#include "gte.h" #include "YBaseLib/Log.h" #include #include Log_SetChannel(GTE); // TODO: Optimize, intrinsics? static inline constexpr u32 CountLeadingZeros(u16 value) { u32 count = 0; for (u32 i = 0; i < 16 && (value & UINT16_C(0x8000)) == 0; i++) { count++; value <<= 1; } return count; } static inline constexpr u32 CountLeadingBits(u32 value) { u32 count = 0; if ((value & UINT32_C(0x80000000)) != 0) { for (u32 i = 0; i < 32 && ((value & UINT32_C(0x80000000)) != 0); i++) { count++; value <<= 1; } } else { for (u32 i = 0; i < 32 && (value & UINT32_C(0x80000000)) == 0; i++) { count++; value <<= 1; } } return count; } namespace GTE { Core::Core() = default; Core::~Core() = default; void Core::Initialize() {} void Core::Reset() { m_regs = {}; } bool Core::DoState(StateWrapper& sw) { sw.DoPOD(&m_regs); return !sw.HasError(); } u32 Core::ReadDataRegister(u32 index) const { switch (index) { case 15: // SXY3 { // mirror of SXY2 return m_regs.dr32[14]; } case 28: // IRGB case 29: // ORGB { // ORGB register, convert 16-bit to 555 const u8 r = static_cast(std::clamp(m_regs.IR1 / 0x80, 0x00, 0x1F)); const u8 g = static_cast(std::clamp(m_regs.IR2 / 0x80, 0x00, 0x1F)); const u8 b = static_cast(std::clamp(m_regs.IR3 / 0x80, 0x00, 0x1F)); return ZeroExtend32(r) | (ZeroExtend32(g) << 5) | (ZeroExtend32(b) << 10); } case 0: // V0-1 [x,y] case 1: // V0[z] case 2: // V1-2 [x,y] case 3: // V1[z] case 4: // V2-3 [x,y] case 5: // V2[z] case 6: // RGBC case 7: // OTZ case 8: // IR0 case 9: // IR1 case 10: // IR2 case 11: // IR3 case 12: // SXY0 case 13: // SXY1 case 14: // SXY2 case 16: // SZ0 case 17: // SZ1 case 18: // SZ2 case 19: // SZ3 case 20: // RGB0 case 21: // RGB1 case 22: // RGB2 case 23: // RES1 case 24: // MAC0 case 25: // MAC1 case 26: // MAC2 case 27: // MAC3 case 30: // LZCS case 31: // LZCR return m_regs.dr32[index]; default: Panic("Unknown register"); return 0; } } void Core::WriteDataRegister(u32 index, u32 value) { // Log_DebugPrintf("DataReg(%u) <- 0x%08X", index, value); switch (index) { case 1: // V0[z] case 3: // V1[z] case 5: // V2[z] case 8: // IR0 case 9: // IR1 case 10: // IR2 case 11: // IR3 { // sign-extend z component of vector registers m_regs.dr32[index] = SignExtend32(Truncate16(value)); } break; case 7: // OTZ case 16: // SZ0 case 17: // SZ1 case 18: // SZ2 case 19: // SZ3 { // zero-extend unsigned values m_regs.dr32[index] = ZeroExtend32(Truncate16(value)); } break; case 15: // SXY3 { // writing to SXYP pushes to the FIFO m_regs.dr32[12] = m_regs.dr32[13]; // SXY0 <- SXY1 m_regs.dr32[13] = m_regs.dr32[14]; // SXY1 <- SXY2 m_regs.dr32[14] = value; // SXY2 <- SXYP } break; case 28: // IRGB { // IRGB register, convert 555 to 16-bit m_regs.IRGB = value & UINT32_C(0x7FFF); m_regs.dr32[9] = SignExtend32(static_cast(Truncate16((value & UINT32_C(0x1F)) * UINT32_C(0x80)))); m_regs.dr32[10] = SignExtend32(static_cast(Truncate16(((value >> 5) & UINT32_C(0x1F)) * UINT32_C(0x80)))); m_regs.dr32[11] = SignExtend32(static_cast(Truncate16(((value >> 10) & UINT32_C(0x1F)) * UINT32_C(0x80)))); } break; case 30: // LZCS { m_regs.LZCS = static_cast(value); m_regs.LZCR = CountLeadingBits(value); } break; case 29: // ORGB case 31: // LZCR { // read-only registers } break; case 0: // V0-1 [x,y] case 2: // V1-2 [x,y] case 4: // V2-3 [x,y] case 6: // RGBC case 12: // SXY0 case 13: // SXY1 case 14: // SXY2 case 20: // RGB0 case 21: // RGB1 case 22: // RGB2 case 23: // RES1 case 24: // MAC0 case 25: // MAC1 case 26: // MAC2 case 27: // MAC3 m_regs.dr32[index] = value; break; default: Panic("Unknown register"); break; } } u32 Core::ReadControlRegister(u32 index) const { return m_regs.cr32[index]; } void Core::WriteControlRegister(u32 index, u32 value) { // Log_DebugPrintf("ControlReg(%u,%u) <- 0x%08X", index, index + 32, value); switch (index) { case 36 - 32: // RT33 case 44 - 32: // L33 case 52 - 32: // LR33 case 58 - 32: // H - sign-extended on read but zext on use case 59 - 32: // DQA case 61 - 32: // ZSF3 case 62 - 32: // ZSF4 { // MSB of the last matrix element is the last element sign-extended m_regs.cr32[index] = SignExtend32(Truncate16(value)); } break; case 63 - 32: // FLAG { m_regs.FLAG.bits = value & UINT32_C(0x7FFFF000); m_regs.FLAG.UpdateError(); } break; case 32 - 32: // RT11,RT12 case 33 - 32: // RT13,RT21 case 34 - 32: // RT22,RT23 case 35 - 32: // RT31,RT32 case 37 - 32: // TRX case 38 - 32: // TRY case 39 - 32: // TRZ case 40 - 32: // L11,L12 case 41 - 32: // L13,L21 case 42 - 32: // L22,L23 case 43 - 32: // L31,L32 case 45 - 32: // RBK case 46 - 32: // GBK case 47 - 32: // BBK case 48 - 32: // LR11,LR12 case 49 - 32: // LR13,LR21 case 50 - 32: // LR22,LR23 case 51 - 32: // LR31,LR32 case 53 - 32: // RFC case 54 - 32: // GFC case 55 - 32: // BFC case 56 - 32: // OFX case 57 - 32: // OFY case 60 - 32: // DQB { // written as-is, 2x16 or 1x32 bits m_regs.cr32[index] = value; } break; default: Panic("Unknown register"); break; } } void Core::ExecuteInstruction(Instruction inst) { // Panic("GTE instruction"); switch (inst.command) { case 0x01: Execute_RTPS(inst); break; case 0x06: Execute_NCLIP(inst); break; case 0x0C: Execute_OP(inst); break; case 0x10: Execute_DPCS(inst); break; case 0x11: Execute_INTPL(inst); break; case 0x12: Execute_MVMVA(inst); break; case 0x13: Execute_NCDS(inst); break; case 0x14: Execute_CDP(inst); break; case 0x16: Execute_NCDT(inst); break; case 0x1B: Execute_NCCS(inst); break; case 0x1C: Execute_CC(inst); break; case 0x1E: Execute_NCS(inst); break; case 0x20: Execute_NCT(inst); break; case 0x28: Execute_SQR(inst); break; case 0x29: Execute_DCPL(inst); break; case 0x2A: Execute_DPCT(inst); break; case 0x2D: Execute_AVSZ3(inst); break; case 0x2E: Execute_AVSZ4(inst); break; case 0x30: Execute_RTPT(inst); break; case 0x3D: Execute_GPF(inst); break; case 0x3E: Execute_GPL(inst); break; case 0x3F: Execute_NCCT(inst); break; default: Panic("Missing handler"); break; } } void Core::SetOTZ(s32 value) { if (value < 0) { m_regs.FLAG.sz1_otz_saturated = true; value = 0; } else if (value > 0xFFFF) { m_regs.FLAG.sz1_otz_saturated = true; value = 0xFFFF; } m_regs.dr32[7] = static_cast(value); } void Core::PushSXY(s32 x, s32 y) { if (x < -1024) { m_regs.FLAG.sx2_saturated = true; x = -1024; } else if (x > 1023) { m_regs.FLAG.sx2_saturated = true; x = 1023; } if (y < -1024) { m_regs.FLAG.sy2_saturated = true; y = -1024; } else if (y > 1023) { m_regs.FLAG.sy2_saturated = true; y = 1023; } m_regs.dr32[12] = m_regs.dr32[13]; // SXY0 <- SXY1 m_regs.dr32[13] = m_regs.dr32[14]; // SXY1 <- SXY2 m_regs.SXY2[0] = static_cast(x); m_regs.SXY2[1] = static_cast(y); } void Core::PushSZ(s32 value) { if (value < 0) { m_regs.FLAG.sz1_otz_saturated = true; value = 0; } else if (value > 0xFFFF) { m_regs.FLAG.sz1_otz_saturated = true; value = 0xFFFF; } m_regs.dr32[16] = m_regs.dr32[17]; // SZ0 <- SZ1 m_regs.dr32[17] = m_regs.dr32[18]; // SZ1 <- SZ2 m_regs.dr32[18] = m_regs.dr32[19]; // SZ2 <- SZ3 m_regs.dr32[19] = static_cast(value); // SZ3 <- value } void Core::PushRGBFromMAC() { // Note: SHR 4 used instead of /16 as the results are different. const u32 r = TruncateRGB<0>(static_cast(m_regs.MAC1 >> 4)); const u32 g = TruncateRGB<1>(static_cast(m_regs.MAC2 >> 4)); const u32 b = TruncateRGB<2>(static_cast(m_regs.MAC3 >> 4)); const u32 c = ZeroExtend32(m_regs.RGBC[3]); m_regs.dr32[20] = m_regs.dr32[21]; // RGB0 <- RGB1 m_regs.dr32[21] = m_regs.dr32[22]; // RGB1 <- RGB2 m_regs.dr32[22] = r | (g << 8) | (b << 16) | (c << 24); // RGB2 <- Value } u32 Core::UNRDivide(u32 lhs, u32 rhs) { if (rhs * 2 <= lhs) { m_regs.FLAG.divide_overflow = true; return 0x1FFFF; } const u32 shift = CountLeadingZeros(static_cast(rhs)); lhs <<= shift; rhs <<= shift; static constexpr std::array unr_table = {{ 0xFF, 0xFD, 0xFB, 0xF9, 0xF7, 0xF5, 0xF3, 0xF1, 0xEF, 0xEE, 0xEC, 0xEA, 0xE8, 0xE6, 0xE4, 0xE3, // 0xE1, 0xDF, 0xDD, 0xDC, 0xDA, 0xD8, 0xD6, 0xD5, 0xD3, 0xD1, 0xD0, 0xCE, 0xCD, 0xCB, 0xC9, 0xC8, // 00h..3Fh 0xC6, 0xC5, 0xC3, 0xC1, 0xC0, 0xBE, 0xBD, 0xBB, 0xBA, 0xB8, 0xB7, 0xB5, 0xB4, 0xB2, 0xB1, 0xB0, // 0xAE, 0xAD, 0xAB, 0xAA, 0xA9, 0xA7, 0xA6, 0xA4, 0xA3, 0xA2, 0xA0, 0x9F, 0x9E, 0x9C, 0x9B, 0x9A, // 0x99, 0x97, 0x96, 0x95, 0x94, 0x92, 0x91, 0x90, 0x8F, 0x8D, 0x8C, 0x8B, 0x8A, 0x89, 0x87, 0x86, // 0x85, 0x84, 0x83, 0x82, 0x81, 0x7F, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x77, 0x75, 0x74, // 40h..7Fh 0x73, 0x72, 0x71, 0x70, 0x6F, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, // 0x63, 0x62, 0x61, 0x60, 0x5F, 0x5E, 0x5D, 0x5D, 0x5C, 0x5B, 0x5A, 0x59, 0x58, 0x57, 0x56, 0x55, // 0x54, 0x53, 0x53, 0x52, 0x51, 0x50, 0x4F, 0x4E, 0x4D, 0x4D, 0x4C, 0x4B, 0x4A, 0x49, 0x48, 0x48, // 0x47, 0x46, 0x45, 0x44, 0x43, 0x43, 0x42, 0x41, 0x40, 0x3F, 0x3F, 0x3E, 0x3D, 0x3C, 0x3C, 0x3B, // 80h..BFh 0x3A, 0x39, 0x39, 0x38, 0x37, 0x36, 0x36, 0x35, 0x34, 0x33, 0x33, 0x32, 0x31, 0x31, 0x30, 0x2F, // 0x2E, 0x2E, 0x2D, 0x2C, 0x2C, 0x2B, 0x2A, 0x2A, 0x29, 0x28, 0x28, 0x27, 0x26, 0x26, 0x25, 0x24, // 0x24, 0x23, 0x22, 0x22, 0x21, 0x20, 0x20, 0x1F, 0x1E, 0x1E, 0x1D, 0x1D, 0x1C, 0x1B, 0x1B, 0x1A, // 0x19, 0x19, 0x18, 0x18, 0x17, 0x16, 0x16, 0x15, 0x15, 0x14, 0x14, 0x13, 0x12, 0x12, 0x11, 0x11, // C0h..FFh 0x10, 0x0F, 0x0F, 0x0E, 0x0E, 0x0D, 0x0D, 0x0C, 0x0C, 0x0B, 0x0A, 0x0A, 0x09, 0x09, 0x08, 0x08, // 0x07, 0x07, 0x06, 0x06, 0x05, 0x05, 0x04, 0x04, 0x03, 0x03, 0x02, 0x02, 0x01, 0x01, 0x00, 0x00, // 0x00 // <-- one