// SPDX-FileCopyrightText: 2019-2022 Connor McLaughlin // SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0) #include "mdec.h" #include "cpu_core.h" #include "dma.h" #include "host.h" #include "interrupt_controller.h" #include "system.h" #include "util/imgui_manager.h" #include "util/state_wrapper.h" #include "common/bitfield.h" #include "common/fifo_queue.h" #include "common/log.h" #include "imgui.h" #include #include Log_SetChannel(MDEC); namespace MDEC { namespace { static constexpr u32 DATA_IN_FIFO_SIZE = 1024; static constexpr u32 DATA_OUT_FIFO_SIZE = 768; static constexpr u32 NUM_BLOCKS = 6; static constexpr TickCount TICKS_PER_BLOCK = 448; enum DataOutputDepth : u8 { DataOutputDepth_4Bit = 0, DataOutputDepth_8Bit = 1, DataOutputDepth_24Bit = 2, DataOutputDepth_15Bit = 3 }; enum class Command : u8 { None = 0, DecodeMacroblock = 1, SetIqTab = 2, SetScale = 3 }; enum class State : u8 { Idle, DecodingMacroblock, WritingMacroblock, SetIqTable, SetScaleTable, NoCommand }; union StatusRegister { u32 bits; BitField data_out_fifo_empty; BitField data_in_fifo_full; BitField command_busy; BitField data_in_request; BitField data_out_request; BitField data_output_depth; BitField data_output_signed; BitField data_output_bit15; BitField current_block; BitField parameter_words_remaining; }; union ControlRegister { u32 bits; BitField reset; BitField enable_dma_in; BitField enable_dma_out; }; union CommandWord { u32 bits; BitField command; BitField data_output_depth; BitField data_output_signed; BitField data_output_bit15; BitField parameter_word_count; }; } // namespace static bool HasPendingBlockCopyOut(); static void SoftReset(); static void ResetDecoder(); static void UpdateStatus(); static u32 ReadDataRegister(); static void WriteCommandRegister(u32 value); static void Execute(); static bool HandleDecodeMacroblockCommand(); static void HandleSetQuantTableCommand(); static void HandleSetScaleCommand(); static bool DecodeMonoMacroblock(); static bool DecodeColoredMacroblock(); static void ScheduleBlockCopyOut(TickCount ticks); static void CopyOutBlock(void* param, TickCount ticks, TickCount ticks_late); // from nocash spec static bool rl_decode_block(s16* blk, const u8* qt); static void IDCT(s16* blk); static void IDCT_New(s16* blk); static void IDCT_Old(s16* blk); static void yuv_to_rgb(u32 xx, u32 yy, const std::array& Crblk, const std::array& Cbblk, const std::array& Yblk); static void y_to_mono(const std::array& Yblk); static StatusRegister s_status = {}; static bool s_enable_dma_in = false; static bool s_enable_dma_out = false; // Even though the DMA is in words, we access the FIFO as halfwords. static InlineFIFOQueue s_data_in_fifo; static InlineFIFOQueue s_data_out_fifo; static State s_state = State::Idle; static u32 s_remaining_halfwords = 0; static std::array s_iq_uv{}; static std::array s_iq_y{}; static std::array s_scale_table{}; // blocks, for colour: 0 - Crblk, 1 - Cbblk, 2-5 - Y 1-4 static std::array, NUM_BLOCKS> s_blocks; static u32 s_current_block = 0; // block (0-5) static u32 s_current_coefficient = 64; // k (in block) static u16 s_current_q_scale = 0; alignas(16) static std::array s_block_rgb{}; static std::unique_ptr