// SPDX-FileCopyrightText: 2016 iCatButler, 2019-2023 Connor McLaughlin // SPDX-License-Identifier: GPL-2.0+ #include "cpu_pgxp.h" #include "bus.h" #include "cpu_core.h" #include "cpu_disasm.h" #include "settings.h" #include "util/gpu_device.h" #include "common/assert.h" #include "common/log.h" #include #include Log_SetChannel(CPU::PGXP); // #define LOG_VALUES 1 // #define LOG_LOOKUPS 1 // TODO: Get rid of all the rs/rt subscripting. // TODO: Don't update flags on Validate(), instead return it. namespace CPU::PGXP { namespace { enum : u32 { VERTEX_CACHE_WIDTH = 2048, VERTEX_CACHE_HEIGHT = 2048, VERTEX_CACHE_SIZE = VERTEX_CACHE_WIDTH * VERTEX_CACHE_HEIGHT, PGXP_MEM_SIZE = (static_cast(Bus::RAM_8MB_SIZE) + static_cast(CPU::SCRATCHPAD_SIZE)) / 4, PGXP_MEM_SCRATCH_OFFSET = Bus::RAM_8MB_SIZE / 4, }; enum : u32 { COMP_X, COMP_Y, COMP_Z, }; enum : u32 { VALID_X = (1u << 0), VALID_Y = (1u << 1), VALID_Z = (1u << 2), VALID_LOWZ = (1u << 16), // Valid Z from the low part of a 32-bit value. VALID_HIGHZ = (1u << 17), // Valid Z from the high part of a 32-bit value. VALID_TAINTED_Z = (1u << 31), // X/Y has been changed, Z may not be accurate. VALID_XY = (VALID_X | VALID_Y), VALID_XYZ = (VALID_X | VALID_Y | VALID_Z), VALID_ALL = (VALID_X | VALID_Y | VALID_Z), }; union psx_value { u32 d; s32 sd; struct { u16 l, h; } w; struct { s16 l, h; } sw; }; } // namespace static void CacheVertex(u32 value, const PGXP_value& vertex); static PGXP_value* GetCachedVertex(u32 value); static float TruncateVertexPosition(float p); static bool IsWithinTolerance(float precise_x, float precise_y, int int_x, int int_y); static void MakeValid(PGXP_value* pV, u32 psxV); static void Validate(PGXP_value* pV, u32 psxV); static void MaskValidate(PGXP_value* pV, u32 psxV, u32 mask, u32 validMask); static double f16Sign(double in); static double f16Unsign(double in); static double f16Overflow(double in); static PGXP_value* GetPtr(u32 addr); static void ValidateAndCopyMem(PGXP_value* dest, u32 addr, u32 value); static void ValidateAndCopyMem16(PGXP_value* dest, u32 addr, u32 value, bool sign); static void CPU_MTC2_int(const PGXP_value& value, u32 reg); static void CPU_BITWISE(u32 instr, u32 rdVal, u32 rsVal, u32 rtVal); static void WriteMem(const PGXP_value* value, u32 addr); static void WriteMem16(const PGXP_value* src, u32 addr); static void CopyZIfMissing(PGXP_value& dst, const PGXP_value& src); static void SelectZ(PGXP_value& dst, const PGXP_value& src1, const PGXP_value& src2); #ifdef LOG_VALUES static void LogInstruction(u32 pc, u32 instr); static void LogValue(const char* name, u32 rval, const PGXP_value* val); static void LogValueStr(SmallStringBase& str, const char* name, u32 rval, const PGXP_value* val); // clang-format off #define LOG_VALUES_NV() do { LogInstruction(CPU::g_state.current_instruction_pc, instr); } while (0) #define LOG_VALUES_1(name, rval, val) do { LogInstruction(CPU::g_state.current_instruction_pc, instr); LogValue(name, rval, val); } while (0) #define LOG_VALUES_C1(rnum, rval) do { LogInstruction(CPU::g_state.current_instruction_pc,instr); LogValue(CPU::GetRegName(static_cast(rnum)), rval, &g_state.pgxp_gpr[static_cast(rnum)]); } while(0) #define LOG_VALUES_C2(r1num, r1val, r2num, r2val) do { LogInstruction(CPU::g_state.current_instruction_pc,instr); LogValue(CPU::GetRegName(static_cast(r1num)), r1val, &g_state.pgxp_gpr[static_cast(r1num)]); LogValue(CPU::GetRegName(static_cast(r2num)), r2val, &g_state.pgxp_gpr[static_cast(r2num)]); } while(0) #define LOG_VALUES_LOAD(addr, val) do { LogInstruction(CPU::g_state.current_instruction_pc,instr); LogValue(TinyString::from_format("MEM[{:08X}]", addr).c_str(), val, GetPtr(addr)); } while(0) #define LOG_VALUES_STORE(rnum, rval, addr) do { LOG_VALUES_C1(rnum, rval); std::fprintf(s_log, " addr=%08X", addr); } while(0) #else #define LOG_VALUES_NV() (void)0 #define LOG_VALUES_1(name, rval, val) (void)0 #define LOG_VALUES_C1(rnum, rval) (void)0 #define LOG_VALUES_C2(r1num, r1val, r2num, r2val) (void)0 #define LOG_VALUES_LOAD(addr, val) (void)0 #define LOG_VALUES_STORE(rnum, rval, addr) (void)0 #endif // clang-format on static constexpr PGXP_value PGXP_value_invalid = {0.f, 0.f, 0.f, 0, 0}; static constexpr PGXP_value PGXP_value_zero = {0.f, 0.f, 0.f, 0, VALID_XY}; static PGXP_value* s_mem = nullptr; static PGXP_value* s_vertex_cache = nullptr; #ifdef LOG_VALUES static std::FILE* s_log; #endif } // namespace CPU::PGXP void CPU::PGXP::Initialize() { std::memset(g_state.pgxp_gpr, 0, sizeof(g_state.pgxp_gpr)); std::memset(g_state.pgxp_cop0, 0, sizeof(g_state.pgxp_cop0)); std::memset(g_state.pgxp_gte, 0, sizeof(g_state.pgxp_gte)); if (!s_mem) { s_mem = static_cast(std::calloc(PGXP_MEM_SIZE, sizeof(PGXP_value))); if (!s_mem) Panic("Failed to allocate PGXP memory"); } if (g_settings.gpu_pgxp_vertex_cache && !s_vertex_cache) { s_vertex_cache = static_cast(std::calloc(VERTEX_CACHE_SIZE, sizeof(PGXP_value))); if (!s_vertex_cache) { ERROR_LOG("Failed to allocate memory for vertex cache, disabling."); g_settings.gpu_pgxp_vertex_cache = false; } } if (s_vertex_cache) std::memset(s_vertex_cache, 0, sizeof(PGXP_value) * VERTEX_CACHE_SIZE); } void CPU::PGXP::Reset() { std::memset(g_state.pgxp_gpr, 