#include "cpu_core.h" #include "YBaseLib/Log.h" #include "common/state_wrapper.h" #include "cpu_disasm.h" #include Log_SetChannel(CPU::Core); namespace CPU { bool TRACE_EXECUTION = false; bool LOG_EXECUTION = false; void WriteToExecutionLog(const char* format, ...) { static std::FILE* log_file = nullptr; static bool log_file_opened = false; std::va_list ap; va_start(ap, format); if (!log_file_opened) { log_file = std::fopen("cpu_log.txt", "wb"); log_file_opened = true; } if (log_file) { std::vfprintf(log_file, format, ap); std::fflush(log_file); } va_end(ap); } Core::Core() = default; Core::~Core() = default; void Core::Initialize(Bus* bus) { m_bus = bus; // From nocash spec. m_cop0_regs.PRID = UINT32_C(0x00000002); m_cop2.Initialize(); } void Core::Reset() { m_pending_ticks = 0; m_downcount = MAX_SLICE_SIZE; m_regs = {}; m_cop0_regs.BPC = 0; m_cop0_regs.BDA = 0; m_cop0_regs.TAR = 0; m_cop0_regs.BadVaddr = 0; m_cop0_regs.BDAM = 0; m_cop0_regs.BPCM = 0; m_cop0_regs.EPC = 0; m_cop0_regs.sr.bits = 0; m_cop0_regs.cause.bits = 0; m_cop2.Reset(); SetPC(RESET_VECTOR); } bool Core::DoState(StateWrapper& sw) { sw.Do(&m_pending_ticks); sw.Do(&m_downcount); sw.DoArray(m_regs.r, countof(m_regs.r)); sw.Do(&m_regs.pc); sw.Do(&m_regs.hi); sw.Do(&m_regs.lo); sw.Do(&m_regs.npc); sw.Do(&m_cop0_regs.BPC); sw.Do(&m_cop0_regs.BDA); sw.Do(&m_cop0_regs.TAR); sw.Do(&m_cop0_regs.BadVaddr); sw.Do(&m_cop0_regs.BDAM); sw.Do(&m_cop0_regs.BPCM); sw.Do(&m_cop0_regs.EPC); sw.Do(&m_cop0_regs.PRID); sw.Do(&m_cop0_regs.sr.bits); sw.Do(&m_cop0_regs.cause.bits); sw.Do(&m_cop0_regs.dcic.bits); sw.Do(&m_next_instruction.bits); sw.Do(&m_current_instruction.bits); sw.Do(&m_current_instruction_pc); sw.Do(&m_current_instruction_in_branch_delay_slot); sw.Do(&m_current_instruction_was_branch_taken); sw.Do(&m_next_instruction_is_branch_delay_slot); sw.Do(&m_branch_was_taken); sw.Do(&m_load_delay_reg); sw.Do(&m_load_delay_old_value); sw.Do(&m_next_load_delay_reg); sw.Do(&m_next_load_delay_old_value); sw.Do(&m_cache_control); sw.DoBytes(m_dcache.data(), m_dcache.size()); if (!m_cop2.DoState(sw)) return false; return !sw.HasError(); } void Core::SetPC(u32 new_pc) { DebugAssert(Common::IsAlignedPow2(new_pc, 4)); m_regs.npc = new_pc; FlushPipeline(); } bool Core::ReadMemoryByte(VirtualMemoryAddress addr, u8* value) { u32 temp = 0; const TickCount cycles = DoMemoryAccess(addr, temp); *value = Truncate8(temp); if (cycles < 0) { RaiseException(Exception::DBE); return false; } AddTicks(cycles - 1); return true; } bool Core::ReadMemoryHalfWord(VirtualMemoryAddress addr, u16* value) { if (!DoAlignmentCheck(addr)) return false; u32 temp = 0; const TickCount cycles = DoMemoryAccess(addr, temp); *value = Truncate16(temp); if (cycles < 0) { RaiseException(Exception::DBE); return false; } AddTicks(cycles - 1); return true; } bool Core::ReadMemoryWord(VirtualMemoryAddress addr, u32* value) { if (!DoAlignmentCheck(addr)) return false; const TickCount cycles = DoMemoryAccess(addr, *value); if (cycles < 0) { RaiseException(Exception::DBE); return false; } AddTicks(cycles - 1); return true; } bool Core::WriteMemoryByte(VirtualMemoryAddress addr, u8 value) { u32 temp = ZeroExtend32(value); const TickCount cycles = DoMemoryAccess(addr, temp); if (cycles < 0) { RaiseException(Exception::DBE); return false; } AddTicks(cycles - 1); return true; } bool Core::WriteMemoryHalfWord(VirtualMemoryAddress addr, u16 value) { if (!DoAlignmentCheck(addr)) return false; u32 temp = ZeroExtend32(value); const TickCount cycles = DoMemoryAccess(addr, temp); if (cycles < 0) { RaiseException(Exception::DBE); return false; } AddTicks(cycles - 1); return cycles; } bool Core::WriteMemoryWord(VirtualMemoryAddress addr, u32 value) { if (!DoAlignmentCheck(addr)) return false; const TickCount cycles = DoMemoryAccess(addr, value); if (cycles < 0) { RaiseException(Exception::DBE); return false; } AddTicks(cycles - 1); return true; } bool Core::SafeReadMemoryByte(VirtualMemoryAddress addr, u8* value) { u32 temp = 0; const TickCount cycles = DoMemoryAccess(addr, temp); *value = Truncate8(temp); return (cycles >= 0); } bool Core::SafeReadMemoryHalfWord(VirtualMemoryAddress addr, u16* value) { u32 temp = 0; const TickCount cycles = DoMemoryAccess(addr, temp); *value = Truncate16(temp); return (cycles >= 0); } bool Core::SafeReadMemoryWord(VirtualMemoryAddress addr, u32* value) { return DoMemoryAccess(addr, *value) >= 0; } bool Core::SafeWriteMemoryByte(VirtualMemoryAddress addr, u8 value) { u32 temp = ZeroExtend32(value); return DoMemoryAccess(addr, temp) >= 0; } bool Core::SafeWriteMemoryHalfWord(VirtualMemoryAddress addr, u16 value) { u32 temp = ZeroExtend32(value); return DoMemoryAccess(addr, temp) >= 0; } bool Core::SafeWriteMemoryWord(VirtualMemoryAddress addr, u32 value) { return DoMemoryAccess(addr, value) >= 0; } void Core::Branch(u32 target) { if (!Common::IsAlignedPow2(target, 4)) { // The BadVaddr and EPC must be set to the fetching address, not the instruction about to execute. m_cop0_regs.BadVaddr = target; RaiseException(Exception::AdEL, target, false, false, 0); return; } m_regs.npc = target; m_branch_was_taken = true; } u32 Core::GetExceptionVector(Exception excode) const { const u32 base = m_cop0_regs.sr.BEV ? UINT32_C(0xbfc00100) : UINT32_C(0x80000000); #if 0 // apparently this isn't correct... switch (excode) { case Exception::BP: return base | UINT32_C(0x00000040); default: return base | UINT32_C(0x00000080); } #else return base | UINT32_C(0x00000080); #endif } void Core::RaiseException(Exception excode) { RaiseException(excode, m_current_instruction_pc, m_current_instruction_in_branch_delay_slot, m_current_instruction_was_branch_taken, m_current_instruction.cop.cop_n); } void Core::RaiseException(Exception excode, u32 EPC, bool BD, bool BT, u8 CE) { #ifdef Y_BUILD_CONFIG_DEBUG if (excode != Exception::INT && excode != Exception::Syscall && excode != Exception::BP) { Log_DebugPrintf("Exception %u at 0x%08X (epc=0x%08X, BD=%s, CE=%u)", static_cast(excode), m_current_instruction_pc, EPC, BD ? "true" : "false", ZeroExtend32(CE)); DisassembleAndPrint(m_current_instruction_pc, 4, 0); } #endif m_cop0_regs.EPC = EPC; m_cop0_regs.cause.Excode = excode; m_cop0_regs.cause.BD = BD; m_cop0_regs.cause.BT = BT; m_cop0_regs.cause.CE = CE; if (BD) { // TAR is set to the address which was being fetched in this instruction, or the next instruction to execute if the // exception hadn't occurred in the delay slot. m_cop0_regs.EPC -= UINT32_C(4); m_cop0_regs.TAR = m_regs.pc; } // current -> previous, switch to kernel mode and disable interrupts m_cop0_regs.sr.mode_bits <<= 2; // flush the pipeline - we don't want to execute the previously fetched instruction m_regs.npc = GetExceptionVector(excode); m_exception_raised = true; FlushPipeline(); } void Core::SetExternalInterrupt(u8 bit) { m_cop0_regs.cause.Ip |= static_cast(1u << bit); } void Core::ClearExternalInterrupt(u8 bit) { m_cop0_regs.cause.Ip &= static_cast(~(1u << bit)); } bool Core::HasPendingInterrupt() { // const bool do_interrupt = m_cop0_regs.sr.IEc && ((m_cop0_regs.cause.Ip & m_cop0_regs.sr.Im) != 0); const bool do_interrupt = m_cop0_regs.sr.IEc && (((m_cop0_regs.cause.bits & m_cop0_regs.sr.bits) & (UINT32_C(0xFF) << 8)) != 0); return do_interrupt; } void Core::DispatchInterrupt() { // If the instruction we're about to execute is a GTE instruction, delay dispatching the interrupt until the next // instruction. For some reason, if we don't do this, we end up with incorrectly sorted polygons and flickering.. if (m_next_instruction.IsCop2Instruction()) return; // Interrupt raising occurs before the start of the instruction. RaiseException(Exception::INT, m_regs.pc, m_next_instruction_is_branch_delay_slot, m_branch_was_taken, m_next_instruction.cop.cop_n); } void Core::FlushLoadDelay() { m_load_delay_reg = Reg::count; m_load_delay_old_value = 0; m_next_load_delay_reg = Reg::count; m_next_load_delay_old_value = 0; } void Core::FlushPipeline() { // loads are flushed FlushLoadDelay(); // not in a branch delay slot m_branch_was_taken = false; m_next_instruction_is_branch_delay_slot = false; m_current_instruction_pc = m_regs.pc; // prefetch the next instruction FetchInstruction(); // and set it as the next one to execute m_current_instruction.bits = m_next_instruction.bits; m_current_instruction_in_branch_delay_slot = false; m_current_instruction_was_branch_taken = false; } u32 Core::ReadReg(Reg rs) { return rs == m_load_delay_reg ? m_load_delay_old_value : m_regs.r[static_cast(rs)]; } void Core::WriteReg(Reg rd, u32 value) { if (rd != Reg::zero) m_regs.r[static_cast(rd)] = value; } void Core::WriteRegDelayed(Reg rd, u32 value) { Assert(m_next_load_delay_reg == Reg::count); if (rd == Reg::zero) return; // save the old value, this will be returned if the register is read in the next instruction m_next_load_delay_reg = rd; m_next_load_delay_old_value = ReadReg(rd); m_regs.r[static_cast(rd)] = value; } std::optional Core::ReadCop0Reg(Cop0Reg reg) { switch (reg) { case Cop0Reg::BPC: return m_cop0_regs.BPC; case Cop0Reg::BPCM: return m_cop0_regs.BPCM; case Cop0Reg::BDA: return m_cop0_regs.BDA; case Cop0Reg::BDAM: return m_cop0_regs.BDAM; case Cop0Reg::DCIC: return m_cop0_regs.dcic.bits; case Cop0Reg::JUMPDEST: return m_cop0_regs.TAR; case Cop0Reg::BadVaddr: return m_cop0_regs.BadVaddr; case Cop0Reg::SR: return m_cop0_regs.sr.bits; case Cop0Reg::CAUSE: return m_cop0_regs.cause.bits; case Cop0Reg::EPC: return m_cop0_regs.EPC; case Cop0Reg::PRID: return m_cop0_regs.PRID; default: Log_DevPrintf("Unknown COP0 reg %u", ZeroExtend32(static_cast(reg))); return std::nullopt; } } void Core::WriteCop0Reg(Cop0Reg reg, u32 value) { switch (reg) { case Cop0Reg::BPC: { m_cop0_regs.BPC = value; Log_WarningPrintf("COP0 BPC <- %08X", value); } break; case Cop0Reg::BPCM: { m_cop0_regs.BPCM = value; Log_WarningPrintf("COP0 BPCM <- %08X", value); } break; case Cop0Reg::BDA: { m_cop0_regs.BDA = value; Log_WarningPrintf("COP0 BDA <- %08X", value); } break; case Cop0Reg::BDAM: { m_cop0_regs.BDAM = value; Log_WarningPrintf("COP0 BDAM <- %08X", value); } break; case Cop0Reg::JUMPDEST: { Log_WarningPrintf("Ignoring write to Cop0 JUMPDEST"); } break; case Cop0Reg::DCIC: { m_cop0_regs.dcic.bits = (m_cop0_regs.dcic.bits & ~Cop0Registers::DCIC::WRITE_MASK) | (value & Cop0Registers::DCIC::WRITE_MASK); Log_WarningPrintf("COP0 DCIC <- %08X (now %08X)", value, m_cop0_regs.dcic.bits); } break; case