#ifndef _TEX2DANTIALIAS_H #define _TEX2DANTIALIAS_H ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////// DESCRIPTION //////////////////////////////// // This file provides antialiased and subpixel-aware tex2D lookups. // Requires: All functions share these requirements: // 1.) All requirements of gamma-management.h must be satisfied! // 2.) pixel_to_tex_uv must be a 2x2 matrix that transforms pixe- // space offsets to texture uv offsets. You can get this with: // const float2 duv_dx = ddx(tex_uv); // const float2 duv_dy = ddy(tex_uv); // const float2x2 pixel_to_tex_uv = float2x2( // duv_dx.x, duv_dy.x, // duv_dx.y, duv_dy.y); // This is left to the user in case the current Cg profile // doesn't support ddx()/ddy(). Ideally, the user could find // calculate a distorted tangent-space mapping analytically. // If not, a simple flat mapping can be obtained with: // const float2 xy_to_uv_scale = IN.output_size * // IN.video_size/IN.texture_size; // const float2x2 pixel_to_tex_uv = float2x2( // xy_to_uv_scale.x, 0.0, // 0.0, xy_to_uv_scale.y); // Optional: To set basic AA settings, #define ANTIALIAS_OVERRIDE_BASICS and: // 1.) Set an antialiasing level: // static const float antialias_level = {0 (none), // 1 (sample subpixels), 4, 5, 6, 7, 8, 12, 16, 20, 24} // 2.) Set a filter type: // static const float aa_filter = { // 0 (Box, Separable), 1 (Box, Cylindrical), // 2 (Tent, Separable), 3 (Tent, Cylindrical) // 4 (Gaussian, Separable), 5 (Gaussian, Cylindrical) // 6 (Cubic, Separable), 7 (Cubic, Cylindrical) // 8 (Lanczos Sinc, Separable), // 9 (Lanczos Jinc, Cylindrical)} // If the input is unknown, a separable box filter is used. // Note: Lanczos Jinc is terrible for sparse sampling, and // using aa_axis_importance (see below) defeats the purpose. // 3.) Mirror the sample pattern on odd frames? // static const bool aa_temporal = {true, false] // This helps rotational invariance but can look "fluttery." // The user may #define ANTIALIAS_OVERRIDE_PARAMETERS to override // (all of) the following default parameters with static or uniform // constants (or an accessor function for subpixel offsets): // 1.) Cubic parameters: // static const float aa_cubic_c = 0.5; // See http://www.imagemagick.org/Usage/filter/#mitchell // 2.) Gaussian parameters: // static const float aa_gauss_sigma = // 0.5/aa_pixel_diameter; // 3.) Set subpixel offsets. This requires an accessor function // for compatibility with scalar runtime shader params. Return // a float2 pixel offset in [-0.5, 0.5] for the red subpixel: // float2 get_aa_subpixel_r_offset() // The user may also #define ANTIALIAS_OVERRIDE_STATIC_CONSTANTS to // override (all of) the following default static values. However, // the file's structure requires them to be declared static const: // 1.) static const float aa_lanczos_lobes = 3.0; // 2.) static const float aa_gauss_support = 1.0/aa_pixel_diameter; // Note the default tent/Gaussian support radii may appear // arbitrary, but extensive testing found them nearly optimal // for tough cases like strong distortion at low AA levels. // (The Gaussian default is only best for practical gauss_sigma // values; much larger gauss_sigmas ironically prefer slightly // smaller support given sparse sampling, and vice versa.) // 3.) static const float aa_tent_support = 1.0 / aa_pixel_diameter; // 4.) static const float2 aa_xy_axis_importance: // The sparse N-queens sampling grid interacts poorly with // negative-lobed 2D filters. However, if aliasing is much // stronger in one direction (e.g. horizontally with a phosphor // mask), it can be useful to downplay sample offsets along the // other axis. The support radius in each direction scales with // aa_xy_axis_importance down to a minimum of 0.5 (box support), // after which point only the offsets used for calculating // weights continue to scale downward. This works as follows: // If aa_xy_axis_importance = float2(1.0, 1.0/support_radius), // the vertical support radius will drop to 1.0, and we'll just // filter vertical offsets with the first filter lobe, while // horizontal offsets go through the full multi-lobe filter. // If aa_xy_axis_importance = float2(1.0, 0.0), the vertical // support radius will drop to box support, and the vertical // offsets will be ignored entirely (essentially giving us a // box filter vertically). The former is potentially smoother // (but less predictable) and the default behavior of Lanczos // jinc, whereas the latter is sharper and the default behavior // of cubics and Lanczos sinc. // 5.) static const float aa_pixel_diameter: You can expand the // pixel diameter to e.g. sqrt(2.0), which may be a better // support range for cylindrical filters (they don't // currently discard out-of-circle samples though). // Finally, there are two miscellaneous options: // 1.) If you want to antialias a manually tiled texture, you can // #define ANTIALIAS_DISABLE_ANISOTROPIC to use tex2Dlod() to // fix incompatibilities with anisotropic filtering. This is // slower, and the Cg profile must support tex2Dlod(). // 2.) If aa_cubic_c is a runtime uniform, you can #define // _RUNTIME_ANTIALIAS_WEIGHTS to evaluate cubic weights once per // fragment instead of at the usage site (which is used by // default, because it enables static evaluation). // Description: // Each antialiased lookup follows these steps: // 1.) Define a sample pattern of pixel offsets in the range of [-0.5, 0.5] // pixels, spanning the diameter of a rectangular box filter. // 2.) Scale these offsets by the support diameter of the user's chosen filter. // 3.) Using these pixel offsets from the pixel center, compute the offsets to // predefined subpixel locations. // 4.) Compute filter weights based on subpixel offsets. // Much of that can often be done at compile-time. At runtime: // 1.) Project pixel-space offsets into uv-space with a matrix multiplication // to get the uv offsets for each sample. Rectangular pixels have a // diameter of 1.0. Circular pixels are not currently supported, but they // might be better with a diameter of sqrt(2.0) to ensure there are no gaps // between them. // 2.) Load, weight, and sum samples. // We use a sparse bilinear sampling grid, so there are two major implications: // 1.) We can directly project the pixel-space support box into uv-space even // if we're upsizing. This wouldn't be the case for nearest neighbor, // where we'd have to expand the uv-space diameter to at least the support // size to ensure sufficient filter support. In our case, this allows us // to treat upsizing the same as downsizing and use static weighting. :) // 2.) For decent results, negative-lobed filters must be computed based on // separable weights, not radial distances, because the sparse sampling // makes no guarantees about radial distributions. Even then, it's much // better to set aa_xy_axis_importance to e.g. float2(1.0, 0.0) to use e.g. // Lanczos2 horizontally and a box filter vertically. This is mainly due // to the sparse N-queens sampling and a statistically enormous positive or // negative covariance between horizontal and vertical weights. // // Design Decision Comments: // "aa_temporal" mirrors the sample pattern on odd frames along the axis that // keeps subpixel weights constant. This helps with rotational invariance, but // it can cause distracting fluctuations, and horizontal and vertical edges // will look the same. Using a different pattern on a shifted grid would // exploit temporal AA better, but it would require a dynamic branch or a lot // of conditional moves, so it's prohibitively slow for the minor benefit. #include "helper-functions-and-macros.fxh" ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// // #if !ANTIALIAS_OVERRIDE_BASICS // // The following settings must be static constants: // static const float antialias_level = 12.0; // static const float aa_filter = 0.0; // static const bool aa_temporal = false; // #endif #ifndef ANTIALIAS_OVERRIDE_STATIC_CONSTANTS // Users may override these parameters, but the file structure requires // them to be static constants; see the descriptions above. static const float aa_pixel_diameter = 1.0; static const float aa_lanczos_lobes = 3.0; static const float aa_gauss_support = 1.0 / aa_pixel_diameter; static const float aa_tent_support = 1.0 / aa_pixel_diameter; // If we're using a negative-lobed filter, default to using it horizontally // only, and use only the first lobe vertically or a box filter, over a // correspondingly smaller range. This compensates for the sparse sampling // grid's typically large positive/negative x/y covariance. static const float2 aa_xy_axis_importance = macro_cond( aa_filter < 5.5, float2(1.0, 1.0), // Box, tent, Gaussian macro_cond( aa_filter < 8.5, float2(1.0, 0.0), // Cubic and Lanczos sinc macro_cond( aa_filter < 9.5, float2(1.0, 1.0/aa_lanczos_lobes), // Lanczos jinc float2(1.0, 1.0) // Default to box ) ) ); #endif // #if !ANTIALIAS_OVERRIDE_PARAMETERS // // Users may override these values with their own uniform or static consts. // // Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell // // 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality. // // 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening. // // 3.) C = 1.0/3.0 is the Mitchell-Netravali filter. // // 4.) C = 0.0 is a soft spline filter. // static const float aa_cubic_c = 0.5; // static const float aa_gauss_sigma = 0.5 / aa_pixel_diameter; // // Users may override the subpixel offset accessor function with their own. // // A function is used for compatibility with scalar runtime shader params. // float2 get_aa_subpixel_r_offset() // { // return float2(0.0, 0.0); // } // #endif ////////////////////////////////// INCLUDES ////////////////////////////////// #include "gamma-management.fxh" ////////////////////////////////// CONSTANTS ///////////////////////////////// static const float aa_box_support = 0.5; static const float aa_cubic_support = 2.0; //////////////////////////// GLOBAL NON-CONSTANTS //////////////////////////// // We'll want to define these only once per fragment at most. // Compute cubic coefficients on demand at runtime, and save them to global // uniforms. The B parameter is computed from C, because "Keys cubics" // with B = 1 - 2C are considered the highest quality. static const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c; static const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c; static const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c; static const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b; static const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c; static const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c; static const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c; static const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c; /////////////////////////////////// HELPERS ////////////////////////////////// // In the RetroArch version, we can optionally implement aa_cubic_c as a uniform. // I've disabled that for now because the asssociated mutable singleton mess was a // pain to port. So for now, this function does absolutely nothing. Maybe I'll reintroduce // the uniform implementation later, but for now the statics will do. void assign_aa_cubic_constants() { return; } float4 get_subpixel_support_diam_and_final_axis_importance() { // Statically select the base support radius: static const float base_support_radius = aa_filter < 1.5 ? aa_box_support : aa_filter < 3.5 ? aa_tent_support : aa_filter < 5.5 ? aa_gauss_support : aa_filter < 7.5 ? aa_cubic_support : aa_filter < 9.5 ? aa_lanczos_lobes : aa_box_support; // Default to box // Expand the filter support for subpixel filtering. const float2 subpixel_support_radius_raw = float2(base_support_radius, base_support_radius) + abs(get_aa_subpixel_r_offset()); if(aa_filter < 1.5) { // Ignore aa_xy_axis_importance for box filtering. const float2 subpixel_support_diam = 2.0 * subpixel_support_radius_raw; const float2 final_axis_importance = float2(1.0, 1.0); return