#pragma once
#ifndef CPUINFO_H
#define CPUINFO_H

#ifndef __cplusplus
	#include <stdbool.h>
#endif

#ifdef __APPLE__
	#include <TargetConditionals.h>
#endif

#include <stdint.h>

/* Identify architecture and define corresponding macro */

#if defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || defined(_M_IX86)
	#define CPUINFO_ARCH_X86 1
#endif

#if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || defined(_M_AMD64)
	#define CPUINFO_ARCH_X86_64 1
#endif

#if defined(__arm__) || defined(_M_ARM)
	#define CPUINFO_ARCH_ARM 1
#endif

#if defined(__aarch64__) || defined(_M_ARM64)
	#define CPUINFO_ARCH_ARM64 1
#endif

#if defined(__PPC64__) || defined(__powerpc64__) || defined(_ARCH_PPC64)
	#define CPUINFO_ARCH_PPC64 1
#endif

#if defined(__asmjs__)
	#define CPUINFO_ARCH_ASMJS 1
#endif

#if defined(__wasm__)
	#if defined(__wasm_simd128__)
		#define CPUINFO_ARCH_WASMSIMD 1
	#else
		#define CPUINFO_ARCH_WASM 1
	#endif
#endif

/* Define other architecture-specific macros as 0 */

#ifndef CPUINFO_ARCH_X86
	#define CPUINFO_ARCH_X86 0
#endif

#ifndef CPUINFO_ARCH_X86_64
	#define CPUINFO_ARCH_X86_64 0
#endif

#ifndef CPUINFO_ARCH_ARM
	#define CPUINFO_ARCH_ARM 0
#endif

#ifndef CPUINFO_ARCH_ARM64
	#define CPUINFO_ARCH_ARM64 0
#endif

#ifndef CPUINFO_ARCH_PPC64
	#define CPUINFO_ARCH_PPC64 0
#endif

#ifndef CPUINFO_ARCH_ASMJS
	#define CPUINFO_ARCH_ASMJS 0
#endif

#ifndef CPUINFO_ARCH_WASM
	#define CPUINFO_ARCH_WASM 0
#endif

#ifndef CPUINFO_ARCH_WASMSIMD
	#define CPUINFO_ARCH_WASMSIMD 0
#endif

#if CPUINFO_ARCH_X86 && defined(_MSC_VER)
	#define CPUINFO_ABI __cdecl
#elif CPUINFO_ARCH_X86 && defined(__GNUC__)
	#define CPUINFO_ABI __attribute__((__cdecl__))
#else
	#define CPUINFO_ABI
#endif

#define CPUINFO_CACHE_UNIFIED          0x00000001
#define CPUINFO_CACHE_INCLUSIVE        0x00000002
#define CPUINFO_CACHE_COMPLEX_INDEXING 0x00000004

struct cpuinfo_cache {
	/** Cache size in bytes */
	uint32_t size;
	/** Number of ways of associativity */
	uint32_t associativity;
	/** Number of sets */
	uint32_t sets;
	/** Number of partitions */
	uint32_t partitions;
	/** Line size in bytes */
	uint32_t line_size;
	/**
	 * Binary characteristics of the cache (unified cache, inclusive cache, cache with complex indexing).
	 *
	 * @see CPUINFO_CACHE_UNIFIED, CPUINFO_CACHE_INCLUSIVE, CPUINFO_CACHE_COMPLEX_INDEXING
	 */
	uint32_t flags;
	/** Index of the first logical processor that shares this cache */
	uint32_t processor_start;
	/** Number of logical processors that share this cache */
	uint32_t processor_count;
};

struct cpuinfo_trace_cache {
	uint32_t uops;
	uint32_t associativity;
};

#define CPUINFO_PAGE_SIZE_4KB  0x1000
#define CPUINFO_PAGE_SIZE_1MB  0x100000
#define CPUINFO_PAGE_SIZE_2MB  0x200000
#define CPUINFO_PAGE_SIZE_4MB  0x400000
#define CPUINFO_PAGE_SIZE_16MB 0x1000000
#define CPUINFO_PAGE_SIZE_1GB  0x40000000

struct cpuinfo_tlb {
	uint32_t entries;
	uint32_t associativity;
	uint64_t pages;
};

/** Vendor of processor core design */
enum cpuinfo_vendor {
	/** Processor vendor is not known to the library, or the library failed to get vendor information from the OS. */
	cpuinfo_vendor_unknown = 0,