0, sizeof(g_state.pgxp_gpr)); std::memset(g_state.pgxp_cop0, 0, sizeof(g_state.pgxp_cop0)); std::memset(g_state.pgxp_gte, 0, sizeof(g_state.pgxp_gte)); if (s_mem) std::memset(s_mem, 0, sizeof(PGXP_value) * PGXP_MEM_SIZE); if (g_settings.gpu_pgxp_vertex_cache && s_vertex_cache) std::memset(s_vertex_cache, 0, sizeof(PGXP_value) * VERTEX_CACHE_SIZE); } void CPU::PGXP::Shutdown() { if (s_vertex_cache) { std::free(s_vertex_cache); s_vertex_cache = nullptr; } if (s_mem) { std::free(s_mem); s_mem = nullptr; } std::memset(g_state.pgxp_gte, 0, sizeof(g_state.pgxp_gte)); std::memset(g_state.pgxp_gpr, 0, sizeof(g_state.pgxp_gpr)); std::memset(g_state.pgxp_cop0, 0, sizeof(g_state.pgxp_cop0)); } // Instruction register decoding #define op(_instr) (_instr >> 26) // The op part of the instruction register #define func(_instr) ((_instr) & 0x3F) // The funct part of the instruction register #define sa(_instr) ((_instr >> 6) & 0x1F) // The sa part of the instruction register #define rd(_instr) ((_instr >> 11) & 0x1F) // The rd part of the instruction register #define rt(_instr) ((_instr >> 16) & 0x1F) // The rt part of the instruction register #define rs(_instr) ((_instr >> 21) & 0x1F) // The rs part of the instruction register #define imm(_instr) (_instr & 0xFFFF) // The immediate part of the instruction register #define cop2idx(_instr) (((_instr >> 11) & 0x1F) | ((_instr >> 17) & 0x20)) #define SX0 (g_state.pgxp_gte[12].x) #define SY0 (g_state.pgxp_gte[12].y) #define SX1 (g_state.pgxp_gte[13].x) #define SY1 (g_state.pgxp_gte[13].y) #define SX2 (g_state.pgxp_gte[14].x) #define SY2 (g_state.pgxp_gte[14].y) #define SXY0 (g_state.pgxp_gte[12]) #define SXY1 (g_state.pgxp_gte[13]) #define SXY2 (g_state.pgxp_gte[14]) #define SXYP (g_state.pgxp_gte[15]) ALWAYS_INLINE_RELEASE void CPU::PGXP::MakeValid(PGXP_value* pV, u32 psxV) { if ((pV->flags & VALID_XY) == VALID_XY) return; pV->x = static_cast(static_cast(Truncate16(psxV))); pV->y = static_cast(static_cast(Truncate16(psxV >> 16))); pV->z = 0.0f; pV->flags = VALID_XY | VALID_TAINTED_Z; pV->value = psxV; } ALWAYS_INLINE_RELEASE void CPU::PGXP::Validate(PGXP_value* pV, u32 psxV) { pV->flags = (pV->value == psxV) ? pV->flags : 0; } ALWAYS_INLINE_RELEASE void CPU::PGXP::MaskValidate(PGXP_value* pV, u32 psxV, u32 mask, u32 validMask) { pV->flags = ((pV->value & mask) == (psxV & mask)) ? pV->flags : (pV->flags & ~validMask); } ALWAYS_INLINE_RELEASE double CPU::PGXP::f16Sign(double in) { const s32 s = static_cast(static_cast(in * (USHRT_MAX + 1))); return static_cast(s) / static_cast(USHRT_MAX + 1); } ALWAYS_INLINE_RELEASE double CPU::PGXP::f16Unsign(double in) { return (in >= 0) ? in : (in + (USHRT_MAX + 1)); } ALWAYS_INLINE_RELEASE double CPU::PGXP::f16Overflow(double in) { double out = 0; s64 v = ((s64)in) >> 16; out = (double)v; return out; } ALWAYS_INLINE_RELEASE CPU::PGXP_value* CPU::PGXP::GetPtr(u32 addr) { #if 0 if ((addr & CPU::PHYSICAL_MEMORY_ADDRESS_MASK) >= 0x0017A2B4 && (addr & CPU::PHYSICAL_MEMORY_ADDRESS_MASK) <= 0x0017A2B4) __debugbreak(); #endif if ((addr & SCRATCHPAD_ADDR_MASK) == SCRATCHPAD_ADDR) return &s_mem[PGXP_MEM_SCRATCH_OFFSET + ((addr & SCRATCHPAD_OFFSET_MASK) >> 2)]; const u32 paddr = (addr & PHYSICAL_MEMORY_ADDRESS_MASK); if (paddr < Bus::RAM_MIRROR_END) return &s_mem[(paddr & Bus::g_ram_mask) >> 2]; else return nullptr; } ALWAYS_INLINE_RELEASE void CPU::PGXP::ValidateAndCopyMem(PGXP_value* dest, u32 addr, u32 value) { PGXP_value* pMem = GetPtr(addr); if (!pMem) { *dest = PGXP_value_invalid; return; } Validate(pMem, value); *dest = *pMem; } ALWAYS_INLINE_RELEASE void CPU::PGXP::ValidateAndCopyMem16(PGXP_value* dest, u32 addr, u32 value, bool sign) { PGXP_value* pMem = GetPtr(addr); if (!pMem) { *dest = PGXP_value_invalid; return; } psx_value val{0}, mask{0}; u32 valid_mask = 0; // determine if high or low word const bool hiword = ((addr & 2) != 0); if (hiword) { val.w.h = static_cast(value); mask.w.h = 0xFFFF; valid_mask = VALID_Y; } else { val.w.l = static_cast(value); mask.w.l = 0xFFFF; valid_mask = VALID_X; } // validate and copy whole value MaskValidate(pMem, val.d, mask.d, valid_mask); *dest = *pMem; // if high word then shift if (hiword) { dest->x = dest->y; dest->SetValid(COMP_X, dest->HasValid(COMP_Y)); } // only set y as valid if x is also valid.. don't want to make fake values if (dest->HasValid(COMP_X)) { dest->y = (dest->x < 0) ? -1.f * sign : 0.f; dest->SetValid(COMP_Y); } else { dest->y = 0.0f; dest->SetValid(COMP_Y, false); } dest->value = value; } ALWAYS_INLINE_RELEASE void CPU::PGXP::WriteMem(const PGXP_value* value, u32 addr) { PGXP_value* pMem = GetPtr(addr); if (pMem) { *pMem = *value; pMem->flags |= VALID_LOWZ | VALID_HIGHZ; } } ALWAYS_INLINE_RELEASE void CPU::PGXP::WriteMem16(const PGXP_value* src, u32 addr) { PGXP_value* dest = GetPtr(addr); if (!dest) return; // determine if high or low word const bool hiword = ((addr & 2) != 0); if (hiword) { dest->y = src->x; dest->SetValid(COMP_Y, src->HasValid(COMP_X)); dest->value = (dest->value & UINT32_C(0x0000FFFF)) | (src->value << 16); } else { dest->x = src->x; dest->SetValid(COMP_X, src->HasValid(COMP_X)); dest->value = (dest->value & UINT32_C(0xFFFF0000)) | (src->value & UINT32_C(0x0000FFFF)); } // overwrite z/w if valid // TODO: Check modified if (src->HasValid(COMP_Z)) { dest->z = src->z; dest->SetValid(COMP_Z); dest->flags |= hiword ? VALID_HIGHZ : VALID_LOWZ; } else { dest->flags &= hiword ? ~VALID_HIGHZ : ~VALID_LOWZ; if (dest->flags & VALID_Z && !