Cop0Reg::SR: { m_cop0_regs.sr.bits = (m_cop0_regs.sr.bits & ~Cop0Registers::SR::WRITE_MASK) | (value & Cop0Registers::SR::WRITE_MASK); Log_DebugPrintf("COP0 SR <- %08X (now %08X)", value, m_cop0_regs.sr.bits); } break; case Cop0Reg::CAUSE: { m_cop0_regs.cause.bits = (m_cop0_regs.cause.bits & ~Cop0Registers::CAUSE::WRITE_MASK) | (value & Cop0Registers::CAUSE::WRITE_MASK); Log_DebugPrintf("COP0 CAUSE <- %08X (now %08X)", value, m_cop0_regs.cause.bits); } break; default: Log_DevPrintf("Unknown COP0 reg %u", ZeroExtend32(static_cast(reg))); break; } } void Core::WriteCacheControl(u32 value) { Log_WarningPrintf("Cache control <- 0x%08X", value); m_cache_control = value; } static void PrintInstruction(u32 bits, u32 pc, Core* state) { TinyString instr; DisassembleInstruction(&instr, pc, bits, state); std::printf("%08x: %08x %s\n", pc, bits, instr.GetCharArray()); } static void LogInstruction(u32 bits, u32 pc, Core* state) { TinyString instr; DisassembleInstruction(&instr, pc, bits, state); WriteToExecutionLog("%08x: %08x %s\n", pc, bits, instr.GetCharArray()); } static constexpr bool AddOverflow(u32 old_value, u32 add_value, u32 new_value) { return (((new_value ^ old_value) & (new_value ^ add_value)) & UINT32_C(0x80000000)) != 0; } static constexpr bool SubOverflow(u32 old_value, u32 sub_value, u32 new_value) { return (((new_value ^ old_value) & (old_value ^ sub_value)) & UINT32_C(0x80000000)) != 0; } void Core::DisassembleAndPrint(u32 addr) { u32 bits = 0; DoMemoryAccess(addr, bits); PrintInstruction(bits, addr, this); } void Core::DisassembleAndPrint(u32 addr, u32 instructions_before /* = 0 */, u32 instructions_after /* = 0 */) { u32 disasm_addr = addr - (instructions_before * sizeof(u32)); for (u32 i = 0; i < instructions_before; i++) { DisassembleAndPrint(disasm_addr); disasm_addr += sizeof(u32); } std::printf("----> "); // <= to include the instruction itself for (u32 i = 0; i <= instructions_after; i++) { DisassembleAndPrint(disasm_addr); disasm_addr += sizeof(u32); } } void Core::Execute() { while (m_downcount >= 0) { if (HasPendingInterrupt()) DispatchInterrupt(); m_pending_ticks += 1; m_downcount -= 1; // now executing the instruction we previously fetched m_current_instruction.bits = m_next_instruction.bits; m_current_instruction_pc = m_regs.pc; m_current_instruction_in_branch_delay_slot = m_next_instruction_is_branch_delay_slot; m_current_instruction_was_branch_taken = m_branch_was_taken; m_next_instruction_is_branch_delay_slot = false; m_branch_was_taken = false; m_exception_raised = false; // fetch the next instruction if (!FetchInstruction()) continue; #if 0 // GTE flag test debugging if (m_current_instruction_pc == 0x8002cdf4) { if (m_regs.v1 != m_regs.v0) printf("Got %08X Expected? %08X\n", m_regs.v1, m_regs.v0); } #endif // execute the instruction we previously fetched ExecuteInstruction(); // next load delay m_load_delay_reg = m_next_load_delay_reg; m_next_load_delay_reg = Reg::count; m_load_delay_old_value = m_next_load_delay_old_value; m_next_load_delay_old_value = 0; } } bool Core::FetchInstruction() { DebugAssert(Common::IsAlignedPow2(m_regs.npc, 4)); if (DoMemoryAccess(m_regs.npc, m_next_instruction.bits) < 0) { // Bus errors don't set BadVaddr. RaiseException(Exception::IBE, m_regs.npc, false, false, 0); return false; } m_regs.pc = m_regs.npc; m_regs.npc += sizeof(m_next_instruction.bits); return true; } void Core::ExecuteInstruction() { const Instruction inst = m_current_instruction; #if 