/* * Copyright (C) 2014 Patrick Mours * SPDX-License-Identifier: BSD-3-Clause */ #include "effect_symbol_table.hpp" #include #include // alloca #include // std::upper_bound, std::sort #include // std::greater enum class intrinsic_id : uint32_t { #define IMPLEMENT_INTRINSIC_SPIRV(name, i, code) name##i, #include "effect_symbol_table_intrinsics.inl" }; struct intrinsic { intrinsic(const char *name, intrinsic_id id, const reshadefx::type &ret_type, std::initializer_list arg_types) : id(id) { function.name = name; function.return_type = ret_type; function.parameter_list.reserve(arg_types.size()); for (const reshadefx::type &arg_type : arg_types) function.parameter_list.push_back({ arg_type }); } intrinsic_id id; reshadefx::function_info function; }; #define void { reshadefx::type::t_void } #define bool { reshadefx::type::t_bool, 1, 1 } #define bool2 { reshadefx::type::t_bool, 2, 1 } #define bool3 { reshadefx::type::t_bool, 3, 1 } #define bool4 { reshadefx::type::t_bool, 4, 1 } #define int { reshadefx::type::t_int, 1, 1 } #define int2 { reshadefx::type::t_int, 2, 1 } #define int3 { reshadefx::type::t_int, 3, 1 } #define int4 { reshadefx::type::t_int, 4, 1 } #define int2x3 { reshadefx::type::t_int, 2, 3 } #define int2x2 { reshadefx::type::t_int, 2, 2 } #define int2x4 { reshadefx::type::t_int, 2, 4 } #define int3x2 { reshadefx::type::t_int, 3, 2 } #define int3x3 { reshadefx::type::t_int, 3, 3 } #define int3x4 { reshadefx::type::t_int, 3, 4 } #define int4x2 { reshadefx::type::t_int, 4, 2 } #define int4x3 { reshadefx::type::t_int, 4, 3 } #define int4x4 { reshadefx::type::t_int, 4, 4 } #define out_int { reshadefx::type::t_int, 1, 1, reshadefx::type::q_out } #define out_int2 { reshadefx::type::t_int, 2, 1, reshadefx::type::q_out } #define out_int3 { reshadefx::type::t_int, 3, 1, reshadefx::type::q_out } #define out_int4 { reshadefx::type::t_int, 4, 1, reshadefx::type::q_out } #define inout_int { reshadefx::type::t_int, 1, 1, reshadefx::type::q_inout | reshadefx::type::q_groupshared } #define uint { reshadefx::type::t_uint, 1, 1 } #define uint2 { reshadefx::type::t_uint, 2, 1 } #define uint3 { reshadefx::type::t_uint, 3, 1 } #define uint4 { reshadefx::type::t_uint, 4, 1 } #define inout_uint { reshadefx::type::t_uint, 1, 1, reshadefx::type::q_inout | reshadefx::type::q_groupshared } #define float { reshadefx::type::t_float, 1, 1 } #define float2 { reshadefx::type::t_float, 2, 1 } #define float3 { reshadefx::type::t_float, 3, 1 } #define float4 { reshadefx::type::t_float, 4, 1 } #define float2x3 { reshadefx::type::t_float, 2, 3 } #define float2x2 { reshadefx::type::t_float, 2, 2 } #define float2x4 { reshadefx::type::t_float, 2, 4 } #define float3x2 { reshadefx::type::t_float, 3, 2 } #define float3x3 { reshadefx::type::t_float, 3, 3 } #define float3x4 { reshadefx::type::t_float, 3, 4 } #define float4x2 { reshadefx::type::t_float, 4, 2 } #define float4x3 { reshadefx::type::t_float, 4, 3 } #define float4x4 { reshadefx::type::t_float, 4, 4 } #define out_float { reshadefx::type::t_float, 1, 1, reshadefx::type::q_out } #define out_float2 { reshadefx::type::t_float, 2, 1, reshadefx::type::q_out } #define out_float3 { reshadefx::type::t_float, 3, 1, reshadefx::type::q_out } #define out_float4 { reshadefx::type::t_float, 4, 1, reshadefx::type::q_out } #define sampler1d_int { reshadefx::type::t_sampler1d_int, 1, 1 } #define sampler2d_int { reshadefx::type::t_sampler2d_int, 1, 1 } #define sampler3d_int { reshadefx::type::t_sampler3d_int, 1, 1 } #define sampler1d_uint { reshadefx::type::t_sampler1d_uint, 1, 1 } #define sampler2d_uint { reshadefx::type::t_sampler2d_uint, 1, 1 } #define sampler3d_uint { reshadefx::type::t_sampler3d_uint, 1, 1 } #define sampler1d_float { reshadefx::type::t_sampler1d_float, 1, 1 } #define sampler2d_float { reshadefx::type::t_sampler2d_float, 1, 1 } #define sampler3d_float { reshadefx::type::t_sampler3d_float, 1, 1 } #define sampler1d_float4 { reshadefx::type::t_sampler1d_float, 4, 1 } #define sampler2d_float4 { reshadefx::type::t_sampler2d_float, 4, 1 } #define sampler3d_float4 { reshadefx::type::t_sampler3d_float, 4, 1 } #define storage1d_int { reshadefx::type::t_storage1d_int, 1, 1 } #define storage2d_int { reshadefx::type::t_storage2d_int, 1, 1 } #define storage3d_int { reshadefx::type::t_storage3d_int, 