#include "assert.h" #include "cd_image.h" #include "cd_subchannel_replacement.h" #include "file_system.h" #include "log.h" #include #include #include Log_SetChannel(CDImageEcm); // unecm.c by Neill Corlett (c) 2002, GPL licensed /* LUTs used for computing ECC/EDC */ static constexpr std::array ComputeECCFLUT() { std::array ecc_lut{}; for (u32 i = 0; i < 256; i++) { u32 j = (i << 1) ^ (i & 0x80 ? 0x11D : 0); ecc_lut[i] = j; } return ecc_lut; } static constexpr std::array ComputeECCBLUT() { std::array ecc_lut{}; for (u32 i = 0; i < 256; i++) { u32 j = (i << 1) ^ (i & 0x80 ? 0x11D : 0); ecc_lut[i ^ j] = i; } return ecc_lut; } static constexpr std::array ComputeEDCLUT() { std::array edc_lut{}; for (u32 i = 0; i < 256; i++) { u32 j = (i << 1) ^ (i & 0x80 ? 0x11D : 0); u32 edc = i; for (u32 k = 0; k < 8; k++) edc = (edc >> 1) ^ (edc & 1 ? 0xD8018001 : 0); edc_lut[i] = edc; } return edc_lut; } static constexpr std::array ecc_f_lut = ComputeECCFLUT(); static constexpr std::array ecc_b_lut = ComputeECCBLUT(); static constexpr std::array edc_lut = ComputeEDCLUT(); /***************************************************************************/ /* ** Compute EDC for a block */ static u32 edc_partial_computeblock(u32 edc, const u8* src, u16 size) { while (size--) edc = (edc >> 8) ^ edc_lut[(edc ^ (*src++)) & 0xFF]; return edc; } static void edc_computeblock(const u8* src, u16 size, u8* dest) { u32 edc = edc_partial_computeblock(0, src, size); dest[0] = (edc >> 0) & 0xFF; dest[1] = (edc >> 8) & 0xFF; dest[2] = (edc >> 16) & 0xFF; dest[3] = (edc >> 24) & 0xFF; } /***************************************************************************/ /* ** Compute ECC for a block (can do either P or Q) */ static void ecc_computeblock(u8* src, u32 major_count, u32 minor_count, u32 major_mult, u32 minor_inc, u8* dest) { u32 size = major_count * minor_count; u32 major, minor; for (major = 0; major < major_count; major++) { u32 index = (major >> 1) * major_mult + (major & 1); u8 ecc_a = 0; u8 ecc_b = 0; for (minor = 0; minor < minor_count; minor++) { u8 temp = src[index]; index += minor_inc; if (index >= size) index -= size; ecc_a ^= temp; ecc_b ^= temp; ecc_a = ecc_f_lut[ecc_a]; } ecc_a = ecc_b_lut[ecc_f_lut[ecc_a] ^ ecc_b]; dest[major] = ecc_a; dest[major + major_count] = ecc_a ^ ecc_b; } } /* ** Generate ECC P and Q codes for a block */ static void ecc_generate(u8* sector, int zeroaddress) { u8 address[4], i; /* Save the address and zero it out */ if (zeroaddress) for (i = 0; i < 4; i++) { address[i] = sector[12 + i]; sector[12 + i] = 0; } /* Compute ECC P code */ ecc_computeblock(sector + 0xC, 86, 24, 2, 86, sector + 0x81C); /* Compute ECC Q code */ ecc_computeblock(sector + 0xC, 52, 43, 86, 88, sector + 0x8C8); /* Restore the address */ if (zeroaddress) for (i = 0; i < 4; i++) sector[12 + i] = address[i]; } /***************************************************************************/ /* ** Generate ECC/EDC information for a sector (must be 2352 = 0x930 bytes) ** Returns 0 on success */ static void eccedc_generate(u8* sector, int type) { switch (type) { case 1: /* Mode 1 */ /* Compute EDC */ edc_computeblock(sector + 0x00, 0x810, sector + 0x810); /* Write out zero bytes */ for (u32 i = 0; i < 8; i++) sector[0x814 + i] = 0; /* Generate ECC P/Q codes */ ecc_generate(sector, 0); break; case 2: /* Mode 2 form 1 */ /* Compute EDC */ edc_computeblock(sector + 0x10, 0x808, sector + 0x818); /* Generate ECC P/Q codes */ ecc_generate(sector, 1); break; case 3: /* Mode 2 form 2 */ /* Compute EDC */ edc_computeblock(sector + 0x10, 0x91C, sector + 0x92C); break; } } class CDImageEcm : public CDImage { public: CDImageEcm(); ~CDImageEcm() override; bool Open(const char* filename); bool ReadSubChannelQ(SubChannelQ* subq) override; bool HasNonStandardSubchannel() const override; protected: bool ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index) override; private: bool ReadChunks(u32 disc_offset, u32 size); std::FILE* m_fp = nullptr; enum class SectorType : u32 { Raw = 0x00, Mode1 = 0x01, Mode2Form1 = 0x02, Mode2Form2 = 0x03, Count, }; static constexpr std::array(SectorType::Count)> s_sector_sizes = { 0x930, // raw 0x803, // mode1 0x804, // mode2form1 0x918, // mode2form2 }; static constexpr std::array(SectorType::Count)> s_chunk_sizes = { 0, // raw 2352, // mode1 2336, // mode2form1 2336, // mode2form2 }; struct SectorEntry { u32 file_offset; u32 chunk_size; SectorType type; }; using DataMap = std::map; DataMap m_data_map; std::vector m_chunk_buffer; u32 m_chunk_start = 0; CDSubChannelReplacement m_sbi; }; CDImageEcm::CDImageEcm() = default; CDImageEcm::~CDImageEcm() { if (m_fp) std::fclose(m_fp); } bool CDImageEcm::Open(const char* filename) { m_filename = filename; m_fp = FileSystem::OpenCFile(filename, "rb"); if (!m_fp) { Log_ErrorPrintf("Failed to open binfile '%s': errno %d", filename, errno); return false; } char header[4]; if (std::fread(header, sizeof(header), 1, m_fp) != 1 || header[0] != 'E' || header[1] != 'C' || header[2] != 'M' || header[3] != 0) { Log_ErrorPrintf("Failed to read/invalid header"); return false; } // build sector map u32 file_offset = static_cast(std::ftell(m_fp)); u32 disc_offset = 0; for (;;) { long n = std::ftell(m_fp); int bits = std::fgetc(m_fp); if (bits == EOF) { Log_ErrorPrintf("Unexpected EOF after %zu chunks", m_data_map.size()); return false; } file_offset++; const SectorType type = static_cast(static_cast(bits) & 0x03u); u32 count = (static_cast(bits) >> 2) & 0x1F; u32 shift = 5; while (bits & 0x80) { bits = std::fgetc(m_fp); if (bits == EOF) { Log_ErrorPrintf("Unexpected EOF after %zu chunks", m_data_map.size()); return false; } count |= (static_cast(bits) & 0x7F) << shift; shift += 7; file_offset++; } if (count == 0xFFFFFFFFu) break; // for this sector count++; if (count >= 0x80000000u) { Log_ErrorPrintf("Corrupted header after %zu chunks", m_data_map.size()); return false; } if (type == SectorType::Raw) { while (count > 0) { const u32 size = std::min(count, 2352); m_data_map.emplace(disc_offset, SectorEntry{file_offset, size, type}); disc_offset += size; file_offset += size; count -= size; } } else { const u32 size = s_sector_sizes[static_cast(type)]; const u32 chunk_size = s_chunk_sizes[static_cast(type)]; for (u32 i = 0; i < count; i++) { m_data_map.emplace(disc_offset, SectorEntry{file_offset, chunk_size, type}); disc_offset += chunk_size; file_offset += size; } } if (std::fseek(m_fp, file_offset, SEEK_SET) != 0) { Log_ErrorPrintf("Failed to seek to offset %u after %zu chunks", file_offset, m_data_map.size()); return false; } } if (m_data_map.empty()) { Log_ErrorPrintf("No data in image '%s'", filename); return false; } m_lba_count = disc_offset / RAW_SECTOR_SIZE; if ((disc_offset % RAW_SECTOR_SIZE) != 0) Log_WarningPrintf("ECM image is misaligned with offset %u", disc_offset); if (m_lba_count == 0) return false; SubChannelQ::Control control = {}; TrackMode mode = TrackMode::Mode2Raw; control.data = mode != TrackMode::Audio; // Two seconds default pregap. const u32 pregap_frames = 2 * FRAMES_PER_SECOND; Index pregap_index = {}; pregap_index.file_sector_size = RAW_SECTOR_SIZE; pregap_index.start_lba_on_disc = 0; pregap_index.start_lba_in_track = static_cast(-static_cast(pregap_frames)); pregap_index.length = pregap_frames; pregap_index.track_number = 1; pregap_index.index_number = 0; pregap_index.mode = mode; pregap_index.control.bits = control.bits; pregap_index.is_pregap = true; m_indices.push_back(pregap_index); // Data index. Index data_index = {}; data_index.file_index = 0; data_index.file_offset = 0; data_index.file_sector_size = RAW_SECTOR_SIZE; data_index.start_lba_on_disc = pregap_index.length; data_index.track_number = 1; data_index.index_number = 1; data_index.start_lba_in_track = 0; data_index.length = m_lba_count; data_index.mode = mode; data_index.control.bits = control.bits; m_indices.push_back(data_index); // Assume a single track. m_tracks.push_back( Track{static_cast(1), data_index.start_lba_on_disc, static_cast(0), m_lba_count, mode, control}); AddLeadOutIndex(); m_sbi.LoadSBI(FileSystem::ReplaceExtension(filename, "sbi").c_str()); m_chunk_buffer.reserve(RAW_SECTOR_SIZE * 2); return Seek(1, Position{0, 0, 0}); } bool CDImageEcm::ReadChunks(u32 disc_offset, u32 size) { DataMap::iterator next = m_data_map.lower_bound((disc_offset > RAW_SECTOR_SIZE) ? (disc_offset - RAW_SECTOR_SIZE) : 0); DataMap::iterator current = m_data_map.begin(); while (next != m_data_map.end() && next->first <= disc_offset) current = next++; // extra bytes if we need to buffer some at the start m_chunk_start = current->first; m_chunk_buffer.clear(); if (m_chunk_start < disc_offset) size += (disc_offset - current->first); u32 total_bytes_read = 0; while (total_bytes_read < size) { if (current == m_data_map.end() || std::fseek(m_fp, current->second.file_offset, SEEK_SET) != 0) return false; const u32 chunk_size = current->second.chunk_size; const u32 chunk_start = static_cast(m_chunk_buffer.size()); m_chunk_buffer.resize(chunk_start + chunk_size); if (current->second.type == SectorType::Raw) { if (std::fread(&m_chunk_buffer[chunk_start], chunk_size, 1, m_fp) != 1) return false; total_bytes_read += chunk_size; } else { // u8* sector = &m_chunk_buffer[chunk_start]; u8 sector[RAW_SECTOR_SIZE]; // TODO: needed? std::memset(sector, 0, RAW_SECTOR_SIZE); std::memset(sector + 1, 0xFF, 10); u32 skip; switch (current->second.type) { case SectorType::Mode1: { sector[0x0F] = 0x01; if (std::fread(sector + 0x00C, 0x003, 1, m_fp) != 1 || std::fread(sector + 0x010, 0x800, 1, m_fp) != 1) return false; eccedc_generate(sector, 1); skip = 0; } break; case SectorType::Mode2Form1: { sector[0x0F] = 0x02; if (std::fread(sector + 0x014, 0x804, 1, m_fp) != 1) return false; sector[0x10] = sector[0x14]; sector[0x11] = sector[0x15]; sector[0x12] = sector[0x16]; sector[0x13] = sector[0x17]; eccedc_generate(sector, 2); skip = 0x10; } break; case SectorType::Mode2Form2: { sector[0x0F] = 0x02; if (std::fread(sector + 0x014, 0x918, 1, m_fp) != 1) return false; sector[0x10] = sector[0x14]; sector[0x11] = sector[0x15]; sector[0x12] = sector[0x16]; sector[0x13] = sector[0x17]; eccedc_generate(sector, 3); skip = 0x10; } break; default: UnreachableCode(); return false; } std::memcpy(&m_chunk_buffer[chunk_start], sector + skip, chunk_size); total_bytes_read += chunk_size; } ++current; } return true; } bool CDImageEcm::ReadSubChannelQ(SubChannelQ* subq) { if (m_sbi.GetReplacementSubChannelQ(m_position_on_disc, subq)) return true; return CDImage::ReadSubChannelQ(subq); } bool CDImageEcm::HasNonStandardSubchannel() const { return (m_sbi.GetReplacementSectorCount() > 0); } bool CDImageEcm::ReadSectorFromIndex(void* buffer, const Index& index, LBA lba_in_index) { const u32 file_start = static_cast(index.file_offset) + (lba_in_index * index.file_sector_size); const u32 file_end = file_start + RAW_SECTOR_SIZE; if (file_start < m_chunk_start || file_end > (m_chunk_start + m_chunk_buffer.size())) { if (!ReadChunks(file_start, RAW_SECTOR_SIZE)) return false; } DebugAssert(file_start >= m_chunk_start && file_end <= (m_chunk_start + m_chunk_buffer.size())); const size_t chunk_offset = static_cast(file_start - m_chunk_start); std::memcpy(buffer, &m_chunk_buffer[chunk_offset], RAW_SECTOR_SIZE); return true; } std::unique_ptr CDImage::OpenEcmImage(const char* filename) { std::unique_ptr image = std::make_unique(); if (!image->Open(filename)) return {}; return image; }