Revert "SPU: Use reverb formula from Mednafen-PSX"

This reverts commit 809b9f89ca.
This commit is contained in:
Connor McLaughlin 2020-04-11 15:04:04 +10:00
parent 54adad948b
commit fc3efebb38
2 changed files with 131 additions and 128 deletions

View file

@ -150,8 +150,8 @@ bool SPU::DoState(StateWrapper& sw)
UpdateTransferEvent(); UpdateTransferEvent();
} }
// for (u32 i = 0; i < NUM_REVERB_REGS; i++) //for (u32 i = 0; i < NUM_REVERB_REGS; i++)
// Log_WarningPrintf("Reverb[%u] = 0x%04X", i, m_reverb_registers.rev[i]); //Log_WarningPrintf("Reverb[%u] = 0x%04X", i, m_reverb_registers.rev[i]);
return !sw.HasError(); return !sw.HasError();
} }
@ -1525,9 +1525,9 @@ u32 SPU::ReverbMemoryAddress(u32 address) const
return (mBASE + relative_address) & 0x7FFFEu; return (mBASE + relative_address) & 0x7FFFEu;
} }
s16 SPU::ReverbRead(u32 address, s32 offset) s16 SPU::ReverbRead(u32 address)
{ {
const u32 real_address = ReverbMemoryAddress(m_reverb_current_address + address + static_cast<u32>(offset)); const u32 real_address = ReverbMemoryAddress(m_reverb_current_address + address);
// TODO: Should this check interrupts? // TODO: Should this check interrupts?
s16 data; s16 data;
@ -1537,107 +1537,123 @@ s16 SPU::ReverbRead(u32 address, s32 offset)
void SPU::ReverbWrite(u32 address, s16 data) void SPU::ReverbWrite(u32 address, s16 data)
{ {
if (!m_SPUCNT.reverb_master_enable)
return;
// TODO: Should this check interrupts? // TODO: Should this check interrupts?
const u32 real_address = ReverbMemoryAddress(m_reverb_current_address + address); const u32 real_address = ReverbMemoryAddress(m_reverb_current_address + address);
std::memcpy(&m_ram[real_address & RAM_MASK], &data, sizeof(data)); std::memcpy(&m_ram[real_address & RAM_MASK], &data, sizeof(data));
} }
ALWAYS_INLINE static s16 ReverbSat(s32 val) // Implements saturated add, subtract and multiply for reverb computations.
struct ReverbSample
{ {
return static_cast<s16>(std::clamp<s32>(val, -0x8000, 0x7FFF)); s16 value;
}
ALWAYS_INLINE static s32 IIASM(const s16 IIR_ALPHA, const s16 insamp) static ALWAYS_INLINE s16 OpAdd(s16 lhs, s16 rhs)
{
if (IIR_ALPHA == -32768)
{ {
if (insamp == -32768) s32 result = s32(lhs) + s32(rhs);
return 0; return s16((result < -32768) ? -32768 : ((result > 32767) ? 32767 : result));
else
return insamp * -65536;
} }
else
return insamp * (32768 - IIR_ALPHA); static ALWAYS_INLINE s16 OpSub(s16 lhs, s16 rhs)
