#include "gpu_hw_shadergen.h" #include "YBaseLib/Assert.h" #include "YBaseLib/Log.h" #include #include Log_SetChannel(GPU_HW_ShaderGen); GPU_HW_ShaderGen::GPU_HW_ShaderGen(HostDisplay::RenderAPI render_api, u32 resolution_scale, bool true_color, bool texture_filtering, bool supports_dual_source_blend) : m_render_api(render_api), m_resolution_scale(resolution_scale), m_true_color(true_color), m_texture_filering(texture_filtering), m_glsl(render_api != HostDisplay::RenderAPI::D3D11), m_glsl_es(render_api == HostDisplay::RenderAPI::OpenGLES), m_supports_dual_source_blend(supports_dual_source_blend) { if (m_glsl) SetGLSLVersionString(); } GPU_HW_ShaderGen::~GPU_HW_ShaderGen() = default; static void DefineMacro(std::stringstream& ss, const char* name, bool enabled) { ss << "#define " << name << " " << BoolToUInt32(enabled) << "\n"; } void GPU_HW_ShaderGen::SetGLSLVersionString() { const char* glsl_version = reinterpret_cast(glGetString(GL_SHADING_LANGUAGE_VERSION)); Assert(glsl_version != nullptr); // Skip any strings in front of the version code. const char* glsl_version_start = glsl_version; while (*glsl_version_start != '\0' && (*glsl_version_start < '0' || *glsl_version_start > '9')) glsl_version_start++; int major_version = 0, minor_version = 0; if (std::sscanf(glsl_version_start, "%d.%d", &major_version, &minor_version) == 2) { // Cap at GLSL 3.3, we're not using anything newer for now. if (!m_glsl_es && major_version >= 4) { major_version = 3; minor_version = 30; } else if (m_glsl_es && (major_version > 3 || minor_version > 20)) { major_version = 3; minor_version = 20; } } else { Log_ErrorPrintf("Invalid GLSL version string: '%s' ('%s')", glsl_version, glsl_version_start); if (m_glsl_es) { major_version = 3; minor_version = 0; } m_glsl_version_string = m_glsl_es ? "300" : "130"; } char buf[128]; std::snprintf(buf, sizeof(buf), "#version %d%02d %s", major_version, minor_version, (!m_glsl_es && major_version >= 3 && minor_version >= 3) ? "core" : (m_glsl_es ? "es" : "")); m_glsl_version_string = buf; } void GPU_HW_ShaderGen::WriteHeader(std::stringstream& ss) { if (m_render_api == HostDisplay::RenderAPI::OpenGL || m_render_api == HostDisplay::RenderAPI::OpenGLES) ss << m_glsl_version_string << "\n\n"; DefineMacro(ss, "API_OPENGL", m_render_api == HostDisplay::RenderAPI::OpenGL); DefineMacro(ss, "API_OPENGL_ES", m_render_api == HostDisplay::RenderAPI::OpenGLES); DefineMacro(ss, "API_D3D11", m_render_api == HostDisplay::RenderAPI::D3D11); if (m_render_api == HostDisplay::RenderAPI::OpenGLES) { ss << "precision highp float;\n"; ss << "precision highp int;\n"; ss << "precision highp sampler2D;\n"; if (GLAD_GL_ES_VERSION_3_2) ss << "precision highp usamplerBuffer;\n"; ss << "\n"; } if (m_glsl) { ss << "#define GLSL 1\n"; ss << "#define float2 vec2\n"; ss << "#define float3 vec3\n"; ss << "#define float4 vec4\n"; ss << "#define int2 ivec2\n"; ss << "#define int3 ivec3\n"; ss << "#define int4 ivec4\n"; ss << "#define uint2 uvec2\n"; ss << "#define uint3 uvec3\n"; ss << "#define uint4 uvec4\n"; ss << "#define nointerpolation flat\n"; ss << "#define frac fract\n"; ss << "#define lerp mix\n"; ss << "#define CONSTANT const\n"; ss << "#define VECTOR_EQ(a, b) ((a) == (b))\n"; ss << "#define VECTOR_NEQ(a, b) ((a) != (b))\n"; ss << "#define SAMPLE_TEXTURE(name, coords) texture(name, coords)\n"; ss << "#define LOAD_TEXTURE(name, coords, mip) texelFetch(name, coords, mip)\n"; ss << "#define LOAD_TEXTURE_OFFSET(name, coords, mip, offset) texelFetchOffset(name, coords, mip, offset)\n"; ss << "#define LOAD_TEXTURE_BUFFER(name, index) texelFetch(name, index)\n"; } else { ss << "#define HLSL 1\n"; ss << "#define CONSTANT static const\n"; ss << "#define VECTOR_EQ(a, b) (all((a) == (b)))\n"; ss << "#define VECTOR_NEQ(a, b) (any((a) != (b)))\n"; ss << "#define SAMPLE_TEXTURE(name, coords) name.Sample(name##_ss, coords)\n"; ss << "#define LOAD_TEXTURE(name, coords, mip) name.Load(int3(coords, mip))\n"; ss << "#define LOAD_TEXTURE_OFFSET(name, coords, mip, offset) name.Load(int3(coords, mip), offset)\n"; ss << "#define LOAD_TEXTURE_BUFFER(name, index) name.Load(index)\n"; } ss << "\n"; } void GPU_HW_ShaderGen::WriteCommonFunctions(std::stringstream& ss) { ss << "CONSTANT int RESOLUTION_SCALE = " << m_resolution_scale << ";\n"; ss << "CONSTANT int2 VRAM_SIZE = int2(" << GPU::VRAM_WIDTH << ", " << GPU::VRAM_HEIGHT << ") * RESOLUTION_SCALE;\n"; ss << "CONSTANT float2 RCP_VRAM_SIZE = float2(1.0, 1.0) / float2(VRAM_SIZE);\n"; ss << R"( float fixYCoord(float y) { #if API_OPENGL || API_OPENGL_ES return 1.0 - RCP_VRAM_SIZE.y - y; #else return y; #endif } int fixYCoord(int y) { #if API_OPENGL || API_OPENGL_ES return VRAM_SIZE.y - y - 1; #else return y; #endif } uint RGBA8ToRGBA5551(float4 v) { uint r = uint(v.r * 255.0) >> 3; uint g = uint(v.g * 255.0) >> 3; uint b = uint(v.b * 255.0) >> 3; uint a = (v.a != 0.0) ? 1u : 0u; return (r) | (g << 5) | (b << 10) | (a << 15); } float4 RGBA5551ToRGBA8(uint v) { uint r = (v & 31u); uint g = ((v >> 5) & 31u); uint b = ((v >> 10) & 31u); uint a = ((v >> 15) & 1u); // repeat lower bits r = (r << 3) | (r & 7u); g = (g << 3) | (g & 7u); b = (b << 3) | (b & 7u); return float4(float(r) / 255.0, float(g) / 255.0, float(b) / 255.0, float(a)); } )"; } void GPU_HW_ShaderGen::DeclareUniformBuffer(std::stringstream& ss, const std::initializer_list& members) { if (m_glsl_es) { for (const char* member : members) ss << "uniform " << member << ";\n"; } else { if (m_glsl) ss << "layout(std140) uniform UBOBlock\n"; else ss << "cbuffer UBOBlock : register(b0)\n"; ss << "{\n"; for (const char* member : members) ss << member << ";\n"; ss << "};\n\n"; } } void GPU_HW_ShaderGen::DeclareTexture(std::stringstream& ss, const char* name, u32 index) { if (m_glsl) { ss << "uniform sampler2D " << name << ";\n"; } else { ss << "Texture2D " << name << " : register(t" << index << ");\n"; ss << "SamplerState " << name << "_ss : register(s" << index << ");\n"; } } void GPU_HW_ShaderGen::DeclareTextureBuffer(std::stringstream& ss, const char* name, u32 index, bool is_int, bool is_unsigned) { if (m_glsl) { ss << "uniform " << (is_int ? (is_unsigned ? "u" : "i") : "") << "samplerBuffer " << name << ";\n"; } else { ss << "Buffer<" << (is_int ? (is_unsigned ? "uint4" : "int4") : "float4") << "> " << name << " : register(t" << index << ");\n"; } } void GPU_HW_ShaderGen::DeclareVertexEntryPoint(std::stringstream& ss, const std::initializer_list& attributes, u32 num_color_outputs, u32 num_texcoord_outputs, const std::initializer_list& additional_outputs, bool declare_vertex_id) { if (m_glsl) { for (const char* attribute : attributes) ss << "in " << attribute << ";\n"; for (u32 i = 0; i < num_color_outputs; i++) ss << "out float4 v_col" << i << ";\n"; for (u32 i = 0; i < num_texcoord_outputs; i++) ss << "out float2 v_tex" << i << ";\n"; for (const char* output : additional_outputs) ss << output << ";\n"; ss << "#define v_pos gl_Position\n\n"; if (declare_vertex_id) ss << "#define v_id uint(gl_VertexID)\n"; ss << "\n"; ss << "void main()\n"; } else { ss << "void main(\n"; u32 attribute_counter = 0; for (const char* attribute : attributes) { ss << " in " << attribute << " : ATTR" << attribute_counter << ",\n"; attribute_counter++; } if (declare_vertex_id) ss << " in uint v_id : SV_VertexID,\n"; for (u32 i = 0; i < num_color_outputs; i++) ss << " out float4 v_col" << i << " : COLOR" << i << ",\n"; for (u32 i = 0; i < num_texcoord_outputs; i++) ss << " out float2 v_tex" << i << " : TEXCOORD" << i << ",\n"; u32 additional_counter = num_texcoord_outputs; for (const char* output : additional_outputs) { ss << " " << output << " : TEXCOORD" << additional_counter << ",\n"; additional_counter++; } ss << " out float4 v_pos : SV_Position)\n"; } } void GPU_HW_ShaderGen::DeclareFragmentEntryPoint(std::stringstream& ss, u32 num_color_inputs, u32 num_texcoord_inputs, const std::initializer_list& additional_inputs, bool declare_fragcoord, bool dual_color_output) { if (m_glsl) { for (u32 i = 0; i < num_color_inputs; i++) ss << "in float4 v_col" << i << ";\n"; for (u32 i = 0; i < num_texcoord_inputs; i++) ss << "in float2 v_tex" << i << ";\n"; for (const char* input : additional_inputs) ss << input << ";\n"; if (declare_fragcoord) ss << "#define v_pos gl_FragCoord\n"; ss << "out float4 o_col0;\n"; if (dual_color_output) ss << "out float4 o_col1;\n"; ss << "\n"; ss << "void main()\n"; } else { { ss << "void main(\n"; for (u32 i = 0; i < num_color_inputs; i++) ss << " in float4 v_col" << i << " : COLOR" << i << ",\n"; for (u32 i = 0; i < num_texcoord_inputs; i++) ss << " in float2 v_tex" << i << " : TEXCOORD" << i << ",\n"; u32 additional_counter = num_texcoord_inputs; for (const char* output : additional_inputs) { ss << " " << output << " : TEXCOORD" << additional_counter << ",\n"; additional_counter++; } if (declare_fragcoord) ss << " in float4 v_pos : SV_Position,\n"; if (dual_color_output) { ss << " out float4 o_col0 : SV_Target0,\n"; ss << " out float4 o_col1 : SV_Target1)\n"; } else { ss << " out float4 o_col0 : SV_Target)"; } } } } void GPU_HW_ShaderGen::WriteBatchUniformBuffer(std::stringstream& ss) { DeclareUniformBuffer(ss, {"int2 u_pos_offset", "uint2 u_texture_window_mask", "uint2 u_texture_window_offset", "float u_src_alpha_factor", "float u_dst_alpha_factor", "bool u_set_mask_while_drawing"}); } std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured) { std::stringstream ss; WriteHeader(ss); DefineMacro(ss, "TEXTURED", textured); WriteCommonFunctions(ss); WriteBatchUniformBuffer(ss); if (textured) { DeclareVertexEntryPoint(ss, {"int2 a_pos", "float4 a_col0", "int a_texcoord", "int a_texpage"}, 1, 1, {"nointerpolation out int4 v_texpage"}); } else { DeclareVertexEntryPoint(ss, {"int2 a_pos", "float4 a_col0"}, 1, 0, {}); } ss << R"( { // 0..