||||||
|
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
||||||
|
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
||||||
|
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
||||||
|
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* Declarations for Floyd-Steinberg dithering.
|
||||||
|
*
|
||||||
|
* Errors are accumulated into the array fserrors[], at a resolution of
|
||||||
|
* 1/16th of a pixel count. The error at a given pixel is propagated
|
||||||
|
* to its not-yet-processed neighbors using the standard F-S fractions,
|
||||||
|
* ... (here) 7/16
|
||||||
|
* 3/16 5/16 1/16
|
||||||
|
* We work left-to-right on even rows, right-to-left on odd rows.
|
||||||
|
*
|
||||||
|
* We can get away with a single array (holding one row's worth of errors)
|
||||||
|
* by using it to store the current row's errors at pixel columns not yet
|
||||||
|
* processed, but the next row's errors at columns already processed. We
|
||||||
|
* need only a few extra variables to hold the errors immediately around the
|
||||||
|
* current column. (If we are lucky, those variables are in registers, but
|
||||||
|
* even if not, they're probably cheaper to access than array elements are.)
|
||||||
|
*
|
||||||
|
* The fserrors[] array is indexed [component#][position].
|
||||||
|
* We provide (#columns + 2) entries per component; the extra entry at each
|
||||||
|
* end saves us from special-casing the first and last pixels.
|
||||||
|
*
|
||||||
|
* Note: on a wide image, we might not have enough room in a PC's near data
|
||||||
|
* segment to hold the error array; so it is allocated with alloc_large.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if BITS_IN_JSAMPLE == 8
|
||||||
|
typedef INT16 FSERROR; /* 16 bits should be enough */
|
||||||
|
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
||||||
|
#else
|
||||||
|
typedef INT32 FSERROR; /* may need more than 16 bits */
|
||||||
|
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
||||||
|
|
||||||
|
|
||||||
|
/* Private subobject */
|
||||||
|
|
||||||
|
#define MAX_Q_COMPS 4 /* max components I can handle */
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
struct jpeg_color_quantizer pub; /* public fields */
|
||||||
|
|
||||||
|
/* Initially allocated colormap is saved here */
|
||||||
|
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
||||||
|
int sv_actual; /* number of entries in use */
|
||||||
|
|
||||||
|
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||||||
|
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||||
|
* premultiplied as described above. Since colormap indexes must fit into
|
||||||
|
* JSAMPLEs, the entries of this array will too.
|
||||||
|
*/
|
||||||
|
boolean is_padded; /* is the colorindex padded for odither? */
|
||||||
|
|
||||||
|
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
||||||
|
|
||||||
|
/* Variables for ordered dithering */
|
||||||
|
int row_index; /* cur row's vertical index in dither matrix */
|
||||||
|
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
||||||
|
|
||||||
|
/* Variables for Floyd-Steinberg dithering */
|
||||||
|
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
||||||
|
boolean on_odd_row; /* flag to remember which row we are on */
|
||||||
|
} my_cquantizer;
|
||||||
|
|
||||||
|
typedef my_cquantizer * my_cquantize_ptr;
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Policy-making subroutines for create_colormap and create_colorindex.
|
||||||
|
* These routines determine the colormap to be used. The rest of the module
|
||||||
|
* only assumes that the colormap is orthogonal.
|
||||||
|
*
|
||||||
|
* * select_ncolors decides how to divvy up the available colors
|
||||||
|
* among the components.
|
||||||
|
* * output_value defines the set of representative values for a component.
|
||||||
|
* * largest_input_value defines the mapping from input values to
|
||||||
|
* representative values for a component.
|
||||||
|
* Note that the latter two routines may impose different policies for
|
||||||
|
* different components, though this is not currently done.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(int)
|
||||||
|
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
||||||
|
/* Determine allocation of desired colors to components, */
|
||||||
|
/* and fill in Ncolors[] array to indicate choice. */
|
||||||
|
/* Return value is total number of colors (product of Ncolors[] values). */
|
||||||
|
{
|
||||||
|
int nc = cinfo->out_color_components; /* number of color components */
|
||||||
|
int max_colors = cinfo->desired_number_of_colors;
|
||||||
|
int total_colors, iroot, i, j;
|
||||||
|
boolean changed;
|
||||||
|
long temp;
|
||||||
|
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
||||||
|
|
||||||
|
/* We can allocate at least the nc'th root of max_colors per component. */
|
||||||
|
/* Compute floor(nc'th root of max_colors). */
|
||||||
|
iroot = 1;
|
||||||
|
do {
|
||||||
|
iroot++;
|
||||||
|
temp = iroot; /* set temp = iroot ** nc */
|
||||||
|
for (i = 1; i < nc; i++)
|
||||||
|
temp *= iroot;
|
||||||
|
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
||||||
|
iroot--; /* now iroot = floor(root) */
|
||||||
|
|
||||||
|
/* Must have at least 2 color values per component */
|
||||||
|
if (iroot < 2)
|
||||||
|
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
||||||
|
|
||||||
|
/* Initialize to iroot color values for each component */
|
||||||
|
total_colors = 1;
|
||||||
|
for (i = 0; i < nc; i++) {
|
||||||
|
Ncolors[i] = iroot;
|
||||||
|
total_colors *= iroot;
|
||||||
|
}
|
||||||
|
/* We may be able to increment the count for one or more components without
|
||||||
|
* exceeding max_colors, though we know not all can be incremented.
|
||||||
|
* Sometimes, the first component can be incremented more than once!
|
||||||
|
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
||||||
|
* In RGB colorspace, try to increment G first, then R, then B.
|
||||||
|
*/
|
||||||
|
do {
|
||||||
|
changed = FALSE;
|
||||||
|
for (i = 0; i < nc; i++) {
|
||||||
|
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
||||||
|
/* calculate new total_colors if Ncolors[j] is incremented */
|
||||||
|
temp = total_colors / Ncolors[j];
|
||||||
|
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
||||||
|
if (temp > (long) max_colors)
|
||||||
|
break; /* won't fit, done with this pass */
|
||||||
|
Ncolors[j]++; /* OK, apply the increment */
|
||||||
|
total_colors = (int) temp;
|
||||||
|
changed = TRUE;
|
||||||
|
}
|
||||||
|
} while (changed);
|
||||||
|
|
||||||
|
return total_colors;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(int)
|
||||||
|
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||||
|
/* Return j'th output value, where j will range from 0 to maxj */
|
||||||
|
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
||||||
|
{
|
||||||
|
/* We always provide values 0 and MAXJSAMPLE for each component;
|
||||||
|
* any additional values are equally spaced between these limits.
|
||||||
|
* (Forcing the upper and lower values to the limits ensures that
|
||||||
|
* dithering can't produce a color outside the selected gamut.)