} {
s32 result = s32(lhs) - s32(rhs);
return s16((result < -32768) ? -32768 : ((result > 32767) ? 32767 : result));
}
static ALWAYS_INLINE s16 OpMul(s16 lhs, s16 rhs) { return s16((s32(lhs) * s32(rhs)) >> 15); }
ALWAYS_INLINE ReverbSample operator+(ReverbSample rhs) const { return ReverbSample{OpAdd(value, rhs.value)}; }
ALWAYS_INLINE ReverbSample operator-(ReverbSample rhs) const { return ReverbSample{OpSub(value, rhs.value)}; }
ALWAYS_INLINE ReverbSample operator*(ReverbSample rhs) const { return ReverbSample{OpMul(value, rhs.value)}; }
ALWAYS_INLINE ReverbSample& operator+=(ReverbSample rhs)
{
value = OpAdd(value, rhs.value);
return *this;
}
ALWAYS_INLINE ReverbSample& operator-=(ReverbSample rhs)
{
value = OpSub(value, rhs.value);
return *this;
}
ALWAYS_INLINE ReverbSample& operator*=(ReverbSample rhs)
{
value = OpMul(value, rhs.value);
return *this;
}
};
void SPU::DoReverb() void SPU::DoReverb()
{ {
if (m_SPUCNT.reverb_master_enable) const ReverbSample Lin(ReverbSample{m_reverb_left_input} * ReverbSample{m_reverb_registers.vLIN});
{ const ReverbSample Rin(ReverbSample{m_reverb_right_input} * ReverbSample{m_reverb_registers.vRIN});
const s16 IIR_INPUT_A0 =
ReverbSat(((ReverbRead(m_reverb_registers.IIR_SRC_A0) * m_reverb_registers.IIR_COEF) >> 15) +
((m_reverb_left_input * m_reverb_registers.IN_COEF_L) >> 15));
const s16 IIR_INPUT_A1 =
ReverbSat(((ReverbRead(m_reverb_registers.IIR_SRC_A1) * m_reverb_registers.IIR_COEF) >> 15) +
((m_reverb_right_input * m_reverb_registers.IN_COEF_R) >> 15));
const s16 IIR_INPUT_B0 =
ReverbSat(((ReverbRead(m_reverb_registers.IIR_SRC_B0) * m_reverb_registers.IIR_COEF) >> 15) +
((m_reverb_left_input * m_reverb_registers.IN_COEF_L) >> 15));
const s16 IIR_INPUT_B1 =
ReverbSat(((ReverbRead(m_reverb_registers.IIR_SRC_B1) * m_reverb_registers.IIR_COEF) >> 15) +
((m_reverb_right_input * m_reverb_registers.IN_COEF_R) >> 15));
const s16 IIR_A0 = #define R(name) \
ReverbSat((((IIR_INPUT_A0 * m_reverb_registers.IIR_ALPHA) >> 14) + ReverbSample { m_reverb_registers.name }
(IIASM(m_reverb_registers.IIR_ALPHA, ReverbRead(m_reverb_registers.IIR_DEST_A0, -1)) >> 14)) >> #define Rm(name) (u32(m_reverb_registers.name) * 8u)
1); #define MR(addr) \
const s16 IIR_A1 = ReverbSample { ReverbRead(addr) }
ReverbSat((((IIR_INPUT_A1 * m_reverb_registers.IIR_ALPHA) >> 14) + #define MW(addr, value_) ReverbWrite((addr), (value_).value)
