// Hyllian's xBR-lv2-standalone Shader // Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. /* [configuration] [OptionRangeFloat] GUIName = COLOR DISTINCTION THRESHOLD OptionName = XBR_EQ_THRESHOLD MinValue = 0.0 MaxValue = 1.0 StepAmount = 0.01 DefaultValue = 0.32 [OptionRangeFloat] GUIName = SMOOTHNESS THRESHOLD OptionName = XBR_LV2_COEFFICIENT MinValue = 0.0 MaxValue = 1.0 StepAmount = 0.1 DefaultValue = 0.3 [OptionRangeFloat] GUIName = COLOR BLENDING OptionName = XBR_BLENDING MinValue = 0.0 MaxValue = 1.0 StepAmount = 1.0 DefaultValue = 1.0 [/configuration] */ // Uncomment just one of the three params below to choose the corner detection //#define CORNER_A //#define CORNER_B #define CORNER_C #define lv2_cf (GetOption(XBR_LV2_COEFFICIENT)+2.0) #define P(x,y) (vec2(x,y)*vec2(dx,dy)) const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 ); const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 ); const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 ); const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 ); const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 ); const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 ); const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 ); const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 ); const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 ); const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25); const vec3 v2f = vec3( 65536, 256, 1); // vec to float encode const vec3 Y = vec3(0.2627, 0.6780, 0.0593); // Return if A components are less than or equal B ones. vec4 LTE(vec4 A, vec4 B) { return step(A, B); } // Return if A components are less than B ones. vec4 LT(vec4 A, vec4 B) { return vec4(lessThan(A, B)); } // Return logically inverted vector components. BEWARE: Only works with 0.0 or 1.0 components. vec4 NOT(vec4 A) { return (vec4(1.0) - A); } // Compare two vectors and return their components are different. vec4 diff(vec4 A, vec4 B) { return vec4(notEqual(A, B)); } float dist(vec3 A, vec3 B) { return dot(abs(A-B), Y); } // Calculate color distance between two vectors of four pixels vec4 dist4(mat4x3 A, mat4x3 B) { return vec4(dist(A[0],B[0]), dist(A[1],B[1]), dist(A[2],B[2]), dist(A[3],B[3])); } // Tests if color components are under a threshold. In this case they are considered 'equal'. vec4 eq(mat4x3 A, mat4x3 B) { return (step(dist4(A, B), vec4(GetOption(XBR_EQ_THRESHOLD)))); } // Determine if two vector components are NOT equal based on a threshold. vec4 neq(mat4x3 A, mat4x3 B) { return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B)); } // Calculate weighted distance among pixels in some directions. vec4 weighted_distance(mat4x3 a, mat4x3 b, mat4x3 c, mat4x3 d, mat4x3 e, mat4x3 f, mat4x3 g, mat4x3 h) { return (dist4(a,b) + dist4(a,c) + dist4(d,e) + dist4(d,f) + 4.0*dist4(g,h)); } void main() { vec2 texCoord = GetCoordinates(); vec2 SourceSize = 1.0 / GetInvNativePixelSize(); float aa_factor = 2.0* (1.0/GetWindowSize().x) * SourceSize.x; vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule vec4 irlv0, irlv1, irlv2l, irlv2u; vec4 fx, fx_l, fx_u; // inequations of straight lines. vec3 res1, res2; vec4 fx45i, fx45, fx30, fx60; float dx = 1.0/SourceSize.x; float dy = 1.0/SourceSize.y; vec2 loc = texCoord*SourceSize.xy; vec2 fp = fract(loc); vec2 tc = (floor(loc)+vec2(0.5,0.5))/SourceSize; // A1 B1 C1 // A0 A B C C4 // D0 D E F F4 // G0 G H I I4 // G5 H5 I5 vec3 A1 = SampleLocation(tc+P(-1.0,-2.0)).xyz; vec3 