	/* Active vendors of modern CPUs */

	/**
	 * Intel Corporation. Vendor of x86, x86-64, IA64, and ARM processor microarchitectures.
	 *
	 * Sold its ARM design subsidiary in 2006. The last ARM processor design was released in 2004.
	 */
	cpuinfo_vendor_intel    = 1,
	/** Advanced Micro Devices, Inc. Vendor of x86 and x86-64 processor microarchitectures. */
	cpuinfo_vendor_amd      = 2,
	/** ARM Holdings plc. Vendor of ARM and ARM64 processor microarchitectures. */
	cpuinfo_vendor_arm      = 3,
	/** Qualcomm Incorporated. Vendor of ARM and ARM64 processor microarchitectures. */
	cpuinfo_vendor_qualcomm = 4,
	/** Apple Inc. Vendor of ARM and ARM64 processor microarchitectures. */
	cpuinfo_vendor_apple    = 5,
	/** Samsung Electronics Co., Ltd. Vendir if ARM64 processor microarchitectures. */
	cpuinfo_vendor_samsung  = 6,
	/** Nvidia Corporation. Vendor of ARM64-compatible processor microarchitectures. */
	cpuinfo_vendor_nvidia   = 7,
	/** MIPS Technologies, Inc. Vendor of MIPS processor microarchitectures. */
	cpuinfo_vendor_mips     = 8,
	/** International Business Machines Corporation. Vendor of PowerPC processor microarchitectures. */
	cpuinfo_vendor_ibm      = 9,
	/** Ingenic Semiconductor. Vendor of MIPS processor microarchitectures. */
	cpuinfo_vendor_ingenic  = 10,
	/**
	 * VIA Technologies, Inc. Vendor of x86 and x86-64 processor microarchitectures.
	 *
	 * Processors are designed by Centaur Technology, a subsidiary of VIA Technologies.
	 */
	cpuinfo_vendor_via      = 11,
	/** Cavium, Inc. Vendor of ARM64 processor microarchitectures. */
	cpuinfo_vendor_cavium   = 12,
	/** Broadcom, Inc. Vendor of ARM processor microarchitectures. */
	cpuinfo_vendor_broadcom = 13,
	/** Applied Micro Circuits Corporation (APM). Vendor of ARM64 processor microarchitectures. */
	cpuinfo_vendor_apm      = 14,
	/**
	 * Huawei Technologies Co., Ltd. Vendor of ARM64 processor microarchitectures.
	 *
	 * Processors are designed by HiSilicon, a subsidiary of Huawei.
	 */
	cpuinfo_vendor_huawei   = 15,
	/**
	 * Hygon (Chengdu Haiguang Integrated Circuit Design Co., Ltd), Vendor of x86-64 processor microarchitectures.
	 *
	 * Processors are variants of AMD cores.
	 */
	cpuinfo_vendor_hygon    = 16,

	/* Active vendors of embedded CPUs */

	/** Texas Instruments Inc. Vendor of ARM processor microarchitectures. */
	cpuinfo_vendor_texas_instruments = 30,
	/** Marvell Technology Group Ltd. Vendor of ARM processor microarchitectures. */
	cpuinfo_vendor_marvell           = 31,
	/** RDC Semiconductor Co., Ltd. Vendor of x86 processor microarchitectures. */
	cpuinfo_vendor_rdc               = 32,
	/** DM&P Electronics Inc. Vendor of x86 processor microarchitectures. */
	cpuinfo_vendor_dmp               = 33,
	/** Motorola, Inc. Vendor of PowerPC and ARM processor microarchitectures. */
	cpuinfo_vendor_motorola          = 34,

	/* Defunct CPU vendors */

	/**
	 * Transmeta Corporation. Vendor of x86 processor microarchitectures.
	 *
	 * Now defunct. The last processor design was released in 2004.
	 * Transmeta processors implemented VLIW ISA and used binary translation to execute x86 code.
	 */
	cpuinfo_vendor_transmeta = 50,
	/**
	 * Cyrix Corporation. Vendor of x86 processor microarchitectures.
	 *
	 * Now defunct. The last processor design was released in 1996.
	 */
	cpuinfo_vendor_cyrix     = 51,
	/**
	 * Rise Technology. Vendor of x86 processor microarchitectures.
	 *
	 * Now defunct. The last processor design was released in 1999.
	 */
	cpuinfo_vendor_rise      = 52,
	/**
	 * National Semiconductor. Vendor of x86 processor microarchitectures.
	 *
	 * Sold its x86 design subsidiary in 1999. The last processor design was released in 1998.
	 */
	cpuinfo_vendor_nsc       = 53,
	/**
	 * Silicon Integrated Systems. Vendor of x86 processor microarchitectures.
	 *
	 * Sold its x86 design subsidiary in 2001. The last processor design was released in 2001.
	 */
	cpuinfo_vendor_sis       = 54,
	/**
	 * NexGen. Vendor of x86 processor microarchitectures.
	 *
	 * Now defunct. The last processor design was released in 1994.
	 * NexGen designed the first x86 microarchitecture which decomposed x86 instructions into simple microoperations.
	 */
	cpuinfo_vendor_nexgen    = 55,
	/**
	 * United Microelectronics Corporation. Vendor of x86 processor microarchitectures.
	 *
	 * Ceased x86 in the early 1990s. The last processor design was released in 1991.
	 * Designed U5C and U5D processors. Both are 486 level.
	 */
	cpuinfo_vendor_umc       = 56,
	/**
	 * Digital Equipment Corporation. Vendor of ARM processor microarchitecture.
	 *
	 * Sold its ARM designs in 1997. The last processor design was released in 1997.
	 */
	cpuinfo_vendor_dec       = 57,
};

