#ifndef _SCANLINE_FUNCTIONS_H #define _SCANLINE_FUNCTIONS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // crt-royale-reshade: A port of TroggleMonkey's crt-royale from libretro to ReShade. // Copyright (C) 2020 Alex Gunter // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA /////////////////////////////// BEGIN INCLUDES /////////////////////////////// #include "bind-shader-params.fxh" #include "gamma-management.fxh" #include "special-functions.fxh" //////////////////////////////// END INCLUDES //////////////////////////////// ///////////////////////////// SCANLINE FUNCTIONS ///////////////////////////// float2 round_coord( const float2 c, const float2 starting_position, const float2 bin_size ) { const float2 adj_c = c - starting_position; return c - fmod(adj_c, bin_size) + bin_size * 0.5; } // Use preproc defs for these, so they work for arbitrary choices of float1/2/3/4 #define triangle_wave(t, f) abs(1 - 2*frac((t) * (f))) #define sawtooth_incr_wave(t, f) frac((t) * (f)) // using fmod(-t*f, 1.0) outputs 0 at t == 0, but I want it to output 1 #define sawtooth_decr_wave(t, f) 1 - frac((t) * (f)) struct InterpolationFieldData { float triangle_wave_freq; bool field_parity; bool scanline_parity; bool wrong_field; }; InterpolationFieldData precalc_interpolation_field_data(float2 texcoord) { InterpolationFieldData data; data.triangle_wave_freq = 2; const float field_wave = triangle_wave(texcoord.y + rcp(2*data.triangle_wave_freq), data.triangle_wave_freq * 0.5) * 2 - 1; data.scanline_parity = field_wave >= 0; return data; } InterpolationFieldData calc_interpolation_field_data(float2 texcoord, float scale) { InterpolationFieldData data; data.triangle_wave_freq = scale * rcp(scanline_thickness); // data.triangle_wave_freq = content_size.y * rcp(scanline_thickness); const bool frame_count_parity = (frame_count % 2 == 1) && (scanline_deinterlacing_mode != 1); data.field_parity = (frame_count_parity && !interlace_back_field_first) || (!frame_count_parity && interlace_back_field_first); const float field_wave = triangle_wave(texcoord.y + rcp(2*data.triangle_wave_freq), data.triangle_wave_freq * 0.5) * 2 - 1; data.scanline_parity = field_wave >= 0; const bool wrong_field_raw = (data.scanline_parity && !data.field_parity) || (!data.scanline_parity && data.field_parity); data.wrong_field = enable_interlacing && wrong_field_raw; return data; } float get_gaussian_sigma(const float color, const float sigma_range) { // Requires: Globals: // 1.) gaussian_beam_min_sigma and gaussian_beam_max_sigma are global floats // containing the desired minimum and maximum beam standard // deviations, for dim and bright colors respectively. // 2.) gaussian_beam_max_sigma must be > 0.0 // 3.) gaussian_beam_min_sigma must be in (0.0, gaussian_beam_max_sigma] // 4.) gaussian_beam_spot_power must be defined as a global float. // Parameters: // 1.) color is the underlying source color along a scanline // 2.) sigma_range = gaussian_beam_max_sigma - gaussian_beam_min_sigma; we take // sigma_range as a parameter to avoid repeated computation // when beam_{min, max}_sigma are runtime shader parameters // Optional: Users may set beam_spot_shape_function to 1 to define the // inner f(color) subfunction (see below) as: // f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0)) // Otherwise (technically, if beam_spot_shape_function < 0.5): // f(color) = pow(color, gaussian_beam_spot_power) // Returns: The standard deviation of the Gaussian beam for "color:" // sigma = gaussian_beam_min_sigma + sigma_range * f(color) // Details/Discussion: // The beam's spot shape vaguely resembles an aspect-corrected f() in the // range [0, 1] (not quite, but it's related). f(color) = color makes // spots look like diamonds, and a spherical function or cube balances // between variable width and a soft/realistic shape. A gaussian_beam_spot_power // > 1.0 can produce an ugly spot shape and more initial clipping, but the // final shape also differs based on the horizontal resampling filter and // the phosphor bloom. For instance, resampling horizontally in nonlinear // light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot // shape, but a sixth root is still quite soft. A power function (default // 1.0/3.0 gaussian_beam_spot_power) is most flexible, but a fixed spherical curve // has the highest variability without an awful spot shape. // // gaussian_beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its // difference from gaussian_beam_max_sigma affects beam width variability. It only // affects clipping [for pure Gaussians] if gaussian_beam_spot_power > 1.0 (which is // a conservative estimate for a more complex constraint). // // gaussian_beam_max_sigma affects clipping and increasing scanline width/softness // as color increases. The wider this is, the more scanlines need to be // evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma // at which the first unused scanline always has a weight < 1.0/255.0 is: // num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34 // num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52 // num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70 // num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89 // num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08 // Generalized Gaussians permit more leeway here as steepness increases. if(beam_spot_shape_function < 0.5) { // Use a power function: return gaussian_beam_min_sigma + sigma_range * pow(color, gaussian_beam_spot_power); } else { // Use a spherical function: const float color_minus_1 = color - 1; return gaussian_beam_min_sigma + sigma_range * sqrt(1.0 - color_minus_1*color_minus_1); } } float get_generalized_gaussian_beta(const float color, const float shape_range) { // Requires: Globals: // 1.) gaussian_beam_min_shape and gaussian_beam_max_shape are global floats // containing the desired min/max generalized Gaussian // beta parameters, for dim and bright colors respectively. // 2.) gaussian_beam_max_shape must be >= 2.0 // 3.) gaussian_beam_min_shape must be in [2.0, gaussian_beam_max_shape] // 4.) gaussian_beam_shape_power must be defined as a global float. // Parameters: // 1.) color is the underlying source color along a scanline // 2.) shape_range = gaussian_beam_max_shape - gaussian_beam_min_shape; we take // shape_range as a parameter to avoid repeated computation // when beam_{min, max}_shape are runtime shader parameters // Returns: The type-I generalized Gaussian "shape" parameter beta for // the given color. // Details/Discussion: // Beta affects the scanline distribution as follows: // a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope // b.) beta == 2.0 just degenerates to a Gaussian // c.) beta > 2.0 flattens and widens the peak, then drops off more steeply // than a Gaussian. Whereas high sigmas widen and soften peaks, high // beta widen and sharpen peaks at the risk of aliasing. // Unlike high gaussian_beam_spot_powers, high gaussian_beam_shape_powers actually soften shape // transitions, whereas lower ones sharpen them (at the risk of aliasing). return gaussian_beam_min_shape + shape_range * pow(color, gaussian_beam_shape_power); } float3 get_raw_interpolated_color(const float3 color0, const float3 color1, const float3 color2, const float3 color3, const float4 weights) { // Use max to avoid bizarre artifacts from negative colors: const float4x3 mtrx = float4x3(color0, color1, color2, color3); const float3 m = mul(weights, mtrx); return max(m, 0.0); } float3 get_interpolated_linear_color(const float3 color0, const float3 color1, const float3 color2, const float3 color3, const float4 weights) { // Requires: 1.) Requirements of include/gamma-management.h must be met: // intermediate_gamma must be globally defined, and input // colors are interpreted as linear RGB unless you #define // GAMMA_ENCODE_EVERY_FBO (in which case they are // interpreted as gamma-encoded with intermediate_gamma). // 2.) color0-3 are colors sampled from a texture with tex2D(). // They are interpreted as defined in requirement 1. // 3.) weights contains weights for each color, summing to 1.0. // 4.) beam_horiz_linear_rgb_weight must be defined as a global // float in [0.0, 1.0] describing how much blending should // be done in linear RGB (rest is gamma-corrected RGB). // 5.) _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined // if beam_horiz_linear_rgb_weight is anything other than a // static constant, or we may try branching at runtime // without dynamic branches allowed (slow). // Returns: Return an interpolated color lookup between the four input // colors based on the weights in weights. The final color will // be a linear RGB value, but the blending will be done as // indicated above. const float intermediate_gamma = get_intermediate_gamma(); const float inv_intermediate_gamma = 1.0 / intermediate_gamma; // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the // profile allows dynamic branches (faster than computing extra pows): #if !_RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT #else #if _DRIVERS_ALLOW_DYNAMIC_BRANCHES #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT #endif #endif #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT // beam_horiz_linear_rgb_weight is static, so we can branch: #ifdef GAMMA_ENCODE_EVERY_FBO const float3 gamma_mixed_color = pow( get_raw_interpolated_color(color0, color1, color2, color3, weights), intermediate_gamma); if(beam_horiz_linear_rgb_weight > 0.0) { const float3 linear_mixed_color = get_raw_interpolated_color( pow(color0, intermediate_gamma), pow(color1, intermediate_gamma), pow(color2, intermediate_gamma), pow(color3, intermediate_gamma), weights); return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); } else { return gamma_mixed_color; } #else const float3 linear_mixed_color = get_raw_interpolated_color( color0, color1, color2, color3, weights); if(beam_horiz_linear_rgb_weight < 1.0) { const float3 gamma_mixed_color = get_raw_interpolated_color( pow(color0, inv_intermediate_gamma), pow(color1, inv_intermediate_gamma), pow(color2, inv_intermediate_gamma), pow(color3, inv_intermediate_gamma), weights); return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); } else { return linear_mixed_color; } #endif // GAMMA_ENCODE_EVERY_FBO #else #ifdef GAMMA_ENCODE_EVERY_FBO // Inputs: color0-3 are colors in gamma-encoded RGB. const float3 gamma_mixed_color = pow(get_raw_interpolated_color( color0, color1, color2, color3, weights), intermediate_gamma); const float3 linear_mixed_color = get_raw_interpolated_color( pow(color0, intermediate_gamma), pow(color1, intermediate_gamma), pow(color2, intermediate_gamma), pow(color3, intermediate_gamma), weights); return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); #else // Inputs: color0-3 are colors in linear RGB. const float3 linear_mixed_color = get_raw_interpolated_color( color0, color1, color2, color3, weights); const float3 gamma_mixed_color = get_raw_interpolated_color( pow(color0, inv_intermediate_gamma), pow(color1, inv_intermediate_gamma), pow(color2, inv_intermediate_gamma), pow(color3, inv_intermediate_gamma), weights); // wtf fixme // const float beam_horiz_linear_rgb_weight1 = 1.0; return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight); #endif // GAMMA_ENCODE_EVERY_FBO #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT } float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv, const float2 uv_step_x, const float4 weights) { // Requires: 1.) scanline_uv must be vertically snapped to the caller's // desired line or scanline and horizontally snapped to the // texel just left of the output pixel (color1) // 2.) uv_step_x must contain the horizontal uv distance // between texels. // 3.) weights must contain interpolation filter weights for // color0, color1, color2, and color3, where color1 is just // left of the output pixel. // Returns: Return a horizontally interpolated texture lookup using 2-4 // nearby texels, according to weights and the conventions of // get_interpolated_linear_color(). // We can ignore the outside texture lookups for Quilez resampling. const float3 color1 = tex2D_linearize(tex, scanline_uv, get_input_gamma()).rgb; const float3 color2 = tex2D_linearize(tex, scanline_uv + uv_step_x, get_input_gamma()).rgb; float3 color0 = float3(0.0, 0.0, 0.0); float3 color3 = float3(0.0, 0.0, 0.0); if(beam_horiz_filter > 0.5) { color0 = tex2D_linearize(tex, scanline_uv - uv_step_x, get_input_gamma()).rgb; color3 = tex2D_linearize(tex, scanline_uv + 2.0 * uv_step_x, get_input_gamma()).rgb; } // Sample the texture as-is, whether it's linear or gamma-encoded: // get_interpolated_linear_color() will handle the difference. return get_interpolated_linear_color(color0, color1, color2, color3, weights); } float3 sample_single_scanline_horizontal(const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float2 texture_size_inv) { // TODO: Add function requirements. // Snap to the previous texel and get sample dists from 2/4 nearby texels: const float2 curr_texel = tex_uv * tex_size; // Use under_half to fix a rounding bug right around exact texel locations. const float2 prev_texel = floor(curr_texel - under_half) + 0.5; const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y); const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv; const float prev_dist = curr_texel.x - prev_texel_hor.x; const float4 sample_dists = float4(1.0 + prev_dist, prev_dist, 1.0 - prev_dist, 2.0 - prev_dist); // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels: float4 weights; if (beam_horiz_filter < 0.5) { // None: weights = float4(0, 1, 0, 0); } else if(beam_horiz_filter < 1.5) { // Quilez: const float x = sample_dists.y; const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0); weights = float4(0.0, 1.0 - w2, w2, 0.0); } else if(beam_horiz_filter < 2.5) { // Gaussian: float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma); weights = exp(-(sample_dists*sample_dists)*inner_denom_inv); } else { // Lanczos2: const float4 pi_dists = FIX_ZERO(sample_dists * pi); weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) / (pi_dists * pi_dists); } // Ensure the weight sum == 1.0: const float4 final_weights = weights/dot(weights, float4(1.0, 1.0, 1.0, 1.0)); // Get the