B1 = SampleLocation(tc+P( 0.0,-2.0)).xyz; vec3 C1 = SampleLocation(tc+P( 1.0,-2.0)).xyz; vec3 A = SampleLocation(tc+P(-1.0,-1.0)).xyz; vec3 B = SampleLocation(tc+P( 0.0,-1.0)).xyz; vec3 C = SampleLocation(tc+P( 1.0,-1.0)).xyz; vec3 D = SampleLocation(tc+P(-1.0, 0.0)).xyz; vec3 E = SampleLocation(tc+P( 0.0, 0.0)).xyz; vec3 F = SampleLocation(tc+P( 1.0, 0.0)).xyz; vec3 G = SampleLocation(tc+P(-1.0, 1.0)).xyz; vec3 H = SampleLocation(tc+P( 0.0, 1.0)).xyz; vec3 I = SampleLocation(tc+P( 1.0, 1.0)).xyz; vec3 G5 = SampleLocation(tc+P(-1.0, 2.0)).xyz; vec3 H5 = SampleLocation(tc+P( 0.0, 2.0)).xyz; vec3 I5 = SampleLocation(tc+P( 1.0, 2.0)).xyz; vec3 A0 = SampleLocation(tc+P(-2.0,-1.0)).xyz; vec3 D0 = SampleLocation(tc+P(-2.0, 0.0)).xyz; vec3 G0 = SampleLocation(tc+P(-2.0,-1.0)).xyz; vec3 C4 = SampleLocation(tc+P( 2.0,-1.0)).xyz; vec3 F4 = SampleLocation(tc+P( 2.0, 0.0)).xyz; vec3 I4 = SampleLocation(tc+P( 2.0, 1.0)).xyz; mat4x3 b = mat4x3(B, D, H, F); mat4x3 c = mat4x3(C, A, G, I); mat4x3 d = mat4x3(D, H, F, B); mat4x3 e = mat4x3(E, E, E, E); mat4x3 f = mat4x3(F, B, D, H); mat4x3 g = mat4x3(G, I, C, A); mat4x3 h = mat4x3(H, F, B, D); mat4x3 i = mat4x3(I, C, A, G); mat4x3 i4 = mat4x3(I4, C1, A0, G5); mat4x3 i5 = mat4x3(I5, C4, A1, G0); mat4x3 h5 = mat4x3(H5, F4, B1, D0); mat4x3 f4 = mat4x3(F4, B1, D0, H5); vec4 b_ = v2f * b; vec4 c_ = v2f * c; vec4 d_ = b_.yzwx; vec4 e_ = v2f * e; vec4 f_ = b_.wxyz; vec4 g_ = c_.zwxy; vec4 h_ = b_.zwxy; vec4 i_ = c_.wxyz; vec4 i4_ = v2f * i4; vec4 i5_ = v2f * i5; vec4 h5_ = v2f * h5; vec4 f4_ = h5_.yzwx; // These inequations define the line below which interpolation occurs. fx = ( Ao*fp.y + Bo*fp.x ); fx_l = ( Ax*fp.y + Bx*fp.x ); fx_u = ( Ay*fp.y + By*fp.x ); irlv0 = diff(e_,f_) * diff(e_,h_); irlv1 = irlv0; #ifdef CORNER_B irlv1 = saturate(irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) ); #endif #ifdef CORNER_C irlv1 = saturate(irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) ); #endif irlv2l = diff(e_,g_) * diff( d_, g_); irlv2u = diff(e_,c_) * diff( b_, c_); if (GetOption(XBR_BLENDING) == 1.0) { vec4 delta = vec4(aa_factor); vec4 deltaL = vec4(0.5, 1.0, 0.5, 1.0) * aa_factor; vec4 deltaU = deltaL.yxwz; fx45i = saturate( 0.5 + (fx - Co - Ci) / delta ); fx45 = saturate( 0.5 + (fx - Co ) / delta ); fx30 = saturate( 0.5 + (fx_l - Cx ) / deltaL ); fx60 = saturate( 0.5 + (fx_u - Cy ) / deltaU ); } else { fx45i = LT( Co + Ci, fx ); fx45 = LT( Co, fx ); fx30 = LT( Cx, fx_l ); fx60 = LT( Cy, fx_u ); } vec4 wd1 = weighted_distance( e, c, g, i, h5, f4, h, f); vec4 wd2 = weighted_distance( h, d, i5, f, i4, b, e, i); vec4 d_fg = dist4(f, g); vec4 d_hc = dist4(h, c); edri = LTE(wd1, wd2) * irlv0; edr = LT( wd1, wd2) * irlv1 * NOT(edri.yzwx * edri.wxyz); edr_l = LTE( lv2_cf * d_fg, d_hc ) * irlv2l * edr * (NOT(edri.yzwx) * eq(e, c)); edr_u = LTE( lv2_cf * d_hc, d_fg ) * irlv2u * edr * (NOT(edri.wxyz) * eq(e, g)); fx45i = edri * fx45i; fx45 = edr * fx45; fx30 = edr_l * fx30; fx60 = edr_u * fx60; px = LTE(dist4(e,f), dist4(e,h)); vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i)); res1 = mix(E, mix(H, F, px.x), maximos.x); res2 = mix(E, mix(B, D, px.z), maximos.z); vec3 res1a = mix(res1, res2, step(dist(E, res1), dist(E, res2))); res1 = mix(E, mix(F, B, px.y), maximos.y); res2 = mix(E, mix(D, H, px.w), maximos.w); vec3 res1b = mix(res1, res2, step(dist(E, res1), dist(E, res2))); vec3 res = mix(res1a, res1b, step(dist(E, res1a), dist(E, res1b))); SetOutput(vec4(res, 1.0)); }