/**
 * Processor microarchitecture
 *
 * Processors with different microarchitectures often have different instruction performance characteristics,
 * and may have dramatically different pipeline organization.
 */
enum cpuinfo_uarch {
	/** Microarchitecture is unknown, or the library failed to get information about the microarchitecture from OS */
	cpuinfo_uarch_unknown = 0,

	/** Pentium and Pentium MMX microarchitecture. */
	cpuinfo_uarch_p5    = 0x00100100,
	/** Intel Quark microarchitecture. */
	cpuinfo_uarch_quark = 0x00100101,

	/** Pentium Pro, Pentium II, and Pentium III. */
	cpuinfo_uarch_p6           = 0x00100200,
	/** Pentium M. */
	cpuinfo_uarch_dothan       = 0x00100201,
	/** Intel Core microarchitecture. */
	cpuinfo_uarch_yonah        = 0x00100202,
	/** Intel Core 2 microarchitecture on 65 nm process. */
	cpuinfo_uarch_conroe       = 0x00100203,
	/** Intel Core 2 microarchitecture on 45 nm process. */
	cpuinfo_uarch_penryn       = 0x00100204,
	/** Intel Nehalem and Westmere microarchitectures (Core i3/i5/i7 1st gen). */
	cpuinfo_uarch_nehalem      = 0x00100205,
	/** Intel Sandy Bridge microarchitecture (Core i3/i5/i7 2nd gen). */
	cpuinfo_uarch_sandy_bridge = 0x00100206,
	/** Intel Ivy Bridge microarchitecture (Core i3/i5/i7 3rd gen). */
	cpuinfo_uarch_ivy_bridge   = 0x00100207,
	/** Intel Haswell microarchitecture (Core i3/i5/i7 4th gen). */
	cpuinfo_uarch_haswell      = 0x00100208,
	/** Intel Broadwell microarchitecture. */
	cpuinfo_uarch_broadwell    = 0x00100209,
	/** Intel Sky Lake microarchitecture (14 nm, including Kaby/Coffee/Whiskey/Amber/Comet/Cascade/Cooper Lake). */
	cpuinfo_uarch_sky_lake     = 0x0010020A,
	/** DEPRECATED (Intel Kaby Lake microarchitecture). */
	cpuinfo_uarch_kaby_lake    = 0x0010020A,
	/** Intel Palm Cove microarchitecture (10 nm, Cannon Lake). */
	cpuinfo_uarch_palm_cove    = 0x0010020B,
	/** Intel Sunny Cove microarchitecture (10 nm, Ice Lake). */
	cpuinfo_uarch_sunny_cove   = 0x0010020C,

	/** Pentium 4 with Willamette, Northwood, or Foster cores. */
	cpuinfo_uarch_willamette = 0x00100300,
	/** Pentium 4 with Prescott and later cores. */
	cpuinfo_uarch_prescott   = 0x00100301,

	/** Intel Atom on 45 nm process. */
	cpuinfo_uarch_bonnell       = 0x00100400,
	/** Intel Atom on 32 nm process. */
	cpuinfo_uarch_saltwell      = 0x00100401,
	/** Intel Silvermont microarchitecture (22 nm out-of-order Atom). */
	cpuinfo_uarch_silvermont    = 0x00100402,
	/** Intel Airmont microarchitecture (14 nm out-of-order Atom). */
	cpuinfo_uarch_airmont       = 0x00100403,
	/** Intel Goldmont microarchitecture (Denverton, Apollo Lake). */
	cpuinfo_uarch_goldmont      = 0x00100404,
	/** Intel Goldmont Plus microarchitecture (Gemini Lake). */
	cpuinfo_uarch_goldmont_plus = 0x00100405,

	/** Intel Knights Ferry HPC boards. */
	cpuinfo_uarch_knights_ferry   = 0x00100500,
	/** Intel Knights Corner HPC boards (aka Xeon Phi). */
	cpuinfo_uarch_knights_corner  = 0x00100501,
	/** Intel Knights Landing microarchitecture (second-gen MIC). */
	cpuinfo_uarch_knights_landing = 0x00100502,
	/** Intel Knights Hill microarchitecture (third-gen MIC). */
	cpuinfo_uarch_knights_hill    = 0x00100503,
	/** Intel Knights Mill Xeon Phi. */
	cpuinfo_uarch_knights_mill    = 0x00100504,

