#include "gpu.h" #include "YBaseLib/Log.h" #include "common/heap_array.h" #include "common/state_wrapper.h" #include "dma.h" #include "host_interface.h" #include "interrupt_controller.h" #include "stb_image_write.h" #include "system.h" #include "timers.h" #include #include Log_SetChannel(GPU); const GPU::GP0CommandHandlerTable GPU::s_GP0_command_handler_table = GPU::GenerateGP0CommandHandlerTable(); GPU::GPU() = default; GPU::~GPU() = default; bool GPU::Initialize(HostDisplay* host_display, System* system, DMA* dma, InterruptController* interrupt_controller, Timers* timers) { m_host_display = host_display; m_system = system; m_dma = dma; m_interrupt_controller = interrupt_controller; m_timers = timers; m_force_progressive_scan = m_system->GetSettings().gpu_force_progressive_scan; return true; } void GPU::UpdateSettings() { m_force_progressive_scan = m_system->GetSettings().gpu_force_progressive_scan; } void GPU::Reset() { SoftReset(); m_set_texture_disable_mask = false; m_GPUREAD_latch = 0; } void GPU::SoftReset() { m_GPUSTAT.bits = 0x14802000; m_GPUSTAT.pal_mode = m_system->IsPALRegion(); m_drawing_area.Set(0, 0, 0, 0); m_drawing_area_changed = true; m_drawing_offset = {}; m_drawing_offset_changed = true; std::memset(&m_crtc_state, 0, sizeof(m_crtc_state)); m_crtc_state.regs.display_address_start = 0; m_crtc_state.regs.horizontal_display_range = 0xC60260; m_crtc_state.regs.vertical_display_range = 0x3FC10; m_state = State::Idle; m_command_total_words = 0; m_vram_transfer = {}; m_GP0_buffer.clear(); SetDrawMode(0); SetTexturePalette(0); m_draw_mode.SetTextureWindow(0); UpdateGPUSTAT(); UpdateCRTCConfig(); } bool GPU::DoState(StateWrapper& sw) { if (sw.IsReading()) { // perform a reset to discard all pending draws/fb state Reset(); } sw.Do(&m_GPUSTAT.bits); sw.Do(&m_draw_mode.texture_page_x); sw.Do(&m_draw_mode.texture_page_y); sw.Do(&m_draw_mode.texture_palette_x); sw.Do(&m_draw_mode.texture_palette_y); sw.Do(&m_draw_mode.texture_window_mask_x); sw.Do(&m_draw_mode.texture_window_mask_y); sw.Do(&m_draw_mode.texture_window_offset_x); sw.Do(&m_draw_mode.texture_window_offset_y); sw.Do(&m_draw_mode.texture_x_flip); sw.Do(&m_draw_mode.texture_y_flip); sw.Do(&m_draw_mode.mode_reg.bits); sw.Do(&m_draw_mode.palette_reg); sw.Do(&m_draw_mode.texture_window_value); sw.Do(&m_drawing_area.left); sw.Do(&m_drawing_area.top); sw.Do(&m_drawing_area.right); sw.Do(&m_drawing_area.bottom); sw.Do(&m_drawing_offset.x); sw.Do(&m_drawing_offset.y); sw.Do(&m_drawing_offset.x); sw.Do(&m_set_texture_disable_mask); sw.Do(&m_crtc_state.regs.display_address_start); sw.Do(&m_crtc_state.regs.horizontal_display_range); sw.Do(&m_crtc_state.regs.vertical_display_range); sw.Do(&m_crtc_state.dot_clock_divider); sw.Do(&m_crtc_state.display_width); sw.Do(&m_crtc_state.display_height); sw.Do(&m_crtc_state.horizontal_total); sw.Do(&m_crtc_state.horizontal_display_start); sw.Do(&m_crtc_state.horizontal_display_end); sw.Do(&m_crtc_state.vertical_total); sw.Do(&m_crtc_state.vertical_display_start); sw.Do(&m_crtc_state.vertical_display_end); sw.Do(&m_crtc_state.fractional_ticks); sw.Do(&m_crtc_state.current_tick_in_scanline); sw.Do(&m_crtc_state.current_scanline); sw.Do(&m_crtc_state.display_aspect_ratio); sw.Do(&m_crtc_state.in_hblank); sw.Do(&m_crtc_state.in_vblank); sw.Do(&m_GPUREAD_latch); sw.Do(&m_vram_transfer.x); sw.Do(&m_vram_transfer.y); sw.Do(&m_vram_transfer.width); sw.Do(&m_vram_transfer.height); sw.Do(&m_vram_transfer.col); sw.Do(&m_vram_transfer.row); sw.Do(&m_GP0_buffer); if (sw.IsReading()) { m_draw_mode.texture_page_changed = true; m_draw_mode.texture_window_changed = true; m_drawing_area_changed = true; m_drawing_offset_changed = true; UpdateGPUSTAT(); } if (!sw.DoMarker("GPU-VRAM")) return false; if (sw.IsReading()) { // Need to clear the mask bits since we want to pull it in from the copy. const u32 old_GPUSTAT = m_GPUSTAT.bits; m_GPUSTAT.check_mask_before_draw = false; m_GPUSTAT.set_mask_while_drawing = false; // Still need a temporary here. HeapArray temp; sw.DoBytes(temp.data(), VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16)); UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, temp.data()); // Restore mask setting. m_GPUSTAT.bits = old_GPUSTAT; UpdateDisplay(); UpdateSliceTicks(); } else { ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT); sw.DoBytes(m_vram_ptr, VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16)); } return !sw.HasError(); } void GPU::ResetGraphicsAPIState() {} void GPU::RestoreGraphicsAPIState() {} void GPU::UpdateGPUSTAT() { m_GPUSTAT.ready_to_send_vram = (m_state == State::ReadingVRAM); m_GPUSTAT.ready_to_recieve_cmd = (m_state == State::Idle); m_GPUSTAT.ready_to_recieve_dma = (m_state == State::Idle || (m_state != State::ReadingVRAM && m_command_total_words > 0)); bool dma_request; switch (m_GPUSTAT.dma_direction) { case DMADirection::Off: dma_request = false; break; case DMADirection::FIFO: dma_request = true; // FIFO not full/full break; case DMADirection::CPUtoGP0: dma_request = m_GPUSTAT.ready_to_recieve_dma; break; case DMADirection::GPUREADtoCPU: dma_request = m_GPUSTAT.ready_to_send_vram; break; default: dma_request = false; break; } m_GPUSTAT.dma_data_request = dma_request; m_dma->SetRequest(DMA::Channel::GPU, dma_request); } u32 GPU::ReadRegister(u32 offset) { switch (offset) { case 0x00: return ReadGPUREAD(); case 0x04: return m_GPUSTAT.bits; default: Log_ErrorPrintf("Unhandled register read: %02X", offset); return UINT32_C(0xFFFFFFFF); } } void GPU::WriteRegister(u32 offset, u32 value) { switch (offset) { case 0x00: WriteGP0(value); return; case 0x04: WriteGP1(value); return; default: Log_ErrorPrintf("Unhandled register write: %02X <- %08X", offset, value); return; } } void GPU::DMARead(u32* words, u32 word_count) { if (m_GPUSTAT.dma_direction != DMADirection::GPUREADtoCPU) { Log_ErrorPrintf("Invalid DMA direction from GPU DMA read"); std::fill_n(words, word_count, UINT32_C(0xFFFFFFFF)); return; } for (u32 i = 0; i < word_count; i++) words[i] = ReadGPUREAD(); } void GPU::DMAWrite(const u32* words, u32 word_count) { switch (m_GPUSTAT.dma_direction) { case DMADirection::CPUtoGP0: { std::copy(words, words + word_count, std::back_inserter(m_GP0_buffer)); ExecuteCommands(); } break; default: { Log_ErrorPrintf("Unhandled GPU DMA write mode %u for %u words", static_cast(m_GPUSTAT.dma_direction.GetValue()), word_count); } break; } } void