(dest->flags & (VALID_HIGHZ | VALID_LOWZ))) dest->flags &= ~VALID_Z; } } ALWAYS_INLINE_RELEASE void CPU::PGXP::CopyZIfMissing(PGXP_value& dst, const PGXP_value& src) { dst.z = dst.HasValid(COMP_Z) ? dst.z : src.z; dst.flags |= (src.flags & VALID_Z); } ALWAYS_INLINE_RELEASE void CPU::PGXP::SelectZ(PGXP_value& dst, const PGXP_value& src1, const PGXP_value& src2) { // Prefer src2 if src1 is missing Z, or is potentially an imprecise value, when src2 is precise. dst.z = (!(src1.flags & VALID_Z) || (src1.flags & VALID_TAINTED_Z && (src2.flags & (VALID_Z | VALID_TAINTED_Z)) == VALID_Z)) ? src2.z : src1.z; dst.flags |= ((src1.flags | src2.flags) & VALID_Z); } #ifdef LOG_VALUES void CPU::PGXP::LogInstruction(u32 pc, u32 instr) { if (!s_log) [[unlikely]] { s_log = std::fopen("pgxp.log", "wb"); } else { std::fflush(s_log); std::fputc('\n', s_log); } SmallString str; DisassembleInstruction(&str, pc, instr); std::fprintf(s_log, "%08X %08X %-20s", pc, instr, str.c_str()); } void CPU::PGXP::LogValue(const char* name, u32 rval, const PGXP_value* val) { if (!s_log) [[unlikely]] return; SmallString str; LogValueStr(str, name, rval, val); std::fprintf(s_log, " %s", str.c_str()); } void CPU::PGXP::LogValueStr(SmallStringBase& str, const char* name, u32 rval, const PGXP_value* val) { str.append_format("{}=[{:08X}", name, rval); if (!val) { str.append(", NULL]"); } else { if (val->value != rval) str.append_format(", PGXP{:08X}", val->value); str.append_format(", {{{},{},{}}}", val->x, val->y, val->z); if (val->flags & VALID_ALL) { str.append(", valid="); if (val->flags & VALID_X) str.append('X'); if (val->flags & VALID_Y) str.append('Y'); if (val->flags & VALID_Z) str.append('Z'); } // if (val->flags & VALID_TAINTED_Z) // str.append(", tainted"); str.append(']'); } } #endif void CPU::PGXP::GTE_RTPS(float x, float y, float z, u32 value) { // push values down FIFO SXY0 = SXY1; SXY1 = SXY2; SXY2.x = x; SXY2.y = y; SXY2.z = z; SXY2.value = value; SXY2.flags = VALID_ALL; if (g_settings.gpu_pgxp_vertex_cache) CacheVertex(value, SXY2); } #define VX(n) (psxRegs.CP2D.p[n << 1].sw.l) #define VY(n) (psxRegs.CP2D.p[n << 1].sw.h) #define VZ(n) (psxRegs.CP2D.p[(n << 1) + 1].sw.l) int CPU::PGXP::GTE_NCLIP_valid(u32 sxy0, u32 sxy1, u32 sxy2) { Validate(&SXY0, sxy0); Validate(&SXY1, sxy1); Validate(&SXY2, sxy2); // Don't use accurate clipping for game-constructed values, which don't have a valid Z. return (((SXY0.flags & SXY1.flags & SXY2.flags & VALID_XYZ) == VALID_XYZ)); } float CPU::PGXP::GTE_NCLIP() { float nclip = ((SX0 * SY1) + (SX1 * SY2) + (SX2 * SY0) - (SX0 * SY2) - (SX1 * SY0) - (SX2 * SY1)); // ensure fractional values are not incorrectly rounded to 0 float nclipAbs = std::abs(nclip); if ((0.1f < nclipAbs) && (nclipAbs < 1.f)) nclip += (nclip < 0.f ? -1 : 1); // float AX = SX1 - SX0; // float AY = SY1 - SY0; // float BX = SX2 - SX0; // float BY = SY2 - SY0; //// normalise A and B // float mA = sqrt((AX*AX) + (AY*AY)); // float mB = sqrt((BX*BX) + (BY*BY)); //// calculate AxB to get Z component of C // float CZ = ((AX * BY) - (AY * BX)) * (1 << 12); return nclip; } ALWAYS_INLINE_RELEASE void CPU::PGXP::CPU_MTC2_int(const PGXP_value& value, u32 reg) { switch (reg) { case 15: // push FIFO SXY0 = SXY1; SXY1 = SXY2; SXY2 = value; SXYP = SXY2; break; case 31: return; } g_state.pgxp_gte[reg] = value; } //////////////////////////////////// // Data transfer tracking //////////////////////////////////// void CPU::PGXP::CPU_MFC2(u32 instr, u32 rdVal) { // CPU[Rt] = GTE_D[Rd] const u32 idx = cop2idx(instr); LOG_VALUES_1(CPU::GetGTERegisterName(idx), rdVal, &g_state.pgxp_gte[idx]); Validate(&g_state.pgxp_gte[idx], rdVal); g_state.pgxp_gpr[rt(instr)] = g_state.pgxp_gte[idx]; g_state.pgxp_gpr[rt(instr)].value = rdVal; } void CPU::PGXP::CPU_MTC2(u32 instr, u32 rtVal) { // GTE_D[Rd] = CPU[Rt] const u32 idx = cop2idx(instr); LOG_VALUES_C1(rt(instr), rtVal); Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); CPU_MTC2_int(g_state.pgxp_gpr[rt(instr)], idx); g_state.pgxp_gte[idx].value = rtVal; } //////////////////////////////////// // Memory Access //////////////////////////////////// void CPU::PGXP::CPU_LWC2(u32 instr, u32 addr, u32 rtVal) { // GTE_D[Rt] = Mem[addr] LOG_VALUES_LOAD(addr, rtVal); PGXP_value val; ValidateAndCopyMem(&val, addr, rtVal); CPU_MTC2_int(val, rt(instr)); } void CPU::PGXP::CPU_SWC2(u32 instr, u32 addr, u32 rtVal) { // Mem[addr] = GTE_D[Rt] const u32 idx = rt(instr); #ifdef LOG_VALUES LOG_VALUES_1(CPU::GetGTERegisterName(idx), rtVal, &g_state.pgxp_gte[idx]); std::fprintf(s_log, " addr=%08X", addr); #endif Validate(&g_state.pgxp_gte[idx], rtVal); WriteMem(&g_state.pgxp_gte[idx], addr); } ALWAYS_INLINE_RELEASE void CPU::PGXP::CacheVertex(u32 value, const PGXP_value& vertex) { const s16 sx = static_cast(value & 0xFFFFu); const s16 sy = static_cast(value >> 16); DebugAssert(sx >= -1024 && sx <= 1023 && sy >= -1024 && sy <= 1023); s_vertex_cache[(sy + 1024) * VERTEX_CACHE_WIDTH + (sx + 1024)] = vertex; } ALWAYS_INLINE_RELEASE CPU::PGXP_value* CPU::PGXP::GetCachedVertex(u32 value) { const s16 sx = static_cast(value & 0xFFFFu); const s16 sy = static_cast(value >> 16); return (sx >= -1024 && sx <= 1023 && sy >= -1024 && sy <= 1013) ? &s_vertex_cache[(sy + 1024) * VERTEX_CACHE_WIDTH + (sx + 1024)] : nullptr; } ALWAYS_INLINE_RELEASE float CPU::PGXP::TruncateVertexPosition(float p) { const s32 int_part = static_cast(p); const float int_part_f = static_cast(int_part); return static_cast(static_cast(int_part << 5) >> 5) + (p - int_part_f); } ALWAYS_INLINE_RELEASE bool CPU::PGXP::IsWithinTolerance(float precise_x, float precise_y, int int_x, int int_y) { const float tolerance = g_settings.gpu_pgxp_tolerance; if (tolerance < 0.0f) return true; return (std::abs(precise_x - static_cast(int_x)) <= tolerance && std::abs(precise_y - static_cast(int_y)) <= tolerance); } bool CPU::PGXP::GetPreciseVertex(u32 addr, u32 value, int x, int y, int xOffs, int yOffs, float* out_x, float* out_y, float* out_w) { const PGXP_value* vert = GetPtr(addr); if (vert && ((vert->flags & VALID_XY) == VALID_XY) && (vert->value == value)) { // There is a value here with valid X and Y coordinates *out_x = TruncateVertexPosition(vert->x) + static_cast(xOffs); *out_y = TruncateVertexPosition(vert->y) + static_cast(yOffs); *out_w = vert->z / 32768.0f; #ifdef LOG_LOOKUPS GL_INS_FMT("0x{:08X} {},{} => {},{} ({},{},{}) ({},{})", addr, x, y, *out_x, *out_y, TruncateVertexPosition(vert->x), TruncateVertexPosition(vert->y), vert->z, std::abs(*out_x - x), std::abs(*out_y - y)); #endif if (IsWithinTolerance(*out_x, *out_y, x, y)) { // check validity of z component return ((vert->flags & VALID_Z) == VALID_Z); } } if (g_settings.gpu_pgxp_vertex_cache) { vert = GetCachedVertex(value); if (vert && (vert->flags & VALID_XY) == VALID_XY) { *out_x = TruncateVertexPosition(vert->x) + static_cast(xOffs); *out_y = TruncateVertexPosition(vert->y) + static_cast(yOffs); *out_w = vert->z / 32768.0f; if (IsWithinTolerance(*out_x, *out_y, x, y)) return false; } } // no valid value can be found anywhere, use the native PSX data *out_x = static_cast(x); *out_y = static_cast(y); *out_w = 1.0f; return false; } // Instruction register decoding #define op(_instr) (_instr >> 26) // The op part of the instruction register #define func(_instr) ((_instr) & 0x3F) // The funct part of the instruction register #define sa(_instr) ((_instr >> 6) & 0x1F) // The sa part of the instruction register #define rd(_instr) ((_instr >> 11) & 0x1F) // The rd part of the instruction register #define rt(_instr) ((_instr >> 16) & 0x1F) // The rt part of the instruction register #define rs(_instr) ((_instr >> 21) & 0x1F) // The rs part of the instruction register #define imm(_instr) (_instr & 0xFFFF) // The immediate part of the instruction register #define imm_sext(_instr) \ static_cast(static_cast(_instr & 0xFFFF)) // The immediate part of the instruction register void CPU::PGXP::CPU_LW(u32 instr, u32 addr, u32 rtVal) { // Rt = Mem[Rs + Im] LOG_VALUES_LOAD(addr, rtVal); ValidateAndCopyMem(&g_state.pgxp_gpr[rt(instr)], addr, rtVal); } void CPU::PGXP::CPU_LBx(u32 instr, u32 addr, u32 rtVal) { LOG_VALUES_LOAD(addr, rtVal); g_state.pgxp_gpr[rt(instr)] = PGXP_value_invalid; } void CPU::PGXP::CPU_LH(u32 instr, u32 addr, u32 rtVal) { // Rt = Mem[Rs + Im] (sign extended) LOG_VALUES_LOAD(addr, rtVal); ValidateAndCopyMem16(&g_state.pgxp_gpr[rt(instr)], addr, rtVal, true); } void CPU::PGXP::CPU_LHU(u32 instr, u32 addr, u32 rtVal) { // Rt = Mem[Rs + Im] (zero extended) LOG_VALUES_LOAD(addr, rtVal); ValidateAndCopyMem16(&g_state.pgxp_gpr[rt(instr)], addr, rtVal, false); } void CPU::PGXP::CPU_SB(u32 instr, u32 addr, u32 rtVal) { LOG_VALUES_STORE(rt(instr), rtVal, addr); WriteMem(&PGXP_value_invalid, addr); } void CPU::PGXP::CPU_SH(u32 instr, u32 addr, u32 rtVal) { LOG_VALUES_STORE(rt(instr), rtVal, addr); PGXP_value* val = &g_state.pgxp_gpr[rt(instr)]; Validate(val, rtVal); WriteMem16(val, addr); } void CPU::PGXP::CPU_SW(u32 instr, u32 addr, u32 rtVal) { // Mem[Rs + Im] = Rt LOG_VALUES_STORE(rt(instr), rtVal, addr); PGXP_value* val = &g_state.pgxp_gpr[rt(instr)]; Validate(val, rtVal); WriteMem(val, addr); } void CPU::PGXP::CPU_MOVE_Packed(u32 rd_and_rs, u32 rsVal) { const u32 Rs = (rd_and_rs & 0xFFu); const u32 Rd = (rd_and_rs >> 8); CPU_MOVE(Rd, Rs, rsVal); } void CPU::PGXP::CPU_MOVE(u32 Rd, u32 Rs, u32 rsVal) { #ifdef LOG_VALUES const u32 instr = 0; LOG_VALUES_C1(Rs, rsVal); #endif Validate(&g_state.pgxp_gpr[Rs], rsVal); g_state.pgxp_gpr[Rd] = g_state.pgxp_gpr[Rs]; } void CPU::PGXP::CPU_ADDI(u32 instr, u32 rsVal) { LOG_VALUES_C1(rs(instr), rsVal); // Rt = Rs + Imm (signed) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&prsVal, rsVal); psx_value tempImm; tempImm.d = SignExtend32(static_cast(imm(instr))); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; prtVal = prsVal; if (tempImm.d == 0) return; if (rsVal == 0) { // x is low precision value prtVal.x = static_cast(tempImm.sw.l); prtVal.y = static_cast(tempImm.sw.h); prtVal.flags |= VALID_X | VALID_Y | VALID_TAINTED_Z; prtVal.value = tempImm.d; return; } prtVal.x = (float)f16Unsign(prtVal.x); prtVal.x += (float)tempImm.w.l; // carry on over/underflow float of = (prtVal.x > USHRT_MAX) ? 