extra table entry (for "(d-7FC0h)/80h"=100h) }}; const u32 divisor = rhs | 0x8000; const s32 x = static_cast(0x101 + ZeroExtend32(unr_table[((divisor & 0x7FFF) + 0x40) >> 7])); const s32 d = ((static_cast(ZeroExtend32(divisor)) * -x) + 0x80) >> 8; const u32 recip = static_cast(((x * (0x20000 + d)) + 0x80) >> 8); const u32 result = Truncate32((ZeroExtend64(lhs) * ZeroExtend64(recip) + u64(0x8000)) >> 16); // The min(1FFFFh) limit is needed for cases like FE3Fh/7F20h, F015h/780Bh, etc. (these do produce UNR result 20000h, // and are saturated to 1FFFFh, but without setting overflow FLAG bits). return std::min(0x1FFFF, result); } void Core::MulMatVec(const s16 M[3][3], const s16 Vx, const s16 Vy, const s16 Vz, u8 shift, bool lm) { #define dot3(i) \ TruncateAndSetMACAndIR(SignExtendMACResult((s64(M[i][0]) * s64(Vx)) + (s64(M[i][1]) * s64(Vy))) + \ (s64(M[i][2]) * s64(Vz)), \ shift, lm) dot3(0); dot3(1); dot3(2); #undef dot3 } void Core::MulMatVec(const s16 M[3][3], const s32 T[3], const s16 Vx, const s16 Vy, const s16 Vz, u8 shift, bool lm) { #define dot3(i) \ TruncateAndSetMACAndIR( \ SignExtendMACResult(SignExtendMACResult((s64(T[i]) << 12) + (s64(M[i][0]) * s64(Vx))) + \ (s64(M[i][1]) * s64(Vy))) + \ (s64(M[i][2]) * s64(Vz)), \ shift, lm) dot3(0); dot3(1); dot3(2); #undef dot3 } void Core::Execute_MVMVA(Instruction inst) { m_regs.FLAG.Clear(); // TODO: Remove memcpy.. s16 M[3][3]; switch (inst.mvmva_multiply_matrix) { case 0: std::memcpy(M, m_regs.RT, sizeof(s16) * 3 * 3); break; case 1: std::memcpy(M, m_regs.LLM, sizeof(s16) * 3 * 3); break; case 2: std::memcpy(M, m_regs.LCM, sizeof(s16) * 3 * 3); break; default: // buggy Panic("Missing implementation"); return; } s16 Vx, Vy, Vz; switch (inst.mvmva_multiply_vector) { case 0: Vx = m_regs.V0[0]; Vy = m_regs.V0[1]; Vz = m_regs.V0[2]; break; case 1: Vx = m_regs.V1[0]; Vy = m_regs.V1[1]; Vz = m_regs.V1[2]; break; case 2: Vx = m_regs.V2[0]; Vy = m_regs.V2[1]; Vz = m_regs.V2[2]; break; default: Vx = m_regs.IR1; Vy = m_regs.IR2; Vz = m_regs.IR3; break; } s32 T[3]; switch (inst.mvmva_translation_vector) { case 0: std::memcpy(T, m_regs.TR, sizeof(T)); break; case 1: std::memcpy(T, m_regs.BK, sizeof(T)); break; case 2: // buggy std::memcpy(T, m_regs.FC, sizeof(T)); break; case 3: std::fill_n(T, countof(T), s32(0)); break; default: Panic("Missing implementation"); return; } MulMatVec(M, T, Vx, Vy, Vz, inst.GetShift(), inst.lm); m_regs.FLAG.UpdateError(); } void Core::Execute_SQR(Instruction inst) { m_regs.FLAG.Clear(); // 32-bit multiply for speed - 16x16 isn't >32bit, and we know it won't overflow/underflow. const u8 shift = inst.GetShift(); m_regs.MAC1 = (s32(m_regs.IR1) * s32(m_regs.IR1)) >> shift; m_regs.MAC2 = (s32(m_regs.IR2) * s32(m_regs.IR2)) >> shift; m_regs.MAC3 = (s32(m_regs.IR3) * s32(m_regs.IR3)) >> shift; const bool lm = inst.lm; TruncateAndSetIR<1>(m_regs.MAC1, lm); TruncateAndSetIR<2>(m_regs.MAC2, lm); TruncateAndSetIR<3>(m_regs.MAC3, lm); m_regs.FLAG.UpdateError(); } void Core::Execute_OP(Instruction inst) { m_regs.FLAG.Clear(); // Take copies since we overwrite them in each step. const u8 shift = inst.GetShift(); const bool lm = inst.lm; const s32 D1 = s32(m_regs.RT[0][0]); const s32 D2 = s32(m_regs.RT[1][1]); const s32 D3 = s32(m_regs.RT[2][2]); const s32 IR1 = s32(m_regs.IR1); const s32 IR2 = s32(m_regs.IR2); const s32 IR3 = s32(m_regs.IR3); // [MAC1,MAC2,MAC3] = [IR3*D2-IR2*D3, IR1*D3-IR3*D1, IR2*D1-IR1*D2] SAR (sf*12) // [IR1, IR2, IR3] = [MAC1, MAC2, MAC3]; copy result TruncateAndSetMACAndIR<1>(s64(IR3 * D2) - s64(IR2 * D3), shift, lm); TruncateAndSetMACAndIR<2>(s64(IR1 * D3) - s64(IR3 * D1), shift, lm); TruncateAndSetMACAndIR<3>(s64(IR2 * D1) - s64(IR1 * D2), shift, lm); m_regs.FLAG.UpdateError(); } void Core::RTPS(const s16 V[3], u8 shift, bool lm, bool last) { #define dot3(i) \ SignExtendMACResult( \ SignExtendMACResult((s64(m_regs.TR[i]) << 12) + (s64(m_regs.RT[i][0]) * s64(V[0]))) + \ (s64(m_regs.RT[i][1]) * s64(V[1]))) + \ (s64(m_regs.RT[i][2]) * s64(V[2])) // IR1 = MAC1 = (TRX*1000h + RT11*VX0 + RT12*VY0 + RT13*VZ0) SAR (sf*12) // IR2 = MAC2 = (TRY*1000h + RT21*VX0 + RT22*VY0 + RT23*VZ0) SAR (sf*12) // IR3 = MAC3 = (TRZ*1000h + RT31*VX0 + RT32*VY0 + RT33*VZ0) SAR (sf*12) const s64 x = dot3(0); const s64 y = dot3(1); const s64 z = dot3(2); TruncateAndSetMAC<1>(x, shift); TruncateAndSetMAC<2>(y, shift); TruncateAndSetMAC<3>(z, shift); TruncateAndSetIR<1>(m_regs.MAC1, lm); TruncateAndSetIR<2>(m_regs.MAC2, lm); // The command does saturate IR1,IR2,IR3 to -8000h..+7FFFh (regardless of lm bit). When using RTP with sf=0, then the // IR3 saturation flag (FLAG.22) gets set if "MAC3 SAR 12" exceeds -8000h..+7FFFh (although IR3 is saturated // when "MAC3" exceeds -8000h..+7FFFh). TruncateAndSetIR<3>(s32(z >> 12), false); m_regs.dr32[11] = std::clamp(m_regs.MAC3, lm ? 0 : IR123_MIN_VALUE, IR123_MAX_VALUE); #undef dot3 // SZ3 = MAC3 SAR ((1-sf)*12) ;ScreenZ FIFO 0..+FFFFh PushSZ(s32(z >> 12)); // MAC0=(((H*20000h/SZ3)+1)/2)*IR1+OFX, SX2=MAC0/10000h ;ScrX FIFO -400h..+3FFh // MAC0=(((H*20000h/SZ3)+1)/2)*IR2+OFY, SY2=MAC0/10000h ;ScrY FIFO -400h..+3FFh const s64 result = static_cast(ZeroExtend64(UNRDivide(m_regs.H, m_regs.SZ3))); const s64 Sx = s64(result) * s64(m_regs.IR1) + s64(m_regs.OFX); const s64 Sy = s64(result) * s64(m_regs.IR2) + s64(m_regs.OFY); CheckMACOverflow<0>(Sx); CheckMACOverflow<0>(Sy); PushSXY(s32(Sx >> 16), s32(Sy >> 16)); if (last) { // MAC0=(((H*20000h/SZ3)+1)/2)*DQA+DQB, IR0=MAC0/1000h ;Depth cueing 0..+1000h const s64 Sz = s64(result) * s64(m_regs.DQA) + s64(m_regs.DQB); TruncateAndSetMAC<0>(Sz, 0); TruncateAndSetIR<0>(s32(Sz >> 12), true); } } void Core::Execute_RTPS(Instruction inst) { m_regs.FLAG.Clear(); RTPS(m_regs.V0, inst.GetShift(), inst.lm, true); m_regs.FLAG.UpdateError(); } void Core::Execute_RTPT(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; RTPS(m_regs.V0, shift, lm, false); RTPS(m_regs.V1, shift, lm, false); RTPS(m_regs.V2, shift, lm, true); m_regs.FLAG.UpdateError(); } void Core::Execute_NCLIP(Instruction inst) { // MAC0 = SX0*SY1 + SX1*SY2 + SX2*SY0 - SX0*SY2 - SX1*SY0 - SX2*SY1 