	/** Intel/Marvell XScale series. */
	cpuinfo_uarch_xscale = 0x00100600,

	/** AMD K5. */
	cpuinfo_uarch_k5        = 0x00200100,
	/** AMD K6 and alike. */
	cpuinfo_uarch_k6        = 0x00200101,
	/** AMD Athlon and Duron. */
	cpuinfo_uarch_k7        = 0x00200102,
	/** AMD Athlon 64, Opteron 64. */
	cpuinfo_uarch_k8        = 0x00200103,
	/** AMD Family 10h (Barcelona, Istambul, Magny-Cours). */
	cpuinfo_uarch_k10       = 0x00200104,
	/**
	 * AMD Bulldozer microarchitecture
	 * Zambezi FX-series CPUs, Zurich, Valencia and Interlagos Opteron CPUs.
	 */
	cpuinfo_uarch_bulldozer = 0x00200105,
	/**
	 * AMD Piledriver microarchitecture
	 * Vishera FX-series CPUs, Trinity and Richland APUs, Delhi, Seoul, Abu Dhabi Opteron CPUs.
	 */
	cpuinfo_uarch_piledriver  = 0x00200106,
	/** AMD Steamroller microarchitecture (Kaveri APUs). */
	cpuinfo_uarch_steamroller = 0x00200107,
	/** AMD Excavator microarchitecture (Carizzo APUs). */
	cpuinfo_uarch_excavator   = 0x00200108,
	/** AMD Zen microarchitecture (12/14 nm Ryzen and EPYC CPUs). */
	cpuinfo_uarch_zen         = 0x00200109,
	/** AMD Zen 2 microarchitecture (7 nm Ryzen and EPYC CPUs). */
	cpuinfo_uarch_zen2        = 0x0020010A,
	/** AMD Zen 3 microarchitecture. */
	cpuinfo_uarch_zen3        = 0x0020010B,

	/** NSC Geode and AMD Geode GX and LX. */
	cpuinfo_uarch_geode  = 0x00200200,
	/** AMD Bobcat mobile microarchitecture. */
	cpuinfo_uarch_bobcat = 0x00200201,
	/** AMD Jaguar mobile microarchitecture. */
	cpuinfo_uarch_jaguar = 0x00200202,
	/** AMD Puma mobile microarchitecture. */
	cpuinfo_uarch_puma   = 0x00200203,

	/** ARM7 series. */
	cpuinfo_uarch_arm7  = 0x00300100,
	/** ARM9 series. */
	cpuinfo_uarch_arm9  = 0x00300101,
	/** ARM 1136, ARM 1156, ARM 1176, or ARM 11MPCore. */
	cpuinfo_uarch_arm11 = 0x00300102,

	/** ARM Cortex-A5. */
	cpuinfo_uarch_cortex_a5  = 0x00300205,
	/** ARM Cortex-A7. */
	cpuinfo_uarch_cortex_a7  = 0x00300207,
	/** ARM Cortex-A8. */
	cpuinfo_uarch_cortex_a8  = 0x00300208,
	/** ARM Cortex-A9. */
	cpuinfo_uarch_cortex_a9  = 0x00300209,
	/** ARM Cortex-A12. */
	cpuinfo_uarch_cortex_a12 = 0x00300212,
	/** ARM Cortex-A15. */
	cpuinfo_uarch_cortex_a15 = 0x00300215,
	/** ARM Cortex-A17. */
	cpuinfo_uarch_cortex_a17 = 0x00300217,

	/** ARM Cortex-A32. */
	cpuinfo_uarch_cortex_a32   = 0x00300332,
	/** ARM Cortex-A35. */
	cpuinfo_uarch_cortex_a35   = 0x00300335,
	/** ARM Cortex-A53. */
	cpuinfo_uarch_cortex_a53   = 0x00300353,
	/** ARM Cortex-A55 revision 0 (restricted dual-issue capabilities compared to revision 1+). */
	cpuinfo_uarch_cortex_a55r0 = 0x00300354,
	/** ARM Cortex-A55. */
	cpuinfo_uarch_cortex_a55   = 0x00300355,
	/** ARM Cortex-A57. */
	cpuinfo_uarch_cortex_a57   = 0x00300357,
	/** ARM Cortex-A65. */
	cpuinfo_uarch_cortex_a65   = 0x00300365,
	/** ARM Cortex-A72. */
	cpuinfo_uarch_cortex_a72   = 0x00300372,
	/** ARM Cortex-A73. */
	cpuinfo_uarch_cortex_a73   = 0x00300373,
	/** ARM Cortex-A75. */
	cpuinfo_uarch_cortex_a75   = 0x00300375,
	/** ARM Cortex-A76. */
	cpuinfo_uarch_cortex_a76   = 0x00300376,
	/** ARM Cortex-A77. */
	cpuinfo_uarch_cortex_a77   = 0x00300377,
	/** ARM Cortex-A78. */
	cpuinfo_uarch_cortex_a78   = 0x00300378,

	/** ARM Neoverse N1. */
	cpuinfo_uarch_neoverse_n1  = 0x00300400,
	/** ARM Neoverse E1. */
	cpuinfo_uarch_neoverse_e1  = 0x00300401,

	/** ARM Cortex-X1. */
	cpuinfo_uarch_cortex_x1    = 0x00300500,

	/** Qualcomm Scorpion. */
	cpuinfo_uarch_scorpion = 0x00400100,
	/** Qualcomm Krait. */
	cpuinfo_uarch_krait    = 0x00400101,
	/** Qualcomm Kryo. */
	cpuinfo_uarch_kryo     = 0x00400102,
	/** Qualcomm Falkor. */
	cpuinfo_uarch_falkor   = 0x00400103,
	/** Qualcomm Saphira. */
	cpuinfo_uarch_saphira  = 0x00400104,