1.f : (prtVal.x < 0) ? -1.f : 0.f; prtVal.x = (float)f16Sign(prtVal.x); // ret.x -= of * (USHRT_MAX + 1); prtVal.y += tempImm.sw.h + of; // truncate on overflow/underflow prtVal.y += (prtVal.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (prtVal.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f; prtVal.value = rsVal + tempImm.d; prtVal.flags |= VALID_TAINTED_Z; } void CPU::PGXP::CPU_ANDI(u32 instr, u32 rsVal) { LOG_VALUES_C1(rs(instr), rsVal); // Rt = Rs & Imm const u32 rtVal = rsVal & imm(instr); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&prsVal, rsVal); psx_value vRt; vRt.d = rtVal; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; prtVal = prsVal; prtVal.value = rtVal; prtVal.y = 0.f; // remove upper 16-bits prtVal.SetValid(COMP_Y); prtVal.flags |= VALID_TAINTED_Z; switch (imm(instr)) { case 0: // if 0 then x == 0 prtVal.x = 0.0f; prtVal.SetValid(COMP_X); break; case 0xFFFF: // if saturated then x == x break; default: // otherwise x is low precision value prtVal.x = vRt.sw.l; prtVal.SetValid(COMP_X); break; } } void CPU::PGXP::CPU_ORI(u32 instr, u32 rsVal) { LOG_VALUES_C1(rs(instr), rsVal); // Rt = Rs | Imm const u32 rtVal = rsVal | imm(instr); Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value ret = g_state.pgxp_gpr[rs(instr)]; psx_value vRt; vRt.d = rtVal; switch (imm(instr)) { case 0: // if 0 then x == x break; default: // otherwise x is low precision value ret.x = vRt.sw.l; ret.SetValid(COMP_X); ret.flags |= VALID_TAINTED_Z; break; } ret.value = rtVal; g_state.pgxp_gpr[rt(instr)] = ret; } void CPU::PGXP::CPU_XORI(u32 instr, u32 rsVal) { LOG_VALUES_C1(rs(instr), rsVal); // Rt = Rs ^ Imm const u32 rtVal = rsVal ^ imm(instr); Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); PGXP_value ret = g_state.pgxp_gpr[rs(instr)]; psx_value vRt; vRt.d = rtVal; switch (imm(instr)) { case 0: // if 0 then x == x break; default: // otherwise x is low precision value ret.x = vRt.sw.l; ret.SetValid(COMP_X); ret.flags |= VALID_TAINTED_Z; break; } ret.value = rtVal; g_state.pgxp_gpr[rt(instr)] = ret; } void CPU::PGXP::CPU_SLTI(u32 instr, u32 rsVal) { LOG_VALUES_C1(rs(instr), rsVal); // Rt = Rs < Imm (signed) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&prsVal, rsVal); const float fimmx = static_cast(static_cast(imm(instr))); const float fimmy = fimmx < 0.0f ? -1.0f : 0.0f; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; prtVal.x = (prsVal.GetValidY(rsVal) < fimmy || prsVal.GetValidX(rsVal) < fimmx) ? 1.f : 0.f; prtVal.y = 0.0f; prtVal.z = prsVal.z; prtVal.flags = prsVal.flags | VALID_X | VALID_Y | VALID_TAINTED_Z; prtVal.value = BoolToUInt32(static_cast(rsVal) < imm_sext(instr)); } void CPU::PGXP::CPU_SLTIU(u32 instr, u32 rsVal) { LOG_VALUES_C1(rs(instr), rsVal); // Rt = Rs < Imm (Unsigned) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&g_state.pgxp_gpr[rs(instr)], rsVal); const float fimmx = static_cast(static_cast(imm(instr))); const float fimmy = fimmx < 0.0f ? -1.0f : 0.0f; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; prtVal.x = (f16Unsign(prsVal.GetValidY(rsVal)) < f16Unsign(fimmy) || f16Unsign(prsVal.GetValidX(rsVal)) < fimmx) ? 1.0f : 0.0f; prtVal.y = 0.f; prtVal.z = prsVal.z; prtVal.flags = prsVal.flags | VALID_X | VALID_Y | VALID_TAINTED_Z; prtVal.value = BoolToUInt32(rsVal < imm(instr)); } //////////////////////////////////// // Load Upper //////////////////////////////////// void CPU::PGXP::CPU_LUI(u32 instr) { LOG_VALUES_NV(); // Rt = Imm << 16 g_state.pgxp_gpr[rt(instr)] = PGXP_value_zero; g_state.pgxp_gpr[rt(instr)].y = (float)(s16)imm(instr); g_state.pgxp_gpr[rt(instr)].value = static_cast(imm(instr)) << 16; g_state.pgxp_gpr[rt(instr)].flags = VALID_XY; } //////////////////////////////////// // Register Arithmetic //////////////////////////////////// void CPU::PGXP::CPU_ADD(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; // Rd = Rs + Rt (signed) Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); if (rtVal == 0) { prdVal = prsVal; CopyZIfMissing(prdVal, prtVal); } else if (rsVal == 0) { prdVal = prtVal; CopyZIfMissing(prdVal, prsVal); } else { const double x = f16Unsign(prsVal.GetValidX(rsVal)) + f16Unsign(prtVal.GetValidX(rtVal)); // carry on over/underflow const float of = (x > USHRT_MAX) ? 1.f : (x < 0) ? -1.f : 0.f; prdVal.x = static_cast(f16Sign(x)); // prdVal.x -= of * (USHRT_MAX + 1); prdVal.y = prsVal.GetValidY(rsVal) + prtVal.GetValidY(rtVal) + of; // truncate on overflow/underflow prdVal.y += (prdVal.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (prdVal.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f; prdVal.value = rsVal + rtVal; // valid x/y only if one side had a valid x/y prdVal.flags = prsVal.flags | (prtVal.flags & VALID_XY) | VALID_TAINTED_Z; SelectZ(prdVal, prsVal, prtVal); } } void CPU::PGXP::CPU_SUB(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; // Rd = Rs - Rt (signed) Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); if (rtVal == 0) { prdVal = prsVal; CopyZIfMissing(prdVal, prtVal); } else { const double x = f16Unsign(prsVal.GetValidX(rsVal)) - f16Unsign(prtVal.GetValidX(rtVal)); // carry on over/underflow const float of = (x > USHRT_MAX) ? 