GPU::UpdateCRTCConfig() { static constexpr std::array dot_clock_dividers = {{10, 8, 5, 4, 7, 7, 7, 7}}; CRTCState& cs = m_crtc_state; if (m_GPUSTAT.pal_mode) { cs.vertical_total = 314; cs.horizontal_total = 3406; } else { cs.vertical_total = 263; cs.horizontal_total = 3413; } const TickCount ticks_per_frame = cs.horizontal_total * cs.vertical_total; const double vertical_frequency = static_cast((u64(MASTER_CLOCK) * 11) / 7) / static_cast(ticks_per_frame); m_system->GetHostInterface()->SetThrottleFrequency(vertical_frequency); const u8 horizontal_resolution_index = m_GPUSTAT.horizontal_resolution_1 | (m_GPUSTAT.horizontal_resolution_2 << 2); cs.dot_clock_divider = dot_clock_dividers[horizontal_resolution_index]; cs.horizontal_display_start = static_cast(std::min(cs.regs.X1, cs.horizontal_total)); cs.horizontal_display_end = static_cast(std::min(cs.regs.X2, cs.horizontal_total)); cs.vertical_display_start = static_cast(std::min(cs.regs.Y1, cs.vertical_total)); cs.vertical_display_end = static_cast(std::min(cs.regs.Y2, cs.vertical_total)); // check for a change in resolution const u32 old_horizontal_resolution = cs.display_width; const u32 old_vertical_resolution = cs.display_height; const u32 visible_lines = cs.regs.Y2 - cs.regs.Y1; cs.display_width = std::max((cs.regs.X2 - cs.regs.X1) / cs.dot_clock_divider, 1); cs.display_height = visible_lines << BoolToUInt8(m_GPUSTAT.In480iMode()); if (cs.display_width != old_horizontal_resolution || cs.display_height != old_vertical_resolution) Log_InfoPrintf("Visible resolution is now %ux%u", cs.display_width, cs.display_height); // Compute the aspect ratio necessary to display borders in the inactive region of the picture. // Convert total dots/lines to time. const float dot_clock = (static_cast(MASTER_CLOCK) * (11.0f / 7.0f / static_cast(cs.dot_clock_divider))); const float dot_clock_period = 1.0f / dot_clock; const float dots_per_scanline = static_cast(cs.horizontal_total) / static_cast(cs.dot_clock_divider); const float horizontal_period = dots_per_scanline * dot_clock_period; const float vertical_period = horizontal_period * static_cast(cs.vertical_total); // Convert active dots/lines to time. const float visible_dots_per_scanline = static_cast(cs.display_width); const float horizontal_active_time = horizontal_period * visible_dots_per_scanline; const float vertical_active_time = horizontal_active_time * static_cast(visible_lines); // Use the reference active time/lines for the signal to work out the border area, and thus aspect ratio // transformation for the active area in our framebuffer. For the purposes of these calculations, we're assuming // progressive scan. float display_ratio; if (m_GPUSTAT.pal_mode) { // Wikipedia says PAL is active 51.95us of 64.00us, and 576/625 lines. const float signal_horizontal_active_time = 51.95f; const float signal_horizontal_total_time = 64.0f; const float signal_vertical_active_lines = 576.0f; const float signal_vertical_total_lines = 625.0f; const float h_ratio = (horizontal_active_time / horizontal_period) * (signal_horizontal_total_time / signal_horizontal_active_time); const float v_ratio = (vertical_active_time / vertical_period) * (signal_vertical_total_lines / signal_vertical_active_lines); display_ratio = h_ratio / v_ratio; } else { const float signal_horizontal_active_time = 52.66f; const float signal_horizontal_total_time = 63.56f; const float signal_vertical_active_lines = 486.0f; const float signal_vertical_total_lines = 525.0f; const float h_ratio = (horizontal_active_time / horizontal_period) * (signal_horizontal_total_time / signal_horizontal_active_time); const float v_ratio = (vertical_active_time / vertical_period) * (signal_vertical_total_lines / signal_vertical_active_lines); display_ratio = h_ratio / v_ratio; } // Ensure the numbers are sane, and not due to a misconfigured active display range. cs.display_aspect_ratio = (std::isnormal(display_ratio) && display_ratio != 0.0f) ? display_ratio : (4.0f / 3.0f); UpdateSliceTicks(); } void GPU::UpdateSliceTicks() { // the next event is at the end of the next scanline #if 1 TickCount ticks_until_next_event; if (m_crtc_state.current_tick_in_scanline < m_crtc_state.horizontal_display_start) ticks_until_next_event = m_crtc_state.horizontal_display_start - m_crtc_state.current_tick_in_scanline; else if (m_crtc_state.current_tick_in_scanline < m_crtc_state.horizontal_display_end) ticks_until_next_event = m_crtc_state.horizontal_display_end - m_crtc_state.current_tick_in_scanline; else ticks_until_next_event = m_crtc_state.horizontal_total - m_crtc_state.current_tick_in_scanline; #else // or at vblank. this will depend on the timer config.. const TickCount ticks_until_next_event = ((m_crtc_state.vertical_total - m_crtc_state.current_scanline) * m_crtc_state.horizontal_total) - m_crtc_state.current_tick_in_scanline; #endif // convert to master clock, rounding up as we want to overshoot not undershoot const TickCount system_ticks = (ticks_until_next_event * 7 + 10) / 11; m_system->SetDowncount(system_ticks); } void GPU::Execute(TickCount ticks) { // convert cpu/master clock to GPU ticks, accounting for partial cycles because of the non-integer divider { const TickCount temp = (ticks * 11) + m_crtc_state.fractional_ticks; m_crtc_state.current_tick_in_scanline += temp / 7; m_crtc_state.fractional_ticks = temp % 7; } while (m_crtc_state.current_tick_in_scanline >= m_crtc_state.horizontal_total) { m_crtc_state.current_tick_in_scanline -= m_crtc_state.horizontal_total; m_crtc_state.current_scanline++; // past the end of vblank? if (m_crtc_state.current_scanline >= m_crtc_state.vertical_total) { // start the new frame m_crtc_state.current_scanline = 0; // switch fields for interlaced modes if (m_GPUSTAT.vertical_interlace) { m_GPUSTAT.interlaced_field ^= true; m_crtc_state.current_scanline = BoolToUInt32(!m_GPUSTAT.interlaced_field); } else { m_GPUSTAT.interlaced_field = false; } } const bool new_vblank = m_crtc_state.current_scanline < m_crtc_state.vertical_display_start || m_crtc_state.current_scanline >= m_crtc_state.vertical_display_end; if (m_crtc_state.in_vblank != new_vblank) { m_crtc_state.in_vblank = new_vblank; if (new_vblank) { Log_DebugPrintf("Now in v-blank"); m_interrupt_controller->InterruptRequest(InterruptController::IRQ::VBLANK); // flush any pending draws and "scan out" the image