/* * xxHash - Extremely Fast Hash algorithm * Copyright (C) 2020 Yann Collet * * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You can contact the author at: * - xxHash homepage: https://www.xxhash.com * - xxHash source repository: https://github.com/Cyan4973/xxHash */ /*! * @file xxh_x86dispatch.c * * Automatic dispatcher code for the @ref xxh3_family on x86-based targets. * * Optional add-on. * * **Compile this file with the default flags for your target.** Do not compile * with flags like `-mavx*`, `-march=native`, or `/arch:AVX*`, there will be * an error. See @ref XXH_X86DISPATCH_ALLOW_AVX for details. * * @defgroup dispatch x86 Dispatcher * @{ */ #if defined (__cplusplus) extern "C" { #endif #if defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64) /*! * @def XXH_X86DISPATCH_ALLOW_AVX * @brief Disables the AVX sanity check. * * Don't compile xxh_x86dispatch.c with options like `-mavx*`, `-march=native`, * or `/arch:AVX*`. It is intended to be compiled for the minimum target, and * it selectively enables SSE2, AVX2, and AVX512 when it is needed. * * Using this option _globally_ allows this feature, and therefore makes it * undefined behavior to execute on any CPU without said feature. * * Even if the source code isn't directly using AVX intrinsics in a function, * the compiler can still generate AVX code from autovectorization and by * "upgrading" SSE2 intrinsics to use the VEX prefixes (a.k.a. AVX128). * * Use the same flags that you use to compile the rest of the program; this * file will safely generate SSE2, AVX2, and AVX512 without these flags. * * Define XXH_X86DISPATCH_ALLOW_AVX to ignore this check, and feel free to open * an issue if there is a target in the future where AVX is a default feature. */ #ifdef XXH_DOXYGEN # define XXH_X86DISPATCH_ALLOW_AVX #endif #if defined(__AVX__) && !defined(XXH_X86DISPATCH_ALLOW_AVX) # error "Do not compile xxh_x86dispatch.c with AVX enabled! See the comment above." #endif #ifdef __has_include # define XXH_HAS_INCLUDE(header) __has_include(header) #else # define XXH_HAS_INCLUDE(header) 0 #endif /*! * @def XXH_DISPATCH_SCALAR * @brief Enables/dispatching the scalar code path. * * If this is defined to 0, SSE2 support is assumed. This reduces code size * when the scalar path is not needed. * * This is automatically defined to 0 when... * - SSE2 support is enabled in the compiler * - Targeting x86_64 * - Targeting Android x86 * - Targeting macOS */ #ifndef XXH_DISPATCH_SCALAR # if defined(__SSE2__) || (defined(_M_IX86_FP) && _M_IX86_FP >= 2) /* SSE2 on by default */ \ || defined(__x86_64__) || defined(_M_X64) /* x86_64 */ \ || defined(__ANDROID__) || defined(__APPLEv__) /* Android or macOS */ # define XXH_DISPATCH_SCALAR 0 /* disable */ # else # define XXH_DISPATCH_SCALAR 1 # endif #endif /*! * @def XXH_DISPATCH_AVX2 * @brief Enables/disables dispatching for AVX2. * * This is automatically detected if it is not defined. * - GCC 4.7 and later are known to support AVX2, but >4.9 is required for * to get the AVX2 intrinsics and typedefs without -mavx -mavx2. * - Visual Studio 2013 Update 2 and later are known to support AVX2. * - The GCC/Clang internal header `` is detected. While this is * not allowed to be included directly, it still appears in