m_regs.FLAG.Clear(); TruncateAndSetMAC<0>(s64(m_regs.SXY0[0]) * s64(m_regs.SXY1[1]) + s64(m_regs.SXY1[0]) * s64(m_regs.SXY2[1]) + s64(m_regs.SXY2[0]) * s64(m_regs.SXY0[1]) - s64(m_regs.SXY0[0]) * s64(m_regs.SXY2[1]) - s64(m_regs.SXY1[0]) * s64(m_regs.SXY0[1]) - s64(m_regs.SXY2[0]) * s64(m_regs.SXY1[1]), 0); m_regs.FLAG.UpdateError(); } void Core::Execute_AVSZ3(Instruction inst) { m_regs.FLAG.Clear(); const s64 result = s64(m_regs.ZSF3) * s32(u32(m_regs.SZ1) + u32(m_regs.SZ2) + u32(m_regs.SZ3)); TruncateAndSetMAC<0>(result, 0); SetOTZ(s32(result >> 12)); m_regs.FLAG.UpdateError(); } void Core::Execute_AVSZ4(Instruction inst) { m_regs.FLAG.Clear(); const s64 result = s64(m_regs.ZSF4) * s32(u32(m_regs.SZ0) + u32(m_regs.SZ1) + u32(m_regs.SZ2) + u32(m_regs.SZ3)); TruncateAndSetMAC<0>(result, 0); SetOTZ(s32(result >> 12)); m_regs.FLAG.UpdateError(); } void Core::InterpolateColor(s64 in_MAC1, s64 in_MAC2, s64 in_MAC3, u8 shift, bool lm) { // [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 // [IR1,IR2,IR3] = (([RFC,GFC,BFC] SHL 12) - [MAC1,MAC2,MAC3]) SAR (sf*12) TruncateAndSetMACAndIR<1>((s64(m_regs.FC[0]) << 12) - in_MAC1, shift, false); TruncateAndSetMACAndIR<2>((s64(m_regs.FC[1]) << 12) - in_MAC2, shift, false); TruncateAndSetMACAndIR<3>((s64(m_regs.FC[2]) << 12) - in_MAC3, shift, false); // [MAC1,MAC2,MAC3] = (([IR1,IR2,IR3] * IR0) + [MAC1,MAC2,MAC3]) // [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SAR (sf*12) TruncateAndSetMACAndIR<1>(s64(s32(m_regs.IR1) * s32(m_regs.IR0)) + in_MAC1, shift, lm); TruncateAndSetMACAndIR<2>(s64(s32(m_regs.IR2) * s32(m_regs.IR0)) + in_MAC2, shift, lm); TruncateAndSetMACAndIR<3>(s64(s32(m_regs.IR3) * s32(m_regs.IR0)) + in_MAC3, shift, lm); } void Core::NCS(const s16 V[3], u8 shift, bool lm) { // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (LLM*V0) SAR (sf*12) MulMatVec(m_regs.LLM, V[0], V[1], V[2], shift, lm); // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12) MulMatVec(m_regs.LCM, m_regs.BK, m_regs.IR1, m_regs.IR2, m_regs.IR3, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); } void Core::Execute_NCS(Instruction inst) { m_regs.FLAG.Clear(); NCS(m_regs.V0, inst.GetShift(), inst.lm); m_regs.FLAG.UpdateError(); } void Core::Execute_NCT(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; NCS(m_regs.V0, shift, lm); NCS(m_regs.V1, shift, lm); NCS(m_regs.V2, shift, lm); m_regs.FLAG.UpdateError(); } void Core::NCCS(const s16 V[3], u8 shift, bool lm) { // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (LLM*V0) SAR (sf*12) MulMatVec(m_regs.LLM, V[0], V[1], V[2], shift, lm); // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12) MulMatVec(m_regs.LCM, m_regs.BK, m_regs.IR1, m_regs.IR2, m_regs.IR3, shift, lm); // [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 ;<--- for NCDx/NCCx // [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SAR (sf*12) ;<--- for NCDx/NCCx TruncateAndSetMACAndIR<1>(s64(s32(ZeroExtend32(m_regs.RGBC[0])) * s32(m_regs.IR1)) << 4, shift, lm); TruncateAndSetMACAndIR<2>(s64(s32(ZeroExtend32(m_regs.RGBC[1])) * s32(m_regs.IR2)) << 4, shift, lm); TruncateAndSetMACAndIR<3>(s64(s32(ZeroExtend32(m_regs.RGBC[2])) * s32(m_regs.IR3)) << 4, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); } void Core::Execute_NCCS(Instruction