|
||||||
|
*/
|
||||||
|
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
LOCAL(int)
|
||||||
|
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||||
|
/* Return largest input value that should map to j'th output value */
|
||||||
|
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
||||||
|
{
|
||||||
|
/* Breakpoints are halfway between values returned by output_value */
|
||||||
|
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create the colormap.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
create_colormap (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
JSAMPARRAY colormap; /* Created colormap */
|
||||||
|
int total_colors; /* Number of distinct output colors */
|
||||||
|
int i,j,k, nci, blksize, blkdist, ptr, val;
|
||||||
|
|
||||||
|
/* Select number of colors for each component */
|
||||||
|
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
||||||
|
|
||||||
|
/* Report selected color counts */
|
||||||
|
if (cinfo->out_color_components == 3)
|
||||||
|
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
||||||
|
total_colors, cquantize->Ncolors[0],
|
||||||
|
cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
||||||
|
else
|
||||||
|
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
||||||
|
|
||||||
|
/* Allocate and fill in the colormap. */
|
||||||
|
/* The colors are ordered in the map in standard row-major order, */
|
||||||
|
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
||||||
|
|
||||||
|
colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
||||||
|
|
||||||
|
/* blksize is number of adjacent repeated entries for a component */
|
||||||
|
/* blkdist is distance between groups of identical entries for a component */
|
||||||
|
blkdist = total_colors;
|
||||||
|
|
||||||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||||
|
/* fill in colormap entries for i'th color component */
|
||||||
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||||
|
blksize = blkdist / nci;
|
||||||
|
for (j = 0; j < nci; j++) {
|
||||||
|
/* Compute j'th output value (out of nci) for component */
|
||||||
|
val = output_value(cinfo, i, j, nci-1);
|
||||||
|
/* Fill in all colormap entries that have this value of this component */
|
||||||
|
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
||||||
|
/* fill in blksize entries beginning at ptr */
|
||||||
|
for (k = 0; k < blksize; k++)
|
||||||
|
colormap[i][ptr+k] = (JSAMPLE) val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
blkdist = blksize; /* blksize of this color is blkdist of next */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Save the colormap in private storage,
|
||||||
|
* where it will survive color quantization mode changes.
|
||||||
|
*/
|
||||||
|
cquantize->sv_colormap = colormap;
|
||||||
|
cquantize->sv_actual = total_colors;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create the color index table.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
create_colorindex (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
JSAMPROW indexptr;
|
||||||
|
int i,j,k, nci, blksize, val, pad;
|
||||||
|
|
||||||
|
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||||||
|
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
||||||
|
* This is not necessary in the other dithering modes. However, we
|
||||||
|
* flag whether it was done in case user changes dithering mode.
|
||||||
|
*/
|
||||||
|
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
||||||
|
pad = MAXJSAMPLE*2;
|
||||||
|
cquantize->is_padded = TRUE;
|
||||||
|
} else {
|
||||||
|
pad = 0;
|
||||||
|
cquantize->is_padded = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
|
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||||
|
(JDIMENSION) (MAXJSAMPLE+1 + pad),
|
||||||
|
(JDIMENSION) cinfo->out_color_components);
|
||||||
|
|
||||||
|
/* blksize is number of adjacent repeated entries for a component */
|
||||||
|
blksize = cquantize->sv_actual;
|
||||||
|
|
||||||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||||
|
/* fill in colorindex entries for i'th color component */
|
||||||
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||||
|
blksize = blksize / nci;
|
||||||
|
|
||||||
|
/* adjust colorindex pointers to provide padding at negative indexes. */
|
||||||
|
if (pad)
|
||||||
|
cquantize->colorindex[i] += MAXJSAMPLE;
|
||||||
|
|
||||||
|
/* in loop, val = index of current output value, */
|
||||||
|
/* and k = largest j that maps to current val */
|
||||||
|
indexptr = cquantize->colorindex[i];
|
||||||
|
val = 0;
|
||||||
|
k = largest_input_value(cinfo, i, 0, nci-1);
|
||||||
|
for (j = 0; j <= MAXJSAMPLE; j++) {
|
||||||
|
while (j > k) /* advance val if past boundary */
|
||||||
|
k = largest_input_value(cinfo, i, ++val, nci-1);
|
||||||
|
/* premultiply so that no multiplication needed in main processing */
|
||||||
|
indexptr[j] = (JSAMPLE) (val * blksize);
|
||||||
|
}
|
||||||
|
/* Pad at both ends if necessary */
|
||||||
|
if (pad)
|
||||||
|
for (j = 1; j <= MAXJSAMPLE; j++) {
|
||||||
|
indexptr[-j] = indexptr[0];
|
||||||
|
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create an ordered-dither array for a component having ncolors
|
||||||
|
* distinct output values.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(ODITHER_MATRIX_PTR)
|
||||||
|
make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
||||||
|
{
|
||||||
|
ODITHER_MATRIX_PTR odither;
|
||||||
|
int j,k;
|
||||||
|
INT32 num,den;
|
||||||
|
|
||||||
|
odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX));
|
||||||
|
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
||||||
|
* Hence the dither value for the matrix cell with fill order f
|
||||||
|
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
||||||
|
* On 16-bit-int machine, be careful to avoid overflow.
|
||||||
|
*/
|
||||||
|
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
||||||
|
for (j = 0; j < ODITHER_SIZE; j++) {
|
||||||
|
for (k = 0; k < ODITHER_SIZE; k++) {
|
||||||
|
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
||||||
|
* MAXJSAMPLE;
|
||||||
|
/* Ensure round towards zero despite C's lack of consistency
|
||||||
|
* about rounding negative values in integer division...
|
||||||
|
*/
|
||||||
|
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return odither;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create the ordered-dither tables.
|
||||||
|
* Components having the same number of representative colors may
|
||||||
|
* share a dither table.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
create_odither_tables (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
ODITHER_MATRIX_PTR odither;
|
||||||
|
int i, j, nci;
|
||||||
|
|
||||||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||||
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||||||
|
odither = NULL; /* search for matching prior component */
|
||||||
|
for (j = 0; j < i; j++) {
|
||||||
|
if (nci == cquantize->Ncolors[j]) {
|
||||||
|
odither = cquantize->odither[j];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (odither == NULL) /* need a new table? */
|
||||||
|
odither = make_odither_array(cinfo, nci);
|
||||||
|
cquantize->odither[i] = odither;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Map some rows of pixels to the output colormapped representation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
/* General case, no dithering */
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
JSAMPARRAY colorindex = cquantize->colorindex;
|
||||||
|
register int pixcode, ci;
|
||||||
|
register JSAMPROW ptrin, ptrout;
|
||||||
|
int row;
|
||||||
|
JDIMENSION col;
|
||||||
|
JDIMENSION width = cinfo->output_width;
|
||||||
|
register int nc = cinfo->out_color_components;
|
||||||
|
|
||||||
|
for (row = 0; row < num_rows; row++) {
|
||||||
|
ptrin = input_buf[row];
|
||||||
|
ptrout = output_buf[row];
|
||||||
|
for (col = width; col > 0; col--) {
|
||||||
|
pixcode = 0;
|
||||||
|
for (ci = 0; ci < nc; ci++) {
|
||||||
|
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
||||||
|
}
|
||||||
|
*ptrout++ = (JSAMPLE) pixcode;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
/* Fast path for out_color_components==3, no dithering */
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
register int pixcode;
|
||||||
|
register JSAMPROW ptrin, ptrout;
|
||||||
|
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||||
|
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||||
|
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||||
|
int row;
|
||||||
|
JDIMENSION col;
|
||||||
|
JDIMENSION width = cinfo->output_width;
|
||||||
|
|
||||||
|
for (row = 0; row < num_rows; row++) {
|
||||||
|
ptrin = input_buf[row];
|
||||||
|
ptrout = output_buf[row];
|
||||||
|
for (col = width; col > 0; col--) {
|
||||||
|
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
||||||
|
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
||||||
|
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
||||||
|
*ptrout++ = (JSAMPLE) pixcode;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
/* General case, with ordered dithering */
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
register JSAMPROW input_ptr;
|
||||||
|
register JSAMPROW output_ptr;
|
||||||
|
JSAMPROW colorindex_ci;
|
||||||
|
int * dither; /* points to active row of dither matrix */
|
||||||
|
int row_index, col_index; /* current indexes into dither matrix */
|
||||||
|
int nc = cinfo->out_color_components;
|
||||||
|
int ci;
|
||||||
|
int row;
|
||||||
|
JDIMENSION col;
|
||||||
|
JDIMENSION width = cinfo->output_width;
|
||||||
|
|
||||||
|
for (row = 0; row < num_rows; row++) {
|
||||||
|
/* Initialize output values to 0 so can process components separately */
|
||||||
|
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE));
|
||||||
|
row_index = cquantize->row_index;
|
||||||
|
for (ci = 0; ci < nc; ci++) {
|
||||||
|
input_ptr = input_buf[row] + ci;
|
||||||
|
output_ptr = output_buf[row];
|
||||||
|
colorindex_ci = cquantize->colorindex[ci];
|
||||||
|
dither = cquantize->odither[ci][row_index];
|
||||||
|
col_index = 0;
|
||||||
|
|
||||||
|
for (col = width; col > 0; col--) {
|
||||||
|
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||||||
|
* select output value, accumulate into output code for this pixel.
