#include "cpu_core.h" #include "YBaseLib/Log.h" #include "common/state_wrapper.h" #include "cpu_disasm.h" #include Log_SetChannel(CPU::Core); namespace CPU { bool TRACE_EXECUTION = false; Core::Core() = default; Core::~Core() = default; bool Core::Initialize(Bus* bus) { m_bus = bus; // From nocash spec. m_cop0_regs.PRID = UINT32_C(0x00000002); return true; } void Core::Reset() { m_regs = {}; m_cop0_regs.BPC = 0; m_cop0_regs.BDA = 0; m_cop0_regs.JUMPDEST = 0; m_cop0_regs.BadVaddr = 0; m_cop0_regs.BDAM = 0; m_cop0_regs.BPCM = 0; m_cop0_regs.EPC = 0; SetPC(RESET_VECTOR); } bool Core::DoState(StateWrapper& sw) { return false; } void Core::SetPC(u32 new_pc) { m_regs.npc = new_pc; FlushPipeline(); } u8 Core::ReadMemoryByte(VirtualMemoryAddress addr) { u32 value; DoMemoryAccess(addr, value); return Truncate8(value); } u16 Core::ReadMemoryHalfWord(VirtualMemoryAddress addr) { Assert(Common::IsAlignedPow2(addr, 2)); u32 value; DoMemoryAccess(addr, value); return Truncate16(value); } u32 Core::ReadMemoryWord(VirtualMemoryAddress addr) { Assert(Common::IsAlignedPow2(addr, 4)); u32 value; DoMemoryAccess(addr, value); return value; } void Core::WriteMemoryByte(VirtualMemoryAddress addr, u8 value) { u32 value32 = ZeroExtend32(value); DoMemoryAccess(addr, value32); } void Core::WriteMemoryHalfWord(VirtualMemoryAddress addr, u16 value) { Assert(Common::IsAlignedPow2(addr, 2)); u32 value32 = ZeroExtend32(value); DoMemoryAccess(addr, value32); } void Core::WriteMemoryWord(VirtualMemoryAddress addr, u32 value) { Assert(Common::IsAlignedPow2(addr, 4)); DoMemoryAccess(addr, value); } bool Core::SafeReadMemoryByte(VirtualMemoryAddress addr, u8* value) { u32 temp = 0; const bool result = DoMemoryAccess(addr, temp); *value = Truncate8(temp); return result; } bool Core::SafeReadMemoryHalfWord(VirtualMemoryAddress addr, u16* value) { u32 temp = 0; const bool result = DoMemoryAccess(addr, temp); *value = Truncate16(temp); return result; } bool Core::SafeReadMemoryWord(VirtualMemoryAddress addr, u32* value) { return DoMemoryAccess(addr, *value); } bool Core::SafeWriteMemoryByte(VirtualMemoryAddress addr, u8 value) { u32 temp = ZeroExtend32(value); return DoMemoryAccess(addr, temp); } bool Core::SafeWriteMemoryHalfWord(VirtualMemoryAddress addr, u16 value) { u32 temp = ZeroExtend32(value); return DoMemoryAccess(addr, temp); } bool Core::SafeWriteMemoryWord(VirtualMemoryAddress addr, u32 value) { return DoMemoryAccess(addr, value); } void Core::Branch(u32 target) { m_regs.npc = target; m_branched = true; } void Core::RaiseException(u32 inst_pc, Exception excode) { m_cop0_regs.EPC = m_in_branch_delay_slot ? (inst_pc - UINT32_C(4)) : inst_pc; m_cop0_regs.cause.Excode = excode; m_cop0_regs.cause.BD = m_in_branch_delay_slot; // current -> previous m_cop0_regs.sr.mode_bits <<= 2; // flush the pipeline - we don't want to execute the previously fetched instruction m_regs.npc = m_cop0_regs.sr.BEV ? UINT32_C(0xbfc00180) : UINT32_C(0x80000080); FlushPipeline(); } void Core::FlushPipeline() { // loads are flushed m_load_delay_reg = Reg::count; m_load_delay_old_value = 0; m_next_load_delay_reg = Reg::count; m_next_load_delay_old_value = 0; // not in a branch delay slot m_branched = false; m_in_branch_delay_slot = false; // prefetch the next instruction FetchInstruction(); } u32 Core::ReadReg(Reg rs) { return rs == m_load_delay_reg ? m_load_delay_old_value : m_regs.r[static_cast(rs)]; } void Core::WriteReg(Reg rd, u32 value) { if (rd != Reg::zero) m_regs.r[static_cast(rd)] = value; } void Core::WriteRegDelayed(Reg