FlushRender(); UpdateDisplay(); m_system->IncrementFrameNumber(); } m_timers->SetGate(HBLANK_TIMER_INDEX, new_vblank); } // alternating even line bit in 240-line mode if (m_GPUSTAT.In480iMode()) { m_GPUSTAT.drawing_even_line = ConvertToBoolUnchecked((m_crtc_state.regs.Y + BoolToUInt32(!m_GPUSTAT.interlaced_field)) & u32(1)); } else { m_GPUSTAT.drawing_even_line = ConvertToBoolUnchecked(m_crtc_state.regs.Y + m_crtc_state.current_scanline & u32(1)); } } const bool new_hblank = m_crtc_state.current_tick_in_scanline < m_crtc_state.horizontal_display_start || m_crtc_state.current_tick_in_scanline >= m_crtc_state.horizontal_display_end; if (m_crtc_state.in_hblank != new_hblank) { m_crtc_state.in_hblank = new_hblank; if (new_hblank && m_timers->IsUsingExternalClock(HBLANK_TIMER_INDEX)) m_timers->AddTicks(HBLANK_TIMER_INDEX, 1); } UpdateSliceTicks(); } u32 GPU::ReadGPUREAD() { if (m_state != State::ReadingVRAM) return m_GPUREAD_latch; // Read two pixels out of VRAM and combine them. Zero fill odd pixel counts. u32 value = 0; for (u32 i = 0; i < 2; i++) { // Read with correct wrap-around behavior. const u16 read_x = (m_vram_transfer.x + m_vram_transfer.col) % VRAM_WIDTH; const u16 read_y = (m_vram_transfer.y + m_vram_transfer.row) % VRAM_HEIGHT; value = (ZeroExtend32(m_vram_ptr[read_y * VRAM_WIDTH + read_x]) << 16) | (value >> 16); if (++m_vram_transfer.col == m_vram_transfer.width) { m_vram_transfer.col = 0; if (++m_vram_transfer.row == m_vram_transfer.height) { Log_DebugPrintf("End of VRAM->CPU transfer"); m_vram_transfer = {}; m_state = State::Idle; UpdateGPUSTAT(); // end of transfer, catch up on any commands which were written (unlikely) ExecuteCommands(); break; } } } m_GPUREAD_latch = value; return value; } void GPU::WriteGP0(u32 value) { m_GP0_buffer.push_back(value); ExecuteCommands(); } void GPU::WriteGP1(u32 value) { const u8 command = Truncate8(value >> 24); const u32 param = value & UINT32_C(0x00FFFFFF); switch (command) { case 0x00: // Reset GPU { Log_DebugPrintf("GP1 reset GPU"); SoftReset(); } break; case 0x01: // Clear FIFO { Log_DebugPrintf("GP1 clear FIFO"); m_state = State::Idle; m_command_total_words = 0; m_vram_transfer = {}; m_GP0_buffer.clear(); UpdateGPUSTAT(); } break; case 0x02: // Acknowledge Interrupt { Log_DebugPrintf("Acknowledge interrupt"); m_GPUSTAT.interrupt_request = false; } break; case 0x03: // Display on/off { const bool disable = ConvertToBoolUnchecked(value & 0x01); Log_DebugPrintf("Display %s", disable ? "disabled" : "enabled"); m_GPUSTAT.display_disable = disable; } break; case 0x04: // DMA Direction { m_GPUSTAT.dma_direction = static_cast(param); Log_DebugPrintf("DMA direction <- 0x%02X", static_cast(m_GPUSTAT.dma_direction.GetValue())); UpdateGPUSTAT(); } break; case 0x05: // Set display start address { m_crtc_state.regs.display_address_start = param & CRTCState::Regs::DISPLAY_ADDRESS_START_MASK; Log_DebugPrintf("Display address start <- 0x%08X", m_crtc_state.regs.display_address_start); m_system->IncrementInternalFrameNumber(); } break; case 0x06: // Set horizontal display range { m_crtc_state.regs.horizontal_display_range = param & CRTCState::Regs::HORIZONTAL_DISPLAY_RANGE_MASK; Log_DebugPrintf("Horizontal display range <- 