1, 1 } #define storage1d_uint { reshadefx::type::t_storage1d_uint, 1, 1 } #define storage2d_uint { reshadefx::type::t_storage2d_uint, 1, 1 } #define storage3d_uint { reshadefx::type::t_storage3d_uint, 1, 1 } #define storage1d_float { reshadefx::type::t_storage1d_float, 1, 1 } #define storage2d_float { reshadefx::type::t_storage2d_float, 1, 1 } #define storage3d_float { reshadefx::type::t_storage3d_float, 1, 1 } #define storage1d_float4 { reshadefx::type::t_storage1d_float, 4, 1 } #define storage2d_float4 { reshadefx::type::t_storage2d_float, 4, 1 } #define storage3d_float4 { reshadefx::type::t_storage3d_float, 4, 1 } #define inout_storage1d_int { reshadefx::type::t_storage1d_int, 1, 1, reshadefx::type::q_inout } #define inout_storage2d_int { reshadefx::type::t_storage2d_int, 1, 1, reshadefx::type::q_inout } #define inout_storage3d_int { reshadefx::type::t_storage3d_int, 1, 1, reshadefx::type::q_inout } #define inout_storage1d_uint { reshadefx::type::t_storage1d_uint, 1, 1, reshadefx::type::q_inout } #define inout_storage2d_uint { reshadefx::type::t_storage2d_uint, 1, 1, reshadefx::type::q_inout } #define inout_storage3d_uint { reshadefx::type::t_storage3d_uint, 1, 1, reshadefx::type::q_inout } // Import intrinsic function definitions static const intrinsic s_intrinsics[] = { #define DEFINE_INTRINSIC(name, i, ret_type, ...) intrinsic(#name, intrinsic_id::name##i, ret_type, { __VA_ARGS__ }), #include "effect_symbol_table_intrinsics.inl" }; #undef void #undef bool #undef bool2 #undef bool3 #undef bool4 #undef int #undef int2 #undef int3 #undef int4 #undef uint #undef uint2 #undef uint3 #undef uint4 #undef float1 #undef float2 #undef float3 #undef float4 #undef float2x2 #undef float3x3 #undef float4x4 #undef out_float #undef out_float2 #undef out_float3 #undef out_float4 #undef sampler1d_int #undef sampler2d_int #undef sampler3d_int #undef sampler1d_uint #undef sampler2d_uint #undef sampler3d_uint #undef sampler1d_float4 #undef sampler2d_float4 #undef sampler3d_float4 #undef storage1d_int #undef storage2d_int #undef storage3d_int #undef storage1d_uint #undef storage2d_uint #undef storage3d_uint #undef storage1d_float4 #undef storage2d_float4 #undef storage3d_float4 #undef inout_storage1d_int #undef inout_storage2d_int #undef inout_storage3d_int #undef inout_storage1d_uint #undef inout_storage2d_uint #undef inout_storage3d_uint unsigned int reshadefx::type::rank(const type &src, const type &dst) { if (src.is_array() != dst.is_array() || (src.array_length != dst.array_length && src.array_length > 0 && dst.array_length > 0)) return 0; // Arrays of different sizes are not compatible if (src.is_struct() || dst.is_struct()) return src.definition == dst.definition ? 32 : 0; // Structs are only compatible if they are the same type if (!src.is_numeric() || !dst.is_numeric()) return src.base == dst.base && src.rows == dst.rows && src.cols == dst.cols ? 32 : 0; // Numeric values are not compatible with other types if (src.is_matrix() && (!dst.is_matrix() || src.rows != dst.rows || src.cols != dst.cols)) return 0; // Matrix truncation or dimensions do not match // This table is based on the following rules: // - Floating point has a higher rank than integer types // - Integer to floating point promotion has a higher rank than floating point to integer conversion // - Signed to unsigned integer conversion has a higher rank than unsigned to signed integer conversion static const int ranks[7][7] = { { 5, 4, 4, 4, 4, 4, 4 }, // bool { 3, 5, 5, 2, 2, 4, 4 }, // min16int { 3, 5, 5, 2, 2, 4, 4 }, // int { 3, 1, 1, 5, 5, 4, 4 }, // min16uint { 3, 1, 1, 5, 5, 4, 4 }, // uint { 3, 3, 3, 3, 3, 6, 6 }, // min16float { 3, 3, 3, 3, 3, 6, 6 } // float }; assert(src.base > 0 && src.base <= 7); // bool - float assert(dst.base > 0 && dst.base <= 7); const int rank = ranks[src.base - 1][dst.base - 1] << 2; if ((src.is_scalar() && dst.is_vector())) return rank >> 1; // Scalar to vector promotion has a lower rank if ((src.is_vector() && dst.is_scalar()) || (src.is_vector() == dst.is_vector() && src.rows > dst.rows && src.cols >= dst.cols)) return rank >> 2; // Vector to scalar conversion has an even lower rank if ((src.is_vector() != dst.is_vector()) || src.is_matrix() != dst.is_matrix() || src.components() != dst.components()) return 