1.f : (x < 0) ? -1.f : 0.f; prdVal.x = static_cast(f16Sign(x)); // prdVal.x -= of * (USHRT_MAX + 1); prdVal.y = prsVal.GetValidY(rsVal) - (prtVal.GetValidY(rtVal) - of); // truncate on overflow/underflow prdVal.y += (prdVal.y > SHRT_MAX) ? -(USHRT_MAX + 1) : (prdVal.y < SHRT_MIN) ? USHRT_MAX + 1 : 0.f; prdVal.value = rsVal - rtVal; // valid x/y only if one side had a valid x/y prdVal.flags = prsVal.flags | (prtVal.flags & VALID_XY) | VALID_TAINTED_Z; SelectZ(prdVal, prsVal, prtVal); } } ALWAYS_INLINE_RELEASE void CPU::PGXP::CPU_BITWISE(u32 instr, u32 rdVal, u32 rsVal, u32 rtVal) { // Rd = Rs & Rt PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); psx_value vald, vals, valt; vald.d = rdVal; vals.d = rsVal; valt.d = rtVal; PGXP_value ret; ret.flags = ((prsVal.flags | prtVal.flags) & VALID_XY) ? (VALID_XY | VALID_TAINTED_Z) : 0; if (vald.w.l == 0) ret.x = 0.f; else if (vald.w.l == vals.w.l) ret.x = prsVal.GetValidX(rsVal); else if (vald.w.l == valt.w.l) ret.x = prtVal.GetValidX(rtVal); else ret.x = static_cast(vald.sw.l); if (vald.w.h == 0) ret.y = 0.f; else if (vald.w.h == vals.w.h) ret.y = prsVal.GetValidY(rsVal); else if (vald.w.h == valt.w.h) ret.y = prtVal.GetValidY(rtVal); else ret.y = static_cast(vald.sw.h); SelectZ(ret, prsVal, prtVal); ret.value = rdVal; g_state.pgxp_gpr[rd(instr)] = ret; } void CPU::PGXP::CPU_AND_(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Rd = Rs & Rt const u32 rdVal = rsVal & rtVal; CPU_BITWISE(instr, rdVal, rsVal, rtVal); } void CPU::PGXP::CPU_OR_(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Rd = Rs | Rt const u32 rdVal = rsVal | rtVal; CPU_BITWISE(instr, rdVal, rsVal, rtVal); } void CPU::PGXP::CPU_XOR_(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Rd = Rs ^ Rt const u32 rdVal = rsVal ^ rtVal; CPU_BITWISE(instr, rdVal, rsVal, rtVal); } void CPU::PGXP::CPU_NOR(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Rd = Rs NOR Rt const u32 rdVal = ~(rsVal | rtVal); CPU_BITWISE(instr, rdVal, rsVal, rtVal); } void CPU::PGXP::CPU_SLT(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Rd = Rs < Rt (signed) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); PGXP_value ret = prsVal; ret.x = (prsVal.GetValidY(rsVal) < prtVal.GetValidY(rtVal) || f16Unsign(prsVal.GetValidX(rsVal)) < f16Unsign(prtVal.GetValidX(rtVal))) ? 1.f : 0.f; ret.y = 0.f; ret.flags |= VALID_TAINTED_Z | VALID_X | VALID_Y; ret.value = BoolToUInt32(static_cast(rsVal) < static_cast(rtVal)); g_state.pgxp_gpr[rd(instr)] = ret; } void CPU::PGXP::CPU_SLTU(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Rd = Rs < Rt (unsigned) PGXP_value& prsVal = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); PGXP_value ret = prsVal; ret.x = (f16Unsign(prsVal.GetValidY(rsVal)) < f16Unsign(prtVal.GetValidY(rtVal)) || f16Unsign(prsVal.GetValidX(rsVal)) < f16Unsign(prtVal.GetValidX(rtVal))) ? 1.f : 0.f; ret.y = 0.f; ret.flags |= VALID_TAINTED_Z | VALID_X | VALID_Y; ret.value = BoolToUInt32(rsVal < rtVal); g_state.pgxp_gpr[rd(instr)] = ret; } //////////////////////////////////// // Register mult/div //////////////////////////////////// void CPU::PGXP::CPU_MULT(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Hi/Lo = Rs * Rt (signed) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); PGXP_value& ploVal = g_state.pgxp_gpr[static_cast(Reg::lo)]; PGXP_value& phiVal = g_state.pgxp_gpr[static_cast(Reg::hi)]; ploVal = prsVal; CopyZIfMissing(ploVal, prsVal); // Z/valid is the same phiVal = ploVal; double xx, xy, yx, yy; double lx = 0, ly = 0, hx = 0, hy = 0; const float rsx = prsVal.GetValidX(rsVal); const float rsy = prsVal.GetValidY(rsVal); const float rtx = prtVal.GetValidX(rtVal); const float rty = prtVal.GetValidY(rtVal); // Multiply out components xx = f16Unsign(rsx) * f16Unsign(rtx); xy = f16Unsign(rsx) * (rty); yx = (rsy)*f16Unsign(rtx); yy = (rsy) * (rty); // Split values into outputs lx = xx; ly = f16Overflow(xx); ly += xy + yx; hx = f16Overflow(ly); hx += yy; hy = f16Overflow(hx); ploVal.x = (float)f16Sign(lx); ploVal.y = (float)f16Sign(ly); ploVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); phiVal.x = (float)f16Sign(hx); phiVal.y = (float)f16Sign(hy); phiVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); // compute PSX value const u64 result = static_cast(static_cast(SignExtend64(rsVal)) * static_cast(SignExtend64(rtVal))); phiVal.value = Truncate32(result >> 32); ploVal.value = Truncate32(result); } void CPU::PGXP::CPU_MULTU(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Hi/Lo = Rs * Rt (unsigned) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); PGXP_value& ploVal = g_state.pgxp_gpr[static_cast(Reg::lo)]; PGXP_value& phiVal = g_state.pgxp_gpr[static_cast(Reg::hi)]; ploVal = prsVal; CopyZIfMissing(ploVal, prsVal); // Z/valid is the same phiVal = ploVal; double xx, xy, yx, yy; double lx = 0, ly = 0, hx = 0, hy = 0; const float rsx = prsVal.GetValidX(rsVal); const float rsy = prsVal.GetValidY(rsVal); const float rtx = prtVal.GetValidX(rtVal); const float rty = prtVal.GetValidY(rtVal); // Multiply out components xx = f16Unsign(rsx) * f16Unsign(rtx); xy = f16Unsign(rsx) * f16Unsign(rty); yx = f16Unsign(rsy) * f16Unsign(rtx); yy = f16Unsign(rsy) * f16Unsign(rty); // Split