|
||||||
|
* Range-limiting need not be done explicitly, as we have extended
|
||||||
|
* the colorindex table to produce the right answers for out-of-range
|
||||||
|
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
||||||
|
* required amount of padding.
|
||||||
|
*/
|
||||||
|
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
||||||
|
input_ptr += nc;
|
||||||
|
output_ptr++;
|
||||||
|
col_index = (col_index + 1) & ODITHER_MASK;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Advance row index for next row */
|
||||||
|
row_index = (row_index + 1) & ODITHER_MASK;
|
||||||
|
cquantize->row_index = row_index;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
/* Fast path for out_color_components==3, with ordered dithering */
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
register int pixcode;
|
||||||
|
register JSAMPROW input_ptr;
|
||||||
|
register JSAMPROW output_ptr;
|
||||||
|
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||||
|
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||||
|
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||||
|
int * dither0; /* points to active row of dither matrix */
|
||||||
|
int * dither1;
|
||||||
|
int * dither2;
|
||||||
|
int row_index, col_index; /* current indexes into dither matrix */
|
||||||
|
int row;
|
||||||
|
JDIMENSION col;
|
||||||
|
JDIMENSION width = cinfo->output_width;
|
||||||
|
|
||||||
|
for (row = 0; row < num_rows; row++) {
|
||||||
|
row_index = cquantize->row_index;
|
||||||
|
input_ptr = input_buf[row];
|
||||||
|
output_ptr = output_buf[row];
|
||||||
|
dither0 = cquantize->odither[0][row_index];
|
||||||
|
dither1 = cquantize->odither[1][row_index];
|
||||||
|
dither2 = cquantize->odither[2][row_index];
|
||||||
|
col_index = 0;
|
||||||
|
|
||||||
|
for (col = width; col > 0; col--) {
|
||||||
|
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
||||||
|
dither0[col_index]]);
|
||||||
|
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
||||||
|
dither1[col_index]]);
|
||||||
|
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
||||||
|
dither2[col_index]]);
|
||||||
|
*output_ptr++ = (JSAMPLE) pixcode;
|
||||||
|
col_index = (col_index + 1) & ODITHER_MASK;
|
||||||
|
}
|
||||||
|
row_index = (row_index + 1) & ODITHER_MASK;
|
||||||
|
cquantize->row_index = row_index;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||||
|
JSAMPARRAY output_buf, int num_rows)
|
||||||
|
/* General case, with Floyd-Steinberg dithering */
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
register LOCFSERROR cur; /* current error or pixel value */
|
||||||
|
LOCFSERROR belowerr; /* error for pixel below cur */
|
||||||
|
LOCFSERROR bpreverr; /* error for below/prev col */
|
||||||
|
LOCFSERROR bnexterr; /* error for below/next col */
|
||||||
|
LOCFSERROR delta;
|
||||||
|
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
||||||
|
register JSAMPROW input_ptr;
|
||||||
|
register JSAMPROW output_ptr;
|
||||||
|
JSAMPROW colorindex_ci;
|
||||||
|
JSAMPROW colormap_ci;
|
||||||
|
int pixcode;
|
||||||
|
int nc = cinfo->out_color_components;
|
||||||
|
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
||||||
|
int dirnc; /* dir * nc */
|
||||||
|
int ci;
|
||||||
|
int row;
|
||||||
|
JDIMENSION col;
|
||||||
|
JDIMENSION width = cinfo->output_width;
|
||||||
|
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||||||
|
SHIFT_TEMPS
|
||||||
|
|
||||||
|
for (row = 0; row < num_rows; row++) {
|
||||||
|
/* Initialize output values to 0 so can process components separately */
|
||||||
|
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE));
|
||||||
|
for (ci = 0; ci < nc; ci++) {
|
||||||
|
input_ptr = input_buf[row] + ci;
|
||||||
|
output_ptr = output_buf[row];
|
||||||
|
if (cquantize->on_odd_row) {
|
||||||
|
/* work right to left in this row */
|
||||||
|
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
||||||
|
output_ptr += width-1;
|
||||||
|
dir = -1;
|
||||||
|
dirnc = -nc;
|
||||||
|
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
||||||
|
} else {
|
||||||
|
/* work left to right in this row */
|
||||||
|
dir = 1;
|
||||||
|
dirnc = nc;
|
||||||
|
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
||||||
|
}
|
||||||
|
colorindex_ci = cquantize->colorindex[ci];
|
||||||
|
colormap_ci = cquantize->sv_colormap[ci];
|
||||||
|
/* Preset error values: no error propagated to first pixel from left */
|
||||||
|
cur = 0;
|
||||||
|
/* and no error propagated to row below yet */
|
||||||
|
belowerr = bpreverr = 0;
|
||||||
|
|
||||||
|
for (col = width; col > 0; col--) {
|
||||||
|
/* cur holds the error propagated from the previous pixel on the
|
||||||
|
* current line. Add the error propagated from the previous line
|
||||||
|
* to form the complete error correction term for this pixel, and
|
||||||
|
* round the error term (which is expressed * 16) to an integer.
|
||||||
|
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
||||||
|
* for either sign of the error value.
|
||||||
|
* Note: errorptr points to *previous* column's array entry.
|
||||||
|
*/
|
||||||
|
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
||||||
|
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||||||
|
* The maximum error is +- MAXJSAMPLE; this sets the required size
|
||||||
|
* of the range_limit array.
|
||||||
|
*/
|
||||||
|
cur += GETJSAMPLE(*input_ptr);
|
||||||
|
cur = GETJSAMPLE(range_limit[cur]);
|
||||||
|
/* Select output value, accumulate into output code for this pixel */
|
||||||
|
pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
||||||
|
*output_ptr += (JSAMPLE) pixcode;
|
||||||
|
/* Compute actual representation error at this pixel */
|
||||||
|
/* Note: we can do this even though we don't have the final */
|
||||||
|
/* pixel code, because the colormap is orthogonal. */
|
||||||
|
cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
||||||
|
/* Compute error fractions to be propagated to adjacent pixels.