0; // If components weren't converted at this point, the types are not compatible return rank * src.components(); // More components causes a higher rank } reshadefx::symbol_table::symbol_table() { _current_scope.name = "::"; _current_scope.level = 0; _current_scope.namespace_level = 0; } void reshadefx::symbol_table::enter_scope() { _current_scope.level++; } void reshadefx::symbol_table::enter_namespace(const std::string &name) { _current_scope.name += name + "::"; _current_scope.level++; _current_scope.namespace_level++; } void reshadefx::symbol_table::leave_scope() { assert(_current_scope.level > 0); for (auto &symbol : _symbol_stack) { std::vector &scope_list = symbol.second; for (auto scope_it = scope_list.begin(); scope_it != scope_list.end();) { if (scope_it->scope.level > scope_it->scope.namespace_level && scope_it->scope.level >= _current_scope.level) { scope_it = scope_list.erase(scope_it); } else { ++scope_it; } } } _current_scope.level--; } void reshadefx::symbol_table::leave_namespace() { assert(_current_scope.level > 0); assert(_current_scope.namespace_level > 0); _current_scope.name.erase(_current_scope.name.substr(0, _current_scope.name.size() - 2).rfind("::") + 2); _current_scope.level--; _current_scope.namespace_level--; } bool reshadefx::symbol_table::insert_symbol(const std::string &name, const symbol &symbol, bool global) { assert(symbol.id != 0 || symbol.op == symbol_type::constant); // Make sure the symbol does not exist yet if (symbol.op != symbol_type::function && find_symbol(name, _current_scope, true).id != 0) return false; // Insertion routine which keeps the symbol stack sorted by namespace level const auto insert_sorted = [](auto &vec, const auto &item) { return vec.insert( std::upper_bound(vec.begin(), vec.end(), item, [](auto lhs, auto rhs) { return lhs.scope.namespace_level < rhs.scope.namespace_level; }), item); }; // Global symbols are accessible from every scope if (global) { scope scope = { "", 0, 0 }; // Walk scope chain from global scope back to current one for (size_t pos = 0; pos != std::string::npos; pos = _current_scope.name.find("::", pos)) { // Extract scope name scope.name = _current_scope.name.substr(0, pos += 2); const auto previous_scope_name = _current_scope.name.substr(pos); // Insert symbol into this scope insert_sorted(_symbol_stack[previous_scope_name + name], scoped_symbol { symbol, scope }); // Continue walking up the scope chain scope.level = ++scope.namespace_level; } } else { // This is a local symbol so it's sufficient to update the symbol stack with just the current scope insert_sorted(_symbol_stack[name], scoped_symbol { symbol, _current_scope }); } return true; } reshadefx::scoped_symbol reshadefx::symbol_table::find_symbol(const std::string &name) const { // Default to start search with current scope and walk back the scope chain return find_symbol(name, _current_scope, false); } reshadefx::scoped_symbol reshadefx::symbol_table::find_symbol(const std::string &name, const scope &scope, bool exclusive) const { const auto stack_it = _symbol_stack.find(name); // Check if symbol does exist if (stack_it == _symbol_stack.end() || stack_it->second.empty()) return {}; // Walk up the scope chain starting at the requested scope level and find a matching symbol scoped_symbol result = {}; for (auto it = stack_it->second.rbegin(), end = stack_it->second.rend(); it != end; ++it) { if (it->scope.level > scope.level || it->scope.namespace_level > scope.namespace_level || (it->scope.namespace_level == scope.namespace_level && it->scope.name != scope.name)) continue; if (exclusive && it->scope.level < scope.level) continue; if (it->op == symbol_type::constant || it->op == symbol_type::variable || it->op == symbol_type::structure) return *it; // Variables and structures have the highest priority and are always picked immediately else if (result.id == 0) result = *it; // Function names have a lower priority, so continue searching in case a variable with the same name exists } return result; } static int compare_functions(const std::vector &arguments, const reshadefx::function_info *function1, const reshadefx::function_info *function2) { const size_t num_arguments = arguments.size(); // Check if the first function matches the argument types bool