the builtin * include path and is detectable with `__has_include`. * * @see XXH_AVX2 */ #ifndef XXH_DISPATCH_AVX2 # if (defined(__GNUC__) && (__GNUC__ > 4)) /* GCC 5.0+ */ \ || (defined(_MSC_VER) && _MSC_VER >= 1900 && !defined(__clang__)) /* VS 2015+ */ \ || (defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 180030501 && !defined(__clang__)) /* VS 2013 Update 2 */ \ || (XXH_HAS_INCLUDE() && !defined(_MSC_VER)) /* GCC/Clang internal header */ # define XXH_DISPATCH_AVX2 1 /* enable dispatch towards AVX2 */ # else # define XXH_DISPATCH_AVX2 0 # endif #endif /* XXH_DISPATCH_AVX2 */ /*! * @def XXH_DISPATCH_AVX512 * @brief Enables/disables dispatching for AVX512. * * Automatically detected if one of the following conditions is met: * - GCC 4.9 and later are known to support AVX512. * - Visual Studio 2017 and later are known to support AVX2. * - The GCC/Clang internal header `` is detected. While this * is not allowed to be included directly, it still appears in the builtin * include path and is detectable with `__has_include`. * * @see XXH_AVX512 */ #ifndef XXH_DISPATCH_AVX512 # if (defined(__GNUC__) \ && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9))) /* GCC 4.9+ */ \ || (defined(_MSC_VER) && _MSC_VER >= 1910 && !defined(__clang__)) /* VS 2017+ */ \ || (XXH_HAS_INCLUDE() && !defined(_MSC_VER)) /* GCC/Clang internal header */ # define XXH_DISPATCH_AVX512 1 /* enable dispatch towards AVX512 */ # else # define XXH_DISPATCH_AVX512 0 # endif #endif /* XXH_DISPATCH_AVX512 */ /*! * @def XXH_TARGET_SSE2 * @brief Allows a function to be compiled with SSE2 intrinsics. * * Uses `__attribute__((__target__("sse2")))` on GCC to allow SSE2 to be used * even with `-mno-sse2`. * * @def XXH_TARGET_AVX2 * @brief Like @ref XXH_TARGET_SSE2, but for AVX2. * * @def XXH_TARGET_AVX512 * @brief Like @ref XXH_TARGET_SSE2, but for AVX512. */ #if defined(__GNUC__) # include /* SSE2 */ # if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512 # include /* AVX2, AVX512F */ # endif # define XXH_TARGET_SSE2 __attribute__((__target__("sse2"))) # define XXH_TARGET_AVX2 __attribute__((__target__("avx2"))) # define XXH_TARGET_AVX512 __attribute__((__target__("avx512f"))) #elif defined(_MSC_VER) # include # define XXH_TARGET_SSE2 # define XXH_TARGET_AVX2 # define XXH_TARGET_AVX512 #else # error "Dispatching is currently not supported for your compiler." #endif #ifdef XXH_DISPATCH_DEBUG /* debug logging */ # include # define XXH_debugPrint(str) { fprintf(stderr, "DEBUG: xxHash dispatch: %s \n", str); fflush(NULL); } #else # define XXH_debugPrint(str) ((void)0) # undef NDEBUG /* avoid redefinition */ # define NDEBUG #endif #include #define XXH_INLINE_ALL #define XXH_X86DISPATCH #include "xxhash.h" /* * Support both AT&T and Intel dialects * * GCC doesn't convert AT&T syntax to Intel syntax, and will error out if * compiled with -masm=intel. Instead, it supports dialect switching with * curly braces: { AT&T syntax | Intel syntax } * * Clang's integrated assembler automatically converts AT&T syntax to Intel if * needed, making the dialect switching useless (it isn't even supported). * * Note: Comments are written in the inline assembly itself. */ #ifdef __clang__ # define XXH_I_ATT(intel, att) att "\n\t" #else # define