|
||||||
|
* Add these into the running sums, and simultaneously shift the
|
||||||
|
* next-line error sums left by 1 column.
|
||||||
|
*/
|
||||||
|
bnexterr = cur;
|
||||||
|
delta = cur * 2;
|
||||||
|
cur += delta; /* form error * 3 */
|
||||||
|
errorptr[0] = (FSERROR) (bpreverr + cur);
|
||||||
|
cur += delta; /* form error * 5 */
|
||||||
|
bpreverr = belowerr + cur;
|
||||||
|
belowerr = bnexterr;
|
||||||
|
cur += delta; /* form error * 7 */
|
||||||
|
/* At this point cur contains the 7/16 error value to be propagated
|
||||||
|
* to the next pixel on the current line, and all the errors for the
|
||||||
|
* next line have been shifted over. We are therefore ready to move on.
|
||||||
|
*/
|
||||||
|
input_ptr += dirnc; /* advance input ptr to next column */
|
||||||
|
output_ptr += dir; /* advance output ptr to next column */
|
||||||
|
errorptr += dir; /* advance errorptr to current column */
|
||||||
|
}
|
||||||
|
/* Post-loop cleanup: we must unload the final error value into the
|
||||||
|
* final fserrors[] entry. Note we need not unload belowerr because
|
||||||
|
* it is for the dummy column before or after the actual array.
|
||||||
|
*/
|
||||||
|
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
||||||
|
}
|
||||||
|
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Allocate workspace for Floyd-Steinberg errors.
|
||||||
|
*/
|
||||||
|
|
||||||
|
LOCAL(void)
|
||||||
|
alloc_fs_workspace (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
size_t arraysize;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR);
|
||||||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||||
|
cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Initialize for one-pass color quantization.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||||
|
size_t arraysize;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
/* Install my colormap. */
|
||||||
|
cinfo->colormap = cquantize->sv_colormap;
|
||||||
|
cinfo->actual_number_of_colors = cquantize->sv_actual;
|
||||||
|
|
||||||
|
/* Initialize for desired dithering mode. */
|
||||||
|
switch (cinfo->dither_mode) {
|
||||||
|
case JDITHER_NONE:
|
||||||
|
if (cinfo->out_color_components == 3)
|
||||||
|
cquantize->pub.color_quantize = color_quantize3;
|
||||||
|
else
|
||||||
|
cquantize->pub.color_quantize = color_quantize;
|
||||||
|
break;
|
||||||
|
case JDITHER_ORDERED:
|
||||||
|
if (cinfo->out_color_components == 3)
|
||||||
|
cquantize->pub.color_quantize = quantize3_ord_dither;
|
||||||
|
else
|
||||||
|
cquantize->pub.color_quantize = quantize_ord_dither;
|
||||||
|
cquantize->row_index = 0; /* initialize state for ordered dither */
|
||||||
|
/* If user changed to ordered dither from another mode,
|
||||||
|
* we must recreate the color index table with padding.
|
||||||
|
* This will cost extra space, but probably isn't very likely.
|
||||||
|
*/
|
||||||
|
if (! cquantize->is_padded)
|
||||||
|
create_colorindex(cinfo);
|
||||||
|
/* Create ordered-dither tables if we didn't already. */
|
||||||
|
if (cquantize->odither[0] == NULL)
|
||||||
|
create_odither_tables(cinfo);
|
||||||
|
break;
|
||||||
|
case JDITHER_FS:
|
||||||
|
cquantize->pub.color_quantize = quantize_fs_dither;
|
||||||
|
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
||||||
|
/* Allocate Floyd-Steinberg workspace if didn't already. */
|
||||||
|
if (cquantize->fserrors[0] == NULL)
|
||||||
|
alloc_fs_workspace(cinfo);
|
||||||
|
/* Initialize the propagated errors to zero. */
|
||||||
|
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR);
|
||||||
|
for (i = 0; i < cinfo->out_color_components; i++)
|
||||||
|
FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Finish up at the end of the pass.
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
finish_pass_1_quant (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
/* no work in 1-pass case */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Switch to a new external colormap between output passes.
|
||||||
|
* Shouldn't get to this module!
|
||||||
|
*/
|
||||||
|
|
||||||
|
METHODDEF(void)
|
||||||
|
new_color_map_1_quant (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Module initialization routine for 1-pass color quantization.
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
||||||
|
{
|
||||||
|
my_cquantize_ptr cquantize;
|
||||||
|
|
||||||
|
cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small)
|
||||||
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer));
|
||||||
|
cinfo->cquantize = &cquantize->pub;
|
||||||
|
cquantize->pub.start_pass = start_pass_1_quant;
|
||||||
|
cquantize->pub.finish_pass = finish_pass_1_quant;
|
||||||
|
cquantize->pub.new_color_map = new_color_map_1_quant;
|
||||||
|
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
||||||
|
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
||||||
|
|
||||||
|
/* Make sure my internal arrays won't overflow */
|
||||||
|
if (cinfo->out_color_components > MAX_Q_COMPS)
|
||||||
|
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
||||||
|
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
||||||
|
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
||||||
|
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
||||||
|
|
||||||
|
/* Create the colormap and color index table. */
|
||||||
|
create_colormap(cinfo);
|
||||||
|
create_colorindex(cinfo);
|
||||||
|
|
||||||
|
/* Allocate Floyd-Steinberg workspace now if requested.
|
||||||
|
* We do this now since it is FAR storage and may affect the memory
|
||||||
|
* manager's space calculations. If the user changes to FS dither
|
||||||
|
* mode in a later pass, we will allocate the space then, and will
|
||||||
|
* possibly overrun the max_memory_to_use setting.
|
||||||
|
*/
|
||||||
|
if (cinfo->dither_mode == JDITHER_FS)
|
||||||
|
alloc_fs_workspace(cinfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* QUANT_1PASS_SUPPORTED */
|
1311
dep/libjpeg/src/jquant2.c
Normal file
1311
dep/libjpeg/src/jquant2.c
Normal file
File diff suppressed because it is too large
Load diff
224
dep/libjpeg/src/jutils.c
Normal file
224
dep/libjpeg/src/jutils.c
Normal file
|
@ -0,0 +1,224 @@
|
||||||
|
/*
|
||||||
|
* jutils.c
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||||
|
* Modified 2009-2020 by Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains tables and miscellaneous utility routines needed
|
||||||
|
* for both compression and decompression.
|
||||||
|
* Note we prefix all global names with "j" to minimize conflicts with
|
||||||
|
* a surrounding application.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define JPEG_INTERNALS
|
||||||
|
#include "jinclude.h"
|
||||||
|
#include "jpeglib.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
|
||||||
|
* of a DCT block read in natural order (left to right, top to bottom).