s_block_copy_out_event; static u32 s_total_blocks_decoded = 0; } // namespace MDEC void MDEC::Initialize() { s_block_copy_out_event = TimingEvents::CreateTimingEvent("MDEC Block Copy Out", 1, 1, &MDEC::CopyOutBlock, nullptr, false); s_total_blocks_decoded = 0; Reset(); } void MDEC::Shutdown() { s_block_copy_out_event.reset(); } void MDEC::Reset() { s_block_copy_out_event->Deactivate(); SoftReset(); } bool MDEC::DoState(StateWrapper& sw) { sw.Do(&s_status.bits); sw.Do(&s_enable_dma_in); sw.Do(&s_enable_dma_out); sw.Do(&s_data_in_fifo); sw.Do(&s_data_out_fifo); sw.Do(&s_state); sw.Do(&s_remaining_halfwords); sw.Do(&s_iq_uv); sw.Do(&s_iq_y); sw.Do(&s_scale_table); sw.Do(&s_blocks); sw.Do(&s_current_block); sw.Do(&s_current_coefficient); sw.Do(&s_current_q_scale); sw.Do(&s_block_rgb); bool block_copy_out_pending = HasPendingBlockCopyOut(); sw.Do(&block_copy_out_pending); if (sw.IsReading()) s_block_copy_out_event->SetState(block_copy_out_pending); return !sw.HasError(); } u32 MDEC::ReadRegister(u32 offset) { switch (offset) { case 0: return ReadDataRegister(); case 4: { Log_TracePrintf("MDEC status register -> 0x%08X", s_status.bits); return s_status.bits; } default: { Log_ErrorPrintf("Unknown MDEC register read: 0x%08X", offset); return UINT32_C(0xFFFFFFFF); } } } void MDEC::WriteRegister(u32 offset, u32 value) { switch (offset) { case 0: { WriteCommandRegister(value); return; } case 4: { Log_DebugPrintf("MDEC control register <- 0x%08X", value); const ControlRegister cr{value}; if (cr.reset) SoftReset(); s_enable_dma_in = cr.enable_dma_in; s_enable_dma_out = cr.enable_dma_out; Execute(); return; } default: { Log_ErrorPrintf("Unknown MDEC register write: 0x%08X <- 0x%08X", offset, value); return; } } } void MDEC::DMARead(u32* words, u32 word_count) { if (s_data_out_fifo.GetSize() < word_count) [[unlikely]] { Log_WarningPrintf("Insufficient data in output FIFO (requested %u, have %u)", word_count, s_data_out_fifo.GetSize()); } const u32 words_to_read = std::min(word_count, s_data_out_fifo.GetSize()); if (words_to_read > 0) { s_data_out_fifo.PopRange(words, words_to_read); words += words_to_read; word_count -= words_to_read; } Log_DebugPrintf("DMA read complete, %u bytes left", static_cast(s_data_out_fifo.GetSize() * sizeof(u32))); if (s_data_out_fifo.IsEmpty()) Execute(); } void MDEC::DMAWrite(const u32* words, u32 word_count) { if (s_data_in_fifo.GetSpace() < (word_count * 2)) [[unlikely]] { Log_WarningPrintf("Input FIFO overflow (writing %u, space %u)", word_count * 2, s_data_in_fifo.GetSpace()); } const u32 halfwords_to_write = std::min(word_count * 2, s_data_in_fifo.GetSpace() & ~u32(2)); s_data_in_fifo.PushRange(reinterpret_cast(words), halfwords_to_write); Execute(); } bool MDEC::HasPendingBlockCopyOut() { return s_block_copy_out_event->IsActive(); } void MDEC::SoftReset() { s_status.bits = 0; s_enable_dma_in = false; s_enable_dma_out = false; s_data_in_fifo.Clear(); s_data_out_fifo.Clear(); s_state = State::Idle; s_remaining_halfwords = 0; s_current_block = 0; s_current_coefficient = 64; s_current_q_scale = 0; s_block_copy_out_event->Deactivate(); UpdateStatus(); } void MDEC::ResetDecoder() { s_current_block = 