XXH_I_ATT(intel, att) "{" att "|" intel "}\n\t" #endif /*! * @internal * @brief Runs CPUID. * * @param eax, ecx The parameters to pass to CPUID, %eax and %ecx respectively. * @param abcd The array to store the result in, `{ eax, ebx, ecx, edx }` */ static void XXH_cpuid(xxh_u32 eax, xxh_u32 ecx, xxh_u32* abcd) { #if defined(_MSC_VER) __cpuidex(abcd, eax, ecx); #else xxh_u32 ebx, edx; # if defined(__i386__) && defined(__PIC__) __asm__( "# Call CPUID\n\t" "#\n\t" "# On 32-bit x86 with PIC enabled, we are not allowed to overwrite\n\t" "# EBX, so we use EDI instead.\n\t" XXH_I_ATT("mov edi, ebx", "movl %%ebx, %%edi") XXH_I_ATT("cpuid", "cpuid" ) XXH_I_ATT("xchg edi, ebx", "xchgl %%ebx, %%edi") : "=D" (ebx), # else __asm__( "# Call CPUID\n\t" XXH_I_ATT("cpuid", "cpuid") : "=b" (ebx), # endif "+a" (eax), "+c" (ecx), "=d" (edx)); abcd[0] = eax; abcd[1] = ebx; abcd[2] = ecx; abcd[3] = edx; #endif } /* * Modified version of Intel's guide * https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family */ #if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512 /*! * @internal * @brief Runs `XGETBV`. * * While the CPU may support AVX2, the operating system might not properly save * the full YMM/ZMM registers. * * xgetbv is used for detecting this: Any compliant operating system will define * a set of flags in the xcr0 register indicating how it saves the AVX registers. * * You can manually disable this flag on Windows by running, as admin: * * bcdedit.exe /set xsavedisable 1 * * and rebooting. Run the same command with 0 to re-enable it. */ static xxh_u64 XXH_xgetbv(void) { #if defined(_MSC_VER) return _xgetbv(0); /* min VS2010 SP1 compiler is required */ #else xxh_u32 xcr0_lo, xcr0_hi; __asm__( "# Call XGETBV\n\t" "#\n\t" "# Older assemblers (e.g. macOS's ancient GAS version) don't support\n\t" "# the XGETBV opcode, so we encode it by hand instead.\n\t" "# See for details.\n\t" ".byte 0x0f, 0x01, 0xd0\n\t" : "=a" (xcr0_lo), "=d" (xcr0_hi) : "c" (0)); return xcr0_lo | ((xxh_u64)xcr0_hi << 32); #endif } #endif #define XXH_SSE2_CPUID_MASK (1 << 26) #define XXH_OSXSAVE_CPUID_MASK ((1 << 26) | (1 << 27)) #define XXH_AVX2_CPUID_MASK (1 << 5) #define XXH_AVX2_XGETBV_MASK ((1 << 2) | (1 << 1)) #define XXH_AVX512F_CPUID_MASK (1 << 16) #define XXH_AVX512F_XGETBV_MASK ((7 << 5) | (1 << 2) | (1 << 1)) /*! * @internal * @brief Returns the best XXH3 implementation. * * Runs various CPUID/XGETBV tests to try and determine the best implementation. * * @ret The best @ref XXH_VECTOR implementation. * @see XXH_VECTOR_TYPES */ static int XXH_featureTest(void) { xxh_u32 abcd[4]; xxh_u32 max_leaves; int best = XXH_SCALAR; #if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512 xxh_u64 xgetbv_val; #endif #if defined(__GNUC__) && defined(__i386__) xxh_u32 cpuid_supported; __asm__( "# For the sake of ruthless backwards compatibility, check if CPUID\n\t" "# is supported in the EFLAGS on i386.\n\t" "# This is not necessary on x86_64 - CPUID is mandatory.\n\t" "# The ID flag (bit 21) in the EFLAGS register indicates support\n\t" "# for the CPUID instruction. If a software procedure can set and\n\t" "# clear this flag, the processor executing the procedure supports\n\t" "# the CPUID instruction.\n\t" "# \n\t" "#\n\t" "# Routine is from .