rd, u32 value) { Assert(m_next_load_delay_reg == Reg::count); if (rd == Reg::zero) return; // save the old value, this will be returned if the register is read in the next instruction m_next_load_delay_reg = rd; m_next_load_delay_old_value = m_regs.r[static_cast(rd)]; m_regs.r[static_cast(rd)] = value; } void Core::WriteCacheControl(u32 value) { Log_WarningPrintf("Cache control <- 0x%08X", value); m_cache_control = value; } static void PrintInstruction(u32 bits, u32 pc) { TinyString instr; DisassembleInstruction(&instr, pc, bits); std::printf("%08x: %08x %s\n", pc, bits, instr.GetCharArray()); } static constexpr bool AddOverflow(u32 old_value, u32 add_value, u32 new_value) { return (((new_value ^ old_value) & (new_value ^ add_value)) & UINT32_C(0x80000000)) != 0; } void Core::DisassembleAndPrint(u32 addr) { u32 bits; DoMemoryAccess(addr, bits); PrintInstruction(bits, addr); } void Core::Execute() { // now executing the instruction we previously fetched const Instruction inst = m_next_instruction; const u32 inst_pc = m_regs.pc; // fetch the next instruction FetchInstruction(); // handle branch delays - we are now in a delay slot if we just branched m_in_branch_delay_slot = m_branched; m_branched = false; // execute the instruction we previously fetched ExecuteInstruction(inst, inst_pc); // next load delay m_load_delay_reg = m_next_load_delay_reg; m_next_load_delay_reg = Reg::count; m_load_delay_old_value = m_next_load_delay_old_value; m_next_load_delay_old_value = 0; } void Core::FetchInstruction() { DoMemoryAccess( static_cast(m_regs.npc), m_next_instruction.bits); m_regs.pc = m_regs.npc; m_regs.npc += sizeof(m_next_instruction.bits); } void Core::ExecuteInstruction(Instruction inst, u32 inst_pc) { #if 0 if (inst_pc == 0xBFC06FF0) { TRACE_EXECUTION = true; __debugbreak(); } #endif if (TRACE_EXECUTION) PrintInstruction(inst.bits, inst_pc); switch (inst.op) { case InstructionOp::funct: { switch (inst.r.funct) { case InstructionFunct::sll: { const u32 new_value = ReadReg(inst.r.rt) << inst.r.shamt; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::srl: { const u32 new_value = ReadReg(inst.r.rt) >> inst.r.shamt; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::sra: { const u32 new_value = static_cast(static_cast(ReadReg(inst.r.rt)) >> inst.r.shamt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::sllv: { const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F); const u32 new_value = ReadReg(inst.r.rt) << shift_amount; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::srlv: { const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F); const u32 new_value = ReadReg(inst.r.rt) >> shift_amount; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::srav: { const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F); const u32 new_value = static_cast(static_cast(ReadReg(inst.r.rt)) >> shift_amount); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::and_: { const u32 new_value = ReadReg(inst.r.rs) & ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::or_: { const u32 new_value = ReadReg(inst.r.rs) | ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::xor_: { const u32 new_value = ReadReg(inst.r.rs) ^ ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::nor: { const u32 new_value = ~(ReadReg(inst.r.rs) | ReadReg(inst.r.rt)); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::add: { const u32 old_value = ReadReg(inst.r.rs); const u32 add_value = ReadReg(inst.r.rt); const u32 new_value = old_value + add_value; if (AddOverflow(old_value, add_value, new_value)) { RaiseException(inst_pc, Exception::Ov); return; } WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::addu: { const u32 new_value = ReadReg(inst.r.rs) + ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::subu: { const u32 new_value = ReadReg(inst.r.rs) - ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::slt: { const u32 result = BoolToUInt32(static_cast(ReadReg(inst.r.rs)) < static_cast(ReadReg(inst.r.rt))); WriteReg(inst.r.rd, result); } break; case InstructionFunct::sltu: { const u32 result = BoolToUInt32(ReadReg(inst.r.rs) < ReadReg(inst.r.rt)); WriteReg(inst.r.rd, result); } break; case InstructionFunct::mfhi: { WriteReg(inst.r.rd, m_regs.hi); } break; case InstructionFunct::mthi: { const u32 value = ReadReg(inst.r.rs); m_regs.hi = value; } break; case InstructionFunct::mflo: { WriteReg(inst.r.rd, m_regs.lo); } break; case InstructionFunct::mtlo: { const u32 value = ReadReg(inst.r.rs); m_regs.lo = value; } break; case InstructionFunct::mult: { const u32 lhs = ReadReg(inst.r.rs); const u32 rhs = ReadReg(inst.r.rt); const u64 result = static_cast(static_cast(SignExtend64(lhs)) * static_cast(SignExtend64(rhs))); m_regs.hi = Truncate32(result >> 32); m_regs.lo = Truncate32(result); } break; case InstructionFunct::multu: { const u32 lhs = ReadReg(inst.r.rs); const u32 rhs = ReadReg(inst.r.rt); const u64 result = ZeroExtend64(lhs) * ZeroExtend64(rhs); m_regs.hi = Truncate32(result >> 32); m_regs.lo = Truncate32(result); } break; case InstructionFunct::div: { const s32 num = static_cast(ReadReg(inst.r.rs)); const s32 denom = static_cast(ReadReg(inst.r.rt)); if (denom == 0) { // divide by zero m_regs.lo = (num >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1); m_regs.hi = static_cast(num); } else if (static_cast(num) == UINT32_C(0x80000000) && denom == -1) { // unrepresentable m_regs.lo = UINT32_C(0x80000000); m_regs.hi = 0; } else { m_regs.lo = static_cast(num / denom); m_regs.hi = static_cast(num % denom); } } break; case InstructionFunct::divu: { const u32 num = ReadReg(inst.r.rs); const u32 denom = ReadReg(inst.r.rt); if (denom == 0) { // divide by zero m_regs.lo = (num >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1); m_regs.hi = static_cast(num); } else { m_regs.lo = num / denom; m_regs.hi = num % denom; } } break; case InstructionFunct::jr: { const u32 target = ReadReg(inst.r.rs); Branch(target); } break; case InstructionFunct::jalr: { const u32 target = ReadReg(inst.r.rs); WriteReg(inst.r.rd, m_regs.npc); Branch(target); } break; case InstructionFunct::syscall: { RaiseException(inst_pc, Exception::Syscall); } break; default: UnreachableCode(); break; } } break; case InstructionOp::lui: { WriteReg(inst.i.rt, inst.i.imm_zext32() << 16); } break; case InstructionOp::andi: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) & inst.i.imm_zext32()); } break; case InstructionOp::ori: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) | inst.i.imm_zext32()); } break; case InstructionOp::xori: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) ^ inst.i.imm_zext32()); } break; case InstructionOp::addi: { const u32 old_value = ReadReg(inst.i.rs); const u32 add_value = inst.i.imm_sext32(); const u32 new_value = old_value + add_value; if (AddOverflow(old_value, add_value, new_value)) { RaiseException(inst_pc, Exception::Ov); return; } WriteReg(inst.i.rt, new_value); } break; case InstructionOp::addiu: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) + inst.i.imm_sext32()); } break; case InstructionOp::slti: { const u32 result = BoolToUInt32(static_cast(ReadReg(inst.i.rs)) < static_cast(inst.i.imm_sext32())); WriteReg(inst.i.rt, result); } break; case InstructionOp::sltiu: { const u32 result = BoolToUInt32(ReadReg(inst.i.rs) < inst.i.imm_sext32()); WriteReg(inst.i.rt, result); } break; case InstructionOp::lb: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u8 value = ReadMemoryByte(addr); WriteRegDelayed(inst.i.rt, SignExtend32(value)); } break; case InstructionOp::lh: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u16 value = ReadMemoryHalfWord(addr); WriteRegDelayed(inst.i.rt, SignExtend32(value)); } break; case InstructionOp::lw: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u32 value = ReadMemoryWord(addr); WriteRegDelayed(inst.i.rt, value); } break; case InstructionOp::lbu: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u8 value = ReadMemoryByte(addr); WriteRegDelayed(inst.i.rt, ZeroExtend32(value)); } break; case InstructionOp::lhu: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u16 value = ReadMemoryHalfWord(addr); WriteRegDelayed(inst.i.rt, ZeroExtend32(value)); } break; case InstructionOp::lwl: case InstructionOp::lwr: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const VirtualMemoryAddress aligned_addr = addr & ~UINT32_C(3); const u32 aligned_value = ReadMemoryWord(aligned_addr); // note: bypasses load delay on the read const u32 existing_value = m_regs.r[static_cast(inst.i.rt.GetValue())]; const u8 shift = (Truncate8(addr) & u8(3)) * u8(8); u32 new_value; if (inst.op == InstructionOp::lwl) { const u32 mask = UINT32_C(0x00FFFFFF) >> shift; new_value = (existing_value & mask) | (aligned_value << (24 - shift)); } else { const u32 mask = UINT32_C(0xFFFFFF00) << (24 - shift); new_value = (existing_value & mask) | (aligned_value >> shift); } WriteRegDelayed(inst.i.rt, new_value); } break; case InstructionOp::sb: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u8 value = Truncate8(ReadReg(inst.i.rt)); WriteMemoryByte(addr, value); } break; case InstructionOp::sh: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u16 value = Truncate16(ReadReg(inst.i.rt)); WriteMemoryHalfWord(addr, value); } break; case InstructionOp::sw: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u32 value = ReadReg(inst.i.rt); WriteMemoryWord(addr, value); } break; case InstructionOp::swl: case InstructionOp::swr: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const VirtualMemoryAddress aligned_addr = addr & ~UINT32_C(3); const u32 mem_value = ReadMemoryWord(aligned_addr); const u32 reg_value = ReadReg(inst.i.rt); const u8 shift = (Truncate8(addr) & u8(3)) * u8(8); u32 new_value; if (inst.op == InstructionOp::swl) { const u32 mem_mask = UINT32_C(0xFFFFFF00) << shift; new_value = (mem_value & mem_mask) | (reg_value >> (24 - shift)); } else { const u32 mem_mask = UINT32_C(0x00FFFFFF) >> (24 - shift); new_value = (mem_value & mem_mask) | (reg_value << shift); } WriteMemoryWord(aligned_addr, new_value); } break; case InstructionOp::j: { Branch((m_regs.pc & UINT32_C(0xF0000000)) | (inst.j.target << 2)); } break; case InstructionOp::jal: { m_regs.ra = m_regs.npc; Branch((m_regs.pc & UINT32_C(0xF0000000)) | (inst.j.target << 2)); } break; case InstructionOp::beq: { const bool branch = (ReadReg(inst.i.rs) == ReadReg(inst.i.rt)); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::bne: { const bool branch = (ReadReg(inst.i.rs) != ReadReg(inst.i.rt)); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::bgtz: { const bool branch = (static_cast(ReadReg(inst.i.rs)) > 0); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::blez: { const bool branch = (static_cast(ReadReg(inst.i.rs)) <= 0); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::b: { const u8 rt = static_cast(inst.i.rt.GetValue()); // bgez is the inverse of bltz, so simply do ltz and xor the result const bool bgez = ConvertToBoolUnchecked(rt & u8(1)); const bool branch = (static_cast(ReadReg(inst.i.rs)) < 0) ^ bgez; if (branch) { const bool link = ConvertToBoolUnchecked((rt >> 4) & u8(1)); if (link) m_regs.ra = m_regs.npc; Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } } break; case InstructionOp::cop0: { if (!m_cop0_regs.sr.CU0 && InUserMode()) { Log_WarningPrintf("Coprocessor 0 not present in user mode"); RaiseException(inst_pc, Exception::CpU); return; } ExecuteCop0Instruction(inst, inst_pc); } break; // COP1/COP3 are not present case InstructionOp::cop1: case InstructionOp::cop2: { RaiseException(inst_pc, Exception::CpU); } break; case InstructionOp::cop3: { Panic("GTE not implemented"); } break; default: UnreachableCode(); break; } } void Core::ExecuteCop0Instruction(Instruction inst, u32 inst_pc) { switch (inst.cop.cop0_op()) { case Cop0Instruction::mtc0: { const u32 value = ReadReg(inst.r.rt); switch (static_cast(inst.r.rd.GetValue())) { case Cop0Reg::BPC: { m_cop0_regs.BPC = value; Log_WarningPrintf("COP0 BPC <- %08X", value); } break; case Cop0Reg::BPCM: { m_cop0_regs.BPCM = value; Log_WarningPrintf("COP0 BPCM <- %08X", value); } break; case Cop0Reg::BDA: { m_cop0_regs.BDA = value; Log_WarningPrintf("COP0 BDA <- %08X", value); } break; case Cop0Reg::BDAM: { m_cop0_regs.BDAM = value; Log_WarningPrintf("COP0 BDAM <- %08X", value); } break; case Cop0Reg::JUMPDEST: { Log_WarningPrintf("Ignoring write to Cop0 JUMPDEST"); } break; case Cop0Reg::DCIC: { m_cop0_regs.dcic.bits = (m_cop0_regs.dcic.bits & ~Cop0Registers::DCIC::WRITE_MASK) | (value & Cop0Registers::DCIC::WRITE_MASK); Log_WarningPrintf("COP0 DCIC <- %08X (now %08X)", value, m_cop0_regs.dcic.bits); } break; case Cop0Reg::SR: { m_cop0_regs.sr.bits = (m_cop0_regs.sr.bits & ~Cop0Registers::SR::WRITE_MASK) | (value & Cop0Registers::SR::WRITE_MASK); Log_WarningPrintf("COP0 SR <- %08X (now %08X)", value, m_cop0_regs.sr.bits); } break; case Cop0Reg::CAUSE: { m_cop0_regs.cause.bits = (m_cop0_regs.cause.bits & ~Cop0Registers::CAUSE::WRITE_MASK) | (value & Cop0Registers::CAUSE::WRITE_MASK); Log_WarningPrintf("COP0 CAUSE <- %08X (now %08X)", value, m_cop0_regs.cause.bits); } break; default: Panic("Unknown COP0 reg"); break; } } break; case Cop0Instruction::mfc0: { u32 value; switch (static_cast(inst.r.rd.GetValue())) { case Cop0Reg::BPC: value = m_cop0_regs.BPC; break; case Cop0Reg::BPCM: value = m_cop0_regs.BPCM; break; case Cop0Reg::BDA: value = m_cop0_regs.BDA; break; case Cop0Reg::BDAM: value = m_cop0_regs.BDAM; break; case Cop0Reg::DCIC: value = m_cop0_regs.dcic.bits; break; case Cop0Reg::JUMPDEST: value = m_cop0_regs.JUMPDEST; break; case Cop0Reg::BadVaddr: value = m_cop0_regs.BadVaddr; break; case Cop0Reg::SR: value = m_cop0_regs.sr.bits; break; case Cop0Reg::CAUSE: value = m_cop0_regs.cause.bits; break; case Cop0Reg::EPC: value = m_cop0_regs.EPC; break; case Cop0Reg::PRID: value = m_cop0_regs.PRID; break; default: Panic("Unknown COP0 reg"); value = 0; break; } WriteRegDelayed(inst.r.rt, value); } break; case Cop0Instruction::rfe: { // restore mode m_cop0_regs.sr.mode_bits = (m_cop0_regs.sr.mode_bits & UINT32_C(0b110000)) | (m_cop0_regs.sr.mode_bits >> 2); } break; default: Panic("Unhandled instruction"); break; } } } // namespace CPU