	/** Nvidia Denver. */
	cpuinfo_uarch_denver   = 0x00500100,
	/** Nvidia Denver 2. */
	cpuinfo_uarch_denver2  = 0x00500101,
	/** Nvidia Carmel. */
	cpuinfo_uarch_carmel   = 0x00500102,

	/** Samsung Exynos M1 (Exynos 8890 big cores). */
	cpuinfo_uarch_exynos_m1 = 0x00600100,
	/** Samsung Exynos M2 (Exynos 8895 big cores). */
	cpuinfo_uarch_exynos_m2 = 0x00600101,
	/** Samsung Exynos M3 (Exynos 9810 big cores). */
	cpuinfo_uarch_exynos_m3  = 0x00600102,
	/** Samsung Exynos M4 (Exynos 9820 big cores). */
	cpuinfo_uarch_exynos_m4  = 0x00600103,
	/** Samsung Exynos M5 (Exynos 9830 big cores). */
	cpuinfo_uarch_exynos_m5  = 0x00600104,

	/* Deprecated synonym for Cortex-A76 */
	cpuinfo_uarch_cortex_a76ae = 0x00300376,
	/* Deprecated names for Exynos. */
	cpuinfo_uarch_mongoose_m1 = 0x00600100,
	cpuinfo_uarch_mongoose_m2 = 0x00600101,
	cpuinfo_uarch_meerkat_m3  = 0x00600102,
	cpuinfo_uarch_meerkat_m4  = 0x00600103,

	/** Apple A6 and A6X processors. */
	cpuinfo_uarch_swift     = 0x00700100,
	/** Apple A7 processor. */
	cpuinfo_uarch_cyclone   = 0x00700101,
	/** Apple A8 and A8X processor. */
	cpuinfo_uarch_typhoon   = 0x00700102,
	/** Apple A9 and A9X processor. */
	cpuinfo_uarch_twister   = 0x00700103,
	/** Apple A10 and A10X processor. */
	cpuinfo_uarch_hurricane = 0x00700104,
	/** Apple A11 processor (big cores). */
	cpuinfo_uarch_monsoon   = 0x00700105,
	/** Apple A11 processor (little cores). */
	cpuinfo_uarch_mistral   = 0x00700106,
	/** Apple A12 processor (big cores). */
	cpuinfo_uarch_vortex    = 0x00700107,
	/** Apple A12 processor (little cores). */
	cpuinfo_uarch_tempest   = 0x00700108,
	/** Apple A13 processor (big cores). */
	cpuinfo_uarch_lightning = 0x00700109,
	/** Apple A13 processor (little cores). */
	cpuinfo_uarch_thunder   = 0x0070010A,
	/** Apple M1 processor (big cores). */
	cpuinfo_uarch_firestorm = 0x0070010B,
	/** Apple M1 processor (little cores). */
	cpuinfo_uarch_icestorm  = 0x0070010C,

	/** Cavium ThunderX. */
	cpuinfo_uarch_thunderx = 0x00800100,
	/** Cavium ThunderX2 (originally Broadcom Vulkan). */
	cpuinfo_uarch_thunderx2 = 0x00800200,

	/** Marvell PJ4. */
	cpuinfo_uarch_pj4 = 0x00900100,

	/** Broadcom Brahma B15. */
	cpuinfo_uarch_brahma_b15 = 0x00A00100,
	/** Broadcom Brahma B53. */
	cpuinfo_uarch_brahma_b53 = 0x00A00101,

	/** Applied Micro X-Gene. */
	cpuinfo_uarch_xgene = 0x00B00100,

	/* Hygon Dhyana (a modification of AMD Zen for Chinese market). */
	cpuinfo_uarch_dhyana = 0x01000100,

	/** HiSilicon TaiShan v110 (Huawei Kunpeng 920 series processors). */
	cpuinfo_uarch_taishan_v110 = 0x00C00100,
};

struct cpuinfo_processor {
	/** SMT (hyperthread) ID within a core */
	uint32_t smt_id;
	/** Core containing this logical processor */
	const struct cpuinfo_core* core;
	/** Cluster of cores containing this logical processor */
	const struct cpuinfo_cluster* cluster;
	/** Physical package containing this logical processor */
	const struct cpuinfo_package* package;
#if defined(__linux__)
	/**
	 * Linux-specific ID for the logical processor:
	 * - Linux kernel exposes information about this logical processor in /sys/devices/system/cpu/cpu<linux_id>/
	 * - Bit <linux_id> in the cpu_set_t identifies this logical processor
	 */
	int linux_id;
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
	/** Windows-specific ID for the group containing the logical processor. */
	uint16_t windows_group_id;
	/**
	 * Windows-specific ID of the logical processor within its group:
	 * - Bit <windows_processor_id> in the KAFFINITY mask identifies this logical processor within its group.
	 */
	uint16_t windows_processor_id;
#endif
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
	/** APIC ID (unique x86-specific ID of the logical processor) */
	uint32_t apic_id;
#endif
	struct {
		/** Level 1 instruction cache */
		const struct cpuinfo_cache* l1i;
		/** Level 1 data cache */
		const struct cpuinfo_cache* l1d;
		/** Level 2 unified or data cache */
		const struct cpuinfo_cache* l2;
		/** Level 3 unified or data cache */
		const struct cpuinfo_cache* l3;
		/** Level 4 unified or data cache */
		const struct cpuinfo_cache* l4;
	} cache;
};