\n\t" "# Save EFLAGS\n\t" XXH_I_ATT("pushfd", "pushfl" ) "# Store EFLAGS\n\t" XXH_I_ATT("pushfd", "pushfl" ) "# Invert the ID bit in stored EFLAGS\n\t" XXH_I_ATT("xor dword ptr[esp], 0x200000", "xorl $0x200000, (%%esp)") "# Load stored EFLAGS (with ID bit inverted)\n\t" XXH_I_ATT("popfd", "popfl" ) "# Store EFLAGS again (ID bit may or not be inverted)\n\t" XXH_I_ATT("pushfd", "pushfl" ) "# eax = modified EFLAGS (ID bit may or may not be inverted)\n\t" XXH_I_ATT("pop eax", "popl %%eax" ) "# eax = whichever bits were changed\n\t" XXH_I_ATT("xor eax, dword ptr[esp]", "xorl (%%esp), %%eax" ) "# Restore original EFLAGS\n\t" XXH_I_ATT("popfd", "popfl" ) "# eax = zero if ID bit can't be changed, else non-zero\n\t" XXH_I_ATT("and eax, 0x200000", "andl $0x200000, %%eax" ) : "=a" (cpuid_supported) :: "cc"); if (XXH_unlikely(!cpuid_supported)) { XXH_debugPrint("CPUID support is not detected!"); return best; } #endif /* Check how many CPUID pages we have */ XXH_cpuid(0, 0, abcd); max_leaves = abcd[0]; /* Shouldn't happen on hardware, but happens on some QEMU configs. */ if (XXH_unlikely(max_leaves == 0)) { XXH_debugPrint("Max CPUID leaves == 0!"); return best; } /* Check for SSE2, OSXSAVE and xgetbv */ XXH_cpuid(1, 0, abcd); /* * Test for SSE2. The check is redundant on x86_64, but it doesn't hurt. */ if (XXH_unlikely((abcd[3] & XXH_SSE2_CPUID_MASK) != XXH_SSE2_CPUID_MASK)) return best; XXH_debugPrint("SSE2 support detected."); best = XXH_SSE2; #if XXH_DISPATCH_AVX2 || XXH_DISPATCH_AVX512 /* Make sure we have enough leaves */ if (XXH_unlikely(max_leaves < 7)) return best; /* Test for OSXSAVE and XGETBV */ if ((abcd[2] & XXH_OSXSAVE_CPUID_MASK) != XXH_OSXSAVE_CPUID_MASK) return best; /* CPUID check for AVX features */ XXH_cpuid(7, 0, abcd); xgetbv_val = XXH_xgetbv(); #if XXH_DISPATCH_AVX2 /* Validate that AVX2 is supported by the CPU */ if ((abcd[1] & XXH_AVX2_CPUID_MASK) != XXH_AVX2_CPUID_MASK) return best; /* Validate that the OS supports YMM registers */ if ((xgetbv_val & XXH_AVX2_XGETBV_MASK) != XXH_AVX2_XGETBV_MASK) { XXH_debugPrint("AVX2 supported by the CPU, but not the OS."); return best; } /* AVX2 supported */ XXH_debugPrint("AVX2 support detected."); best = XXH_AVX2; #endif #if XXH_DISPATCH_AVX512 /* Check if AVX512F is supported by the CPU */ if ((abcd[1] & XXH_AVX512F_CPUID_MASK) != XXH_AVX512F_CPUID_MASK) { XXH_debugPrint("AVX512F not supported by CPU"); return best; } /* Validate that the OS supports ZMM registers */ if ((xgetbv_val & XXH_AVX512F_XGETBV_MASK) != XXH_AVX512F_XGETBV_MASK) { XXH_debugPrint("AVX512F supported by the CPU, but not the OS."); return best; } /* AVX512F supported */ XXH_debugPrint("AVX512F support detected."); best = XXH_AVX512; #endif #endif return best; } /* === Vector implementations === */ /*! * @internal * @brief Defines the various dispatch functions. * * TODO: Consolidate? * * @param suffix The suffix for the functions, e.g. sse2 or scalar * @param target XXH_TARGET_* or empty. */ #define XXH_DEFINE_DISPATCH_FUNCS(suffix, target) \ \ /* === XXH3, default variants === */ \ \ XXH_NO_INLINE target XXH64_hash_t \ XXHL64_default_##suffix(const void* XXH_RESTRICT input, size_t len) \ { \ return XXH3_hashLong_64b_internal( \ input, len, XXH3_kSecret, sizeof(XXH3_kSecret), \ XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix \ ); \ } \ \ /* === XXH3, Seeded variants === */ \ \ XXH_NO_INLINE target XXH64_hash_t \ XXHL64_seed_##suffix(const void* XXH_RESTRICT input, size_t len, \ XXH64_hash_t seed) \ { \ return XXH3_hashLong_64b_withSeed_internal( \ input, len, seed, XXH3_accumulate_512_##suffix, \ XXH3_scrambleAcc_##suffix, XXH3_initCustomSecret_##suffix \ ); \ } \ \ /* === XXH3, Secret variants === */ \ \ XXH_NO_INLINE target XXH64_hash_t \ XXHL64_secret_##suffix(const void* XXH_RESTRICT input, size_t len, \ const void* secret, size_t secretLen) \ { \ return XXH3_hashLong_64b_internal( \ input, len, secret, secretLen, \ XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix \ ); \ } \ \ /* === XXH3 update variants === */ \ \ XXH_NO_INLINE target XXH_errorcode \ XXH3_update_##suffix(XXH3_state_t* state, const void* input, size_t len) \ { \ return XXH3_update(state, (const xxh_u8*)input, len, \ XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix); \ } \ \ /* === XXH128 default variants === */ \ \ XXH_NO_INLINE target XXH128_hash_t \ XXHL128_default_##suffix(const void* XXH_RESTRICT input, size_t len) \ { \ return XXH3_hashLong_128b_internal( \ input, len, XXH3_kSecret, sizeof(XXH3_kSecret), \ XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix \ ); \ } \ \ /* === XXH128 Secret variants === */ \ \ XXH_NO_INLINE target XXH128_hash_t \ XXHL128_secret_##suffix(const void* XXH_RESTRICT input, size_t len, \ const void* XXH_RESTRICT secret, size_t secretLen) \ { \ return XXH3_hashLong_128b_internal( \ input, len, (const xxh_u8*)secret, secretLen, \ XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix); \ } \ \ /* === XXH128 Seeded variants === */ \ \ XXH_NO_INLINE target XXH128_hash_t \ XXHL128_seed_##suffix(const void* XXH_RESTRICT input, size_t len, \ XXH64_hash_t seed) \ { \ return XXH3_hashLong_128b_withSeed_internal(input, len, seed, \ XXH3_accumulate_512_##suffix, XXH3_scrambleAcc_##suffix, \ XXH3_initCustomSecret_##suffix); \ } /* End XXH_DEFINE_DISPATCH_FUNCS */ #if XXH_DISPATCH_SCALAR XXH_DEFINE_DISPATCH_FUNCS(scalar, /* nothing */) #endif XXH_DEFINE_DISPATCH_FUNCS(sse2, XXH_TARGET_SSE2) #if XXH_DISPATCH_AVX2 XXH_DEFINE_DISPATCH_FUNCS(avx2, XXH_TARGET_AVX2) #endif #if XXH_DISPATCH_AVX512 XXH_DEFINE_DISPATCH_FUNCS(avx512, XXH_TARGET_AVX512) #endif #undef XXH_DEFINE_DISPATCH_FUNCS /* ==== Dispatchers ==== */ typedef XXH64_hash_t (*XXH3_dispatchx86_hashLong64_default)(const void* XXH_RESTRICT, size_t); typedef XXH64_hash_t (*XXH3_dispatchx86_hashLong64_withSeed)(const void* XXH_RESTRICT, size_t, XXH64_hash_t); typedef XXH64_hash_t (*XXH3_dispatchx86_hashLong64_withSecret)(const void* XXH_RESTRICT, size_t, const void* XXH_RESTRICT, size_t); typedef XXH_errorcode (*XXH3_dispatchx86_update)(XXH3_state_t*, const void*, size_t); typedef struct { XXH3_dispatchx86_hashLong64_default hashLong64_default; XXH3_dispatchx86_hashLong64_withSeed hashLong64_seed; XXH3_dispatchx86_hashLong64_withSecret hashLong64_secret; XXH3_dispatchx86_update update; } XXH_dispatchFunctions_s; #define XXH_NB_DISPATCHES 4 /*! * @internal * @brief Table of dispatchers for @ref XXH3_64bits(). * * @pre The indices must match @ref XXH_VECTOR_TYPE. */ static const XXH_dispatchFunctions_s