(IIASM(m_reverb_registers.IIR_ALPHA, ReverbRead(m_reverb_registers.IIR_DEST_A1, -1)) >> 14)) >>
1);
const s16 IIR_B0 =
ReverbSat((((IIR_INPUT_B0 * m_reverb_registers.IIR_ALPHA) >> 14) +
(IIASM(m_reverb_registers.IIR_ALPHA, ReverbRead(m_reverb_registers.IIR_DEST_B0, -1)) >> 14)) >>
1);
const s16 IIR_B1 =
ReverbSat((((IIR_INPUT_B1 * m_reverb_registers.IIR_ALPHA) >> 14) +
(IIASM(m_reverb_registers.IIR_ALPHA, ReverbRead(m_reverb_registers.IIR_DEST_B1, -1)) >> 14)) >>
1);
ReverbWrite(m_reverb_registers.IIR_DEST_A0, IIR_A0); // [mLSAME] = (Lin + [dLSAME]*vWALL - [mLSAME-2])*vIIR + [mLSAME-2] ;L-to-L
ReverbWrite(m_reverb_registers.IIR_DEST_A1, IIR_A1); MW(Rm(mLSAME), ((Lin + (MR(Rm(dLSAME)) * R(vWALL)) - MR(Rm(mLSAME) - 2)) * R(vIIR)) + MR(Rm(mLSAME) - 2));
ReverbWrite(m_reverb_registers.IIR_DEST_B0, IIR_B0);
ReverbWrite(m_reverb_registers.IIR_DEST_B1, IIR_B1);
const s16 ACC0 = ReverbSat((((ReverbRead(m_reverb_registers.ACC_SRC_A0) * m_reverb_registers.ACC_COEF_A) >> 14) + // [mRSAME] = (Rin + [dRSAME]*vWALL - [mRSAME-2])*vIIR + [mRSAME-2] ;R-to-R
((ReverbRead(m_reverb_registers.ACC_SRC_B0) * m_reverb_registers.ACC_COEF_B) >> 14) + MW(Rm(mLSAME), ((Rin + (MR(Rm(dRSAME)) * R(vWALL)) - MR(Rm(mRSAME) - 2)) * R(vIIR)) + MR(Rm(mRSAME) - 2));
((ReverbRead(m_reverb_registers.ACC_SRC_C0) * m_reverb_registers.ACC_COEF_C) >> 14) +
((ReverbRead(m_reverb_registers.ACC_SRC_D0) * m_reverb_registers.ACC_COEF_D) >> 14)) >>
1);
const s16 ACC1 = ReverbSat((((ReverbRead(m_reverb_registers.ACC_SRC_A1) * m_reverb_registers.ACC_COEF_A) >> 14) + // [mLDIFF] = (Lin + [dRDIFF]*vWALL - [mLDIFF-2])*vIIR + [mLDIFF-2] ;R-to-L
((ReverbRead(m_reverb_registers.ACC_SRC_B1) * m_reverb_registers.ACC_COEF_B) >> 14) + MW(Rm(mLDIFF), ((Lin + (MR(Rm(dRDIFF)) * R(vWALL)) - MR(Rm(mLDIFF) - 2)) * R(vIIR)) + MR(Rm(mLDIFF) - 2));
((ReverbRead(m_reverb_registers.ACC_SRC_C1) * m_reverb_registers.ACC_COEF_C) >> 14) +
((ReverbRead(m_reverb_registers.ACC_SRC_D1) * m_reverb_registers.ACC_COEF_D) >> 14)) >>
1);
const s16 FB_A0 = ReverbRead(m_reverb_registers.MIX_DEST_A0 - m_reverb_registers.FB_SRC_A); // [mRDIFF] = (Rin + [dLDIFF]*vWALL - [mRDIFF-2])*vIIR + [mRDIFF-2] ;L-to-R
const s16 FB_A1 = ReverbRead(m_reverb_registers.MIX_DEST_A1 - m_reverb_registers.FB_SRC_A); MW(Rm(mRDIFF), ((Rin + (MR(Rm(dLDIFF)) * R(vWALL)) - MR(Rm(mRDIFF) - 2)) * R(vIIR)) + MR(Rm(mRDIFF) - 2));