0; s_current_coefficient = 64; s_current_q_scale = 0; } void MDEC::UpdateStatus() { s_status.data_out_fifo_empty = s_data_out_fifo.IsEmpty(); s_status.data_in_fifo_full = s_data_in_fifo.IsFull(); s_status.command_busy = (s_state != State::Idle); s_status.parameter_words_remaining = Truncate16((s_remaining_halfwords / 2) - 1); s_status.current_block = (s_current_block + 4) % NUM_BLOCKS; // we always want data in if it's enabled const bool data_in_request = s_enable_dma_in && s_data_in_fifo.GetSpace() >= (32 * 2); s_status.data_in_request = data_in_request; DMA::SetRequest(DMA::Channel::MDECin, data_in_request); // we only want to send data out if we have some in the fifo const bool data_out_request = s_enable_dma_out && !s_data_out_fifo.IsEmpty(); s_status.data_out_request = data_out_request; DMA::SetRequest(DMA::Channel::MDECout, data_out_request); } u32 MDEC::ReadDataRegister() { if (s_data_out_fifo.IsEmpty()) { // Stall the CPU until we're done processing. if (HasPendingBlockCopyOut()) { Log_DevPrint("MDEC data out FIFO empty on read - stalling CPU"); CPU::AddPendingTicks(s_block_copy_out_event->GetTicksUntilNextExecution()); } else { Log_WarningPrintf("MDEC data out FIFO empty on read and no data processing"); return UINT32_C(0xFFFFFFFF); } } const u32 value = s_data_out_fifo.Pop(); if (s_data_out_fifo.IsEmpty()) Execute(); else UpdateStatus(); return value; } void MDEC::WriteCommandRegister(u32 value) { Log_TracePrintf("MDEC command/data register <- 0x%08X", value); s_data_in_fifo.Push(Truncate16(value)); s_data_in_fifo.Push(Truncate16(value >> 16)); Execute(); } void MDEC::Execute() { for (;;) { switch (s_state) { case State::Idle: { if (s_data_in_fifo.GetSize() < 2) goto finished; // first word const CommandWord cw{ZeroExtend32(s_data_in_fifo.Peek(0)) | (ZeroExtend32(s_data_in_fifo.Peek(1)) << 16)}; s_status.data_output_depth = cw.data_output_depth; s_status.data_output_signed = cw.data_output_signed; s_status.data_output_bit15 = cw.data_output_bit15; s_data_in_fifo.Remove(2); s_data_out_fifo.Clear(); u32 num_words; State new_state; switch (cw.command) { case Command::DecodeMacroblock: num_words = ZeroExtend32(cw.parameter_word_count.GetValue()); new_state = State::DecodingMacroblock; break; case Command::SetIqTab: num_words = 16 + (((cw.bits & 1) != 0) ? 16 : 0); new_state = State::SetIqTable; break; case Command::SetScale: num_words = 32; new_state = State::SetScaleTable; break; default: Log_DevPrintf("Invalid MDEC command 0x%08X", cw.bits); num_words = cw.parameter_word_count.GetValue(); new_state = State::NoCommand; break; } Log_DebugPrintf("MDEC command: 0x%08X (%u, %u words in parameter, %u expected)", cw.bits, ZeroExtend32(static_cast(cw.command.GetValue())), ZeroExtend32(cw.parameter_word_count.GetValue()), num_words); s_remaining_halfwords = num_words * 2; s_state = new_state; UpdateStatus(); continue; } case State::DecodingMacroblock: { if (HandleDecodeMacroblockCommand()) { // we should be writing out now DebugAssert(s_state == State::WritingMacroblock); goto finished; } if (s_remaining_halfwords == 0 && s_current_block != NUM_BLOCKS) { // expecting data, but nothing more will be coming. bail out ResetDecoder(); s_state = State::Idle; continue; } goto finished; } case State::WritingMacroblock: { // this gets executed via the event, so if we get here, wait. goto finished; } case State::SetIqTable: { if (s_data_in_fifo.GetSize() < s_remaining_halfwords) goto finished; HandleSetQuantTableCommand(); s_state = State::Idle; UpdateStatus(); continue; } case State::SetScaleTable: { if (s_data_in_fifo.GetSize() < s_remaining_halfwords) goto finished; HandleSetScaleCommand(); s_state = State::Idle; UpdateStatus(); continue; } case State::NoCommand: { // can potentially have a large amount of halfwords, so eat them as we go const u32 words_to_consume = std::min(s_remaining_halfwords, s_data_in_fifo.GetSize()); s_data_in_fifo.Remove(words_to_consume); s_remaining_halfwords -= words_to_consume; if (s_remaining_halfwords == 0) goto finished; s_state = State::Idle; UpdateStatus(); continue; } default: UnreachableCode(); return; } } finished: // if we get here, it's because the FIFO is now empty UpdateStatus(); } bool MDEC::HandleDecodeMacroblockCommand() { if (s_status.data_output_depth <= DataOutputDepth_8Bit) return DecodeMonoMacroblock(); else return DecodeColoredMacroblock(); } bool MDEC::DecodeMonoMacroblock() { // TODO: This should guard the output not the input if (!s_data_out_fifo.IsEmpty()) return false; if (!rl_decode_block(s_blocks[0].data(), s_iq_y.data())) return false; IDCT(s_blocks[0].data()); Log_DebugPrintf("Decoded mono macroblock, %u words remaining", s_remaining_halfwords / 2); ResetDecoder(); s_state = State::WritingMacroblock; y_to_mono(s_blocks[0]); ScheduleBlockCopyOut(TICKS_PER_BLOCK * 6); s_total_blocks_decoded++; return true; } bool MDEC::DecodeColoredMacroblock() { for (; s_current_block < NUM_BLOCKS; s_current_block++) { if (!rl_decode_block(s_blocks[s_current_block].data(), (s_current_block >= 2) ? s_iq_y.data() : s_iq_uv.data())) return false; IDCT(s_blocks[s_current_block].data()); } if (!s_data_out_fifo.IsEmpty()) return false; // done decoding Log_DebugPrintf("Decoded colored macroblock, %u words remaining", s_remaining_halfwords / 2); ResetDecoder(); s_state = State::WritingMacroblock; yuv_to_rgb(0, 0, s_blocks[0], s_blocks[1], s_blocks[2]); yuv_to_rgb(8, 0, s_blocks[0], s_blocks[1], s_blocks[3]); yuv_to_rgb(0, 8, s_blocks[0], s_blocks[1], s_blocks[4]); yuv_to_rgb(8, 8, s_blocks[0], s_blocks[1], s_blocks[5]); s_total_blocks_decoded += 4; ScheduleBlockCopyOut(TICKS_PER_BLOCK * 6); return true; } void MDEC::ScheduleBlockCopyOut(TickCount ticks) { DebugAssert(!HasPendingBlockCopyOut()); Log_DebugPrintf("Scheduling block copy out in %d ticks", ticks); s_block_copy_out_event->SetIntervalAndSchedule(ticks); } void MDEC::CopyOutBlock(void* param, TickCount ticks, TickCount ticks_late) { Assert(s_state == State::WritingMacroblock); s_block_copy_out_event->Deactivate(); switch (s_status.data_output_depth) { case DataOutputDepth_4Bit: { const u32* in_ptr = s_block_rgb.data(); for (u32 i = 0; i < (64 / 8); i++) { u32 value = *(in_ptr++) >> 4; value |= (*(in_ptr++) >> 4) << 4; value |= (*(in_ptr++) >> 4) << 8; value |= (*(in_ptr++) >> 4) << 12; value |= (*(in_ptr++) >> 4) << 16; value |= (*(in_ptr++) >> 4) << 20; value |= (*(in_ptr++) >> 