XXH_kDispatch[XXH_NB_DISPATCHES] = { #if XXH_DISPATCH_SCALAR /* Scalar */ { XXHL64_default_scalar, XXHL64_seed_scalar, XXHL64_secret_scalar, XXH3_update_scalar }, #else /* Scalar */ { NULL, NULL, NULL, NULL }, #endif /* SSE2 */ { XXHL64_default_sse2, XXHL64_seed_sse2, XXHL64_secret_sse2, XXH3_update_sse2 }, #if XXH_DISPATCH_AVX2 /* AVX2 */ { XXHL64_default_avx2, XXHL64_seed_avx2, XXHL64_secret_avx2, XXH3_update_avx2 }, #else /* AVX2 */ { NULL, NULL, NULL, NULL }, #endif #if XXH_DISPATCH_AVX512 /* AVX512 */ { XXHL64_default_avx512, XXHL64_seed_avx512, XXHL64_secret_avx512, XXH3_update_avx512 } #else /* AVX512 */ { NULL, NULL, NULL, NULL } #endif }; /*! * @internal * @brief The selected dispatch table for @ref XXH3_64bits(). */ static XXH_dispatchFunctions_s XXH_g_dispatch = { NULL, NULL, NULL, NULL }; typedef XXH128_hash_t (*XXH3_dispatchx86_hashLong128_default)(const void* XXH_RESTRICT, size_t); typedef XXH128_hash_t (*XXH3_dispatchx86_hashLong128_withSeed)(const void* XXH_RESTRICT, size_t, XXH64_hash_t); typedef XXH128_hash_t (*XXH3_dispatchx86_hashLong128_withSecret)(const void* XXH_RESTRICT, size_t, const void* XXH_RESTRICT, size_t); typedef struct { XXH3_dispatchx86_hashLong128_default hashLong128_default; XXH3_dispatchx86_hashLong128_withSeed hashLong128_seed; XXH3_dispatchx86_hashLong128_withSecret hashLong128_secret; XXH3_dispatchx86_update update; } XXH_dispatch128Functions_s; /*! * @internal * @brief Table of dispatchers for @ref XXH3_128bits(). * * @pre The indices must match @ref XXH_VECTOR_TYPE. */ static const XXH_dispatch128Functions_s XXH_kDispatch128[XXH_NB_DISPATCHES] = { #if XXH_DISPATCH_SCALAR /* Scalar */ { XXHL128_default_scalar, XXHL128_seed_scalar, XXHL128_secret_scalar, XXH3_update_scalar }, #else /* Scalar */ { NULL, NULL, NULL, NULL }, #endif /* SSE2 */ { XXHL128_default_sse2, XXHL128_seed_sse2, XXHL128_secret_sse2, XXH3_update_sse2 }, #if XXH_DISPATCH_AVX2 /* AVX2 */ { XXHL128_default_avx2, XXHL128_seed_avx2, XXHL128_secret_avx2, XXH3_update_avx2 }, #else /* AVX2 */ { NULL, NULL, NULL, NULL }, #endif #if XXH_DISPATCH_AVX512 /* AVX512 */ { XXHL128_default_avx512, XXHL128_seed_avx512, XXHL128_secret_avx512, XXH3_update_avx512 } #else /* AVX512 */ { NULL, NULL, NULL, NULL } #endif }; /*! * @internal * @brief The selected dispatch table for @ref XXH3_64bits(). */ static XXH_dispatch128Functions_s XXH_g_dispatch128 = { NULL, NULL, NULL, NULL }; /*! * @internal * @brief Runs a CPUID check and sets the correct dispatch tables. */ static void XXH_setDispatch(void) { int vecID = XXH_featureTest(); XXH_STATIC_ASSERT(XXH_AVX512 == XXH_NB_DISPATCHES-1); assert(XXH_SCALAR <= vecID && vecID <= XXH_AVX512); #if !XXH_DISPATCH_SCALAR assert(vecID != XXH_SCALAR); #endif #if !XXH_DISPATCH_AVX512 assert(vecID != XXH_AVX512); #endif #if !XXH_DISPATCH_AVX2 assert(vecID != XXH_AVX2); #endif XXH_g_dispatch = XXH_kDispatch[vecID]; XXH_g_dispatch128 = XXH_kDispatch128[vecID]; } /* ==== XXH3 public functions ==== */ static XXH64_hash_t XXH3_hashLong_64b_defaultSecret_selection(const void* input, size_t len, XXH64_hash_t seed64, const xxh_u8* secret, size_t secretLen) { (void)seed64; (void)secret; (void)secretLen; if (XXH_g_dispatch.hashLong64_default == NULL) XXH_setDispatch(); return