struct cpuinfo_core {
	/** Index of the first logical processor on this core. */
	uint32_t processor_start;
	/** Number of logical processors on this core */
	uint32_t processor_count;
	/** Core ID within a package */
	uint32_t core_id;
	/** Cluster containing this core */
	const struct cpuinfo_cluster* cluster;
	/** Physical package containing this core. */
	const struct cpuinfo_package* package;
	/** Vendor of the CPU microarchitecture for this core */
	enum cpuinfo_vendor vendor;
	/** CPU microarchitecture for this core */
	enum cpuinfo_uarch uarch;
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
	/** Value of CPUID leaf 1 EAX register for this core */
	uint32_t cpuid;
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
	/** Value of Main ID Register (MIDR) for this core */
	uint32_t midr;
#endif
	/** Clock rate (non-Turbo) of the core, in Hz */
	uint64_t frequency;
};

struct cpuinfo_cluster {
	/** Index of the first logical processor in the cluster */
	uint32_t processor_start;
	/** Number of logical processors in the cluster */
	uint32_t processor_count;
	/** Index of the first core in the cluster */
	uint32_t core_start;
	/** Number of cores on the cluster */
	uint32_t core_count;
	/** Cluster ID within a package */
	uint32_t cluster_id;
	/** Physical package containing the cluster */
	const struct cpuinfo_package* package;
	/** CPU microarchitecture vendor of the cores in the cluster */
	enum cpuinfo_vendor vendor;
	/** CPU microarchitecture of the cores in the cluster */
	enum cpuinfo_uarch uarch;
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
	/** Value of CPUID leaf 1 EAX register of the cores in the cluster */
	uint32_t cpuid;
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
	/** Value of Main ID Register (MIDR) of the cores in the cluster */
	uint32_t midr;
#endif
	/** Clock rate (non-Turbo) of the cores in the cluster, in Hz */
	uint64_t frequency;
};

#define CPUINFO_PACKAGE_NAME_MAX 48

struct cpuinfo_package {
	/** SoC or processor chip model name */
	char name[CPUINFO_PACKAGE_NAME_MAX];
	/** Index of the first logical processor on this physical package */
	uint32_t processor_start;
	/** Number of logical processors on this physical package */
	uint32_t processor_count;
	/** Index of the first core on this physical package */
	uint32_t core_start;
	/** Number of cores on this physical package */
	uint32_t core_count;
	/** Index of the first cluster of cores on this physical package */
	uint32_t cluster_start;
	/** Number of clusters of cores on this physical package */
	uint32_t cluster_count;
};

struct cpuinfo_uarch_info {
	/** Type of CPU microarchitecture */
	enum cpuinfo_uarch uarch;
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
	/** Value of CPUID leaf 1 EAX register for the microarchitecture */
	uint32_t cpuid;
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
	/** Value of Main ID Register (MIDR) for the microarchitecture */
	uint32_t midr;
#endif
	/** Number of logical processors with the microarchitecture */
	uint32_t processor_count;
	/** Number of cores with the microarchitecture */
	uint32_t core_count;
};

#ifdef __cplusplus
extern "C" {
#endif

bool CPUINFO_ABI cpuinfo_initialize(void);

void CPUINFO_ABI cpuinfo_deinitialize(void);

#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
	/* This structure is not a part of stable API. Use cpuinfo_has_x86_* functions instead. */
	struct cpuinfo_x86_isa {
		#if CPUINFO_ARCH_X86
			bool rdtsc;
		#endif
		bool rdtscp;
		bool rdpid;
		bool sysenter;
		#if CPUINFO_ARCH_X86
			bool syscall;
		#endif
		bool msr;
		bool clzero;
		bool clflush;
		bool clflushopt;
		bool mwait;
		bool mwaitx;
		#if CPUINFO_ARCH_X86
			bool emmx;
		#endif
		bool fxsave;
		bool xsave;
		#if CPUINFO_ARCH_X86
			bool fpu;
			bool mmx;
			bool mmx_plus;
		#endif
		bool three_d_now;
		bool three_d_now_plus;
		#if CPUINFO_ARCH_X86
			bool three_d_now_geode;
		#endif
		bool prefetch;
		bool prefetchw;
		bool prefetchwt1;
		#if CPUINFO_ARCH_X86
			bool daz;
			bool sse;
			bool sse2;
		#endif
		bool sse3;
		bool ssse3;
		bool sse4_1;
		bool sse4_2;
		bool sse4a;
		bool misaligned_sse;
		bool avx;
		bool fma3;
		bool fma4;
		bool xop;
		bool f16c;
		bool avx2;
		bool avx512f;
		bool avx512pf;
		bool avx512er;
		bool avx512cd;
		bool avx512dq;
		bool avx512bw;
		bool avx512vl;
		bool avx512ifma;
		bool avx512vbmi;
		bool avx512vbmi2;
		bool avx512bitalg;
		bool avx512vpopcntdq;
		bool avx512vnni;
		bool avx512bf16;
		bool avx512vp2intersect;
		bool avx512_4vnniw;
		bool avx512_4fmaps;
		bool hle;
		bool rtm;
		bool xtest;
		bool mpx;
		#if CPUINFO_ARCH_X86
			bool cmov;
			bool cmpxchg8b;
		#endif
		bool cmpxchg16b;
		bool clwb;
		bool movbe;
		#if CPUINFO_ARCH_X86_64
			bool lahf_sahf;
		#endif
		bool fs_gs_base;
		bool lzcnt;
		bool popcnt;
		bool tbm;
		bool bmi;
		bool bmi2;
		bool adx;
		bool aes;
		bool vaes;
		bool pclmulqdq;
		bool vpclmulqdq;
		bool gfni;
		bool rdrand;
		bool rdseed;
		bool sha;
		bool rng;
		bool ace;
		bool ace2;
		bool phe;
		bool pmm;
		bool lwp;
	};