const s16 FB_B0 = ReverbRead(m_reverb_registers.MIX_DEST_B0 - m_reverb_registers.FB_SRC_B);
const s16 FB_B1 = ReverbRead(m_reverb_registers.MIX_DEST_B1 - m_reverb_registers.FB_SRC_B);
ReverbWrite(m_reverb_registers.MIX_DEST_A0, ReverbSat(ACC0 - ((FB_A0 * m_reverb_registers.FB_ALPHA) >> 15))); // Lout = vCOMB1 * [mLCOMB1] + vCOMB2 * [mLCOMB2] + vCOMB3 * [mLCOMB3] + vCOMB4 * [mLCOMB4]
ReverbWrite(m_reverb_registers.MIX_DEST_A1, ReverbSat(ACC1 - ((FB_A1 * m_reverb_registers.FB_ALPHA) >> 15))); ReverbSample Lout{(R(vCOMB1) * MR(Rm(mLCOMB1))) + (R(vCOMB2) * MR(Rm(mLCOMB2))) + (R(vCOMB3) * MR(Rm(mLCOMB3))) +
(R(vCOMB4) * MR(Rm(mLCOMB4)))};
ReverbWrite(m_reverb_registers.MIX_DEST_B0, // Rout = vCOMB1 * [mRCOMB1] + vCOMB2 * [mRCOMB2] + vCOMB3 * [mRCOMB3] + vCOMB4 * [mRCOMB4]
ReverbSat(((m_reverb_registers.FB_ALPHA * ACC0) >> 15) - ReverbSample Rout{(R(vCOMB1) * MR(Rm(mRCOMB1))) + (R(vCOMB2) * MR(Rm(mRCOMB2))) + (R(vCOMB3) * MR(Rm(mRCOMB3))) +
((FB_A0 * (s16)(0x8000 ^ m_reverb_registers.FB_ALPHA)) >> 15) - (R(vCOMB4) * MR(Rm(mRCOMB4)))};
((FB_B0 * m_reverb_registers.FB_X) >> 15)));
ReverbWrite(m_reverb_registers.MIX_DEST_B1,
ReverbSat(((m_reverb_registers.FB_ALPHA * ACC1) >> 15) -
((FB_A1 * (s16)(0x8000 ^ m_reverb_registers.FB_ALPHA)) >> 15) -
((FB_B1 * m_reverb_registers.FB_X) >> 15)));
}
m_reverb_left_output = ReverbSat( // Lout = Lout - vAPF1 * [mLAPF1 - dAPF1], [mLAPF1] = Lout, Lout = Lout * vAPF1 + [mLAPF1 - dAPF1]
ApplyVolume((ReverbRead(m_reverb_registers.MIX_DEST_A0) + ReverbRead(m_reverb_registers.MIX_DEST_B0)) >> 1, Lout = Lout - (R(vAPF1) * MR(Rm(mLAPF1) - Rm(dAPF1)));
m_reverb_registers.vLOUT)); MW(Rm(mLAPF1), Lout);
m_reverb_right_output = ReverbSat( Lout = (Lout * R(vAPF1)) + MR(Rm(mLAPF1) - Rm(dAPF1));
ApplyVolume((ReverbRead(m_reverb_registers.MIX_DEST_A1) + ReverbRead(m_reverb_registers.MIX_DEST_B1)) >> 1,
m_reverb_registers.vROUT)); // Rout = Rout - vAPF1 * [mRAPF1 - dAPF1], [mRAPF1] = Rout, Rout = Rout * vAPF1 + [mRAPF1 - dAPF1]
Rout = Rout - (R(vAPF1) * MR(Rm(mRAPF1) - Rm(dAPF1)));
MW(Rm(mRAPF1), Rout);
Rout = (Rout * R(vAPF1)) + MR(Rm(mRAPF1) - Rm(dAPF1));
// Lout = Lout - vAPF2 * [mLAPF2 - dAPF2], [mLAPF2] = Lout, Lout = Lout * vAPF2 + [mLAPF2 - dAPF2]
Lout = Lout - (R(vAPF2) * MR(Rm(mLAPF2) - Rm(dAPF2)));
MW(Rm(mLAPF2), Lout);
Lout = (Lout * R(vAPF2)) + MR(Rm(mLAPF2) - Rm(dAPF2));
// Rout = Rout - vAPF2 * [mRAPF2 - dAPF2], [mRAPF2] = Rout, Rout = Rout * vAPF2 + [mRAPF2 - dAPF2]