inst) { m_regs.FLAG.Clear(); NCCS(m_regs.V0, inst.GetShift(), inst.lm); m_regs.FLAG.UpdateError(); } void Core::Execute_NCCT(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; NCCS(m_regs.V0, shift, lm); NCCS(m_regs.V1, shift, lm); NCCS(m_regs.V2, shift, lm); m_regs.FLAG.UpdateError(); } void Core::NCDS(const s16 V[3], u8 shift, bool lm) { // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (LLM*V0) SAR (sf*12) MulMatVec(m_regs.LLM, V[0], V[1], V[2], shift, lm); // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12) MulMatVec(m_regs.LCM, m_regs.BK, m_regs.IR1, m_regs.IR2, m_regs.IR3, shift, lm); // No need to assign these to MAC[1-3], as it'll never overflow. // [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 ;<--- for NCDx/NCCx const s32 in_MAC1 = (s32(ZeroExtend32(m_regs.RGBC[0])) * s32(m_regs.IR1)) << 4; const s32 in_MAC2 = (s32(ZeroExtend32(m_regs.RGBC[1])) * s32(m_regs.IR2)) << 4; const s32 in_MAC3 = (s32(ZeroExtend32(m_regs.RGBC[2])) * s32(m_regs.IR3)) << 4; // [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 ;<--- for NCDx only InterpolateColor(in_MAC1, in_MAC2, in_MAC3, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); } void Core::Execute_NCDS(Instruction inst) { m_regs.FLAG.Clear(); NCDS(m_regs.V0, inst.GetShift(), inst.lm); m_regs.FLAG.UpdateError(); } void Core::Execute_NCDT(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; NCDS(m_regs.V0, shift, lm); NCDS(m_regs.V1, shift, lm); NCDS(m_regs.V2, shift, lm); m_regs.FLAG.UpdateError(); } void Core::Execute_CC(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12) MulMatVec(m_regs.LCM, m_regs.BK, m_regs.IR1, m_regs.IR2, m_regs.IR3, shift, lm); // [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 // [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SAR (sf*12) TruncateAndSetMACAndIR<1>(s64(s32(ZeroExtend32(m_regs.RGBC[0])) * s32(m_regs.IR1)) << 4, shift, lm); TruncateAndSetMACAndIR<2>(s64(s32(ZeroExtend32(m_regs.RGBC[1])) * s32(m_regs.IR2)) << 4, shift, lm); TruncateAndSetMACAndIR<3>(s64(s32(ZeroExtend32(m_regs.RGBC[2])) * s32(m_regs.IR3)) << 4, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); m_regs.FLAG.UpdateError(); } void Core::Execute_CDP(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; // [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] = (BK*1000h + LCM*IR) SAR (sf*12) MulMatVec(m_regs.LCM, m_regs.BK, m_regs.IR1, m_regs.IR2, m_regs.IR3, shift, lm); // No need to assign these to MAC[1-3], as it'll never overflow. // [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 const s32 in_MAC1 = (s32(ZeroExtend32(m_regs.RGBC[0])) * s32(m_regs.IR1)) << 4; const s32 in_MAC2 = (s32(ZeroExtend32(m_regs.RGBC[1])) * s32(m_regs.IR2)) << 4; const s32 in_MAC3 = (s32(ZeroExtend32(m_regs.RGBC[2])) * s32(m_regs.IR3)) << 4; // [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 ;<--- for CDP only // [MAC1, MAC2, MAC3] = [MAC1, MAC2, MAC3] SAR(sf * 12) InterpolateColor(in_MAC1, in_MAC2, in_MAC3, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); m_regs.FLAG.UpdateError(); } void Core::DPCS(const u8 color[3], u8 shift, bool lm) { // In: [IR1,IR2,IR3]=Vector, FC=Far Color, IR0=Interpolation value, CODE=MSB of RGBC // [MAC1,MAC2,MAC3] = [R,G,B] SHL 16 ;<--- for DPCS/DPCT TruncateAndSetMAC<1>((s64(ZeroExtend64(color[0])) << 16), 0); TruncateAndSetMAC<2>((s64(ZeroExtend64(color[1])) << 16), 0); TruncateAndSetMAC<3>((s64(ZeroExtend64(color[2])) << 16), 0); // [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 InterpolateColor(m_regs.MAC1, m_regs.MAC2, m_regs.MAC3, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); } void Core::Execute_DPCS(Instruction inst) { m_regs.FLAG.Clear(); DPCS(m_regs.RGBC, inst.GetShift(), inst.lm); m_regs.FLAG.UpdateError(); } void Core::Execute_DPCT(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; for (u32 i = 0; i < 3; i++) DPCS(m_regs.RGB0, shift, lm); m_regs.FLAG.UpdateError(); } void Core::Execute_DCPL(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; // No need to assign these to MAC[1-3], as it'll never overflow. // [MAC1,MAC2,MAC3] = [R*IR1,G*IR2,B*IR3] SHL 4 ;<--- for DCPL only const s32 in_MAC1 = (s32(ZeroExtend32(m_regs.RGBC[0])) * s32(m_regs.IR1)) << 4; const s32 in_MAC2 = (s32(ZeroExtend32(m_regs.RGBC[1])) * s32(m_regs.IR2)) << 4; const s32 in_MAC3 = (s32(ZeroExtend32(m_regs.RGBC[2])) * s32(m_regs.IR3)) << 4; // [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 InterpolateColor(in_MAC1, in_MAC2, in_MAC3, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); m_regs.FLAG.UpdateError(); } void Core::Execute_INTPL(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; // No need to assign these to MAC[1-3], as it'll never overflow. // [MAC1,MAC2,MAC3] = [IR1,IR2,IR3] SHL 12 ;<--- for INTPL only // [MAC1,MAC2,MAC3] = MAC+(FC-MAC)*IR0 InterpolateColor(s32(m_regs.IR1) << 12, s32(m_regs.IR2) << 12, s32(m_regs.IR3) << 12, shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); m_regs.FLAG.UpdateError(); } void Core::Execute_GPL(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; // [MAC1,MAC2,MAC3] = [MAC1,MAC2,MAC3] SHL (sf*12) ;<--- for GPL only // [MAC1,MAC2,MAC3] = (([IR1,IR2,IR3] * IR0) + [MAC1,MAC2,MAC3]) SAR (sf*12) TruncateAndSetMACAndIR<1>((s64(s32(m_regs.IR1) * s32(m_regs.IR0)) + (s64(m_regs.MAC1) << shift)), shift, lm); TruncateAndSetMACAndIR<2>((s64(s32(m_regs.IR2) * s32(m_regs.IR0)) + (s64(m_regs.MAC2) << shift)), shift, lm); TruncateAndSetMACAndIR<3>((s64(s32(m_regs.IR3) * s32(m_regs.IR0)) + (s64(m_regs.MAC3) << shift)), shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); m_regs.FLAG.UpdateError(); } void Core::Execute_GPF(Instruction inst) { m_regs.FLAG.Clear(); const u8 shift = inst.GetShift(); const bool lm = inst.lm; // [MAC1,MAC2,MAC3] = [0,0,0] ;<--- for GPF only // [MAC1,MAC2,MAC3] = (([IR1,IR2,IR3] * IR0) + [MAC1,MAC2,MAC3]) SAR (sf*12) TruncateAndSetMACAndIR<1>(s64(s32(m_regs.IR1) * s32(m_regs.IR0)), shift, lm); TruncateAndSetMACAndIR<2>(s64(s32(m_regs.IR2) * s32(m_regs.IR0)), shift, lm); TruncateAndSetMACAndIR<3>(s64(s32(m_regs.IR3) * s32(m_regs.IR0)), shift, lm); // Color FIFO = [MAC1/16,MAC2/16,MAC3/16,CODE], [IR1,IR2,IR3] = [MAC1,MAC2,MAC3] PushRGBFromMAC(); m_regs.FLAG.UpdateError(); } } // namespace GTE