function1_viable = true; const auto function1_ranks = static_cast(alloca(num_arguments * sizeof(unsigned int))); for (size_t i = 0; i < num_arguments; ++i) { if ((function1_ranks[i] = reshadefx::type::rank(arguments[i].type, function1->parameter_list[i].type)) == 0) { function1_viable = false; break; } } // Catch case where the second function does not exist if (function2 == nullptr) return function1_viable ? -1 : 1; // If the first function is not viable, this compare fails // Check if the second function matches the argument types bool function2_viable = true; const auto function2_ranks = static_cast(alloca(num_arguments * sizeof(unsigned int))); for (size_t i = 0; i < num_arguments; ++i) { if ((function2_ranks[i] = reshadefx::type::rank(arguments[i].type, function2->parameter_list[i].type)) == 0) { function2_viable = false; break; } } // If one of the functions is not viable, then the other one automatically wins if (!function1_viable || !function2_viable) return function2_viable - function1_viable; // Both functions are possible, so find the one with the higher ranking std::sort(function1_ranks, function1_ranks + num_arguments, std::greater()); std::sort(function2_ranks, function2_ranks + num_arguments, std::greater()); for (size_t i = 0; i < num_arguments; ++i) if (function1_ranks[i] > function2_ranks[i]) return -1; // Left function wins else if (function2_ranks[i] > function1_ranks[i]) return +1; // Right function wins return 0; // Both functions are equally viable } bool reshadefx::symbol_table::resolve_function_call(const std::string &name, const std::vector &arguments, const scope &scope, symbol &out_data, bool &is_ambiguous) const { out_data.op = symbol_type::function; const function_info *result = nullptr; unsigned int num_overloads = 0; unsigned int overload_namespace = scope.namespace_level; // Look up function name in the symbol stack and loop through the associated symbols const auto stack_it = _symbol_stack.find(name); if (stack_it != _symbol_stack.end() && !stack_it->second.empty()) { for (auto it = stack_it->second.rbegin(), end = stack_it->second.rend(); it != end; ++it) { if (it->op != symbol_type::function) continue; if (it->scope.level > scope.level || it->scope.namespace_level > scope.namespace_level || (it->scope.namespace_level == scope.namespace_level && it->scope.name != scope.name)) continue; const function_info *const function = it->function; if (function == nullptr) continue; if (function->parameter_list.empty()) { if (arguments.empty()) { out_data.id = it->id; out_data.type = function->return_type; out_data.function = result = function; num_overloads = 1; break; } else { continue; } } else if (arguments.size() != function->parameter_list.size()) { continue; } // A new possibly-matching function was found, compare it against the current result const int comparison = compare_functions(arguments, function, result); if (comparison < 0) // The new function is a better match { out_data.id = it->id; out_data.type = function->return_type; out_data.function = result = function; num_overloads = 1; overload_namespace = it->scope.namespace_level; } else if (comparison == 0 && overload_namespace == it->scope.namespace_level) // Both functions are equally viable, so the call is ambiguous { ++num_overloads; } } } // Try matching against intrinsic functions if no matching user-defined function was found up to this point if (num_overloads == 0) { for (const intrinsic &intrinsic : s_intrinsics) { if (intrinsic.function.name != name || intrinsic.function.parameter_list.size() != arguments.size()) continue; // A new possibly-matching intrinsic function was found, compare it against the current result const int comparison = compare_functions(arguments, &intrinsic.function, result); if (comparison < 0) // The new function is a better match { out_data.op = symbol_type::intrinsic; out_data.id = static_cast(intrinsic.id); out_data.type = intrinsic.function.return_type; out_data.function = &intrinsic.function; result = out_data.function; num_overloads = 1; } else if (comparison == 0 && overload_namespace == 0) // Both functions are equally viable, so the call is ambiguous (intrinsics are always in the global namespace) { ++num_overloads; } } } is_ambiguous = num_overloads > 1; return num_overloads == 1; }