4) << 24; value |= (*(in_ptr++) >> 4) << 28; s_data_out_fifo.Push(value); } } break; case DataOutputDepth_8Bit: { const u32* in_ptr = s_block_rgb.data(); for (u32 i = 0; i < (64 / 4); i++) { u32 value = *in_ptr++; value |= *in_ptr++ << 8; value |= *in_ptr++ << 16; value |= *in_ptr++ << 24; s_data_out_fifo.Push(value); } } break; case DataOutputDepth_24Bit: { // pack tightly u32 index = 0; u32 state = 0; u32 rgb = 0; while (index < s_block_rgb.size()) { switch (state) { case 0: rgb = s_block_rgb[index++]; // RGB- state = 1; break; case 1: rgb |= (s_block_rgb[index] & 0xFF) << 24; // RGBR s_data_out_fifo.Push(rgb); rgb = s_block_rgb[index] >> 8; // GB-- index++; state = 2; break; case 2: rgb |= s_block_rgb[index] << 16; // GBRG s_data_out_fifo.Push(rgb); rgb = s_block_rgb[index] >> 16; // B--- index++; state = 3; break; case 3: rgb |= s_block_rgb[index] << 8; // BRGB s_data_out_fifo.Push(rgb); index++; state = 0; break; } } break; } case DataOutputDepth_15Bit: { if (g_settings.use_old_mdec_routines) [[unlikely]] { const u16 a = ZeroExtend16(s_status.data_output_bit15.GetValue()) << 15; for (u32 i = 0; i < static_cast(s_block_rgb.size());) { u32 color = s_block_rgb[i++]; u16 r = Truncate16((color >> 3) & 0x1Fu); u16 g = Truncate16((color >> 11) & 0x1Fu); u16 b = Truncate16((color >> 19) & 0x1Fu); const u16 color15a = r | (g << 5) | (b << 10) | (a << 15); color = s_block_rgb[i++]; r = Truncate16((color >> 3) & 0x1Fu); g = Truncate16((color >> 11) & 0x1Fu); b = Truncate16((color >> 19) & 0x1Fu); const u16 color15b = r | (g << 5) | (b << 10) | (a << 15); s_data_out_fifo.Push(ZeroExtend32(color15a) | (ZeroExtend32(color15b) << 16)); } } else { const u32 a = ZeroExtend32(s_status.data_output_bit15.GetValue()) << 15; for (u32 i = 0; i < static_cast(s_block_rgb.size());) { #define E8TO5(color) (std::min((((color) + 4) >> 3), 0x1F)) u32 color = s_block_rgb[i++]; u32 r = E8TO5(color & 0xFFu); u32 g = E8TO5((color >> 8) & 0xFFu); u32 b = E8TO5((color >> 16) & 0xFFu); const u32 color15a = r | (g << 5) | (b << 10) | a; color = s_block_rgb[i++]; r = E8TO5(color & 0xFFu); g = E8TO5((color >> 8) & 0xFFu); b = E8TO5((color >> 16) & 0xFFu); const u32 color15b = r | (g << 5) | (b << 10) | a; #undef E8TO5 s_data_out_fifo.Push(color15a | (color15b << 16)); } } } break; default: break; } Log_DebugPrintf("Block copied out, fifo size = %u (%u bytes)", s_data_out_fifo.GetSize(), static_cast(s_data_out_fifo.GetSize() * sizeof(u32))); // if we've copied out all blocks, command is complete s_state = (s_remaining_halfwords == 0) ? State::Idle : State::DecodingMacroblock; Execute(); } static constexpr std::array zagzig = {{0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63}}; bool MDEC::rl_decode_block(s16* blk, const u8* qt) { if (s_current_coefficient == 64) { std::fill_n(blk, 64, s16(0)); // skip padding at start u16 n; for (;;) { if (s_data_in_fifo.IsEmpty() || s_remaining_halfwords == 0) return false; n = s_data_in_fifo.Pop(); s_remaining_halfwords--; if (n == 0xFE00) continue; else break; } s_current_coefficient = 0; s_current_q_scale = (n >> 10) & 0x3F; s32 val = SignExtendN<10, s32>(static_cast(n & 0x3FF)) * static_cast(ZeroExtend32(qt[s_current_coefficient])); if (s_current_q_scale == 0) val = SignExtendN<10, s32>(static_cast(n & 0x3FF)) * 2; val = std::clamp(val, -0x400, 0x3FF); if (s_current_q_scale > 0) blk[zagzig[s_current_coefficient]] = static_cast(val); else blk[s_current_coefficient] = static_cast(val); } while (!s_data_in_fifo.IsEmpty() && s_remaining_halfwords > 0) { u16 n = s_data_in_fifo.Pop(); s_remaining_halfwords--; s_current_coefficient += ((n >> 10) & 0x3F) + 1; if (s_current_coefficient < 64) { s32 val = (SignExtendN<10, s32>(static_cast(n & 0x3FF)) * static_cast(ZeroExtend32(qt[s_current_coefficient])) * static_cast(s_current_q_scale) + 4) / 8; if (s_current_q_scale == 0) val = SignExtendN<10, s32>(static_cast(n & 0x3FF)) * 2; val = std::clamp(val, -0x400, 0x3FF); if (s_current_q_scale > 0) blk[zagzig[s_current_coefficient]] = static_cast(val); else blk[s_current_coefficient] = static_cast(val); } if (s_current_coefficient >= 63) { s_current_coefficient = 64; return true; } } return false; } void MDEC::IDCT(s16* blk) { // people have made texture packs using the old conversion routines.. best to just leave them be. if (g_settings.use_old_mdec_routines) [[unlikely]] IDCT_Old(blk); else IDCT_New(blk); } void MDEC::IDCT_New(s16* blk) { std::array temp; for (u32 x = 0; x < 8; x++) { for (u32 y = 0; y < 8; y++) { // TODO: We could alter zigzag and invert scale_table to get these in row-major order, // in which case we could do optimize this to a vector multiply. s32 sum = 0; for (u32 z = 0; z < 8; z++) sum += s32(blk[y + z * 8]) * s32(s_scale_table[x + z * 8] / 8); temp[x + y * 8] = static_cast((sum + 0xfff) / 0x2000); } } for (u32 x = 0; x < 8; x++) { for (u32 y = 0; y < 8; y++) { s32 sum = 0; for (u32 z = 0; z < 8; z++) sum += temp[y + z * 8] * s32(s_scale_table[x + z * 8] / 8); blk[x + y * 8] = static_cast(std::clamp((sum + 0xfff) / 0x2000, -128, 127)); } } } void MDEC::IDCT_Old(s16* blk) { std::array temp_buffer; for (u32 x = 0; x < 8; x++) { for (u32 y = 0; y < 8; y++) { s64 sum = 0; for (u32 u = 0; u < 8; u++) sum += s32(blk[u * 8 + x]) * s32(s_scale_table[u * 8 + y]); temp_buffer[x + y * 8] = sum; } } for (u32 x = 0; x < 8; x++) { for (u32 y = 0; y < 8; y++) { s64 sum = 0; for (u32 u = 0; u < 8; u++) sum += s64(temp_buffer[u + y * 8]) * s32(s_scale_table[u * 8 + x]); blk[x + y * 8] = static_cast(std::clamp(SignExtendN<9, s32>((sum >> 32) + ((sum >> 31) & 1)), -128, 127)); } } } void MDEC::yuv_to_rgb(u32 xx, u32 yy, const std::array& Crblk, const std::array& Cbblk, const std::array& Yblk) { const s16 addval = s_status.data_output_signed ? 0 : 0x80; for (u32 y = 0; y < 8; y++) { for (u32 x = 0; x < 8; x++) { s16 R = Crblk[((x + xx) / 2) + ((y + yy) / 2) * 8]; s16 B = Cbblk[((x + xx) / 2) + ((y + yy) / 2) * 8]; s16 G = static_cast((-0.3437f * static_cast(B)) + (-0.7143f * static_cast(R))); R = static_cast(1.402f * static_cast(R)); B = static_cast(1.772f * static_cast(B)); s16 Y = Yblk[x + y * 8]; R = static_cast(std::clamp(static_cast(Y) + R, -128, 127)) + addval; G = static_cast(std::clamp(static_cast(Y) + G, -128, 127)) + addval; B = static_cast(std::clamp(static_cast(Y) + B, -128, 127)) + addval; s_block_rgb[(x + xx) + ((y + yy) * 