+1023 -> -1..1 float pos_x = (float(a_pos.x + u_pos_offset.x) / 512.0) - 1.0; float pos_y = (float(a_pos.y + u_pos_offset.y) / -256.0) + 1.0; v_pos = float4(pos_x, pos_y, 0.0, 1.0); v_col0 = a_col0; #if TEXTURED v_tex0 = float2(float(a_texcoord & 0xFFFF), float(a_texcoord >> 16)); // base_x,base_y,palette_x,palette_y v_texpage.x = (a_texpage & 15) * 64 * RESOLUTION_SCALE; v_texpage.y = ((a_texpage >> 4) & 1) * 256 * RESOLUTION_SCALE; v_texpage.z = ((a_texpage >> 16) & 63) * 16 * RESOLUTION_SCALE; v_texpage.w = ((a_texpage >> 22) & 511) * RESOLUTION_SCALE; #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateBatchFragmentShader(GPU_HW::BatchRenderMode transparency, GPU::TextureMode texture_mode, bool dithering) { const GPU::TextureMode actual_texture_mode = texture_mode & ~GPU::TextureMode::RawTextureBit; const bool raw_texture = (texture_mode & GPU::TextureMode::RawTextureBit) == GPU::TextureMode::RawTextureBit; const bool textured = (texture_mode != GPU::TextureMode::Disabled); const bool use_dual_source = m_supports_dual_source_blend && (transparency != GPU_HW::BatchRenderMode::TransparencyDisabled || m_texture_filering); std::stringstream ss; WriteHeader(ss); DefineMacro(ss, "TRANSPARENCY", transparency != GPU_HW::BatchRenderMode::TransparencyDisabled); DefineMacro(ss, "TRANSPARENCY_ONLY_OPAQUE", transparency == GPU_HW::BatchRenderMode::OnlyOpaque); DefineMacro(ss, "TRANSPARENCY_ONLY_TRANSPARENCY", transparency == GPU_HW::BatchRenderMode::OnlyTransparent); DefineMacro(ss, "TEXTURED", textured); DefineMacro(ss, "PALETTE", actual_texture_mode == GPU::TextureMode::Palette4Bit || actual_texture_mode == GPU::TextureMode::Palette8Bit); DefineMacro(ss, "PALETTE_4_BIT", actual_texture_mode == GPU::TextureMode::Palette4Bit); DefineMacro(ss, "PALETTE_8_BIT", actual_texture_mode == GPU::TextureMode::Palette8Bit); DefineMacro(ss, "RAW_TEXTURE", raw_texture); DefineMacro(ss, "DITHERING", dithering); DefineMacro(ss, "TRUE_COLOR", m_true_color); DefineMacro(ss, "TEXTURE_FILTERING", m_texture_filering); DefineMacro(ss, "USE_DUAL_SOURCE", use_dual_source); WriteCommonFunctions(ss); WriteBatchUniformBuffer(ss); DeclareTexture(ss, "samp0", 0); if (m_glsl) ss << "CONSTANT int[16] s_dither_values = int[16]( "; else ss << "CONSTANT int s_dither_values[] = {"; for (u32 i = 0; i < 16; i++) { if (i > 0) ss << ", "; ss << GPU::DITHER_MATRIX[i / 4][i % 4]; } if (m_glsl) ss << " );\n"; else ss << "};\n"; ss << R"( int3 ApplyDithering(int2 coord, int3 icol) { int2 fc = coord & int2(3, 3); int offset = s_dither_values[fc.y * 4 + fc.x]; return icol + int3(offset, offset, offset); } int3 TruncateTo15Bit(int3 icol) { icol = clamp(icol, int3(0, 0, 0), int3(255, 255, 255)); return (icol & int3(~7, ~7, ~7)) | ((icol >> 3) & int3(7, 7, 7)); } #if TEXTURED CONSTANT float4 TRANSPARENT_PIXEL_COLOR = float4(0.0, 0.0, 0.0, 0.0); int2 ApplyTextureWindow(int2 coords) { uint x = (uint(coords.x) & ~(u_texture_window_mask.x * 8u)) | ((u_texture_window_offset.x & u_texture_window_mask.x) * 8u); uint y = (uint(coords.y) & ~(u_texture_window_mask.y * 8u)) | ((u_texture_window_offset.y & u_texture_window_mask.y) * 8u); return int2(int(x), int(y)); } float4 SampleFromVRAM(int4 texpage, int2 icoord) { icoord = ApplyTextureWindow(icoord); // adjust for tightly packed palette formats int2 index_coord = icoord; #if PALETTE_4_BIT index_coord.x /= 4; #elif PALETTE_8_BIT index_coord.x /= 2; #endif // fixup coords int2 vicoord = int2(texpage.x + index_coord.x * RESOLUTION_SCALE, fixYCoord(texpage.y + index_coord.y * RESOLUTION_SCALE)); // load colour/palette float4 color = LOAD_TEXTURE(samp0, vicoord, 0); // apply palette #if PALETTE #if PALETTE_4_BIT int subpixel = int(icoord.x) & 3; uint vram_value = RGBA8ToRGBA5551(color); int palette_index = int((vram_value >> (subpixel * 4)) & 0x0Fu); #elif PALETTE_8_BIT int subpixel = int(icoord.x) & 1; uint vram_value = RGBA8ToRGBA5551(color); int palette_index = int((vram_value >> (subpixel * 8)) & 0xFFu); #endif int2 palette_icoord = int2(texpage.z + (palette_index * RESOLUTION_SCALE), fixYCoord(texpage.w)); color = LOAD_TEXTURE(samp0, palette_icoord, 0); #endif return color; } #endif )"; if (textured) { DeclareFragmentEntryPoint(ss, 1, 1, {"nointerpolation in int4 v_texpage"}, true, use_dual_source); } else { DeclareFragmentEntryPoint(ss, 1, 0, {}, true, use_dual_source); } ss << R"( { int3 vertcol = int3(v_col0.rgb * float3(255.0, 255.0, 255.0)); bool semitransparent; int3 icolor; float ialpha; float oalpha; #if TEXTURED #if TEXTURE_FILTERING int2 icoord = int2(v_tex0); float2 pcoord = frac(v_tex0) - float2(0.5, 0.5); float2 poffs = sign(pcoord); pcoord = abs(pcoord); // TODO: Clamp to page float4 tl = SampleFromVRAM(v_texpage, int2(v_tex0)); float4 tr = SampleFromVRAM(v_texpage, int2(min(v_tex0.x + poffs.x, 255.0), v_tex0.y)); float4 bl = SampleFromVRAM(v_texpage, int2(v_tex0.x, min(v_tex0.y + poffs.y, 255.0))); float4 br = SampleFromVRAM(v_texpage, int2(min(v_tex0.x + poffs.x, 255.0), min(v_tex0.y + poffs.y, 255.0))); // Compute alpha from how many texels aren't pixel color 0000h. float tl_a = float(VECTOR_NEQ(tl, TRANSPARENT_PIXEL_COLOR)); float tr_a = float(VECTOR_NEQ(tr, TRANSPARENT_PIXEL_COLOR)); float bl_a = float(VECTOR_NEQ(bl, TRANSPARENT_PIXEL_COLOR)); float br_a = float(VECTOR_NEQ(br, TRANSPARENT_PIXEL_COLOR)); // Bilinearly interpolate. float4 texcol = lerp(lerp(tl, tr, pcoord.x), lerp(bl, br, pcoord.x), pcoord.y); ialpha = lerp(lerp(tl_a, tr_a, pcoord.x), lerp(bl_a, br_a, pcoord.x), pcoord.y); if (ialpha == 0.0) discard; texcol.rgb /= float3(ialpha, ialpha, ialpha); semitransparent = (texcol.a != 0.0); #else float4 texcol = SampleFromVRAM(v_texpage, int2(v_tex0)); if (VECTOR_EQ(texcol, TRANSPARENT_PIXEL_COLOR)) discard; semitransparent = (texcol.a != 0.0); ialpha = 1.0; #endif #if RAW_TEXTURE icolor = int3(texcol.rgb * float3(255.0, 255.0, 255.0)); #else icolor = (vertcol * int3(texcol.rgb * float3(255.0, 255.0, 255.0))) >> 7; #endif // Compute output alpha (mask bit) oalpha = float(u_set_mask_while_drawing ? 1 : int(semitransparent)); #else // All pixels are semitransparent for untextured polygons. semitransparent = true; icolor = vertcol; ialpha = 1.0; // However, the mask bit is cleared if set mask bit is false. oalpha = float(u_set_mask_while_drawing); #endif // Apply dithering #if DITHERING icolor = ApplyDithering(int2(v_pos.xy) / int2(RESOLUTION_SCALE, RESOLUTION_SCALE), icolor); #endif // Clip to 15-bit range #if !TRUE_COLOR icolor = TruncateTo15Bit(icolor); #endif // Normalize float3 color = float3(icolor) / float3(255.0, 255.0, 255.0); #if TRANSPARENCY // Apply semitransparency. If not a semitransparent texel, destination alpha is ignored. if (semitransparent) { #if TRANSPARENCY_ONLY_OPAQUE discard; #endif #if USE_DUAL_SOURCE o_col0 = float4(color * (u_src_alpha_factor * ialpha), oalpha); o_col1 = float4(0.0, 0.0, 0.0, u_dst_alpha_factor / ialpha); #else o_col0 = float4(color * (u_src_alpha_factor * ialpha), u_dst_alpha_factor / ialpha); #endif } else { #if TRANSPARENCY_ONLY_TRANSPARENCY discard; #endif #if USE_DUAL_SOURCE o_col0 = float4(color * ialpha, oalpha); o_col1 = float4(0.0, 0.0, 0.0, 0.0); #else o_col0 = float4(color * ialpha, 1.0 - ialpha); #endif } #else // Non-transparency won't enable blending so we can write the mask here regardless. o_col0 = float4(color * ialpha, oalpha); #if USE_DUAL_SOURCE o_col1 = float4(0.0, 0.0, 0.0, 1.0 - ialpha); #endif #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateBatchLineExpandGeometryShader() { std::stringstream ss; WriteHeader(ss); WriteCommonFunctions(ss); // GS is a pain, too different between HLSL and GLSL... if (m_glsl) { } else { ss << R"( CONSTANT float2 OFFSET = (1.0 / float2(VRAM_SIZE)) * float2(RESOLUTION_SCALE, RESOLUTION_SCALE); struct Vertex { float4 col0 : COLOR0; float4 pos : SV_Position; }; [maxvertexcount(4)] void main(line Vertex input[2], inout TriangleStream output) { Vertex v; // top-left v.col0 = input[0].col0; v.pos = input[0].pos + float4(-OFFSET.x, +OFFSET.y, 0.0, 0.0); output.Append(v); // top-right v.col0 = input[0].col0; v.pos = input[0].pos + float4(+OFFSET.x, +OFFSET.y, 0.0, 0.0); output.Append(v); // bottom-left v.col0 = input[1].col0; v.pos = input[1].pos + float4(-OFFSET.x, -OFFSET.y, 0.0, 0.0); output.Append(v); // bottom-right v.col0 = input[1].col0; v.pos = input[1].pos + float4(+OFFSET.x, -OFFSET.y, 0.0, 0.0); output.Append(v); output.RestartStrip(); } )"; } return ss.str(); } std::string GPU_HW_ShaderGen::GenerateScreenQuadVertexShader() { std::stringstream ss; WriteHeader(ss); DeclareVertexEntryPoint(ss, {}, 0, 1, {}, true); ss << R"( { v_tex0 = float2(float((v_id << 1) & 2u), float(v_id & 2u)); v_pos = float4(v_tex0 * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f); #if API_OPENGL || API_OPENGL_ES v_pos.y = -gl_Position.y; #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateFillFragmentShader() { std::stringstream ss; WriteHeader(ss); DeclareUniformBuffer(ss, {"float4 u_fill_color"}); DeclareFragmentEntryPoint(ss, 0, 1, {}, false, false); ss << R"( { o_col0 = u_fill_color; } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateCopyFragmentShader() { std::stringstream ss; WriteHeader(ss); DeclareUniformBuffer(ss, {"float4 u_src_rect"}); DeclareTexture(ss, "samp0", 0); DeclareFragmentEntryPoint(ss, 0, 1, {}, false, false); ss << R"( { float2 coords = u_src_rect.xy + v_tex0 * u_src_rect.zw; o_col0 = SAMPLE_TEXTURE(samp0, coords); } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateDisplayFragmentShader(bool depth_24bit, bool interlaced) { std::stringstream ss; WriteHeader(ss); DefineMacro(ss, "DEPTH_24BIT", depth_24bit); DefineMacro(ss, "INTERLACED", interlaced); WriteCommonFunctions(ss); DeclareUniformBuffer(ss, {"int3 u_base_coords"}); DeclareTexture(ss, "samp0", 0); DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false); ss << R"( { int2 icoords = int2(v_pos.xy); #if INTERLACED if (((icoords.y - u_base_coords.z) & 1) != 0) discard; #endif #if DEPTH_24BIT // compute offset in dwords from the start of the 24-bit values int2 base = int2(u_base_coords.x, u_base_coords.y + icoords.y); int xoff = int(icoords.x); int dword_index = (xoff / 2) + (xoff / 4); // sample two adjacent dwords, or four 16-bit values as the 24-bit value will lie somewhere between these