float4(subpixel_support_diam, final_axis_importance); } else { // Scale the support window by aa_xy_axis_importance, but don't narrow // it further than box support. This allows decent vertical AA without // messing up horizontal weights or using something silly like Lanczos4 // horizontally with a huge vertical average over an 8-pixel radius. const float2 subpixel_support_radius = max(float2(aa_box_support, aa_box_support), subpixel_support_radius_raw * aa_xy_axis_importance); // Adjust aa_xy_axis_importance to compensate for what's already done: const float2 final_axis_importance = aa_xy_axis_importance * subpixel_support_radius_raw/subpixel_support_radius; const float2 subpixel_support_diam = 2.0 * subpixel_support_radius; return float4(subpixel_support_diam, final_axis_importance); } } /////////////////////////// FILTER WEIGHT FUNCTIONS ////////////////////////// float eval_box_filter(const float dist) { return float(abs(dist) <= aa_box_support); } float eval_separable_box_filter(const float2 offset) { return float(all(bool2((abs(offset.x) <= aa_box_support), (abs(offset.y) <= aa_box_support)))); } float eval_tent_filter(const float dist) { return saturate((aa_tent_support - dist) / aa_tent_support); } float eval_gaussian_filter(const float dist) { return exp(-(dist*dist) / (2.0*aa_gauss_sigma*aa_gauss_sigma)); } float eval_cubic_filter(const float dist) { // Compute coefficients like assign_aa_cubic_constants(), but statically. #if _RUNTIME_ANTIALIAS_WEIGHTS // When runtime weights are used, these values are instead written to // global uniforms at the beginning of each tex2Daa* call. const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c; const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c; const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c; const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b; const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c; const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c; const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c; const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c; #endif const float abs_dist = abs(dist); // Compute the cubic based on the Horner's method formula in: // http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf return (abs_dist < 1.0 ? (cubic_branch1_x3_coeff*abs_dist + cubic_branch1_x2_coeff)*abs_dist*abs_dist + cubic_branch1_x0_coeff : abs_dist < 2.0 ? ((cubic_branch2_x3_coeff*abs_dist + cubic_branch2_x2_coeff)*abs_dist + cubic_branch2_x1_coeff)*abs_dist + cubic_branch2_x0_coeff : 0.0)/6.0; } float eval_separable_cubic_filter(const float2 offset) { // This is faster than using a specific float2 version: return eval_cubic_filter(offset.x) * eval_cubic_filter(offset.y); } float2 eval_sinc_filter(const float2 offset) { // It's faster to let the caller handle the zero case, or at least it // was when I used macros and the shader preset took a full minute to load. const float2 pi_offset = pi * offset; return sin(pi_offset)/pi_offset; } float eval_separable_lanczos_sinc_filter(const float2 offset_unsafe) { // Note: For sparse sampling, you really need to pick an axis to use // Lanczos along (e.g. set aa_xy_axis_importance = float2(1.0, 0.0)). const float2 offset = FIX_ZERO(offset_unsafe); const float2 xy_weights = eval_sinc_filter(offset) * eval_sinc_filter(offset/aa_lanczos_lobes); return xy_weights.x * xy_weights.y; } float eval_jinc_filter_unorm(const float x) { // This is a Jinc approximation for x in [0, 45). We'll use x in range // [0, 4*pi) or so. There are faster/closer approximations based on // piecewise cubics from [0, 45) and asymptotic approximations beyond that, // but this has a maximum absolute error < 1/512, and it's simpler/faster // for shaders...not that it's all that useful for sparse sampling anyway. const float point3845_x = 0.38448566093564*x; const float exp_term = exp(-(point3845_x*point3845_x)); const float point8154_plus_x = 0.815362332840791 + x; const float cos_term = cos(point8154_plus_x); return ( 0.0264727330997042*min(x, 6.83134964622778) + 0.680823557250528*exp_term + -0.0597255978950933*min(7.41043194481873, x)*cos_term / (point8154_plus_x + 0.0646074538634482*(x*x) + cos(x)*max(exp_term, cos(x) + cos_term)) - 0.180837503591406); } float eval_jinc_filter(const float dist) { return eval_jinc_filter_unorm(pi * dist); } float eval_lanczos_jinc_filter(const float dist) { return eval_jinc_filter(dist) * eval_jinc_filter(dist/aa_lanczos_lobes); } float3 eval_unorm_rgb_weights(const float2 offset, const float2 final_axis_importance) { // Requires: 1.) final_axis_impportance must be computed according to // get_subpixel_support_diam_and_final_axis_importance(). // 2.) aa_filter must be a global constant. // 3.) offset must be an xy pixel offset in the range: // ([-subpixel_support_diameter.x/2, // subpixel_support_diameter.x/2], // [-subpixel_support_diameter.y/2, // subpixel_support_diameter.y/2]) // Returns: Sample weights at R/G/B destination subpixels for the // given xy pixel offset. const float2 offset_g = offset * final_axis_importance; const float2 aa_r_offset = get_aa_subpixel_r_offset(); const float2 offset_r = offset_g - aa_r_offset * final_axis_importance; const float2 offset_b = offset_g + aa_r_offset * final_axis_importance; // Statically select a filter: if(aa_filter < 0.5) { return float3(eval_separable_box_filter(offset_r), eval_separable_box_filter(offset_g), eval_separable_box_filter(offset_b)); } else if(aa_filter < 1.5) { return float3(eval_box_filter(length(offset_r)), eval_box_filter(length(offset_g)), eval_box_filter(length(offset_b))); } else if(aa_filter < 2.5) { return float3( eval_tent_filter(offset_r.x) * eval_tent_filter(offset_r.y), eval_tent_filter(offset_g.x) * eval_tent_filter(offset_g.y), eval_tent_filter(offset_b.x) * eval_tent_filter(offset_b.y)); } else if(aa_filter < 3.5) { return float3(eval_tent_filter(length(offset_r)), eval_tent_filter(length(offset_g)), eval_tent_filter(length(offset_b))); } else if(aa_filter < 4.5) { return