	extern struct cpuinfo_x86_isa cpuinfo_isa;
#endif

static inline bool cpuinfo_has_x86_rdtsc(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.rdtsc;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_rdtscp(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.rdtscp;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_rdpid(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.rdpid;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_clzero(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.clzero;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_mwait(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.mwait;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_mwaitx(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.mwaitx;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_fxsave(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.fxsave;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_xsave(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.xsave;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_fpu(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.fpu;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_mmx(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.mmx;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_mmx_plus(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.mmx_plus;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_3dnow(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.three_d_now;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_3dnow_plus(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.three_d_now_plus;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_3dnow_geode(void) {
	#if CPUINFO_ARCH_X86_64
		return false;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return false;
		#else
			return cpuinfo_isa.three_d_now_geode;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_prefetch(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.prefetch;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_prefetchw(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.prefetchw;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_prefetchwt1(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.prefetchwt1;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_daz(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.daz;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sse(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.sse;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sse2(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.sse2;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sse3(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.sse3;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_ssse3(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.ssse3;
		#endif
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sse4_1(void) {
	#if CPUINFO_ARCH_X86_64
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.sse4_1;
		#endif
	#elif CPUINFO_ARCH_X86
		return cpuinfo_isa.sse4_1;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sse4_2(void) {
	#if CPUINFO_ARCH_X86_64
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.sse4_2;
		#endif
	#elif CPUINFO_ARCH_X86
		return cpuinfo_isa.sse4_2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sse4a(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.sse4a;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_misaligned_sse(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.misaligned_sse;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_fma3(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.fma3;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_fma4(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.fma4;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_xop(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.xop;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_f16c(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.f16c;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx2(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512f(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512f;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512pf(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512pf;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512er(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512er;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512cd(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512cd;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512dq(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512dq;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512bw(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512bw;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512vl(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512vl;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512ifma(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512ifma;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512vbmi(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512vbmi;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512vbmi2(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512vbmi2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512bitalg(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512bitalg;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512vpopcntdq(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512vpopcntdq;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512vnni(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512vnni;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512bf16(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512bf16;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512vp2intersect(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512vp2intersect;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512_4vnniw(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512_4vnniw;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_avx512_4fmaps(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.avx512_4fmaps;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_hle(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.hle;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_rtm(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.rtm;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_xtest(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.xtest;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_mpx(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.mpx;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_cmov(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		return cpuinfo_isa.cmov;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_cmpxchg8b(void) {
	#if CPUINFO_ARCH_X86_64
		return true;
	#elif CPUINFO_ARCH_X86
		return cpuinfo_isa.cmpxchg8b;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_cmpxchg16b(void) {
	#if CPUINFO_ARCH_X86_64
		return cpuinfo_isa.cmpxchg16b;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_clwb(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.clwb;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_movbe(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.movbe;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_lahf_sahf(void) {
	#if CPUINFO_ARCH_X86
		return true;
	#elif CPUINFO_ARCH_X86_64
		return cpuinfo_isa.lahf_sahf;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_lzcnt(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.lzcnt;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_popcnt(void) {
	#if CPUINFO_ARCH_X86_64
		#if defined(__ANDROID__)
			return true;
		#else
			return cpuinfo_isa.popcnt;
		#endif
	#elif CPUINFO_ARCH_X86
		return cpuinfo_isa.popcnt;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_tbm(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.tbm;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_bmi(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.bmi;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_bmi2(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.bmi2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_adx(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.adx;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_aes(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.aes;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_vaes(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.vaes;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_pclmulqdq(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.pclmulqdq;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_vpclmulqdq(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.vpclmulqdq;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_gfni(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.gfni;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_rdrand(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.rdrand;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_rdseed(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.rdseed;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_x86_sha(void) {
	#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
		return cpuinfo_isa.sha;
	#else
		return false;
	#endif
}