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if 0 /* This table is not actually needed in v6a */
|
||||||
|
|
||||||
|
const int jpeg_zigzag_order[DCTSIZE2] = {
|
||||||
|
0, 1, 5, 6, 14, 15, 27, 28,
|
||||||
|
2, 4, 7, 13, 16, 26, 29, 42,
|
||||||
|
3, 8, 12, 17, 25, 30, 41, 43,
|
||||||
|
9, 11, 18, 24, 31, 40, 44, 53,
|
||||||
|
10, 19, 23, 32, 39, 45, 52, 54,
|
||||||
|
20, 22, 33, 38, 46, 51, 55, 60,
|
||||||
|
21, 34, 37, 47, 50, 56, 59, 61,
|
||||||
|
35, 36, 48, 49, 57, 58, 62, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* jpeg_natural_order[i] is the natural-order position of the i'th element
|
||||||
|
* of zigzag order.
|
||||||
|
*
|
||||||
|
* When reading corrupted data, the Huffman decoders could attempt
|
||||||
|
* to reference an entry beyond the end of this array (if the decoded
|
||||||
|
* zero run length reaches past the end of the block). To prevent
|
||||||
|
* wild stores without adding an inner-loop test, we put some extra
|
||||||
|
* "63"s after the real entries. This will cause the extra coefficient
|
||||||
|
* to be stored in location 63 of the block, not somewhere random.
|
||||||
|
* The worst case would be a run-length of 15, which means we need 16
|
||||||
|
* fake entries.
|
||||||
|
*/
|
||||||
|
|
||||||
|
const int jpeg_natural_order[DCTSIZE2+16] = {
|
||||||
|
0, 1, 8, 16, 9, 2, 3, 10,
|
||||||
|
17, 24, 32, 25, 18, 11, 4, 5,
|
||||||
|
12, 19, 26, 33, 40, 48, 41, 34,
|
||||||
|
27, 20, 13, 6, 7, 14, 21, 28,
|
||||||
|
35, 42, 49, 56, 57, 50, 43, 36,
|
||||||
|
29, 22, 15, 23, 30, 37, 44, 51,
|
||||||
|
58, 59, 52, 45, 38, 31, 39, 46,
|
||||||
|
53, 60, 61, 54, 47, 55, 62, 63,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
const int jpeg_natural_order7[7*7+16] = {
|
||||||
|
0, 1, 8, 16, 9, 2, 3, 10,
|
||||||
|
17, 24, 32, 25, 18, 11, 4, 5,
|
||||||
|
12, 19, 26, 33, 40, 48, 41, 34,
|
||||||
|
27, 20, 13, 6, 14, 21, 28, 35,
|
||||||
|
42, 49, 50, 43, 36, 29, 22, 30,
|
||||||
|
37, 44, 51, 52, 45, 38, 46, 53,
|
||||||
|
54,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
const int jpeg_natural_order6[6*6+16] = {
|
||||||
|
0, 1, 8, 16, 9, 2, 3, 10,
|
||||||
|
17, 24, 32, 25, 18, 11, 4, 5,
|
||||||
|
12, 19, 26, 33, 40, 41, 34, 27,
|
||||||
|
20, 13, 21, 28, 35, 42, 43, 36,
|
||||||
|
29, 37, 44, 45,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
const int jpeg_natural_order5[5*5+16] = {
|
||||||
|
0, 1, 8, 16, 9, 2, 3, 10,
|
||||||
|
17, 24, 32, 25, 18, 11, 4, 12,
|
||||||
|
19, 26, 33, 34, 27, 20, 28, 35,
|
||||||
|
36,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
const int jpeg_natural_order4[4*4+16] = {
|
||||||
|
0, 1, 8, 16, 9, 2, 3, 10,
|
||||||
|
17, 24, 25, 18, 11, 19, 26, 27,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
const int jpeg_natural_order3[3*3+16] = {
|
||||||
|
0, 1, 8, 16, 9, 2, 10, 17,
|
||||||
|
18,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
const int jpeg_natural_order2[2*2+16] = {
|
||||||
|
0, 1, 8, 9,
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
|
||||||
|
63, 63, 63, 63, 63, 63, 63, 63
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Arithmetic utilities
|
||||||
|
*/
|
||||||
|
|
||||||
|
GLOBAL(long)
|
||||||
|
jdiv_round_up (long a, long b)
|
||||||
|
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
|
||||||
|
/* Assumes a >= 0, b > 0 */
|
||||||
|
{
|
||||||
|
return (a + b - 1L) / b;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(long)
|
||||||
|
jround_up (long a, long b)
|
||||||
|
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
|
||||||
|
/* Assumes a >= 0, b > 0 */
|
||||||
|
{
|
||||||
|
a += b - 1L;
|
||||||
|
return a - (a % b);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
|
||||||
|
* and coefficient-block arrays. This won't work on 80x86 because the arrays
|
||||||
|
* are FAR and we're assuming a small-pointer memory model. However, some
|
||||||
|
* DOS compilers provide far-pointer versions of memcpy() and memset() even
|
||||||
|
* in the small-model libraries. These will be used if USE_FMEM is defined.
|
||||||
|
* Otherwise, the routines below do it the hard way. (The performance cost
|
||||||
|
* is not all that great, because these routines aren't very heavily used.)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */
|
||||||
|
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
|
||||||
|
#else /* 80x86 case, define if we can */
|
||||||
|
#ifdef USE_FMEM
|
||||||
|
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
|
||||||
|
#else
|
||||||
|
/* This function is for use by the FMEMZERO macro defined in jpegint.h.
|
||||||
|
* Do not call this function directly, use the FMEMZERO macro instead.
|
||||||
|
*/
|
||||||
|
GLOBAL(void)
|
||||||
|
jzero_far (void FAR * target, size_t bytestozero)
|
||||||
|
/* Zero out a chunk of FAR memory. */
|
||||||
|
/* This might be sample-array data, block-array data, or alloc_large data. */
|
||||||
|
{
|
||||||
|
register char FAR * ptr = (char FAR *) target;
|
||||||
|
register size_t count;
|
||||||
|
|
||||||
|
for (count = bytestozero; count > 0; count--) {
|
||||||
|
*ptr++ = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jcopy_sample_rows (JSAMPARRAY input_array,
|
||||||
|
JSAMPARRAY output_array,
|
||||||
|
int num_rows, JDIMENSION num_cols)
|
||||||
|
/* Copy some rows of samples from one place to another.
|
||||||
|
* num_rows rows are copied from *input_array++ to *output_array++;
|
||||||
|
* these areas may overlap for duplication.
|
||||||
|
* The source and destination arrays must be at least as wide as num_cols.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
register JSAMPROW inptr, outptr;
|
||||||
|
#ifdef FMEMCOPY
|
||||||
|
register size_t count = (size_t) num_cols * SIZEOF(JSAMPLE);
|
||||||
|
#else
|
||||||
|
register JDIMENSION count;
|
||||||
|
#endif
|
||||||
|
register int row;
|
||||||
|
|
||||||
|
for (row = num_rows; row > 0; row--) {
|
||||||
|
inptr = *input_array++;
|
||||||
|
outptr = *output_array++;
|
||||||
|
#ifdef FMEMCOPY
|
||||||
|
FMEMCOPY(outptr, inptr, count);
|
||||||
|
#else
|
||||||
|
for (count = num_cols; count > 0; count--)
|
||||||
|
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
GLOBAL(void)
|
||||||
|
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
|
||||||
|
JDIMENSION num_blocks)
|
||||||
|
/* Copy a row of coefficient blocks from one place to another. */
|
||||||
|
{
|
||||||
|
#ifdef FMEMCOPY
|
||||||
|
FMEMCOPY(output_row, input_row, (size_t) num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
|
||||||
|
#else
|
||||||
|
register JCOEFPTR inptr, outptr;
|
||||||
|
register long count;
|
||||||
|
|
||||||
|
inptr = (JCOEFPTR) input_row;
|
||||||
|
outptr = (JCOEFPTR) output_row;
|
||||||
|
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
|
||||||
|
*outptr++ = *inptr++;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
14
dep/libjpeg/src/jversion.h
Normal file
14
dep/libjpeg/src/jversion.h
Normal file
|
@ -0,0 +1,14 @@
|
||||||
|
/*
|
||||||
|
* jversion.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains software version identification.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
#define JVERSION "9f 14-Jan-2024"
|
||||||
|
|
||||||
|
#define JCOPYRIGHT "Copyright (C) 2024, Thomas G. Lane, Guido Vollbeding"
|
2433
dep/libjpeg/src/transupp.c
Normal file
2433
dep/libjpeg/src/transupp.c
Normal file
File diff suppressed because it is too large
Load diff
230
dep/libjpeg/src/transupp.h
Normal file
230
dep/libjpeg/src/transupp.h
Normal file
|
@ -0,0 +1,230 @@
|
||||||
|
/*
|
||||||
|
* transupp.h
|
||||||
|
*
|
||||||
|
* Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding.