float3( eval_gaussian_filter(offset_r.x) * eval_gaussian_filter(offset_r.y), eval_gaussian_filter(offset_g.x) * eval_gaussian_filter(offset_g.y), eval_gaussian_filter(offset_b.x) * eval_gaussian_filter(offset_b.y)); } else if(aa_filter < 5.5) { return float3(eval_gaussian_filter(length(offset_r)), eval_gaussian_filter(length(offset_g)), eval_gaussian_filter(length(offset_b))); } else if(aa_filter < 6.5) { return float3( eval_cubic_filter(offset_r.x) * eval_cubic_filter(offset_r.y), eval_cubic_filter(offset_g.x) * eval_cubic_filter(offset_g.y), eval_cubic_filter(offset_b.x) * eval_cubic_filter(offset_b.y)); } else if(aa_filter < 7.5) { return float3(eval_cubic_filter(length(offset_r)), eval_cubic_filter(length(offset_g)), eval_cubic_filter(length(offset_b))); } else if(aa_filter < 8.5) { return float3(eval_separable_lanczos_sinc_filter(offset_r), eval_separable_lanczos_sinc_filter(offset_g), eval_separable_lanczos_sinc_filter(offset_b)); } else if(aa_filter < 9.5) { return float3(eval_lanczos_jinc_filter(length(offset_r)), eval_lanczos_jinc_filter(length(offset_g)), eval_lanczos_jinc_filter(length(offset_b))); } else { // Default to a box, because Lanczos Jinc is so bad. ;) return float3(eval_separable_box_filter(offset_r), eval_separable_box_filter(offset_g), eval_separable_box_filter(offset_b)); } } ////////////////////////////// HELPER FUNCTIONS ////////////////////////////// float4 tex2Daa_tiled_linearize(const sampler2D samp, const float2 s, const float input_gamma) { // If we're manually tiling a texture, anisotropic filtering can get // confused. This is one workaround: #ifdef ANTIALIAS_DISABLE_ANISOTROPIC // TODO: Use tex2Dlod_linearize with a calculated mip level. return tex2Dlod_linearize(samp, float4(s, 0.0, 0.0), input_gamma); #else return tex2D_linearize(samp, s, input_gamma); #endif } float2 get_frame_sign(const float frame) { if(aa_temporal) { // Mirror the sampling pattern for odd frames in a direction that // lets us keep the same subpixel sample weights: const float frame_odd = float(fmod(frame, 2.0) > 0.5); const float2 aa_r_offset = get_aa_subpixel_r_offset(); const float2 mirror = -float2(abs(aa_r_offset.x) < (FIX_ZERO(0.0)), abs(aa_r_offset.y) < (FIX_ZERO(0.0))); return mirror; } else { return float2(1.0, 1.0); } } ///////////////////////// ANTIALIASED TEXTURE LOOKUPS //////////////////////// float3 tex2Daa_subpixel_weights_only(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float input_gamma) { // This function is unlike the others: Just perform a single independent // lookup for each subpixel. It may be very aliased. const float2 aa_r_offset = get_aa_subpixel_r_offset(); const float2 aa_r_offset_uv_offset = mul(pixel_to_tex_uv, aa_r_offset); const float color_g = tex2D_linearize(tex, tex_uv, input_gamma).g; const float color_r = tex2D_linearize(tex, tex_uv + aa_r_offset_uv_offset, input_gamma).r; const float color_b = tex2D_linearize(tex, tex_uv - aa_r_offset_uv_offset, input_gamma).b; return float3(color_r, color_g, color_b); } // The tex2Daa* functions compile very slowly due to all the macros and // compile-time math, so only include the ones we'll actually use! float3 tex2Daa4x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use an RGMS4 pattern (4-queens): // . . Q . : off =(-1.5, -1.5)/4 + (2.0, 0.0)/4 // Q . . . : off =(-1.5, -1.5)/4 + (0.0, 1.0)/4 // . . . Q : off =(-1.5, -1.5)/4 + (3.0, 2.0)/4 // . Q . . : off =(-1.5, -1.5)/4 + (1.0, 3.0)/4 // Static screenspace sample offsets (compute some implicitly): static const float grid_size = 4.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(0.0, 1.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = w1.bgr; const float3 w3 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/w_sum; // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = pixel_to_tex_uv * aa_pixel_diameter; // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3); } float3 tex2Daa5x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 5-queens pattern: // . Q . . . : off =(-2.0, -2.0)/5 + (1.0, 0.0)/5 // . . . . Q : off =(-2.0, -2.0)/5 + (4.0, 1.0)/5 // . . Q . . : off =(-2.0, -2.0)/5 + (2.0, 2.0)/5 // Q . . . . : off =(-2.0, -2.0)/5 + (0.0, 3.0)/5 // . . . Q . : off =(-2.0, -2.0)/5 + (3.0, 4.0)/5 // Static screenspace sample offsets (compute some implicitly): static const float grid_size = 5.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(2.0, 2.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = w1.bgr; const float3 w4 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 w_sum_inv = 1.0/(w0 + w1 + w2 + w3 + w4); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4); // return (w0 + w1 + w2 + w3 + w4); } float3 tex2Daa6x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 6-queens pattern with a stronger horizontal // than vertical slant: // . . . . Q . : off =(-2.5, -2.5)/6 + (4.0, 0.0)/6 // . . Q . . . : off =(-2.5, -2.5)/6 + (2.0, 1.0)/6 // Q . . . . . : off =(-2.5, -2.5)/6 + (0.0, 2.0)/6 // . . . . . Q : off =(-2.5, -2.5)/6 + (5.0, 3.0)/6 // . . . Q . . : off =(-2.5, -2.5)/6 + (3.0, 4.0)/6 // . Q . . . . : off =(-2.5, -2.5)/6 + (1.0, 5.0)/6 // Static screenspace sample offsets (compute some implicitly): static const float grid_size = 6.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(4.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(2.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = w2.bgr; const float3 w4 = w1.bgr; const float3 w5 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5); } float3 tex2Daa7x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 7-queens pattern with a queen in the center: // . Q . . . . . : off =(-3.0, -3.0)/7 + (1.0, 0.0)/7 // . . . . Q . . : off =(-3.0, -3.0)/7 + (4.0, 1.0)/7 // Q . . . . . . : off =(-3.0, -3.0)/7 + (0.0, 2.0)/7 // . . . Q . . . : off =(-3.0, -3.0)/7 + (3.0, 3.0)/7 // . . . . . . Q : off =(-3.0, -3.0)/7 + (6.0, 4.0)/7 // . . Q . . . . : off =(-3.0, -3.0)/7 + (2.0, 5.0)/7 // . . . . . Q . : off =(-3.0, -3.0)/7 + (5.0, 6.0)/7 static const float grid_size = 7.