uint s0 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(base.x + dword_index * 2 + 0, base.y), 0)); uint s1 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(base.x + dword_index * 2 + 1, base.y), 0)); uint s2 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(base.x + (dword_index + 1) * 2 + 0, base.y), 0)); uint s3 = RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, int2(base.x + (dword_index + 1) * 2 + 1, base.y), 0)); // select the bit for this pixel depending on its offset in the 4-pixel block uint r, g, b; int block_offset = xoff & 3; if (block_offset == 0) { r = s0 & 0xFFu; g = s0 >> 8; b = s1 & 0xFFu; } else if (block_offset == 1) { r = s1 >> 8; g = s2 & 0xFFu; b = s2 >> 8; } else if (block_offset == 2) { r = s1 & 0xFFu; g = s1 >> 8; b = s2 & 0xFFu; } else { r = s2 >> 8; g = s3 & 0xFFu; b = s3 >> 8; } // and normalize o_col0 = float4(float(r) / 255.0, float(g) / 255.0, float(b) / 255.0, 1.0); #else // load and return o_col0 = LOAD_TEXTURE(samp0, u_base_coords.xy + icoords, 0); #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateVRAMReadFragmentShader() { std::stringstream ss; WriteHeader(ss); WriteCommonFunctions(ss); DeclareUniformBuffer(ss, {"int2 u_base_coords", "int2 u_size"}); DeclareTexture(ss, "samp0", 0); ss << R"( uint SampleVRAM(int2 coords) { if (RESOLUTION_SCALE == 1) return RGBA8ToRGBA5551(LOAD_TEXTURE(samp0, coords, 0)); // Box filter for downsampling. float4 value = float4(0.0, 0.0, 0.0, 0.0); int2 base_coords = coords * int2(RESOLUTION_SCALE, RESOLUTION_SCALE); for (int offset_x = 0; offset_x < RESOLUTION_SCALE; offset_x++) { for (int offset_y = 0; offset_y < RESOLUTION_SCALE; offset_y++) value += LOAD_TEXTURE(samp0, base_coords + int2(offset_x, offset_y), 0); } value /= float(RESOLUTION_SCALE * RESOLUTION_SCALE); return RGBA8ToRGBA5551(value); } )"; DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false); ss << R"( { int2 sample_coords = int2(int(v_pos.x) * 2, int(v_pos.y)); #if API_OPENGL || API_OPENGL_ES // Lower-left origin flip for OpenGL. // We want to write the image out upside-down so we can read it top-to-bottom. sample_coords.y = u_size.y - sample_coords.y - 1; #endif sample_coords += u_base_coords; // We're encoding as 32-bit, so the output width is halved and we pack two 16-bit pixels in one 32-bit pixel. uint left = SampleVRAM(sample_coords); uint right = SampleVRAM(int2(sample_coords.x + 1, sample_coords.y)); o_col0 = float4(float(left & 0xFFu), float((left >> 8) & 0xFFu), float(right & 0xFFu), float((right >> 8) & 0xFFu)) / float4(255.0, 255.0, 255.0, 255.0); })"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateVRAMWriteFragmentShader() { std::stringstream ss; WriteHeader(ss); WriteCommonFunctions(ss); DeclareUniformBuffer(ss, {"int2 u_base_coords", "int2 u_size", "int u_buffer_base_offset"}); DeclareTextureBuffer(ss, "samp0", 0, true, true); DeclareFragmentEntryPoint(ss, 0, 1, {}, true, false); ss << R"( { int2 coords = int2(v_pos.xy) / int2(RESOLUTION_SCALE, RESOLUTION_SCALE); int2 offset = coords - u_base_coords; #if API_OPENGL || API_OPENGL_ES // Lower-left origin flip for OpenGL offset.y = u_size.y - offset.y - 1; #endif int buffer_offset = u_buffer_base_offset + (offset.y * u_size.x) + offset.x; uint value = LOAD_TEXTURE_BUFFER(samp0, buffer_offset).r; o_col0 = RGBA5551ToRGBA8(value); })"; return ss.str(); }