XXH_g_dispatch.hashLong64_default(input, len); } XXH64_hash_t XXH3_64bits_dispatch(const void* input, size_t len) { return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_defaultSecret_selection); } static XXH64_hash_t XXH3_hashLong_64b_withSeed_selection(const void* input, size_t len, XXH64_hash_t seed64, const xxh_u8* secret, size_t secretLen) { (void)secret; (void)secretLen; if (XXH_g_dispatch.hashLong64_seed == NULL) XXH_setDispatch(); return XXH_g_dispatch.hashLong64_seed(input, len, seed64); } XXH64_hash_t XXH3_64bits_withSeed_dispatch(const void* input, size_t len, XXH64_hash_t seed) { return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed_selection); } static XXH64_hash_t XXH3_hashLong_64b_withSecret_selection(const void* input, size_t len, XXH64_hash_t seed64, const xxh_u8* secret, size_t secretLen) { (void)seed64; if (XXH_g_dispatch.hashLong64_secret == NULL) XXH_setDispatch(); return XXH_g_dispatch.hashLong64_secret(input, len, secret, secretLen); } XXH64_hash_t XXH3_64bits_withSecret_dispatch(const void* input, size_t len, const void* secret, size_t secretLen) { return XXH3_64bits_internal(input, len, 0, secret, secretLen, XXH3_hashLong_64b_withSecret_selection); } XXH_errorcode XXH3_64bits_update_dispatch(XXH3_state_t* state, const void* input, size_t len) { if (XXH_g_dispatch.update == NULL) XXH_setDispatch(); return XXH_g_dispatch.update(state, (const xxh_u8*)input, len); } /* ==== XXH128 public functions ==== */ static XXH128_hash_t XXH3_hashLong_128b_defaultSecret_selection(const void* input, size_t len, XXH64_hash_t seed64, const void* secret, size_t secretLen) { (void)seed64; (void)secret; (void)secretLen; if (XXH_g_dispatch128.hashLong128_default == NULL) XXH_setDispatch(); return XXH_g_dispatch128.hashLong128_default(input, len); } XXH128_hash_t XXH3_128bits_dispatch(const void* input, size_t len) { return XXH3_128bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_128b_defaultSecret_selection); } static XXH128_hash_t XXH3_hashLong_128b_withSeed_selection(const void* input, size_t len, XXH64_hash_t seed64, const void* secret, size_t secretLen) { (void)secret; (void)secretLen; if (XXH_g_dispatch128.hashLong128_seed == NULL) XXH_setDispatch(); return XXH_g_dispatch128.hashLong128_seed(input, len, seed64); } XXH128_hash_t XXH3_128bits_withSeed_dispatch(const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_128b_withSeed_selection); } static XXH128_hash_t XXH3_hashLong_128b_withSecret_selection(const void* input, size_t len, XXH64_hash_t seed64, const void* secret, size_t secretLen) { (void)seed64; if (XXH_g_dispatch128.hashLong128_secret == NULL) XXH_setDispatch(); return XXH_g_dispatch128.hashLong128_secret(input, len, secret, secretLen); } XXH128_hash_t XXH3_128bits_withSecret_dispatch(const void* input, size_t len, const void* secret, size_t secretLen) { return XXH3_128bits_internal(input, len, 0, secret, secretLen, XXH3_hashLong_128b_withSecret_selection); } XXH_errorcode XXH3_128bits_update_dispatch(XXH3_state_t* state, const void* input, size_t len) { if (XXH_g_dispatch128.update == NULL) XXH_setDispatch(); return XXH_g_dispatch128.update(state, (const xxh_u8*)input, len); } #endif // defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64) #if defined (__cplusplus) } #endif /*! @} */