values into outputs lx = xx; ly = f16Overflow(xx); ly += xy + yx; hx = f16Overflow(ly); hx += yy; hy = f16Overflow(hx); ploVal.x = (float)f16Sign(lx); ploVal.y = (float)f16Sign(ly); ploVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); phiVal.x = (float)f16Sign(hx); phiVal.y = (float)f16Sign(hy); phiVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); // compute PSX value const u64 result = ZeroExtend64(rsVal) * ZeroExtend64(rtVal); phiVal.value = Truncate32(result >> 32); ploVal.value = Truncate32(result); } void CPU::PGXP::CPU_DIV(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Lo = Rs / Rt (signed) // Hi = Rs % Rt (signed) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); PGXP_value& ploVal = g_state.pgxp_gpr[static_cast(Reg::lo)]; PGXP_value& phiVal = g_state.pgxp_gpr[static_cast(Reg::hi)]; ploVal = prsVal; CopyZIfMissing(ploVal, prsVal); // Z/valid is the same phiVal = ploVal; double vs = f16Unsign(prsVal.GetValidX(rsVal)) + prsVal.GetValidY(rsVal) * (double)(1 << 16); double vt = f16Unsign(prtVal.GetValidX(rtVal)) + prtVal.GetValidY(rtVal) * (double)(1 << 16); double lo = vs / vt; ploVal.y = (float)f16Sign(f16Overflow(lo)); ploVal.x = (float)f16Sign(lo); ploVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); double hi = fmod(vs, vt); phiVal.y = (float)f16Sign(f16Overflow(hi)); phiVal.x = (float)f16Sign(hi); phiVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); // compute PSX value if (static_cast(rtVal) == 0) { // divide by zero ploVal.value = (static_cast(rsVal) >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1); phiVal.value = static_cast(static_cast(rsVal)); } else if (rsVal == UINT32_C(0x80000000) && static_cast(rtVal) == -1) { // unrepresentable ploVal.value = UINT32_C(0x80000000); phiVal.value = 0; } else { ploVal.value = static_cast(static_cast(rsVal) / static_cast(rtVal)); phiVal.value = static_cast(static_cast(rsVal) % static_cast(rtVal)); } } void CPU::PGXP::CPU_DIVU(u32 instr, u32 rsVal, u32 rtVal) { LOG_VALUES_C2(rs(instr), rsVal, rt(instr), rtVal); // Lo = Rs / Rt (unsigned) // Hi = Rs % Rt (unsigned) PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prsVal, rsVal); Validate(&prtVal, rtVal); PGXP_value& ploVal = g_state.pgxp_gpr[static_cast(Reg::lo)]; PGXP_value& phiVal = g_state.pgxp_gpr[static_cast(Reg::hi)]; ploVal = prsVal; CopyZIfMissing(ploVal, prsVal); // Z/valid is the same phiVal = ploVal; double vs = f16Unsign(prsVal.GetValidX(rsVal)) + f16Unsign(prsVal.GetValidY(rsVal)) * (double)(1 << 16); double vt = f16Unsign(prtVal.GetValidX(rtVal)) + f16Unsign(prtVal.GetValidY(rtVal)) * (double)(1 << 16); double lo = vs / vt; ploVal.y = (float)f16Sign(f16Overflow(lo)); ploVal.x = (float)f16Sign(lo); ploVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); double hi = fmod(vs, vt); phiVal.y = (float)f16Sign(f16Overflow(hi)); phiVal.x = (float)f16Sign(hi); phiVal.flags |= VALID_TAINTED_Z | (prtVal.flags & VALID_XY); if (rtVal == 0) { // divide by zero ploVal.value = UINT32_C(0xFFFFFFFF); phiVal.value = rsVal; } else { ploVal.value = rsVal / rtVal; phiVal.value = rsVal % rtVal; } } //////////////////////////////////// // Shift operations (sa) //////////////////////////////////// void CPU::PGXP::CPU_SLL(u32 instr, u32 rtVal) { LOG_VALUES_C1(rt(instr), rtVal); // Rd = Rt << Sa const u32 rdVal = rtVal << sa(instr); const u32 sh = sa(instr); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prtVal, rtVal); // TODO: Shift flags double x = f16Unsign(prtVal.x); double y = f16Unsign(prtVal.y); if (sh >= 32) { x = 0.f; y = 0.f; } else if (sh == 16) { y = f16Sign(x); x = 0.f; } else if (sh >= 16) { y = x * (1 << (sh - 16)); y = f16Sign(y); x = 0.f; } else { x = x * (1 << sh); y = y * (1 << sh); y += f16Overflow(x); x = f16Sign(x); y = f16Sign(y); } PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; prdVal = prtVal; prdVal.x = static_cast(x); prdVal.y = static_cast(y); prdVal.value = rdVal; prdVal.flags |= VALID_TAINTED_Z; } void CPU::PGXP::CPU_SRL(u32 instr, u32 rtVal) { LOG_VALUES_C1(rt(instr), rtVal); // Rd = Rt >> Sa const u32 rdVal = rtVal >> sa(instr); const u32 sh = sa(instr); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prtVal, rtVal); double x = prtVal.x; double y = f16Unsign(prtVal.y); psx_value iX; iX.d = rtVal; psx_value iY; iY.d = rtVal; iX.sd = (iX.sd << 16) >> 16; // remove Y iY.sw.l = iX.sw.h; // overwrite x with sign(x) // Shift test values psx_value dX; dX.sd = iX.sd >> sh; psx_value dY; dY.d = iY.d >> sh; if (dX.sw.l != iX.sw.h) x = x / (1 << sh); else x = dX.sw.l; // only sign bits left if (dY.sw.l != iX.sw.h) { if (sh == 16) { x = y; } else if (sh < 16) { x += y * (1 << (16 - sh)); if (g_state.pgxp_gpr[rt(instr)].x < 0) x += 1 << (16 - sh); } else { x += y / (1 << (sh - 16)); } } if ((dY.sw.h == 0) || (dY.sw.h == -1)) y = dY.sw.h; else y = y / (1 << sh); x = f16Sign(x); y = f16Sign(y); PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; prdVal = prtVal; prdVal.x = static_cast(x); prdVal.y = static_cast(y); prdVal.value = rdVal; prdVal.flags |= VALID_TAINTED_Z; } void CPU::PGXP::CPU_SRA(u32 instr, u32 rtVal) { LOG_VALUES_C1(rt(instr), rtVal); // Rd = Rt >> Sa const u32 rdVal = static_cast(static_cast(rtVal) >> sa(instr)); const