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(3.0, 3.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = w2.bgr; const float3 w5 = w1.bgr; const float3 w6 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2; const float3 w_sum = half_sum + half_sum.bgr + w3; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6); } float3 tex2Daa8x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 8-queens pattern. // . . Q . . . . . : off =(-3.5, -3.5)/8 + (2.0, 0.0)/8 // . . . . Q . . . : off =(-3.5, -3.5)/8 + (4.0, 1.0)/8 // . Q . . . . . . : off =(-3.5, -3.5)/8 + (1.0, 2.0)/8 // . . . . . . . Q : off =(-3.5, -3.5)/8 + (7.0, 3.0)/8 // Q . . . . . . . : off =(-3.5, -3.5)/8 + (0.0, 4.0)/8 // . . . . . . Q . : off =(-3.5, -3.5)/8 + (6.0, 5.0)/8 // . . . Q . . . . : off =(-3.5, -3.5)/8 + (3.0, 6.0)/8 // . . . . . Q . . : off =(-3.5, -3.5)/8 + (5.0, 7.0)/8 static const float grid_size = 8.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(1.0, 2.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(7.0, 3.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = w3.bgr; const float3 w5 = w2.bgr; const float3 w6 = w1.bgr; const float3 w7 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2 + w3; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, and mirror on odd frames if directed: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7); } float3 tex2Daa12x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 12-superqueens pattern where no 3 points are // exactly collinear. // . . . Q . . . . . . . . : off =(-5.5, -5.5)/12 + (3.0, 0.0)/12 // . . . . . . . . . Q . . : off =(-5.5, -5.5)/12 + (9.0, 1.0)/12 // . . . . . . Q . . . . . : off =(-5.5, -5.5)/12 + (6.0, 2.0)/12 // . Q . . . . . . . . . . : off =(-5.5, -5.5)/12 + (1.0, 3.0)/12 // . . . . . . . . . . . Q : off =(-5.5, -5.5)/12 + (11.0, 4.0)/12 // . . . . Q . . . . . . . : off =(-5.5, -5.5)/12 + (4.0, 5.0)/12 // . . . . . . . Q . . . . : off =(-5.5, -5.5)/12 + (7.0, 6.0)/12 // Q . . . . . . . . . . . : off =(-5.5, -5.5)/12 + (0.0, 7.0)/12 // . . . . . . . . . . Q . : off =(-5.5, -5.5)/12 + (10.0, 8.0)/12 // . . . . . Q . . . . . . : off =(-5.5, -5.5)/12 + (5.0, 9.0)/12 // . . Q . . . . . . . . . : off =(-5.5, -5.5)/12 + (2.0, 10.0)/12 // . . . . . . . . Q . . . : off =(-5.5, -5.5)/12 + (8.0, 11.0)/12 static const float grid_size = 12.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(3.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(6.0, 2.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step; const float2 xy_offset4 = xy_start_offset + float2(11.0, 4.0) * xy_step; const float2 xy_offset5 = xy_start_offset + float2(4.0, 5.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); const float3 w6 = w5.bgr; const float3 w7 = w4.bgr; const float3 w8 = w3.bgr; const float3 w9 = w2.bgr; const float3 w10 = w1.bgr; const float3 w11 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/w_sum; // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb; const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb; const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb; const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11); } float3 tex2Daa16x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 16-superqueens pattern where no 3 points are // exactly collinear. // . . Q . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (2.0, 0.0)/16 // . . . . . . . . . Q . . . . . . : off =(-7.5, -7.5)/16 + (9.0, 1.0)/16 // . . . . . . . . . . . . Q . . . : off =(-7.5, -7.5)/16 + (12.0, 2.0)/16 // . . . . Q . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (4.0, 3.0)/16 // . . . . . . . . Q . . . . . . . : off =(-7.5, -7.5)/16 + (8.0, 4.0)/16 // . . . . . . . . . . . . . . Q . : off =(-7.5, -7.5)/16 + (14.0, 5.0)/16 // Q . . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (0.0, 6.0)/16 // . . . . . . . . . . Q . . . . . : off =(-7.5, -7.5)/16 + (10.0, 7.0)/16 // . . . . . Q . . . . . . . . . . : off =(-7.5, -7.5)/16 + (5.0, 8.0)/16 // . . . . . . . . . . . . . . . Q : off =(-7.5, -7.5)/16 + (15.0, 9.0)/16 // . Q . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (1.0, 10.0)/16 // . . . . . . . Q . . . . . . . . : off =(-7.5, -7.5)/16 + (7.0, 11.0)/16 // . . . . . . . . . . . Q . . . . : off =(-7.5, -7.5)/16 + (11.0, 12.0)/16 // . . . Q . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (3.0, 13.0)/16 // . . . . . . Q . . . . . . . . . : off =(-7.5, -7.5)/16 + (6.0, 14.0)/16 // . . . . . . . . . . . . . Q . . : off =(-7.5, -7.5)/16 + (13.0, 15.0)/16 static const float grid_size = 16.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(12.0, 2.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(4.0, 3.0) * xy_step; const float2 xy_offset4 = xy_start_offset + float2(8.0, 4.0) * xy_step; const float2 xy_offset5 = xy_start_offset + float2(14.0, 5.0) * xy_step; const float2 xy_offset6 = xy_start_offset + float2(0.0, 6.0) * xy_step; const float2 xy_offset7 = xy_start_offset + float2(10.0, 7.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); const float3 w8 = w7.bgr; const float3 w9 = w6.bgr; const float3 w10 = w5.bgr; const float3 w11 = w4.bgr; const float3 w12 = w3.bgr; const float3 w13 = w2.bgr; const float3 w14 = w1.bgr; const float3 w15 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign); const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6, input_gamma).rgb; const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7, input_gamma).rgb; const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7, input_gamma).rgb; const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6, input_gamma).rgb; const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb; const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb; const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb; const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15); } float3 tex2Daa20x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 20-superqueens pattern where no 3 points are // exactly collinear and superqueens have a squared attack radius of 13. // . . . . . . . Q . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (7.0, 0.0)/20 // . . . . . . . . . . . . . . . . Q . . . : off =(-9.5, -9.5)/20 + (16.0, 1.0)/20 // . . . . . . . . . . . Q . . . . . . . . : off =(-9.5, -9.5)/20 + (11.0, 2.0)/20 // . Q . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (1.0, 3.0)/20 // . . . . . Q . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (5.0, 4.0)/20 // . . . . . . . . . . . . . . . Q . . . . : off =(-9.5, -9.5)/20 + (15.0, 5.0)/20 // . . . . . . . . . . Q . . . . . . . . . : off =(-9.5, -9.5)/20 + (10.0, 6.0)/20 // . . . . . . . . . . . . . . . . . . . Q : off =(-9.5, -9.5)/20 + (19.0, 7.0)/20 // . . Q . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (2.0, 8.0)/20 // . . . . . . Q . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (6.0, 9.0)/20 // . . . . . . . . . . . . . Q . . . . . . : off =(-9.5, -9.5)/20 + (13.0, 10.0)/20 // . . . . . . . . . . . . . . . . . Q . . : off =(-9.5, -9.5)/20 + (17.0, 11.0)/20 // Q . . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (0.0, 12.0)/20 // . . . . . . . . . Q . . . . . . . . . . : off =(-9.5, -9.5)/20 + (9.0, 13.0)/20 // . . . . Q . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (4.0, 14.0)/20 // . . . . . . . . . . . . . . Q . . . . . : off =(-9.5, -9.5)/20 + (14.0, 15.0)/20 // . . . . . . . . . . . . . . . . . . Q . : off =(-9.5, -9.5)/20 + (18.0, 16.0)/20 // . . . . . . . . Q . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (8.0, 17.0)/20 // . . . Q . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (3.0, 18.0)/20 // . . . . . . . . . . . . Q . . . . . . . : off =(-9.5, -9.5)/20 + (12.0, 19.0)/20 static const float grid_size = 20.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(7.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(11.0, 2.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step; const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step; const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step; const float2 xy_offset6 = xy_start_offset + float2(10.0, 6.0) * xy_step; const float2 xy_offset7 = xy_start_offset + float2(19.0, 7.0) * xy_step; const float2 xy_offset8 = xy_start_offset + float2(2.0, 8.0) * xy_step; const float2 xy_offset9 = xy_start_offset + float2(6.0, 9.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance); const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance); const float3 w10 = w9.bgr; const float3 w11 = w8.bgr; const float3 w12 = w7.bgr; const float3 w13 = w6.bgr; const float3 w14 = w5.bgr; const float3 w15 = w4.bgr; const float3 w16 = w3.bgr; const float3 w17 = w2.bgr; const float3 w18 = w1.bgr; const float3 w19 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign); const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign); const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign); const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6, input_gamma).rgb; const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7, input_gamma).rgb; const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8, input_gamma).rgb; const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9, input_gamma).rgb; const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9, input_gamma).rgb; const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8, input_gamma).rgb; const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7, input_gamma).rgb; const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6, input_gamma).rgb; const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb; const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb; const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb; const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 + w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19); } float3 tex2Daa24x(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Use a diagonally symmetric 24-superqueens pattern where no 3 points are // exactly collinear and superqueens have a squared attack radius of 13. // . . . . . . Q . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (6.0, 0.0)/24 // . . . . . . . . . . . . . . . . Q . . . . . . . : off =(-11.5, -11.5)/24 + (16.0, 1.0)/24 // . . . . . . . . . . Q . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (10.0, 2.0)/24 // . . . . . . . . . . . . . . . . . . . . . Q . . : off =(-11.5, -11.5)/24 + (21.0, 3.0)/24 // . . . . . Q . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (5.0, 4.0)/24 // . . . . . . . . . . . . . . . Q . . . . . . . . : off =(-11.5, -11.5)/24 + (15.0, 5.0)/24 // . Q . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (1.0, 6.0)/24 // . . . . . . . . . . . Q . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (11.0, 7.0)/24 // . . . . . . . . . . . . . . . . . . . Q . . . . : off =(-11.5, -11.5)/24 + (19.0, 8.0)/24 // . . . . . . . . . . . . . . . . . . . . . . . Q : off =(-11.5, -11.5)/24 + (23.0, 9.0)/24 // . . . Q . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (3.0, 10.0)/24 // . . . . . . . . . . . . . . Q . . . . . . . . . : off =(-11.5, -11.5)/24 + (14.0, 11.0)/24 // . . . . . . . . . Q . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (9.0, 12.0)/24 // . . . . . . . . . . . . . . . . . . . . Q . . . : off =(-11.5, -11.5)/24 + (20.0, 13.0)/24 // Q . . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (0.0, 14.0)/24 // . . . . Q . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (4.0, 15.0)/24 // . . . . . . . . . . . . Q . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (12.0, 16.0)/24 // . . . . . . . . . . . . . . . . . . . . . . Q . : off =(-11.5, -11.5)/24 + (22.0, 17.0)/24 // . . . . . . . . Q . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (8.0, 18.0)/24 // . . . . . . . . . . . . . . . . . . Q . . . . . : off =(-11.5, -11.5)/24 + (18.0, 19.0)/24 // . . Q . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (2.0, 20.0)/24 // . . . . . . . . . . . . . Q . . . . . . . . . . : off =(-11.5, -11.5)/24 + (13.0, 21.0)/24 // . . . . . . . Q . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (7.0, 22.0)/24 // . . . . . . . . . . . . . . . . . Q . . . . . . : off =(-11.5, -11.5)/24 + (17.0, 23.0)/24 static const float grid_size = 24.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample. Exploit diagonal symmetry: const float2 xy_offset0 = xy_start_offset + float2(6.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(10.0, 2.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(21.0, 3.0) * xy_step; const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step; const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step; const float2 xy_offset6 = xy_start_offset + float2(1.0, 6.0) * xy_step; const float2 xy_offset7 = xy_start_offset + float2(11.0, 7.0) * xy_step; const float2 xy_offset8 = xy_start_offset + float2(19.0, 8.0) * xy_step; const float2 xy_offset9 = xy_start_offset + float2(23.0, 9.0) * xy_step; const float2 xy_offset10 = xy_start_offset + float2(3.0, 10.0) * xy_step; const float2 xy_offset11 = xy_start_offset + float2(14.0, 11.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance); const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance); const float3 w10 = eval_unorm_rgb_weights(xy_offset10, final_axis_importance); const float3 w11 = eval_unorm_rgb_weights(xy_offset11, final_axis_importance); const float3 w12 = w11.bgr; const float3 w13 = w10.bgr; const float3 w14 = w9.bgr; const float3 w15 = w8.bgr; const float3 w16 = w7.bgr; const float3 w17 = w6.bgr; const float3 w18 = w5.bgr; const float3 w19 = w4.bgr; const float3 w20 = w3.bgr; const float3 w21 = w2.bgr; const float3 w22 = w1.bgr; const float3 w23 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, mirror on odd frames if directed, and exploit // diagonal symmetry: const float2 frame_sign = get_frame_sign(frame); const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign); const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign); const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign); const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign); const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign); const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign); const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign); const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign); const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign); const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign); const float2 uv_offset10 = mul(true_pixel_to_tex_uv, xy_offset10 * frame_sign); const float2 uv_offset11 = mul(true_pixel_to_tex_uv, xy_offset11 * frame_sign); // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6, input_gamma).rgb; const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7, input_gamma).rgb; const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8, input_gamma).rgb; const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9, input_gamma).rgb; const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset10, input_gamma).rgb; const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset11, input_gamma).rgb; const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset11, input_gamma).rgb; const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset10, input_gamma).rgb; const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9, input_gamma).rgb; const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8, input_gamma).rgb; const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7, input_gamma).rgb; const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6, input_gamma).rgb; const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5, input_gamma).rgb; const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4, input_gamma).rgb; const float3 sample20 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3, input_gamma).rgb; const float3 sample21 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2, input_gamma).rgb; const float3 sample22 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1, input_gamma).rgb; const float3 sample23 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 + w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19 + w20 * sample20 + w21 * sample21 + w22 * sample22 + w23 * sample23); } float3 tex2Daa_debug_16x_regular(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Sample on a regular 4x4 grid. This is mainly for testing. static const float grid_size = 4.0; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float2 xy_step = 1.0/grid_size * subpixel_support_diameter; const float2 xy_start_offset = (0.5 - grid_size*0.5) * xy_step; // Get the xy offset of each sample: const float2 xy_offset0 = xy_start_offset + float2(0.0, 0.0) * xy_step; const float2 xy_offset1 = xy_start_offset + float2(1.0, 0.0) * xy_step; const float2 xy_offset2 = xy_start_offset + float2(2.0, 0.0) * xy_step; const float2 xy_offset3 = xy_start_offset + float2(3.0, 0.0) * xy_step; const float2 xy_offset4 = xy_start_offset + float2(0.0, 1.0) * xy_step; const float2 xy_offset5 = xy_start_offset + float2(1.0, 1.0) * xy_step; const float2 xy_offset6 = xy_start_offset + float2(2.0, 1.0) * xy_step; const float2 xy_offset7 = xy_start_offset + float2(3.0, 1.0) * xy_step; // Compute subpixel weights, and exploit diagonal symmetry for speed. // (We can't exploit vertical or horizontal symmetry due to uncertain // subpixel offsets. We could fix that by rotating xy offsets with the // subpixel structure, but...no.) const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance); const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance); const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance); const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance); const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance); const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance); const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance); const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance); const float3 w8 = w7.bgr; const float3 w9 = w6.bgr; const float3 w10 = w5.bgr; const float3 w11 = w4.bgr; const float3 w12 = w3.bgr; const