Rout = Rout - (R(vAPF2) * MR(Rm(mRAPF2) - Rm(dAPF2)));
MW(Rm(mRAPF2), Rout);
Rout = (Rout * R(vAPF2)) + MR(Rm(mRAPF2) - Rm(dAPF2));
// LeftOutput = Lout*vLOUT
m_reverb_left_output = (Lout * R(vLOUT)).value;
// RightOutput = Rout*vROUT
m_reverb_right_output = (Rout * R(vROUT)).value;
// BufferAddress = MAX(mBASE, (BufferAddress+2) AND 7FFFEh) // BufferAddress = MAX(mBASE, (BufferAddress+2) AND 7FFFEh)
m_reverb_current_address = ReverbMemoryAddress(m_reverb_current_address + 2); m_reverb_current_address = ReverbMemoryAddress(m_reverb_current_address + 2);
#undef MW
#undef MR
#undef Rm
#undef R
} }
void SPU::EnsureCDAudioSpace(u32 remaining_frames) void SPU::EnsureCDAudioSpace(u32 remaining_frames)
@ -1818,18 +1834,5 @@ void SPU::DrawDebugStateWindow()
} }
} }
if (ImGui::CollapsingHeader("Hacks", ImGuiTreeNodeFlags_DefaultOpen))
{
if (ImGui::Button("Key Off All Voices"))
{
for (u32 i = 0; i < NUM_VOICES; i++)
{
m_voices[i].KeyOff();
m_voices[i].adsr_envelope.counter = 0;
m_voices[i].regs.adsr_volume = 0;
}
}
}
ImGui::End(); ImGui::End();
} }

View file

@ -292,38 +292,38 @@ private:
{ {
struct struct
{ {
u16 FB_SRC_A; u16 dAPF1;
u16 FB_SRC_B; u16 dAPF2;
s16 IIR_ALPHA; s16 vIIR;
s16 ACC_COEF_A; s16 vCOMB1;
s16 ACC_COEF_B; s16 vCOMB2;
s16 ACC_COEF_C; s16 vCOMB3;
s16 ACC_COEF_D; s16 vCOMB4;
s16 IIR_COEF; s16 vWALL;
s16 FB_ALPHA; s16 vAPF1;
s16 FB_X; s16 vAPF2;
u16 IIR_DEST_A0; u16 mLSAME;
u16 IIR_DEST_A1; u16 mRSAME;
u16 ACC_SRC_A0; u16 mLCOMB1;
u16 ACC_SRC_A1; u16 mRCOMB1;
u16 ACC_SRC_B0; u16 mLCOMB2;
u16 ACC_SRC_B1; u16 mRCOMB2;
u16 IIR_SRC_A0; u16 dLSAME;
u16 IIR_SRC_A1; u16 dRSAME;
u16 IIR_DEST_B0; u16 mLDIFF;
u16 IIR_DEST_B1; u16 mRDIFF;
u16 ACC_SRC_C0; u16 mLCOMB3;
u16 ACC_SRC_C1; u16 mRCOMB3;
u16 ACC_SRC_D0; u16 mLCOMB4;
u16 ACC_SRC_D1; u16 mRCOMB4;
u16 IIR_SRC_B1; u16 dLDIFF;
u16 IIR_SRC_B0; u16 dRDIFF;
u16 MIX_DEST_A0; u16 mLAPF1;
u16 MIX_DEST_A1; u16 mRAPF1;
u16 MIX_DEST_B0; u16 mLAPF2;
u16 MIX_DEST_B1; u16 mRAPF2;
s16 IN_COEF_L; s16 vLIN;
s16 IN_COEF_R; s16 vRIN;
}; };
u16 rev[NUM_REVERB_REGS]; u16 rev[NUM_REVERB_REGS];
@ -366,7 +366,7 @@ private:
void UpdateNoise(); void UpdateNoise();
u32 ReverbMemoryAddress(u32 address) const; u32 ReverbMemoryAddress(u32 address) const;
s16 ReverbRead(u32 address, s32 offset = 0); s16 ReverbRead(u32 address);
void ReverbWrite(u32 address, s16 data); void ReverbWrite(u32 address, s16 data);
void DoReverb(); void DoReverb();