|
||||||
|
* This file is part of the Independent JPEG Group's software.
|
||||||
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
|
*
|
||||||
|
* This file contains declarations for image transformation routines and
|
||||||
|
* other utility code used by the jpegtran sample application. These are
|
||||||
|
* NOT part of the core JPEG library. But we keep these routines separate
|
||||||
|
* from jpegtran.c to ease the task of maintaining jpegtran-like programs
|
||||||
|
* that have other user interfaces.
|
||||||
|
*
|
||||||
|
* NOTE: all the routines declared here have very specific requirements
|
||||||
|
* about when they are to be executed during the reading and writing of the
|
||||||
|
* source and destination files. See the comments in transupp.c, or see
|
||||||
|
* jpegtran.c for an example of correct usage.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* If you happen not to want the image transform support, disable it here */
|
||||||
|
#ifndef TRANSFORMS_SUPPORTED
|
||||||
|
#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Although rotating and flipping data expressed as DCT coefficients is not
|
||||||
|
* hard, there is an asymmetry in the JPEG format specification for images
|
||||||
|
* whose dimensions aren't multiples of the iMCU size. The right and bottom
|
||||||
|
* image edges are padded out to the next iMCU boundary with junk data; but
|
||||||
|
* no padding is possible at the top and left edges. If we were to flip
|
||||||
|
* the whole image including the pad data, then pad garbage would become
|
||||||
|
* visible at the top and/or left, and real pixels would disappear into the
|
||||||
|
* pad margins --- perhaps permanently, since encoders & decoders may not
|
||||||
|
* bother to preserve DCT blocks that appear to be completely outside the
|
||||||
|
* nominal image area. So, we have to exclude any partial iMCUs from the
|
||||||
|
* basic transformation.
|
||||||
|
*
|
||||||
|
* Transpose is the only transformation that can handle partial iMCUs at the
|
||||||
|
* right and bottom edges completely cleanly. flip_h can flip partial iMCUs
|
||||||
|
* at the bottom, but leaves any partial iMCUs at the right edge untouched.
|
||||||
|
* Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
|
||||||
|
* The other transforms are defined as combinations of these basic transforms
|
||||||
|
* and process edge blocks in a way that preserves the equivalence.
|
||||||
|
*
|
||||||
|
* The "trim" option causes untransformable partial iMCUs to be dropped;
|
||||||
|
* this is not strictly lossless, but it usually gives the best-looking
|
||||||
|
* result for odd-size images. Note that when this option is active,
|
||||||
|
* the expected mathematical equivalences between the transforms may not hold.
|
||||||
|
* (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
|
||||||
|
* followed by -rot 180 -trim trims both edges.)
|
||||||
|
*
|
||||||
|
* We also offer a lossless-crop option, which discards data outside a given
|
||||||
|
* image region but losslessly preserves what is inside. Like the rotate and
|
||||||
|
* flip transforms, lossless crop is restricted by the current JPEG format: the
|
||||||
|
* upper left corner of the selected region must fall on an iMCU boundary. If
|
||||||
|
* this does not hold for the given crop parameters, we silently move the upper
|
||||||
|
* left corner up and/or left to make it so, simultaneously increasing the
|
||||||
|
* region dimensions to keep the lower right crop corner unchanged. (Thus, the
|
||||||
|
* output image covers at least the requested region, but may cover more.)
|
||||||
|
* The adjustment of the region dimensions may be optionally disabled.
|
||||||
|
*
|
||||||
|
* A complementary lossless-wipe option is provided to discard (gray out) data
|
||||||
|
* inside a given image region while losslessly preserving what is outside.
|
||||||
|
* Another option is lossless-drop, which replaces data at a given image
|
||||||
|
* position by another image. Both source images must have the same
|
||||||
|
* subsampling values. It is best if they also have the same quantization,
|
||||||
|
* otherwise quantization adaption occurs. The trim option can be used with
|
||||||
|
* the drop option to requantize the drop file to the source file.
|
||||||
|
*
|
||||||
|
* We also provide a lossless-resize option, which is kind of a lossless-crop
|
||||||
|
* operation in the DCT coefficient block domain - it discards higher-order
|
||||||
|
* coefficients and losslessly preserves lower-order coefficients of a
|
||||||
|
* sub-block.
|
||||||
|
*
|
||||||
|
* Rotate/flip transform, resize, and crop can be requested together in a
|
||||||
|
* single invocation. The crop is applied last --- that is, the crop region
|
||||||
|
* is specified in terms of the destination image after transform/resize.
|
||||||
|
*
|
||||||
|
* We also offer a "force to grayscale" option, which simply discards the
|
||||||
|
* chrominance channels of a YCbCr image. This is lossless in the sense that
|
||||||
|
* the luminance channel is preserved exactly. It's not the same kind of
|
||||||
|
* thing as the rotate/flip transformations, but it's convenient to handle it
|
||||||
|
* as part of this package, mainly because the transformation routines have to
|
||||||
|
* be aware of the option to know how many components to work on.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||||
|
|
||||||
|
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||||
|
#define jtransform_parse_crop_spec jTrParCrop
|
||||||
|
#define jtransform_request_workspace jTrRequest
|
||||||
|
#define jtransform_adjust_parameters jTrAdjust
|
||||||
|
#define jtransform_execute_transform jTrExec
|
||||||
|
#define jtransform_perfect_transform jTrPerfect
|
||||||
|
#define jcopy_markers_setup jCMrkSetup
|
||||||
|
#define jcopy_markers_execute jCMrkExec
|
||||||
|
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Codes for supported types of image transformations.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef enum {
|
||||||
|
JXFORM_NONE, /* no transformation */
|
||||||
|
JXFORM_FLIP_H, /* horizontal flip */
|
||||||
|
JXFORM_FLIP_V, /* vertical flip */
|
||||||
|
JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
|
||||||
|
JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
|
||||||
|
JXFORM_ROT_90, /* 90-degree clockwise rotation */
|
||||||
|
JXFORM_ROT_180, /* 180-degree rotation */
|
||||||
|
JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */
|
||||||
|
JXFORM_WIPE, /* wipe */
|
||||||
|
JXFORM_DROP /* drop */
|
||||||
|
} JXFORM_CODE;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Codes for crop parameters, which can individually be unspecified,
|
||||||
|
* positive or negative for xoffset or yoffset,
|
||||||
|
* positive or force or reflect for width or height.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef enum {
|
||||||
|
JCROP_UNSET,
|
||||||
|
JCROP_POS,
|
||||||
|
JCROP_NEG,
|
||||||
|
JCROP_FORCE,
|
||||||
|
JCROP_REFLECT
|
||||||
|
} JCROP_CODE;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Transform parameters struct.