#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
	/* This structure is not a part of stable API. Use cpuinfo_has_arm_* functions instead. */
	struct cpuinfo_arm_isa {
		#if CPUINFO_ARCH_ARM
			bool thumb;
			bool thumb2;
			bool thumbee;
			bool jazelle;
			bool armv5e;
			bool armv6;
			bool armv6k;
			bool armv7;
			bool armv7mp;
			bool armv8;
			bool idiv;

			bool vfpv2;
			bool vfpv3;
			bool d32;
			bool fp16;
			bool fma;

			bool wmmx;
			bool wmmx2;
			bool neon;
		#endif
		#if CPUINFO_ARCH_ARM64
			bool atomics;
			bool sve;
			bool sve2;
		#endif
		bool rdm;
		bool fp16arith;
		bool dot;
		bool jscvt;
		bool fcma;

		bool aes;
		bool sha1;
		bool sha2;
		bool pmull;
		bool crc32;
	};

	extern struct cpuinfo_arm_isa cpuinfo_isa;
#endif

static inline bool cpuinfo_has_arm_thumb(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.thumb;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_thumb2(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.thumb2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_v5e(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.armv5e;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_v6(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.armv6;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_v6k(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.armv6k;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_v7(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.armv7;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_v7mp(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.armv7mp;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_v8(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.armv8;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_idiv(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.idiv;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv2(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv3(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv3;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv3_d32(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv3 && cpuinfo_isa.d32;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv3_fp16(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv3_fp16_d32(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16 && cpuinfo_isa.d32;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv4(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_vfpv4_d32(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma && cpuinfo_isa.d32;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_wmmx(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.wmmx;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_wmmx2(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.wmmx2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.neon;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon_fp16(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.neon && cpuinfo_isa.fp16;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon_fma(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.neon && cpuinfo_isa.fma;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon_v8(void) {
	#if CPUINFO_ARCH_ARM64
		return true;
	#elif CPUINFO_ARCH_ARM
		return cpuinfo_isa.neon && cpuinfo_isa.armv8;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_atomics(void) {
	#if CPUINFO_ARCH_ARM64
		return cpuinfo_isa.atomics;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon_rdm(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.rdm;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon_fp16_arith(void) {
	#if CPUINFO_ARCH_ARM
		return cpuinfo_isa.neon && cpuinfo_isa.fp16arith;
	#elif CPUINFO_ARCH_ARM64
		return cpuinfo_isa.fp16arith;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_fp16_arith(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.fp16arith;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_neon_dot(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.dot;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_jscvt(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.jscvt;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_fcma(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.fcma;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_aes(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.aes;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_sha1(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.sha1;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_sha2(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.sha2;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_pmull(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.pmull;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_crc32(void) {
	#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
		return cpuinfo_isa.crc32;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_sve(void) {
	#if CPUINFO_ARCH_ARM64
		return cpuinfo_isa.sve;
	#else
		return false;
	#endif
}

static inline bool cpuinfo_has_arm_sve2(void) {
	#if CPUINFO_ARCH_ARM64
		return cpuinfo_isa.sve2;
	#else
		return false;
	#endif
}

const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processors(void);
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_cores(void);
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_clusters(void);
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_packages(void);
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarchs(void);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_caches(void);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_caches(void);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_caches(void);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_caches(void);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_caches(void);

const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processor(uint32_t index);
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_core(uint32_t index);
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_cluster(uint32_t index);
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_package(uint32_t index);
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarch(uint32_t index);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_cache(uint32_t index);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_cache(uint32_t index);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_cache(uint32_t index);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_cache(uint32_t index);
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_cache(uint32_t index);

uint32_t CPUINFO_ABI cpuinfo_get_processors_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_cores_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_clusters_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_packages_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_uarchs_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_l1i_caches_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_l1d_caches_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_l2_caches_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_l3_caches_count(void);
uint32_t CPUINFO_ABI cpuinfo_get_l4_caches_count(void);

/**
 * Returns upper bound on cache size.
 */
uint32_t CPUINFO_ABI cpuinfo_get_max_cache_size(void);

/**
 * Identify the logical processor that executes the current thread.
 *
 * There is no guarantee that the thread will stay on the same logical processor for any time.
 * Callers should treat the result as only a hint, and be prepared to handle NULL return value.
 */
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_current_processor(void);

/**
 * Identify the core that executes the current thread.
 *
 * There is no guarantee that the thread will stay on the same core for any time.
 * Callers should treat the result as only a hint, and be prepared to handle NULL return value.
 */
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_current_core(void);

/**
 * Identify the microarchitecture index of the core that executes the current thread.
 * If the system does not support such identification, the function returns 0.
 *
 * There is no guarantee that the thread will stay on the same type of core for any time.
 * Callers should treat the result as only a hint.
 */
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index(void);

/**
 * Identify the microarchitecture index of the core that executes the current thread.
 * If the system does not support such identification, the function returns the user-specified default value.
 *
 * There is no guarantee that the thread will stay on the same type of core for any time.
 * Callers should treat the result as only a hint.
 */
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index_with_default(uint32_t default_uarch_index);

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* CPUINFO_H */