0x%08X", m_crtc_state.regs.horizontal_display_range); UpdateCRTCConfig(); } break; case 0x07: // Set display start address { m_crtc_state.regs.vertical_display_range = param & CRTCState::Regs::VERTICAL_DISPLAY_RANGE_MASK; Log_DebugPrintf("Vertical display range <- 0x%08X", m_crtc_state.regs.vertical_display_range); UpdateCRTCConfig(); } break; case 0x08: // Set display mode { union GP1_08h { u32 bits; BitField horizontal_resolution_1; BitField vertical_resolution; BitField pal_mode; BitField display_area_color_depth; BitField vertical_interlace; BitField horizontal_resolution_2; BitField reverse_flag; }; const GP1_08h dm{param}; m_GPUSTAT.horizontal_resolution_1 = dm.horizontal_resolution_1; m_GPUSTAT.vertical_resolution = dm.vertical_resolution; m_GPUSTAT.pal_mode = dm.pal_mode; m_GPUSTAT.display_area_color_depth_24 = dm.display_area_color_depth; m_GPUSTAT.vertical_interlace = dm.vertical_interlace; m_GPUSTAT.horizontal_resolution_2 = dm.horizontal_resolution_2; m_GPUSTAT.reverse_flag = dm.reverse_flag; Log_DebugPrintf("Set display mode <- 0x%08X", dm.bits); UpdateCRTCConfig(); } break; case 0x09: // Allow texture disable { m_set_texture_disable_mask = ConvertToBoolUnchecked(param & 0x01); Log_DebugPrintf("Set texture disable mask <- %s", m_set_texture_disable_mask ? "allowed" : "ignored"); } break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1A: case 0x1B: case 0x1C: case 0x1D: case 0x1E: case 0x1F: { HandleGetGPUInfoCommand(value); } break; default: Log_ErrorPrintf("Unimplemented GP1 command 0x%02X", command); break; } } void GPU::HandleGetGPUInfoCommand(u32 value) { const u8 subcommand = Truncate8(value & 0x07); switch (subcommand) { case 0x00: case 0x01: case 0x06: case 0x07: // leave GPUREAD intact break; case 0x02: // Get Texture Window { Log_DebugPrintf("Get texture window"); m_GPUREAD_latch = m_draw_mode.texture_window_value; } break; case 0x03: // Get Draw Area Top Left { Log_DebugPrintf("Get drawing area top left"); m_GPUREAD_latch = ((m_drawing_area.left & UINT32_C(0b1111111111)) | ((m_drawing_area.top & UINT32_C(0b1111111111)) << 10)); } break; case 0x04: // Get Draw Area Bottom Right { Log_DebugPrintf("Get drawing area bottom right"); m_GPUREAD_latch = ((m_drawing_area.right & UINT32_C(0b1111111111)) | ((m_drawing_area.bottom & UINT32_C(0b1111111111)) << 10)); } break; case 0x05: // Get Drawing Offset { Log_DebugPrintf("Get drawing offset"); m_GPUREAD_latch = ((m_drawing_offset.x & INT32_C(0b11111111111)) | ((m_drawing_offset.y & INT32_C(0b11111111111)) << 11)); } break; default: Log_WarningPrintf("Unhandled GetGPUInfo(0x%02X)", ZeroExtend32(subcommand)); break; } } void GPU::UpdateDisplay() {} void GPU::ReadVRAM(u32 x, u32 y, u32 width, u32 height) {} void GPU::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color) {} void GPU::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data) { // Fast path when the copy is not oversized. if ((x + width) <= VRAM_WIDTH && (y + height) <= VRAM_HEIGHT && !m_GPUSTAT.IsMaskingEnabled()) { const u16* src_ptr = static_cast(data); u16* dst_ptr = &m_vram_ptr[y * VRAM_WIDTH + x]; for (u32 yoffs = 0; yoffs < height; yoffs++) { std::copy_n(src_ptr, width, dst_ptr); src_ptr += width; dst_ptr += VRAM_WIDTH; } } else { // Slow path when we need to handle wrap-around. const u16* src_ptr = static_cast(data); const u16 mask_and = m_GPUSTAT.GetMaskAND(); const u16 mask_or = m_GPUSTAT.GetMaskOR(); for (u32 row = 0; row < height;) { u16* dst_row_ptr = &m_vram_ptr[((y + row++) % VRAM_HEIGHT) * VRAM_WIDTH]; for (u32 col = 0; col < width;) { // TODO: Handle unaligned reads... u16* pixel_ptr = &dst_row_ptr[(x + col++) % VRAM_WIDTH]; if (((*pixel_ptr) & mask_and) == mask_and) *pixel_ptr = *(src_ptr++) | mask_or; } } } } void GPU::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height) {} void GPU::DispatchRenderCommand(RenderCommand rc, u32 num_vertices, const u32* command_ptr) {} void GPU::FlushRender() {} void GPU::SetDrawMode(u16 value) { DrawMode::Reg new_mode_reg{static_cast(value & DrawMode::Reg::MASK)}; if (!m_set_texture_disable_mask) new_mode_reg.texture_disable = false; if (new_mode_reg.bits == m_draw_mode.mode_reg.bits) return; if ((new_mode_reg.bits & DrawMode::Reg::TEXTURE_PAGE_MASK) != (m_draw_mode.mode_reg.bits & DrawMode::Reg::TEXTURE_PAGE_MASK)) { m_draw_mode.texture_page_x = new_mode_reg.GetTexturePageXBase(); m_draw_mode.texture_page_y = new_mode_reg.GetTexturePageYBase(); m_draw_mode.texture_page_changed = true; } m_draw_mode.mode_reg.bits = new_mode_reg.bits; // Bits 0..10 are returned in the GPU status register. m_GPUSTAT.bits = m_GPUSTAT.bits & ~(DrawMode::Reg::GPUSTAT_MASK) | (ZeroExtend32(new_mode_reg.bits) & DrawMode::Reg::GPUSTAT_MASK); m_GPUSTAT.texture_disable = m_draw_mode.mode_reg.texture_disable; } void GPU::SetTexturePalette(u16 value) { value &= DrawMode::PALETTE_MASK; if (m_draw_mode.palette_reg == value) return; m_draw_mode.texture_palette_x = ZeroExtend32(value & 0x3F) * 16; m_draw_mode.texture_palette_y = ZeroExtend32(value >> 6); m_draw_mode.palette_reg = value; m_draw_mode.texture_page_changed = true; } void GPU::DrawMode::SetTextureWindow(u32 value) { value &= TEXTURE_WINDOW_MASK; if (texture_window_value == value) return; texture_window_mask_x = value & UINT32_C(0x1F); texture_window_mask_y = (value >> 5) & UINT32_C(0x1F); texture_window_offset_x = (value >> 10) & UINT32_C(0x1F); texture_window_offset_y = (value >> 15) & UINT32_C(0x1F); texture_window_value = value; texture_window_changed = true; } bool GPU::DumpVRAMToFile(const char* filename, u32 width, u32 height, u32 stride, const void* buffer, bool remove_alpha) { std::vector rgba8_buf(width * height); const char* ptr_in = static_cast(buffer); u32* ptr_out = rgba8_buf.data(); for (u32 row = 0; row < height; row++) { const char* row_ptr_in = ptr_in; for (u32 col = 0; col < width; col++) { u16 src_col; std::memcpy(&src_col, row_ptr_in, sizeof(u16)); row_ptr_in += sizeof(u16); *(ptr_out++) = RGBA5551ToRGBA8888(remove_alpha ? (src_col | u16(0x8000)) : src_col); } ptr_in += stride; } return (stbi_write_png(filename, width, height, 4, rgba8_buf.data(), sizeof(u32) * width) != 0); } void GPU::DrawDebugStateWindow() { ImGui::SetNextWindowSize(ImVec2(450, 550), ImGuiCond_FirstUseEver); if (!ImGui::Begin("GPU", &m_system->GetSettings().debugging.show_gpu_state)) { ImGui::End(); return; } const bool is_idle_frame = m_stats.num_polygons == 0; if (!is_idle_frame) { m_last_stats = m_stats; m_stats = {}; } if (ImGui::CollapsingHeader("Statistics", ImGuiTreeNodeFlags_DefaultOpen)) { const Stats& stats = m_last_stats; ImGui::Columns(2); ImGui::SetColumnWidth(0, 200.0f); ImGui::TextUnformatted("Idle Frame: "); ImGui::NextColumn(); ImGui::Text("%s", is_idle_frame ? "Yes" : "No"); ImGui::NextColumn(); ImGui::TextUnformatted("VRAM Reads: "); ImGui::NextColumn(); ImGui::Text("%u", stats.num_vram_reads); ImGui::NextColumn(); ImGui::TextUnformatted("VRAM Fills: "); ImGui::NextColumn(); ImGui::Text("%u", stats.num_vram_fills); ImGui::NextColumn(); ImGui::TextUnformatted("VRAM Writes: "); ImGui::NextColumn(); ImGui::Text("%u", stats.num_vram_writes); ImGui::NextColumn(); ImGui::TextUnformatted("VRAM Copies: "); ImGui::NextColumn(); ImGui::Text("%u", stats.num_vram_copies); ImGui::NextColumn(); ImGui::TextUnformatted("Vertices Processed: "); ImGui::NextColumn(); ImGui::Text("%u", stats.num_vertices); ImGui::NextColumn(); ImGui::TextUnformatted("Polygons Drawn: "); ImGui::NextColumn(); ImGui::Text("%u", stats.num_polygons); ImGui::NextColumn(); ImGui::Columns(1); } DrawRendererStats(is_idle_frame); if (ImGui::CollapsingHeader("CRTC", ImGuiTreeNodeFlags_DefaultOpen)) { const auto& cs = m_crtc_state; ImGui::Text("Dot Clock Divider: %u", cs.dot_clock_divider); ImGui::Text("Vertical Interlace: %s (%s field)", m_GPUSTAT.vertical_interlace ? "Yes" : "No", m_GPUSTAT.interlaced_field ? "odd" : "even"); ImGui::Text("Display Disable: %s", m_GPUSTAT.display_disable ? "Yes" : "No"); ImGui::Text("Drawing Even Line: %s", m_GPUSTAT.drawing_even_line ? "Yes" : "No"); ImGui::Text("Display Resolution: %ux%u", cs.display_width, cs.display_height); ImGui::Text("Color Depth: %u-bit", m_GPUSTAT.display_area_color_depth_24 ? 24 : 15); ImGui::Text("Start Offset: (%u, %u)", cs.regs.X.GetValue(), cs.regs.Y.GetValue()); ImGui::Text("Display Total: %u (%u) horizontal, %u vertical", cs.horizontal_total, cs.horizontal_total / cs.dot_clock_divider, cs.vertical_total); ImGui::Text("Display Range: %u-%u (%u-%u), %u-%u", cs.regs.X1.GetValue(), cs.regs.X2.GetValue(), cs.regs.X1.GetValue() / cs.dot_clock_divider, cs.regs.X2.GetValue() / cs.dot_clock_divider, cs.regs.Y1.GetValue(), cs.regs.Y2.GetValue()); ImGui::Text("Current Scanline: %u (tick %u)", cs.current_scanline, cs.current_tick_in_scanline); } if (ImGui::CollapsingHeader("GPU", ImGuiTreeNodeFlags_DefaultOpen)) { ImGui::Text("Dither: %s", m_GPUSTAT.dither_enable ? "Enabled" : "Disabled"); ImGui::Text("Draw To Display Area: %s", m_GPUSTAT.dither_enable ? "Yes" : "No"); ImGui::Text("Draw Set Mask Bit: %s", m_GPUSTAT.set_mask_while_drawing ? "Yes" : "No"); ImGui::Text("Draw To Masked Pixels: %s", m_GPUSTAT.check_mask_before_draw ? "Yes" : "No"); ImGui::Text("Reverse Flag: %s", m_GPUSTAT.reverse_flag ? "Yes" : "No"); ImGui::Text("Texture Disable: %s", m_GPUSTAT.texture_disable ? "Yes" : "No"); ImGui::Text("PAL Mode: %s", m_GPUSTAT.pal_mode ? "Yes" : "No"); ImGui::Text("Interrupt Request: %s", m_GPUSTAT.interrupt_request ? "Yes" : "No"); ImGui::Text("DMA Request: %s", m_GPUSTAT.dma_data_request ? "Yes" : "No"); } ImGui::End(); } void GPU::DrawRendererStats(bool is_idle_frame) {}