|
||||||
|
* NB: application must not change any elements of this struct after
|
||||||
|
* calling jtransform_request_workspace.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
/* Options: set by caller */
|
||||||
|
JXFORM_CODE transform; /* image transform operator */
|
||||||
|
boolean perfect; /* if TRUE, fail if partial MCUs are requested */
|
||||||
|
boolean trim; /* if TRUE, trim partial MCUs as needed */
|
||||||
|
boolean force_grayscale; /* if TRUE, convert color image to grayscale */
|
||||||
|
boolean crop; /* if TRUE, crop or wipe source image, or drop */
|
||||||
|
|
||||||
|
/* Crop parameters: application need not set these unless crop is TRUE.
|
||||||
|
* These can be filled in by jtransform_parse_crop_spec().
|
||||||
|
*/
|
||||||
|
JDIMENSION crop_width; /* Width of selected region */
|
||||||
|
JCROP_CODE crop_width_set; /* (force disables adjustment) */
|
||||||
|
JDIMENSION crop_height; /* Height of selected region */
|
||||||
|
JCROP_CODE crop_height_set; /* (force disables adjustment) */
|
||||||
|
JDIMENSION crop_xoffset; /* X offset of selected region */
|
||||||
|
JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
|
||||||
|
JDIMENSION crop_yoffset; /* Y offset of selected region */
|
||||||
|
JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
|
||||||
|
|
||||||
|
/* Drop parameters: set by caller for drop request */
|
||||||
|
j_decompress_ptr drop_ptr;
|
||||||
|
jvirt_barray_ptr * drop_coef_arrays;
|
||||||
|
|
||||||
|
/* Internal workspace: caller should not touch these */
|
||||||
|
int num_components; /* # of components in workspace */
|
||||||
|
jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
|
||||||
|
JDIMENSION output_width; /* cropped destination dimensions */
|
||||||
|
JDIMENSION output_height;
|
||||||
|
JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
|
||||||
|
JDIMENSION y_crop_offset;
|
||||||
|
JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */
|
||||||
|
JDIMENSION drop_height;
|
||||||
|
int iMCU_sample_width; /* destination iMCU size */
|
||||||
|
int iMCU_sample_height;
|
||||||
|
} jpeg_transform_info;
|
||||||
|
|
||||||
|
|
||||||
|
#if TRANSFORMS_SUPPORTED
|
||||||
|
|
||||||
|
/* Parse a crop specification (written in X11 geometry style) */
|
||||||
|
EXTERN(boolean) jtransform_parse_crop_spec
|
||||||
|
JPP((jpeg_transform_info *info, const char *spec));
|
||||||
|
/* Request any required workspace */
|
||||||
|
EXTERN(boolean) jtransform_request_workspace
|
||||||
|
JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
|
||||||
|
/* Adjust output image parameters */
|
||||||
|
EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
|
||||||
|
JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
||||||
|
jvirt_barray_ptr *src_coef_arrays,
|
||||||
|
jpeg_transform_info *info));
|
||||||
|
/* Execute the actual transformation, if any */
|
||||||
|
EXTERN(void) jtransform_execute_transform
|
||||||
|
JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
||||||
|
jvirt_barray_ptr *src_coef_arrays,
|
||||||
|
jpeg_transform_info *info));
|
||||||
|
/* Determine whether lossless transformation is perfectly
|
||||||
|
* possible for a specified image and transformation.
|
||||||
|
*/
|
||||||
|
EXTERN(boolean) jtransform_perfect_transform
|
||||||
|
JPP((JDIMENSION image_width, JDIMENSION image_height,
|
||||||
|
int MCU_width, int MCU_height,
|
||||||
|
JXFORM_CODE transform));
|
||||||
|
|
||||||
|
/* jtransform_execute_transform used to be called
|
||||||
|
* jtransform_execute_transformation, but some compilers complain about
|
||||||
|
* routine names that long. This macro is here to avoid breaking any
|
||||||
|
* old source code that uses the original name...
|
||||||
|
*/
|
||||||
|
#define jtransform_execute_transformation jtransform_execute_transform
|
||||||
|
|
||||||
|
#endif /* TRANSFORMS_SUPPORTED */
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Support for copying optional markers from source to destination file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
typedef enum {
|
||||||
|
JCOPYOPT_NONE, /* copy no optional markers */
|
||||||
|
JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
|
||||||
|
JCOPYOPT_ALL /* copy all optional markers */
|
||||||
|
} JCOPY_OPTION;
|
||||||
|
|
||||||
|
#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
|
||||||
|
|
||||||
|
/* Setup decompression object to save desired markers in memory */
|
||||||
|
EXTERN(void) jcopy_markers_setup
|
||||||
|
JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
|
||||||
|
/* Copy markers saved in the given source object to the destination object */
|
||||||
|
EXTERN(void) jcopy_markers_execute
|
||||||
|
JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
||||||
|
JCOPY_OPTION option));
|
|
@ -77,6 +77,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "rapidyaml", "dep\rapidyaml\
|
||||||
EndProject
|
EndProject
|
||||||
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libpng", "dep\libpng\libpng.vcxproj", "{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}"
|
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libpng", "dep\libpng\libpng.vcxproj", "{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}"
|
||||||
EndProject
|
EndProject
|
||||||
|
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libjpeg", "dep\libjpeg\libjpeg.vcxproj", "{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}"
|
||||||
|
EndProject
|
||||||
Global
|
Global
|
||||||
GlobalSection(SolutionConfigurationPlatforms) = preSolution
|
GlobalSection(SolutionConfigurationPlatforms) = preSolution
|
||||||
Debug|ARM64 = Debug|ARM64
|
Debug|ARM64 = Debug|ARM64
|
||||||
|
@ -1099,6 +1101,38 @@ Global
|
||||||
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64
|
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64
|
||||||
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64
|
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64
|
||||||
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64
|