u32 sh = sa(instr); PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; Validate(&prtVal, rtVal); double x = prtVal.x; double y = prtVal.y; psx_value iX; iX.d = rtVal; psx_value iY; iY.d = rtVal; iX.sd = (iX.sd << 16) >> 16; // remove Y iY.sw.l = iX.sw.h; // overwrite x with sign(x) // Shift test values psx_value dX; dX.sd = iX.sd >> sh; psx_value dY; dY.sd = iY.sd >> sh; if (dX.sw.l != iX.sw.h) x = x / (1 << sh); else x = dX.sw.l; // only sign bits left if (dY.sw.l != iX.sw.h) { if (sh == 16) { x = y; } else if (sh < 16) { x += y * (1 << (16 - sh)); if (g_state.pgxp_gpr[rt(instr)].x < 0) x += 1 << (16 - sh); } else { x += y / (1 << (sh - 16)); } } if ((dY.sw.h == 0) || (dY.sw.h == -1)) y = dY.sw.h; else y = y / (1 << sh); x = f16Sign(x); y = f16Sign(y); PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; prdVal = prtVal; prdVal.x = static_cast(x); prdVal.y = static_cast(y); prdVal.value = rdVal; prdVal.flags |= VALID_TAINTED_Z; // Use low precision/rounded values when we're not shifting an entire component, // and it's not originally from a 3D value. Too many false positives in P2/etc. // What we probably should do is not set the valid flag on non-3D values to begin // with, only letting them become valid when used in another expression. if (!(prdVal.flags & VALID_Z) && sh < 16) { prdVal.flags = 0; MakeValid(&prdVal, rdVal); } } //////////////////////////////////// // Shift operations variable //////////////////////////////////// void CPU::PGXP::CPU_SLLV(u32 instr, u32 rtVal, u32 rsVal) { LOG_VALUES_C2(rt(instr), rtVal, rs(instr), rsVal); // Rd = Rt << Rs const u32 rdVal = rtVal << rsVal; const u32 sh = rsVal & 0x1F; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&prtVal, rtVal); Validate(&prsVal, rsVal); double x = f16Unsign(prtVal.x); double y = f16Unsign(prtVal.y); if (sh >= 32) { x = 0.f; y = 0.f; } else if (sh == 16) { y = f16Sign(x); x = 0.f; } else if (sh >= 16) { y = x * (1 << (sh - 16)); y = f16Sign(y); x = 0.f; } else { x = x * (1 << sh); y = y * (1 << sh); y += f16Overflow(x); x = f16Sign(x); y = f16Sign(y); } PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; prdVal = prtVal; prdVal.x = static_cast(x); prdVal.y = static_cast(y); prdVal.value = rdVal; prdVal.flags |= VALID_TAINTED_Z; } void CPU::PGXP::CPU_SRLV(u32 instr, u32 rtVal, u32 rsVal) { LOG_VALUES_C2(rt(instr), rtVal, rs(instr), rsVal); // Rd = Rt >> Sa const u32 rdVal = rtVal >> rsVal; const u32 sh = rsVal & 0x1F; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&prtVal, rtVal); Validate(&prsVal, rsVal); double x = prtVal.x; double y = f16Unsign(prtVal.y); psx_value iX; iX.d = rtVal; psx_value iY; iY.d = rtVal; iX.sd = (iX.sd << 16) >> 16; // remove Y iY.sw.l = iX.sw.h; // overwrite x with sign(x) // Shift test values psx_value dX; dX.sd = iX.sd >> sh; psx_value dY; dY.d = iY.d >> sh; if (dX.sw.l != iX.sw.h) x = x / (1 << sh); else x = dX.sw.l; // only sign bits left if (dY.sw.l != iX.sw.h) { if (sh == 16) { x = y; } else if (sh < 16) { x += y * (1 << (16 - sh)); if (g_state.pgxp_gpr[rt(instr)].x < 0) x += 1 << (16 - sh); } else { x += y / (1 << (sh - 16)); } } if ((dY.sw.h == 0) || (dY.sw.h == -1)) y = dY.sw.h; else y = y / (1 << sh); PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; prdVal = prtVal; prdVal.x = static_cast(f16Sign(x)); prdVal.y = static_cast(f16Sign(y)); prdVal.value = rdVal; prdVal.flags |= VALID_TAINTED_Z; } void CPU::PGXP::CPU_SRAV(u32 instr, u32 rtVal, u32 rsVal) { LOG_VALUES_C2(rt(instr), rtVal, rs(instr), rsVal); // Rd = Rt >> Sa const u32 rdVal = static_cast(static_cast(rtVal) >> rsVal); const u32 sh = rsVal & 0x1F; PGXP_value& prtVal = g_state.pgxp_gpr[rt(instr)]; PGXP_value& prsVal = g_state.pgxp_gpr[rs(instr)]; Validate(&prtVal, rtVal); Validate(&prsVal, rsVal); double x = prtVal.x; double y = prtVal.y; psx_value iX; iX.d = rtVal; psx_value iY; iY.d = rtVal; iX.sd = (iX.sd << 16) >> 16; // remove Y iY.sw.l = iX.sw.h; // overwrite x with sign(x) // Shift test values psx_value dX; dX.sd = iX.sd >> sh; psx_value dY; dY.sd = iY.sd >> sh; if (dX.sw.l != iX.sw.h) x = x / (1 << sh); else x = dX.sw.l; // only sign bits left if (dY.sw.l != iX.sw.h) { if (sh == 16) { x = y; } else if (sh < 16) { x += y * (1 << (16 - sh)); if (g_state.pgxp_gpr[rt(instr)].x < 0) x += 1 << (16 - sh); } else { x += y / (1 << (sh - 16)); } } if ((dY.sw.h == 0) || (dY.sw.h == -1)) y = dY.sw.h; else y = y / (1 << sh); PGXP_value& prdVal = g_state.pgxp_gpr[rd(instr)]; prdVal = prtVal; prdVal.x = static_cast(f16Sign(x)); prdVal.y = static_cast(f16Sign(y)); prdVal.value = rdVal; prdVal.flags |= VALID_TAINTED_Z; } void CPU::PGXP::CPU_MFC0(u32 instr, u32 rdVal) { LOG_VALUES_1(TinyString::from_format("cop0_{}", rd(instr)).c_str(), rdVal, &g_state.pgxp_cop0[rd(instr)]); // CPU[Rt] = CP0[Rd] Validate(&g_state.pgxp_cop0[rd(instr)], rdVal); g_state.pgxp_gpr[rt(instr)] = g_state.pgxp_cop0[rd(instr)]; g_state.pgxp_gpr[rt(instr)].value = rdVal; } void CPU::PGXP::CPU_MTC0(u32 instr, u32 rdVal, u32 rtVal) { LOG_VALUES_C1(rt(instr), rtVal); // CP0[Rd] = CPU[Rt] Validate(&g_state.pgxp_gpr[rt(instr)], rtVal); g_state.pgxp_cop0[rd(instr)] = g_state.pgxp_gpr[rt(instr)]; g_state.pgxp_cop0[rd(instr)].value = rdVal; }