16)] = ZeroExtend32(static_cast(R)) | (ZeroExtend32(static_cast(G)) << 8) | (ZeroExtend32(static_cast(B)) << 16); } } } void MDEC::y_to_mono(const std::array& Yblk) { for (u32 i = 0; i < 64; i++) { s16 Y = Yblk[i]; Y = SignExtendN<10, s16>(Y); Y = std::clamp(Y, -128, 127); Y += 128; s_block_rgb[i] = static_cast(Y) & 0xFF; } } void MDEC::HandleSetQuantTableCommand() { DebugAssert(s_remaining_halfwords >= 32); // TODO: Remove extra copies.. std::array packed_data; s_data_in_fifo.PopRange(packed_data.data(), static_cast(packed_data.size())); s_remaining_halfwords -= 32; std::memcpy(s_iq_y.data(), packed_data.data(), s_iq_y.size()); if (s_remaining_halfwords > 0) { DebugAssert(s_remaining_halfwords >= 32); s_data_in_fifo.PopRange(packed_data.data(), static_cast(packed_data.size())); std::memcpy(s_iq_uv.data(), packed_data.data(), s_iq_uv.size()); } } void MDEC::HandleSetScaleCommand() { DebugAssert(s_remaining_halfwords == 64); // TODO: Remove extra copies.. std::array packed_data; s_data_in_fifo.PopRange(packed_data.data(), static_cast(packed_data.size())); s_remaining_halfwords -= 32; std::memcpy(s_scale_table.data(), packed_data.data(), s_scale_table.size() * sizeof(s16)); } void MDEC::DrawDebugStateWindow() { const float framebuffer_scale = Host::GetOSDScale(); ImGui::SetNextWindowSize(ImVec2(300.0f * framebuffer_scale, 350.0f * framebuffer_scale), ImGuiCond_FirstUseEver); if (!ImGui::Begin("MDEC State", nullptr)) { ImGui::End(); return; } static constexpr std::array state_names = { {"None", "Decoding Macroblock", "Writing Macroblock", "SetIqTab", "SetScale"}}; static constexpr std::array output_depths = {{"4-bit", "8-bit", "24-bit", "15-bit"}}; static constexpr std::array block_names = {{"Crblk", "Cbblk", "Y1", "Y2", "Y3", "Y4", "Output"}}; ImGui::Text("Blocks Decoded: %u", s_total_blocks_decoded); ImGui::Text("Data-In FIFO Size: %u (%u bytes)", s_data_in_fifo.GetSize(), s_data_in_fifo.GetSize() * 4); ImGui::Text("Data-Out FIFO Size: %u (%u bytes)", s_data_out_fifo.GetSize(), s_data_out_fifo.GetSize() * 4); ImGui::Text("DMA Enable: %s%s", s_enable_dma_in ? "In " : "", s_enable_dma_out ? "Out" : ""); ImGui::Text("Current State: %s", state_names[static_cast(s_state)]); ImGui::Text("Current Block: %s", block_names[s_current_block]); ImGui::Text("Current Coefficient: %u", s_current_coefficient); if (ImGui::CollapsingHeader("Status", ImGuiTreeNodeFlags_DefaultOpen)) { ImGui::Text("Data-Out FIFO Empty: %s", s_status.data_out_fifo_empty ? "Yes" : "No"); ImGui::Text("Data-In FIFO Full: %s", s_status.data_in_fifo_full ? "Yes" : "No"); ImGui::Text("Command Busy: %s", s_status.command_busy ? "Yes" : "No"); ImGui::Text("Data-In Request: %s", s_status.data_in_request ? "Yes" : "No"); ImGui::Text("Output Depth: %s", output_depths[static_cast(s_status.data_output_depth.GetValue())]); ImGui::Text("Output Signed: %s", s_status.data_output_signed ? "Yes" : "No"); ImGui::Text("Output Bit 15: %u", ZeroExtend32(s_status.data_output_bit15.GetValue())); ImGui::Text("Current Block: %u", ZeroExtend32(s_status.current_block.GetValue())); ImGui::Text("Parameter Words Remaining: %d", static_cast(SignExtend32(s_status.parameter_words_remaining.GetValue()))); } ImGui::End(); }