interpolated horizontal scanline color: const float2 uv_step_x = float2(texture_size_inv.x, 0.0); return get_scanline_color( tex, prev_texel_hor_uv, uv_step_x, final_weights); } float3 sample_rgb_scanline( const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float2 texture_size_inv ) { if (beam_misconvergence) { const float3 convergence_offsets_rgb_x = get_convergence_offsets_x_vector(); const float3 convergence_offsets_rgb_y = get_convergence_offsets_y_vector(); const float3 offset_u_rgb = convergence_offsets_rgb_x * texture_size_inv.x; const float3 offset_v_rgb = convergence_offsets_rgb_y * texture_size_inv.y; const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, offset_v_rgb.r); const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, offset_v_rgb.g); const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, offset_v_rgb.b); /**/ const float4 sample_r = tex2D(tex, scanline_uv_r); const float4 sample_g = tex2D(tex, scanline_uv_g); const float4 sample_b = tex2D(tex, scanline_uv_b); /**/ /* const float3 sample_r = sample_single_scanline_horizontal( tex, scanline_uv_r, tex_size, texture_size_inv); const float3 sample_g = sample_single_scanline_horizontal( tex, scanline_uv_g, tex_size, texture_size_inv); const float3 sample_b = sample_single_scanline_horizontal( tex, scanline_uv_b, tex_size, texture_size_inv); */ return float3(sample_r.r, sample_g.g, sample_b.b); } else { // return tex2D(tex, tex_uv).rgb; return sample_single_scanline_horizontal(tex, tex_uv, tex_size, texture_size_inv); } } float3 sample_rgb_scanline_horizontal(const sampler2D tex, const float2 tex_uv, const float2 tex_size, const float2 texture_size_inv) { // TODO: Add function requirements. // Rely on a helper to make convergence easier. if(beam_misconvergence) { const float3 convergence_offsets_rgb = get_convergence_offsets_x_vector(); const float3 offset_u_rgb = convergence_offsets_rgb * texture_size_inv.xxx; const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0); const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0); const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0); const float3 sample_r = sample_single_scanline_horizontal( tex, scanline_uv_r, tex_size, texture_size_inv); const float3 sample_g = sample_single_scanline_horizontal( tex, scanline_uv_g, tex_size, texture_size_inv); const float3 sample_b = sample_single_scanline_horizontal( tex, scanline_uv_b, tex_size, texture_size_inv); return float3(sample_r.r, sample_g.g, sample_b.b); } else { return sample_single_scanline_horizontal(tex, tex_uv, tex_size, texture_size_inv); } } float3 get_averaged_scanline_sample( sampler2D tex, const float2 texcoord, const float scanline_start_y, const float v_step_y, const float input_gamma ) { // Sample `scanline_thickness` vertically-contiguous pixels and average them. float3 interpolated_line = 0.0; for (int i = 0; i < scanline_thickness; i++) { float4 coord = float4(texcoord.x, scanline_start_y + i * v_step_y, 0, 0); interpolated_line += tex2Dlod_linearize(tex, coord, input_gamma).rgb; } interpolated_line /= float(scanline_thickness); return interpolated_line; } float get_beam_strength(float dist, float color, const float sigma_range, const float shape_range) { // entry point in original is scanline_contrib() // this is based on scanline_gaussian_sampled_contrib() from original // See scanline_gaussian_integral_contrib() for detailed comments! // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2)) const float sigma = get_gaussian_sigma(color, sigma_range); // Avoid repeated divides: const float sigma_inv = 1.0 / sigma; const float inner_denom_inv = 0.5 * sigma_inv * sigma_inv; const float outer_denom_inv = sigma_inv/sqrt(2.0*pi); return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv; } float get_gaussian_beam_strength( float dist, float color, const float sigma_range, const float shape_range ) { // entry point in original is scanline_contrib() // this is based on scanline_generalized_gaussian_sampled_contrib() from original // See scanline_generalized_gaussian_integral_contrib() for details! // generalized sample = // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta) const float alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); const float beta = get_generalized_gaussian_beta(color, shape_range); // Avoid repeated divides: const float alpha_inv = 1.0 / alpha; const float beta_inv = 1.0 / beta; const float scale = color * beta * 0.5 * alpha_inv / gamma_impl(beta_inv, beta); return scale * exp(-pow(abs(dist*alpha_inv), beta)); } float get_linear_beam_strength( const float dist, const float color, const float num_pixels, const bool interlaced ) { const float p = color * (1 - abs(dist)); return clamp(p, 0, color); } #endif // _SCANLINE_FUNCTIONS_H