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|ARM64.ActiveCfg = Debug|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|ARM64.Build.0 = Debug|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|x64.ActiveCfg = Debug|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|x64.Build.0 = Debug|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|ARM64.ActiveCfg = Debug-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|ARM64.Build.0 = Debug-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|x64.ActiveCfg = Debug-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|x64.Build.0 = Debug-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|ARM64.ActiveCfg = DebugFast|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|ARM64.Build.0 = DebugFast|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|x64.ActiveCfg = DebugFast|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|x64.Build.0 = DebugFast|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|ARM64.ActiveCfg = DebugFast-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|ARM64.Build.0 = DebugFast-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|x64.ActiveCfg = DebugFast-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|x64.Build.0 = DebugFast-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|ARM64.ActiveCfg = Release|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|ARM64.Build.0 = Release|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|x64.ActiveCfg = Release|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|x64.Build.0 = Release|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|ARM64.ActiveCfg = Release-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|ARM64.Build.0 = Release-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|x64.ActiveCfg = Release-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|x64.Build.0 = Release-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|ARM64.ActiveCfg = ReleaseLTCG|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|ARM64.Build.0 = ReleaseLTCG|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|x64.ActiveCfg = ReleaseLTCG|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|x64.Build.0 = ReleaseLTCG|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|ARM64.ActiveCfg = ReleaseLTCG-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64
|
||||||
EndGlobalSection
|
EndGlobalSection
|
||||||
GlobalSection(SolutionProperties) = preSolution
|
GlobalSection(SolutionProperties) = preSolution
|
||||||
HideSolutionNode = FALSE
|
HideSolutionNode = FALSE
|
||||||
|
@ -1129,6 +1163,7 @@ Global
|
||||||
{27B8D4BB-4F01-4432-BC14-9BF6CA458EEE} = {BA490C0E-497D-4634-A21E-E65012006385}
|
{27B8D4BB-4F01-4432-BC14-9BF6CA458EEE} = {BA490C0E-497D-4634-A21E-E65012006385}
|
||||||
{1AD23A8A-4C20-434C-AE6B-0E07759EEB1E} = {BA490C0E-497D-4634-A21E-E65012006385}
|
{1AD23A8A-4C20-434C-AE6B-0E07759EEB1E} = {BA490C0E-497D-4634-A21E-E65012006385}
|
||||||
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5} = {BA490C0E-497D-4634-A21E-E65012006385}
|
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5} = {BA490C0E-497D-4634-A21E-E65012006385}
|
||||||
|
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2} = {BA490C0E-497D-4634-A21E-E65012006385}
|
||||||
EndGlobalSection
|
EndGlobalSection
|
||||||
GlobalSection(ExtensibilityGlobals) = postSolution
|
GlobalSection(ExtensibilityGlobals) = postSolution
|
||||||
SolutionGuid = {26E40B32-7C1D-48D0-95F4-1A500E054028}
|
SolutionGuid = {26E40B32-7C1D-48D0-95F4-1A500E054028}
|
||||||
|
|
|
@ -33,6 +33,7 @@ QT=6.6.0
|
||||||
MOLTENVK=1.2.6
|
MOLTENVK=1.2.6
|
||||||
ZSTD=1.5.5
|
ZSTD=1.5.5
|
||||||
PNG=1.6.43
|
PNG=1.6.43
|
||||||
|
JPEG=9f
|
||||||
WEBP=1.3.2
|
WEBP=1.3.2
|
||||||
|
|
||||||
mkdir -p deps-build
|
mkdir -p deps-build
|
||||||
|
@ -48,6 +49,7 @@ cat > SHASUMS <<EOF
|
||||||
b6a3d179aa9c41275ed0e35e502e5e3fd347dbe5117a0435a26868b231cd6246 v$MOLTENVK.tar.gz
|
b6a3d179aa9c41275ed0e35e502e5e3fd347dbe5117a0435a26868b231cd6246 v$MOLTENVK.tar.gz
|
||||||
9c4396cc829cfae319a6e2615202e82aad41372073482fce286fac78646d3ee4 zstd-$ZSTD.tar.gz
|
9c4396cc829cfae319a6e2615202e82aad41372073482fce286fac78646d3ee4 zstd-$ZSTD.tar.gz
|
||||||
6a5ca0652392a2d7c9db2ae5b40210843c0bbc081cbd410825ab00cc59f14a6c libpng-$PNG.tar.xz
|
6a5ca0652392a2d7c9db2ae5b40210843c0bbc081cbd410825ab00cc59f14a6c libpng-$PNG.tar.xz
|
||||||
|
04705c110cb2469caa79fb71fba3d7bf834914706e9641a4589485c1f832565b jpegsrc.v$JPEG.tar.gz
|
||||||
2a499607df669e40258e53d0ade8035ba4ec0175244869d1025d460562aa09b4 libwebp-$WEBP.tar.gz
|
2a499607df669e40258e53d0ade8035ba4ec0175244869d1025d460562aa09b4 libwebp-$WEBP.tar.gz
|
||||||
039d53312acb5897a9054bd38c9ccbdab72500b71fdccdb3f4f0844b0dd39e0e qtbase-everywhere-src-$QT.tar.xz
|
039d53312acb5897a9054bd38c9ccbdab72500b71fdccdb3f4f0844b0dd39e0e qtbase-everywhere-src-$QT.tar.xz
|
||||||
e1542cb50176e237809895c6549598c08587c63703d100be54ac2d806834e384 qtimageformats-everywhere-src-$QT.tar.xz
|
e1542cb50176e237809895c6549598c08587c63703d100be54ac2d806834e384 qtimageformats-everywhere-src-$QT.tar.xz
|
||||||
|
@ -62,6 +64,7 @@ curl -L \
|
||||||
-O "https://github.com/facebook/zstd/releases/download/v$ZSTD/zstd-$ZSTD.tar.gz" \
|
-O "https://github.com/facebook/zstd/releases/download/v$ZSTD/zstd-$ZSTD.tar.gz" \
|
||||||
-O "https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-$WEBP.tar.gz" \
|
-O "https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-$WEBP.tar.gz" \
|
||||||
-O "https://downloads.sourceforge.net/project/libpng/libpng16/$PNG/libpng-$PNG.tar.xz" \
|
-O "https://downloads.sourceforge.net/project/libpng/libpng16/$PNG/libpng-$PNG.tar.xz" \
|
||||||
|
-O "https://ijg.org/files/jpegsrc.v$JPEG.tar.gz" \
|
||||||
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtbase-everywhere-src-$QT.tar.xz" \
|
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtbase-everywhere-src-$QT.tar.xz" \
|
||||||
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtsvg-everywhere-src-$QT.tar.xz" \
|
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtsvg-everywhere-src-$QT.tar.xz" \
|
||||||
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qttools-everywhere-src-$QT.tar.xz" \
|
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qttools-everywhere-src-$QT.tar.xz" \
|
||||||
|
@ -203,6 +206,24 @@ merge_binaries $(realpath build) $(realpath build-arm64)
|
||||||
make -C build install
|
make -C build install
|
||||||
cd ..
|
cd ..
|
||||||
|
|
||||||
|
echo "Installing libjpeg..."
|
||||||
|
rm -fr "jpeg-$JPEG"
|
||||||
|
tar xf "jpegsrc.v$JPEG.tar.gz"
|
||||||
|
cd "jpeg-$JPEG"
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
../configure --prefix="$INSTALLDIR" --disable-static --enable-shared --host="x86_64-apple-darwin" CFLAGS="-arch x86_64"
|
||||||
|
make "-j$NPROCS"
|
||||||
|
cd ..
|
||||||
|
mkdir build-arm64
|
||||||
|
cd build-arm64
|
||||||
|
../configure --prefix="$INSTALLDIR" --disable-static --enable-shared --host="aarch64-apple-darwin" CFLAGS="-arch arm64"
|
||||||
|
make "-j$NPROCS"
|
||||||
|
cd ..
|
||||||
|
merge_binaries $(realpath build) $(realpath build-arm64)
|
||||||
|
make -C build install
|
||||||
|
cd ..
|
||||||
|
|
||||||
echo "Installing WebP..."
|
echo "Installing WebP..."
|
||||||
tar xf "libwebp-$WEBP.tar.gz"
|
tar xf "libwebp-$WEBP.tar.gz"
|
||||||
cd "libwebp-$WEBP"
|
cd "libwebp-$WEBP"
|
||||||
|
|
Loading…
Reference in a new issue