#include "gpu_sw.h" #include "YBaseLib/Log.h" #include "YBaseLib/Timer.h" #include "common/gl_texture.h" #include "host_interface.h" #include "system.h" #include Log_SetChannel(GPU_SW); GPU_SW::GPU_SW() { m_vram.fill(0); } GPU_SW::~GPU_SW() = default; bool GPU_SW::Initialize(System* system, DMA* dma, InterruptController* interrupt_controller, Timers* timers) { if (!GPU::Initialize(system, dma, interrupt_controller, timers)) return false; m_display_texture = std::make_unique(VRAM_WIDTH, VRAM_HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE); return true; } void GPU_SW::Reset() { GPU::Reset(); m_vram.fill(0); } void GPU_SW::ReadVRAM(u32 x, u32 y, u32 width, u32 height, void* buffer) { u16* buffer_ptr = static_cast(buffer); for (u32 yoffs = 0; yoffs < height; yoffs++) { u16* src_ptr = GetPixelPtr(x, y + yoffs); std::copy_n(src_ptr, width, buffer_ptr); buffer_ptr += width; } } void GPU_SW::FillVRAM(u32 x, u32 y, u32 width, u32 height, u16 color) { for (u32 yoffs = 0; yoffs < height; yoffs++) std::fill_n(GetPixelPtr(x, y + yoffs), width, color); } void GPU_SW::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data) { const u16* src_ptr = static_cast(data); for (u32 yoffs = 0; yoffs < height; yoffs++) { u16* dst_ptr = GetPixelPtr(x, y + yoffs); std::copy_n(src_ptr, width, dst_ptr); src_ptr += width; } } void GPU_SW::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height) { for (u32 yoffs = 0; yoffs < height; yoffs++) { const u16* src_ptr = GetPixelPtr(src_x, src_y + yoffs); u16* dst_ptr = GetPixelPtr(dst_x, dst_y + yoffs); std::copy_n(src_ptr, width, dst_ptr); } } void GPU_SW::CopyOut15Bit(const u16* src_ptr, u32 src_stride, u32* dst_ptr, u32 dst_stride, u32 width, u32 height) { // OpenGL is beeg silly for lower-left origin dst_ptr = (dst_ptr + ((height - 1) * dst_stride)); for (u32 row = 0; row < height; row++) { const u16* src_row_ptr = src_ptr; u32* dst_row_ptr = dst_ptr; for (u32 col = 0; col < width; col++) *(dst_row_ptr++) = RGBA5551ToRGBA8888(*(src_row_ptr++)); src_ptr += src_stride; dst_ptr -= dst_stride; } } void GPU_SW::CopyOut24Bit(const u16* src_ptr, u32 src_stride, u32* dst_ptr, u32 dst_stride, u32 width, u32 height) { // OpenGL is beeg silly for lower-left origin dst_ptr = (dst_ptr + ((height - 1) * dst_stride)); for (u32 row = 0; row < height; row++) { const u8* src_row_ptr = reinterpret_cast(src_ptr); u32* dst_row_ptr = dst_ptr; // Beware unaligned accesses. for (u32 col = 0; col < width; col++) { // This will fill the alpha channel with junk, but that's okay since we don't use it std::memcpy(dst_row_ptr, src_row_ptr, sizeof(u32)); src_row_ptr += 3; dst_row_ptr++; } src_ptr += src_stride; dst_ptr -= dst_stride; } } void GPU_SW::UpdateDisplay() { // fill display texture m_display_texture_buffer.resize(VRAM_WIDTH * VRAM_HEIGHT); u32 display_width; u32 display_height; float display_aspect_ratio; if (!m_system->GetSettings().debugging.show_vram) { // TODO: Handle interlacing const u32 vram_offset_x = m_crtc_state.regs.X; const u32 vram_offset_y = m_crtc_state.regs.Y; display_width = std::min(m_crtc_state.display_width, VRAM_WIDTH - vram_offset_x); display_height = std::min(m_crtc_state.display_height << BoolToUInt8(m_GPUSTAT.vertical_interlace), VRAM_HEIGHT - vram_offset_y); display_aspect_ratio = m_crtc_state.display_aspect_ratio; if (m_GPUSTAT.display_disable) { m_system->GetHostInterface()->SetDisplayTexture(nullptr, 0, 0, 0, 0, display_aspect_ratio); return; } else if (m_GPUSTAT.display_area_color_depth_24) { CopyOut24Bit(m_vram.data() + vram_offset_y * VRAM_WIDTH + vram_offset_x, VRAM_WIDTH, m_display_texture_buffer.data(), display_width, display_width, display_height); } else { CopyOut15Bit(m_vram.data() + vram_offset_y * VRAM_WIDTH + vram_offset_x, VRAM_WIDTH, m_display_texture_buffer.data(), display_width, display_width, display_height); } } else { display_width = VRAM_WIDTH; display_height = VRAM_HEIGHT; display_aspect_ratio = 1.0f; CopyOut15Bit(m_vram.data(), VRAM_WIDTH, m_display_texture_buffer.data(), display_width, display_width, display_height); } m_display_texture->Bind(); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, display_width, display_height, GL_RGBA, GL_UNSIGNED_BYTE, m_display_texture_buffer.data()); m_system->GetHostInterface()->SetDisplayTexture(m_display_texture.get(), 0, 0, display_width, display_height, display_aspect_ratio); } void GPU_SW::DispatchRenderCommand(RenderCommand rc, u32 num_vertices, const u32* command_ptr) { switch (rc.primitive) { case Primitive::Polygon: { const u32 first_color = rc.color_for_first_vertex; const bool shaded = rc.shading_enable; const bool textured = rc.texture_enable; if (textured) { if (shaded) m_render_state.SetFromPolygonTexcoord(command_ptr[2], command_ptr[5]); else m_render_state.SetFromPolygonTexcoord(command_ptr[2], command_ptr[4]); } else { m_render_state.SetFromPageAttribute(Truncate16(m_GPUSTAT.bits)); } u32 buffer_pos = 1; for (u32 i = 0; i < num_vertices; i++) { SWVertex& vert = m_vertex_buffer[i]; const u32 color_rgb = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color; vert.color_r = Truncate8(color_rgb); vert.color_g = Truncate8(color_rgb >> 8); vert.color_b = Truncate8(color_rgb >> 16); const VertexPosition vp{command_ptr[buffer_pos++]}; vert.x = vp.x; vert.y = vp.y; if (textured) { std::tie(vert.texcoord_x, vert.texcoord_y) = UnpackTexcoord(Truncate16(command_ptr[buffer_pos++])); } else { vert.texcoord_x = 0; vert.texcoord_y = 0; } } DrawTriangle(rc, &m_vertex_buffer[0], &m_vertex_buffer[1], &m_vertex_buffer[2]); if (num_vertices > 3) DrawTriangle(rc, &m_vertex_buffer[2], &m_vertex_buffer[1], &m_vertex_buffer[3]); } break; case Primitive::Rectangle: { u32 buffer_pos = 1; const auto [r, g, b] = UnpackColorRGB24(rc.color_for_first_vertex); const VertexPosition vp{command_ptr[buffer_pos++]}; const u32 texcoord_and_palette = rc.texture_enable ? command_ptr[buffer_pos++] : 0; const auto [texcoord_x, texcoord_y] = UnpackTexcoord(Truncate16(texcoord_and_palette)); m_render_state.SetFromPageAttribute(Truncate16(m_GPUSTAT.bits)); m_render_state.SetFromPaletteAttribute(Truncate16(texcoord_and_palette >> 16)); s32 width; s32 height; switch (rc.rectangle_size) { case DrawRectangleSize::R1x1: width = 1; height = 1; break; case DrawRectangleSize::R8x8: width = 8; height = 8; break; case DrawRectangleSize::R16x16: width = 16; height = 16; break; default: width = static_cast(command_ptr[buffer_pos] & UINT32_C(0xFFFF)); height = static_cast(command_ptr[buffer_pos] >> 16); break; } DrawRectangle(rc, vp.x, vp.y, width, height, r, g, b, texcoord_x, texcoord_y); } break; case Primitive::Line: { } break; default: UnreachableCode(); break; } } bool GPU_SW::IsClockwiseWinding(const SWVertex* v0, const SWVertex* v1, const SWVertex* v2) { const s32 abx = v1->x - v0->x; const s32 aby = v1->y - v0->y; const s32 acx = v2->x - v0->x; const s32 acy = v2->y - v0->y; return ((abx * acy) - (aby * acx) < 0); } static constexpr bool IsTopLeftEdge(s32 ex, s32 ey) { return (ey < 0 || (ey == 0 && ex < 0)); } static constexpr u8 Interpolate(u8 v0, u8 v1, u8 v2, s32 w0, s32 w1, s32 w2, s32 ws) { const s32 v = w0 * static_cast(static_cast(v0)) + w1 * static_cast(static_cast(v1)) + w2 * static_cast(static_cast(v2)); const s32 vd = v / ws; return (vd < 0) ? 0 : ((vd > 0xFF) ? 0xFF : static_cast(vd)); } void GPU_SW::DrawTriangle(RenderCommand rc, const SWVertex* v0, const SWVertex* v1, const SWVertex* v2) { #define orient2d(ax, ay, bx, by, cx, cy) ((bx - ax) * (cy - ay) - (by - ay) * (cx - ax)) // ensure the vertices follow a counter-clockwise order if (IsClockwiseWinding(v0, v1, v2)) std::swap(v1, v2); const s32 px0 = v0->x + m_drawing_offset.x; const s32 py0 = v0->y + m_drawing_offset.y; const s32 px1 = v1->x + m_drawing_offset.x; const s32 py1 = v1->y + m_drawing_offset.y; const s32 px2 = v2->x + m_drawing_offset.x; const s32 py2 = v2->y + m_drawing_offset.y; // Barycentric coordinates at minX/minY corner const s32 ws = orient2d(px0, py0, px1, py1, px2, py2); if (ws == 0) return; // compute bounding box of triangle s32 min_x = std::min(px0, std::min(px1, px2)); s32 max_x = std::max(px0, std::max(px1, px2)); s32 min_y = std::min(py0, std::min(py1, py2)); s32 max_y = std::max(py0, std::max(py1, py2)); // reject triangles which cover the whole vram area if ((max_x - min_x) >= VRAM_WIDTH || (max_y - min_y) >= VRAM_HEIGHT) return; // clip to drawing area min_x = std::clamp(min_x, static_cast(m_drawing_area.left), static_cast(m_drawing_area.right)); max_x = std::clamp(max_x, static_cast(m_drawing_area.left), static_cast(m_drawing_area.right)); min_y = std::clamp(min_y, static_cast(m_drawing_area.top), static_cast(m_drawing_area.bottom)); max_y = std::clamp(max_y, static_cast(m_drawing_area.top), static_cast(m_drawing_area.bottom)); // compute per-pixel increments const s32 a01 = py0 - py1, b01 = px1 - px0; const s32 a12 = py1 - py2, b12 = px2 - px1; const s32 a20 = py2 - py0, b20 = px0 - px2; // top-left edge rule const s32 w0_bias = 0 - s32(IsTopLeftEdge(b12, a12)); const s32 w1_bias = 0 - s32(IsTopLeftEdge(b20, a20)); const s32 w2_bias = 0 - s32(IsTopLeftEdge(b01, a01)); // compute base barycentric coordinates s32 w0 = orient2d(px1, py1, px2, py2, min_x, min_y); s32 w1 = orient2d(px2, py2, px0, py0, min_x, min_y); s32 w2 = orient2d(px0, py0, px1, py1, min_x, min_y); // *exclusive* of max coordinate in PSX for (s32 y = min_y; y <= max_y; y++) { s32 row_w0 = w0; s32 row_w1 = w1; s32 row_w2 = w2; for (s32 x = min_x; x <= max_x; x++) { if (((row_w0 + w0_bias) | (row_w1 + w1_bias) | (row_w2 + w2_bias)) >= 0) { const s32 b0 = row_w0; const s32 b1 = row_w1; const s32 b2 = row_w2; const u8 r = rc.shading_enable ? Interpolate(v0->color_r, v1->color_r, v2->color_r, b0, b1, b2, ws) : v0->color_r; const u8 g = rc.shading_enable ? Interpolate(v0->color_g, v1->color_g, v2->color_g, b0, b1, b2, ws) : v0->color_g; const u8 b = rc.shading_enable ? Interpolate(v0->color_b, v1->color_b, v2->color_b, b0, b1, b2, ws) : v0->color_b; const u8 texcoord_x = Interpolate(v0->texcoord_x, v1->texcoord_x, v2->texcoord_x, b0, b1, b2, ws); const u8 texcoord_y = Interpolate(v0->texcoord_y, v1->texcoord_y, v2->texcoord_y, b0, b1, b2, ws); ShadePixel(rc, static_cast(x), static_cast(y), r, g, b, texcoord_x, texcoord_y, rc.IsDitheringEnabled() && m_GPUSTAT.dither_enable); } row_w0 += a12; row_w1 += a20; row_w2 += a01; } w0 += b12; w1 += b20; w2 += b01; } #undef orient2d } void GPU_SW::DrawRectangle(RenderCommand rc, s32 origin_x, s32 origin_y, u32 width, u32 height, u8 r, u8 g, u8 b, u8 origin_texcoord_x, u8 origin_texcoord_y) { origin_x += m_drawing_offset.x; origin_y += m_drawing_offset.y; for (u32 offset_y = 0; offset_y < height; offset_y++) { const s32 y = origin_y + static_cast(offset_y); if (y < static_cast(m_drawing_area.top) || y > static_cast(m_drawing_area.bottom)) continue; const u8 texcoord_y = Truncate8(ZeroExtend32(origin_texcoord_y) + offset_y); for (u32 offset_x = 0; offset_x < width; offset_x++) { const s32 x = origin_x + static_cast(offset_x); if (x < static_cast(m_drawing_area.left) || x > static_cast(m_drawing_area.right)) continue; const u8 texcoord_x = Truncate8(ZeroExtend32(origin_texcoord_x) + offset_x); ShadePixel(rc, static_cast(x), static_cast(y), r, g, b, texcoord_x, texcoord_y, false); } } } void GPU_SW::ShadePixel(RenderCommand rc, u32 x, u32 y, u8 color_r, u8 color_g, u8 color_b, u8 texcoord_x, u8 texcoord_y, bool dithering) { VRAMPixel color; bool transparent = true; if (rc.texture_enable) { // Apply texture window // TODO: Precompute the second half texcoord_x = (texcoord_x & ~(m_render_state.texture_window_mask_x * 8u)) | ((m_render_state.texture_window_offset_x & m_render_state.texture_window_mask_x) * 8u); texcoord_y = (texcoord_y & ~(m_render_state.texture_window_mask_y * 8u)) | ((m_render_state.texture_window_offset_y & m_render_state.texture_window_mask_y) * 8u); VRAMPixel texture_color; switch (m_render_state.texture_color_mode) { case GPU::TextureMode::Palette4Bit: { const u16 palette_value = GetPixel(std::min(m_render_state.texture_page_x + ZeroExtend32(texcoord_x / 4), VRAM_WIDTH - 1), std::min(m_render_state.texture_page_y + ZeroExtend32(texcoord_y), VRAM_HEIGHT - 1)); const u16 palette_index = (palette_value >> ((texcoord_x % 4) * 4)) & 0x0Fu; texture_color.bits = GetPixel(std::min(m_render_state.texture_palette_x + ZeroExtend32(palette_index), VRAM_WIDTH - 1), m_render_state.texture_palette_y); } break; case GPU::TextureMode::Palette8Bit: { const u16 palette_value = GetPixel(std::min(m_render_state.texture_page_x + ZeroExtend32(texcoord_x / 2), VRAM_WIDTH - 1), std::min(m_render_state.texture_page_y + ZeroExtend32(texcoord_y), VRAM_HEIGHT - 1)); const u16 palette_index = (palette_value >> ((texcoord_x % 2) * 8)) & 0xFFu; texture_color.bits = GetPixel(std::min(m_render_state.texture_palette_x + ZeroExtend32(palette_index), VRAM_WIDTH - 1), m_render_state.texture_palette_y); } break; default: { texture_color.bits = GetPixel(std::min(m_render_state.texture_page_x + ZeroExtend32(texcoord_x), VRAM_WIDTH - 1), std::min(m_render_state.texture_page_y + ZeroExtend32(texcoord_y), VRAM_HEIGHT - 1)); } break; } if (texture_color.bits == 0) return; transparent = texture_color.c; if (rc.raw_texture_enable) { color.bits = texture_color.bits; } else { const u8 r = Truncate8(std::min((ZeroExtend16(texture_color.GetR8()) * ZeroExtend16(color_r)) >> 7, 0xFF)); const u8 g = Truncate8(std::min((ZeroExtend16(texture_color.GetG8()) * ZeroExtend16(color_g)) >> 7, 0xFF)); const u8 b = Truncate8(std::min((ZeroExtend16(texture_color.GetB8()) * ZeroExtend16(color_b)) >> 7, 0xFF)); if (dithering) color.SetRGB24Dithered(x, y, r, g, b); else color.SetRGB24(r, g, b); } } else { if (dithering) color.SetRGB24Dithered(x, y, color_r, color_g, color_b); else color.SetRGB24(color_r, color_g, color_b); } if (rc.transparency_enable && transparent) { const VRAMPixel bg_color{GetPixel(static_cast(x), static_cast(y))}; #define BLEND_AVERAGE(bg, fg) Truncate8(std::min((ZeroExtend32(bg) / 2) + (ZeroExtend32(fg) / 2), 0x1F)) #define BLEND_ADD(bg, fg) Truncate8(std::min(ZeroExtend32(bg) + ZeroExtend32(fg), 0x1F)) #define BLEND_SUBTRACT(bg, fg) Truncate8((bg > fg) ? ((bg) - (fg)) : 0) #define BLEND_QUARTER(bg, fg) Truncate8(std::min(ZeroExtend32(bg) + ZeroExtend32(fg / 4), 0x1F)) #define BLEND_RGB(func) \ color.Set(func(bg_color.r.GetValue(), color.r.GetValue()), func(bg_color.g.GetValue(), color.g.GetValue()), \ func(bg_color.b.GetValue(), color.b.GetValue()), color.c.GetValue()) switch (m_render_state.transparency_mode) { case GPU::TransparencyMode::HalfBackgroundPlusHalfForeground: BLEND_RGB(BLEND_AVERAGE); break; case GPU::TransparencyMode::BackgroundPlusForeground: BLEND_RGB(BLEND_ADD); break; case GPU::TransparencyMode::BackgroundMinusForeground: BLEND_RGB(BLEND_SUBTRACT); break; case GPU::TransparencyMode::BackgroundPlusQuarterForeground: BLEND_RGB(BLEND_QUARTER); break; default: break; } #undef BLEND_RGB #undef BLEND_QUARTER #undef BLEND_SUBTRACT #undef BLEND_ADD #undef BLEND_AVERAGE } SetPixel(static_cast(x), static_cast(y), color.bits); } std::unique_ptr GPU::CreateSoftwareRenderer() { return std::make_unique(); }