0 if (m_current_instruction_pc == 0xBFC06FF0) { //TRACE_EXECUTION = true; LOG_EXECUTION = true; __debugbreak(); } #endif //#ifdef _DEBUG if (TRACE_EXECUTION) PrintInstruction(inst.bits, m_current_instruction_pc, this); if (LOG_EXECUTION) LogInstruction(inst.bits, m_current_instruction_pc, this); //#endif switch (inst.op) { case InstructionOp::funct: { switch (inst.r.funct) { case InstructionFunct::sll: { const u32 new_value = ReadReg(inst.r.rt) << inst.r.shamt; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::srl: { const u32 new_value = ReadReg(inst.r.rt) >> inst.r.shamt; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::sra: { const u32 new_value = static_cast(static_cast(ReadReg(inst.r.rt)) >> inst.r.shamt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::sllv: { const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F); const u32 new_value = ReadReg(inst.r.rt) << shift_amount; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::srlv: { const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F); const u32 new_value = ReadReg(inst.r.rt) >> shift_amount; WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::srav: { const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F); const u32 new_value = static_cast(static_cast(ReadReg(inst.r.rt)) >> shift_amount); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::and_: { const u32 new_value = ReadReg(inst.r.rs) & ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::or_: { const u32 new_value = ReadReg(inst.r.rs) | ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::xor_: { const u32 new_value = ReadReg(inst.r.rs) ^ ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::nor: { const u32 new_value = ~(ReadReg(inst.r.rs) | ReadReg(inst.r.rt)); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::add: { const u32 old_value = ReadReg(inst.r.rs); const u32 add_value = ReadReg(inst.r.rt); const u32 new_value = old_value + add_value; if (AddOverflow(old_value, add_value, new_value)) { RaiseException(Exception::Ov); return; } WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::addu: { const u32 new_value = ReadReg(inst.r.rs) + ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::sub: { const u32 old_value = ReadReg(inst.r.rs); const u32 sub_value = ReadReg(inst.r.rt); const u32 new_value = old_value - sub_value; if (SubOverflow(old_value, sub_value, new_value)) { RaiseException(Exception::Ov); return; } WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::subu: { const u32 new_value = ReadReg(inst.r.rs) - ReadReg(inst.r.rt); WriteReg(inst.r.rd, new_value); } break; case InstructionFunct::slt: { const u32 result = BoolToUInt32(static_cast(ReadReg(inst.r.rs)) < static_cast(ReadReg(inst.r.rt))); WriteReg(inst.r.rd, result); } break; case InstructionFunct::sltu: { const u32 result = BoolToUInt32(ReadReg(inst.r.rs) < ReadReg(inst.r.rt)); WriteReg(inst.r.rd, result); } break; case InstructionFunct::mfhi: { WriteReg(inst.r.rd, m_regs.hi); } break; case InstructionFunct::mthi: { const u32 value = ReadReg(inst.r.rs); m_regs.hi = value; } break; case InstructionFunct::mflo: { WriteReg(inst.r.rd, m_regs.lo); } break; case InstructionFunct::mtlo: { const u32 value = ReadReg(inst.r.rs); m_regs.lo = value; } break; case InstructionFunct::mult: { const u32 lhs = ReadReg(inst.r.rs); const u32 rhs = ReadReg(inst.r.rt); const u64 result = static_cast(static_cast(SignExtend64(lhs)) * static_cast(SignExtend64(rhs))); m_regs.hi = Truncate32(result >> 32); m_regs.lo = Truncate32(result); } break; case InstructionFunct::multu: { const u32 lhs = ReadReg(inst.r.rs); const u32 rhs = ReadReg(inst.r.rt); const u64 result = ZeroExtend64(lhs) * ZeroExtend64(rhs); m_regs.hi = Truncate32(result >> 32); m_regs.lo = Truncate32(result); } break; case InstructionFunct::div: { const s32 num = static_cast(ReadReg(inst.r.rs)); const s32 denom = static_cast(ReadReg(inst.r.rt)); if (denom == 0) { // divide by zero m_regs.lo = (num >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1); m_regs.hi = static_cast(num); } else if (static_cast(num) == UINT32_C(0x80000000) && denom == -1) { // unrepresentable m_regs.lo = UINT32_C(0x80000000); m_regs.hi = 0; } else { m_regs.lo = static_cast(num / denom); m_regs.hi = static_cast(num % denom); } } break; case InstructionFunct::divu: { const u32 num = ReadReg(inst.r.rs); const u32 denom = ReadReg(inst.r.rt); if (denom == 0) { // divide by zero m_regs.lo = (num >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1); m_regs.hi = static_cast(num); } else { m_regs.lo = num / denom; m_regs.hi = num % denom; } } break; case InstructionFunct::jr: { m_next_instruction_is_branch_delay_slot = true; const u32 target = ReadReg(inst.r.rs); Branch(target); } break; case InstructionFunct::jalr: { m_next_instruction_is_branch_delay_slot = true; const u32 target = ReadReg(inst.r.rs); WriteReg(inst.r.rd, m_regs.npc); Branch(target); } break; case InstructionFunct::syscall: { RaiseException(Exception::Syscall); } break; case InstructionFunct::break_: { RaiseException(Exception::BP); } break; default: { RaiseException(Exception::RI); break; } } } break; case InstructionOp::lui: { WriteReg(inst.i.rt, inst.i.imm_zext32() << 16); } break; case InstructionOp::andi: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) & inst.i.imm_zext32()); } break; case InstructionOp::ori: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) | inst.i.imm_zext32()); } break; case InstructionOp::xori: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) ^ inst.i.imm_zext32()); } break; case InstructionOp::addi: { const u32 old_value = ReadReg(inst.i.rs); const u32 add_value = inst.i.imm_sext32(); const u32 new_value = old_value + add_value; if (AddOverflow(old_value, add_value, new_value)) { RaiseException(Exception::Ov); return; } WriteReg(inst.i.rt, new_value); } break; case InstructionOp::addiu: { WriteReg(inst.i.rt, ReadReg(inst.i.rs) + inst.i.imm_sext32()); } break; case InstructionOp::slti: { const u32 result = BoolToUInt32(static_cast(ReadReg(inst.i.rs)) < static_cast(inst.i.imm_sext32())); WriteReg(inst.i.rt, result); } break; case InstructionOp::sltiu: { const u32 result = BoolToUInt32(ReadReg(inst.i.rs) < inst.i.imm_sext32()); WriteReg(inst.i.rt, result); } break; case InstructionOp::lb: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); u8 value; if (!ReadMemoryByte(addr, &value)) return; WriteRegDelayed(inst.i.rt, SignExtend32(value)); } break; case InstructionOp::lh: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); u16 value; if (!ReadMemoryHalfWord(addr, &value)) return; WriteRegDelayed(inst.i.rt, SignExtend32(value)); } break; case InstructionOp::lw: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); u32 value; if (!ReadMemoryWord(addr, &value)) return; WriteRegDelayed(inst.i.rt, value); } break; case InstructionOp::lbu: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); u8 value; if (!ReadMemoryByte(addr, &value)) return; WriteRegDelayed(inst.i.rt, ZeroExtend32(value)); } break; case InstructionOp::lhu: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); u16 value; if (!ReadMemoryHalfWord(addr, &value)) return; WriteRegDelayed(inst.i.rt, ZeroExtend32(value)); } break; case InstructionOp::lwl: case InstructionOp::lwr: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const VirtualMemoryAddress aligned_addr = addr & ~UINT32_C(3); u32 aligned_value; if (!ReadMemoryWord(aligned_addr, &aligned_value)) return; // note: bypasses load delay on the read const u32 existing_value = m_regs.r[static_cast(inst.i.rt.GetValue())]; const u8 shift = (Truncate8(addr) & u8(3)) * u8(8); u32 new_value; if (inst.op == InstructionOp::lwl) { const u32 mask = UINT32_C(0x00FFFFFF) >> shift; new_value = (existing_value & mask) | (aligned_value << (24 - shift)); } else { const u32 mask = UINT32_C(0xFFFFFF00) << (24 - shift); new_value = (existing_value & mask) | (aligned_value >> shift); } WriteRegDelayed(inst.i.rt, new_value); } break; case InstructionOp::sb: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u8 value = Truncate8(ReadReg(inst.i.rt)); WriteMemoryByte(addr, value); } break; case InstructionOp::sh: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u16 value = Truncate16(ReadReg(inst.i.rt)); WriteMemoryHalfWord(addr, value); } break; case InstructionOp::sw: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u32 value = ReadReg(inst.i.rt); WriteMemoryWord(addr, value); } break; case InstructionOp::swl: case InstructionOp::swr: { const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const VirtualMemoryAddress aligned_addr = addr & ~UINT32_C(3); const u32 reg_value = ReadReg(inst.i.rt); const u8 shift = (Truncate8(addr) & u8(3)) * u8(8); u32 mem_value; if (!ReadMemoryWord(aligned_addr, &mem_value)) return; u32 new_value; if (inst.op == InstructionOp::swl) { const u32 mem_mask = UINT32_C(0xFFFFFF00) << shift; new_value = (mem_value & mem_mask) | (reg_value >> (24 - shift)); } else { const u32 mem_mask = UINT32_C(0x00FFFFFF) >> (24 - shift); new_value = (mem_value & mem_mask) | (reg_value << shift); } WriteMemoryWord(aligned_addr, new_value); } break; case InstructionOp::j: { m_next_instruction_is_branch_delay_slot = true; Branch((m_regs.pc & UINT32_C(0xF0000000)) | (inst.j.target << 2)); } break; case InstructionOp::jal: { m_regs.ra = m_regs.npc; m_next_instruction_is_branch_delay_slot = true; Branch((m_regs.pc & UINT32_C(0xF0000000)) | (inst.j.target << 2)); } break; case InstructionOp::beq: { // We're still flagged as a branch delay slot even if the branch isn't taken. m_next_instruction_is_branch_delay_slot = true; const bool branch = (ReadReg(inst.i.rs) == ReadReg(inst.i.rt)); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::bne: { m_next_instruction_is_branch_delay_slot = true; const bool branch = (ReadReg(inst.i.rs) != ReadReg(inst.i.rt)); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::bgtz: { m_next_instruction_is_branch_delay_slot = true; const bool branch = (static_cast(ReadReg(inst.i.rs)) > 0); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::blez: { m_next_instruction_is_branch_delay_slot = true; const bool branch = (static_cast(ReadReg(inst.i.rs)) <= 0); if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::b: { m_next_instruction_is_branch_delay_slot = true; const u8 rt = static_cast(inst.i.rt.GetValue()); // bgez is the inverse of bltz, so simply do ltz and xor the result const bool bgez = ConvertToBoolUnchecked(rt & u8(1)); const bool branch = (static_cast(ReadReg(inst.i.rs)) < 0) ^ bgez; // register is still linked even if the branch isn't taken const bool link = (rt & u8(0x1E)) == u8(0x10); if (link) m_regs.ra = m_regs.npc; if (branch) Branch(m_regs.pc + (inst.i.imm_sext32() << 2)); } break; case InstructionOp::cop0: { if (InUserMode() && !m_cop0_regs.sr.CU0) { Log_WarningPrintf("Coprocessor 0 not present in user mode"); RaiseException(Exception::CpU); return; } ExecuteCop0Instruction(); } break; case InstructionOp::cop2: { if (InUserMode() && !m_cop0_regs.sr.CU2) { Log_WarningPrintf("Coprocessor 2 not present in user mode"); RaiseException(Exception::CpU); return; } ExecuteCop2Instruction(); } break; case InstructionOp::lwc2: { if (InUserMode() && !m_cop0_regs.sr.CU2) { Log_WarningPrintf("Coprocessor 2 not present in user mode"); RaiseException(Exception::CpU); return; } const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); u32 value; if (!ReadMemoryWord(addr, &value)) return; m_cop2.WriteDataRegister(ZeroExtend32(static_cast(inst.i.rt.GetValue())), value); } break; case InstructionOp::swc2: { if (InUserMode() && !m_cop0_regs.sr.CU2) { Log_WarningPrintf("Coprocessor 2 not present in user mode"); RaiseException(Exception::CpU); return; } const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32(); const u32 value = m_cop2.ReadDataRegister(ZeroExtend32(static_cast(inst.i.rt.GetValue()))); WriteMemoryWord(addr, value); } break; // swc0/lwc0/cop1/cop3 are essentially no-ops case InstructionOp::cop1: case InstructionOp::cop3: case InstructionOp::lwc0: case InstructionOp::lwc1: case InstructionOp::lwc3: case InstructionOp::swc0: case InstructionOp::swc1: case InstructionOp::swc3: { } break; // everything else is reserved/invalid default: { RaiseException(Exception::RI); } break; } } void Core::ExecuteCop0Instruction() { const Instruction inst = m_current_instruction; if (inst.cop.IsCommonInstruction()) { switch (inst.cop.CommonOp()) { case CopCommonInstruction::mfcn: { const std::optional value = ReadCop0Reg(static_cast(inst.r.rd.GetValue())); if (value) WriteRegDelayed(inst.r.rt, value.value()); else RaiseException(Exception::RI); } break; case CopCommonInstruction::mtcn: { WriteCop0Reg(static_cast(inst.r.rd.GetValue()), ReadReg(inst.r.rt)); } break; default: Panic("Missing implementation"); break; } } else { switch (inst.cop.Cop0Op()) { case Cop0Instruction::rfe: { // restore mode m_cop0_regs.sr.mode_bits = (m_cop0_regs.sr.mode_bits & UINT32_C(0b110000)) | (m_cop0_regs.sr.mode_bits >> 2); } break; default: Panic("Missing implementation"); break; } } } void Core::ExecuteCop2Instruction() { const Instruction inst = m_current_instruction; if (inst.cop.IsCommonInstruction()) { // TODO: Combine with cop0. switch (inst.cop.CommonOp()) { case CopCommonInstruction::cfcn: WriteRegDelayed(inst.r.rt, m_cop2.ReadControlRegister(static_cast(inst.r.rd.GetValue()))); break; case CopCommonInstruction::ctcn: m_cop2.WriteControlRegister(static_cast(inst.r.rd.GetValue()), ReadReg(inst.r.rt)); break; case CopCommonInstruction::mfcn: WriteRegDelayed(inst.r.rt, m_cop2.ReadDataRegister(static_cast(inst.r.rd.GetValue()))); break; case CopCommonInstruction::mtcn: m_cop2.WriteDataRegister(static_cast(inst.r.rd.GetValue()), ReadReg(inst.r.rt)); break; case CopCommonInstruction::bcnc: default: Panic("Missing implementation"); break; } } else { m_cop2.ExecuteInstruction(GTE::Instruction{inst.bits}); } } } // namespace CPU