float3 w13 = w2.bgr; const float3 w14 = w1.bgr; const float3 w15 = w0.bgr; // Get the weight sum to normalize the total to 1.0 later: const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7; const float3 w_sum = half_sum + half_sum.bgr; const float3 w_sum_inv = 1.0/(w_sum); // Scale the pixel-space to texture offset matrix by the pixel diameter. const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); // Get uv sample offsets, taking advantage of row alignment: const float2 uv_step_x = mul(true_pixel_to_tex_uv, float2(xy_step.x, 0.0)); const float2 uv_step_y = mul(true_pixel_to_tex_uv, float2(0.0, xy_step.y)); const float2 uv_offset0 = -1.5 * (uv_step_x + uv_step_y); const float2 sample0_uv = tex_uv + uv_offset0; const float2 sample4_uv = sample0_uv + uv_step_y; const float2 sample8_uv = sample0_uv + uv_step_y * 2.0; const float2 sample12_uv = sample0_uv + uv_step_y * 3.0; // Load samples, linearizing if necessary, etc.: const float3 sample0 = tex2Daa_tiled_linearize(tex, sample0_uv, input_gamma).rgb; const float3 sample1 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x, input_gamma).rgb; const float3 sample2 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 2.0, input_gamma).rgb; const float3 sample3 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 3.0, input_gamma).rgb; const float3 sample4 = tex2Daa_tiled_linearize(tex, sample4_uv, input_gamma).rgb; const float3 sample5 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x, input_gamma).rgb; const float3 sample6 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 2.0, input_gamma).rgb; const float3 sample7 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 3.0, input_gamma).rgb; const float3 sample8 = tex2Daa_tiled_linearize(tex, sample8_uv, input_gamma).rgb; const float3 sample9 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x, input_gamma).rgb; const float3 sample10 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 2.0, input_gamma).rgb; const float3 sample11 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 3.0, input_gamma).rgb; const float3 sample12 = tex2Daa_tiled_linearize(tex, sample12_uv, input_gamma).rgb; const float3 sample13 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x, input_gamma).rgb; const float3 sample14 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 2.0, input_gamma).rgb; const float3 sample15 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 3.0, input_gamma).rgb; // Sum weighted samples (weight sum must equal 1.0 for each channel): return w_sum_inv * ( w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15); } float3 tex2Daa_debug_dynamic(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // This function is for testing only: Use an NxN grid with dynamic weights. static const int grid_size = 8; assign_aa_cubic_constants(); const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance(); const float2 subpixel_support_diameter = ssd_fai.xy; const float2 final_axis_importance = ssd_fai.zw; const float grid_radius_in_samples = (float(grid_size) - 1.0)/2.0; const float2 filter_space_offset_step = subpixel_support_diameter / grid_size; const float2 sample0_filter_space_offset = -grid_radius_in_samples * filter_space_offset_step; // Compute xy sample offsets and subpixel weights: float3 weights[64]; // grid_size * grid_size float3 weight_sum = float3(0.0, 0.0, 0.0); for(int i = 0; i < grid_size; ++i) { for(int j = 0; j < grid_size; ++j) { // Weights based on xy distances: const float2 offset = sample0_filter_space_offset + float2(j, i) * filter_space_offset_step; const float3 weight = eval_unorm_rgb_weights(offset, final_axis_importance); weights[i*grid_size + j] = weight; weight_sum += weight; } } // Get uv offset vectors along x and y directions: const float2x2 true_pixel_to_tex_uv = float2x2((pixel_to_tex_uv * aa_pixel_diameter)); const float2 uv_offset_step_x = mul(true_pixel_to_tex_uv, float2(filter_space_offset_step.x, 0.0)); const float2 uv_offset_step_y = mul(true_pixel_to_tex_uv, float2(0.0, filter_space_offset_step.y)); // Get a starting sample location: const float2 sample0_uv_offset = -grid_radius_in_samples * (uv_offset_step_x + uv_offset_step_y); const float2 sample0_uv = tex_uv + sample0_uv_offset; // Load, weight, and sum [linearized] samples: float3 sum = float3(0.0, 0.0, 0.0); const float3 weight_sum_inv = 1.0/weight_sum; for(int i = 0; i < grid_size; ++i) { const float2 row_i_first_sample_uv = sample0_uv + i * uv_offset_step_y; for(int j = 0; j < grid_size; ++j) { const float2 sample_uv = row_i_first_sample_uv + j * uv_offset_step_x; sum += weights[i*grid_size + j] * tex2Daa_tiled_linearize(tex, sample_uv, input_gamma).rgb; } } return sum * weight_sum_inv; } /////////////////////// ANTIALIASING CODEPATH SELECTION ////////////////////// float3 tex2Daa(const sampler2D tex, const float2 tex_uv, const float2x2 pixel_to_tex_uv, const float frame, const float input_gamma) { // Statically switch between antialiasing modes/levels: return (antialias_level < 0.5) ? tex2D_linearize(tex, tex_uv, input_gamma).rgb : (antialias_level < 3.5) ? tex2Daa_subpixel_weights_only( tex, tex_uv, pixel_to_tex_uv, input_gamma) : (antialias_level < 4.5) ? tex2Daa4x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 5.5) ? tex2Daa5x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 6.5) ? tex2Daa6x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 7.5) ? tex2Daa7x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 11.5) ? tex2Daa8x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 15.5) ? tex2Daa12x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 19.5) ? tex2Daa16x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 23.5) ? tex2Daa20x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 253.5) ? tex2Daa24x(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : (antialias_level < 254.5) ? tex2Daa_debug_16x_regular( tex, tex_uv, pixel_to_tex_uv, frame, input_gamma) : tex2Daa_debug_dynamic(tex, tex_uv, pixel_to_tex_uv, frame, input_gamma); } #endif // _TEX2DANTIALIAS_H