#include "gpu_hw_opengl.h" #include "YBaseLib/Assert.h" #include "YBaseLib/Log.h" #include "YBaseLib/String.h" #include "gpu_hw_shadergen.h" #include "host_display.h" #include "system.h" Log_SetChannel(GPU_HW_OpenGL); GPU_HW_OpenGL::GPU_HW_OpenGL() : GPU_HW() {} GPU_HW_OpenGL::~GPU_HW_OpenGL() { // TODO: Destroy objects... if (m_host_display) { m_host_display->SetDisplayTexture(nullptr, 0, 0, 0, 0, 0, 0, 1.0f); ResetGraphicsAPIState(); } } bool GPU_HW_OpenGL::Initialize(HostDisplay* host_display, System* system, DMA* dma, InterruptController* interrupt_controller, Timers* timers) { if (host_display->GetRenderAPI() != HostDisplay::RenderAPI::OpenGL && host_display->GetRenderAPI() != HostDisplay::RenderAPI::OpenGLES) { Log_ErrorPrintf("Host render API type is incompatible"); return false; } SetCapabilities(host_display); if (!GPU_HW::Initialize(host_display, system, dma, interrupt_controller, timers)) return false; CreateFramebuffer(); CreateVertexBuffer(); CreateUniformBuffer(); CreateTextureBuffer(); if (!CompilePrograms()) return false; m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_vram_texture->GetGLId())), 0, 0, m_display_texture->GetWidth(), m_display_texture->GetHeight(), m_display_texture->GetWidth(), m_display_texture->GetHeight(), 1.0f); RestoreGraphicsAPIState(); return true; } void GPU_HW_OpenGL::Reset() { GPU_HW::Reset(); ClearFramebuffer(); } void GPU_HW_OpenGL::ResetGraphicsAPIState() { GPU_HW::ResetGraphicsAPIState(); glEnable(GL_CULL_FACE); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glDepthMask(GL_TRUE); glLineWidth(1.0f); glBindVertexArray(0); } void GPU_HW_OpenGL::RestoreGraphicsAPIState() { m_vram_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); glViewport(0, 0, m_vram_texture->GetWidth(), m_vram_texture->GetHeight()); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glEnable(GL_SCISSOR_TEST); glDepthMask(GL_FALSE); glLineWidth(static_cast(m_resolution_scale)); glBindVertexArray(m_vao_id); SetScissorFromDrawingArea(); m_batch_ubo_dirty = true; } void GPU_HW_OpenGL::UpdateSettings() { GPU_HW::UpdateSettings(); CreateFramebuffer(); CompilePrograms(); UpdateDisplay(); } void GPU_HW_OpenGL::MapBatchVertexPointer(u32 required_vertices) { Assert(!m_batch_start_vertex_ptr); const GL::StreamBuffer::MappingResult res = m_vertex_stream_buffer->Map(sizeof(BatchVertex), required_vertices * sizeof(BatchVertex)); m_batch_start_vertex_ptr = static_cast(res.pointer); m_batch_current_vertex_ptr = m_batch_start_vertex_ptr; m_batch_end_vertex_ptr = m_batch_start_vertex_ptr + res.space_aligned; m_batch_base_vertex = res.index_aligned; } std::tuple GPU_HW_OpenGL::ConvertToFramebufferCoordinates(s32 x, s32 y) { return std::make_tuple(x, static_cast(static_cast(VRAM_HEIGHT) - y)); } void GPU_HW_OpenGL::SetCapabilities(HostDisplay* host_display) { m_is_gles = (host_display->GetRenderAPI() == HostDisplay::RenderAPI::OpenGLES); GLint max_texture_size = VRAM_WIDTH; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size); Log_InfoPrintf("Max texture size: %dx%d", max_texture_size, max_texture_size); const int max_texture_scale = max_texture_size / VRAM_WIDTH; std::array line_width_range = {{1, 1}}; glGetIntegerv(GL_ALIASED_LINE_WIDTH_RANGE, line_width_range.data()); Log_InfoPrintf("Max line width: %d", line_width_range[1]); m_max_resolution_scale = std::min(max_texture_scale, line_width_range[1]); Log_InfoPrintf("Maximum resolution scale is %u", m_max_resolution_scale); glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, reinterpret_cast(&m_uniform_buffer_alignment)); Log_InfoPrintf("Uniform buffer offset alignment: %u", m_uniform_buffer_alignment); if (!GLAD_GL_VERSION_4_3 && !GLAD_GL_EXT_copy_image) Log_WarningPrintf("GL_EXT_copy_image missing, this may affect performance."); m_supports_texture_buffer = (GLAD_GL_VERSION_3_1 || GLAD_GL_ES_VERSION_3_2); if (m_supports_texture_buffer) { glGetIntegerv(GL_MAX_TEXTURE_BUFFER_SIZE, reinterpret_cast(&m_max_texture_buffer_size)); Log_InfoPrintf("Max texel buffer size: %u", m_max_texture_buffer_size); if (m_max_texture_buffer_size < VRAM_WIDTH * VRAM_HEIGHT) Log_WarningPrintf("Maximum texture buffer size is less than VRAM size, VRAM writes may be slower."); } else { Log_WarningPrintf("Texture buffers are not supported, VRAM writes will be slower."); } } void GPU_HW_OpenGL::CreateFramebuffer() { // save old vram texture/fbo, in case we're changing scale auto old_vram_texture = std::move(m_vram_texture); DestroyFramebuffer(); // scale vram size to internal resolution const u32 texture_width = VRAM_WIDTH * m_resolution_scale; const u32 texture_height = VRAM_HEIGHT * m_resolution_scale; m_vram_texture = std::make_unique(texture_width, texture_height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false, true); // do we need to restore the framebuffer after a size change? if (old_vram_texture) { const bool linear_filter = old_vram_texture->GetWidth() > m_vram_texture->GetWidth(); Log_DevPrintf("Scaling %ux%u VRAM texture to %ux%u using %s filter", old_vram_texture->GetWidth(), old_vram_texture->GetHeight(), m_vram_texture->GetWidth(), m_vram_texture->GetHeight(), linear_filter ? "linear" : "nearest"); glDisable(GL_SCISSOR_TEST); old_vram_texture->BindFramebuffer(GL_READ_FRAMEBUFFER); glBlitFramebuffer(0, 0, old_vram_texture->GetWidth(), old_vram_texture->GetHeight(), 0, 0, m_vram_texture->GetWidth(), m_vram_texture->GetHeight(), GL_COLOR_BUFFER_BIT, linear_filter ? GL_LINEAR : GL_NEAREST); glEnable(GL_SCISSOR_TEST); old_vram_texture.reset(); } m_vram_read_texture = std::make_unique(texture_width, texture_height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false, true); m_vram_encoding_texture = std::make_unique(VRAM_WIDTH, VRAM_HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false, true); m_display_texture = std::make_unique(texture_width, texture_height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false, true); m_vram_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); SetFullVRAMDirtyRectangle(); } void GPU_HW_OpenGL::ClearFramebuffer() { glDisable(GL_SCISSOR_TEST); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); SetFullVRAMDirtyRectangle(); } void GPU_HW_OpenGL::DestroyFramebuffer() { m_vram_read_texture.reset(); m_vram_texture.reset(); m_vram_encoding_texture.reset(); m_display_texture.reset(); } void GPU_HW_OpenGL::CreateVertexBuffer() { m_vertex_stream_buffer = GL::StreamBuffer::Create(GL_ARRAY_BUFFER, VERTEX_BUFFER_SIZE); if (!m_vertex_stream_buffer) Panic("Failed to create vertex streaming buffer"); m_vertex_stream_buffer->Bind(); glGenVertexArrays(1, &m_vao_id); glBindVertexArray(m_vao_id); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); glVertexAttribIPointer(0, 2, GL_INT, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, x))); glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, color))); glVertexAttribIPointer(2, 1, GL_INT, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, texcoord))); glVertexAttribIPointer(3, 1, GL_INT, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, texpage))); glBindVertexArray(0); glGenVertexArrays(1, &m_attributeless_vao_id); } void GPU_HW_OpenGL::CreateUniformBuffer() { m_uniform_stream_buffer = GL::StreamBuffer::Create(GL_UNIFORM_BUFFER, UNIFORM_BUFFER_SIZE); if (!m_uniform_stream_buffer) Panic("Failed to create uniform buffer"); } void GPU_HW_OpenGL::CreateTextureBuffer() { // We use the pixel unpack buffer here because we share it with CPU-decoded VRAM writes. m_texture_stream_buffer = GL::StreamBuffer::Create(GL_PIXEL_UNPACK_BUFFER, VRAM_UPDATE_TEXTURE_BUFFER_SIZE); if (!m_texture_stream_buffer) Panic("Failed to create texture stream buffer"); if (m_max_texture_buffer_size > 0) { glGenTextures(1, &m_texture_buffer_r16ui_texture); glBindTexture(GL_TEXTURE_BUFFER, m_texture_buffer_r16ui_texture); glTexBuffer(GL_TEXTURE_BUFFER, GL_R16UI, m_texture_stream_buffer->GetGLBufferId()); } m_texture_stream_buffer->Unbind(); } bool GPU_HW_OpenGL::CompilePrograms() { GPU_HW_ShaderGen shadergen(m_host_display->GetRenderAPI(), m_resolution_scale, m_true_color); for (u32 render_mode = 0; render_mode < 4; render_mode++) { for (u32 texture_mode = 0; texture_mode < 9; texture_mode++) { for (u8 dithering = 0; dithering < 2; dithering++) { const bool textured = (static_cast(texture_mode) != TextureMode::Disabled); const std::string vs = shadergen.GenerateBatchVertexShader(textured); const std::string fs = shadergen.GenerateBatchFragmentShader(static_cast(render_mode), static_cast(texture_mode), ConvertToBoolUnchecked(dithering)); GL::Program& prog = m_render_programs[render_mode][texture_mode][dithering]; if (!prog.Compile(vs, fs)) return false; prog.BindAttribute(0, "a_pos"); prog.BindAttribute(1, "a_col0"); if (textured) { prog.BindAttribute(2, "a_texcoord"); prog.BindAttribute(3, "a_texpage"); } if (!m_is_gles) prog.BindFragData(0, "o_col0"); if (!prog.Link()) return false; prog.BindUniformBlock("UBOBlock", 1); if (textured) { prog.Bind(); prog.Uniform1i("samp0", 0); } } } } for (u8 depth_24bit = 0; depth_24bit < 2; depth_24bit++) { for (u8 interlaced = 0; interlaced < 2; interlaced++) { GL::Program& prog = m_display_programs[depth_24bit][interlaced]; const std::string vs = shadergen.GenerateScreenQuadVertexShader(); const std::string fs = shadergen.GenerateDisplayFragmentShader(ConvertToBoolUnchecked(depth_24bit), ConvertToBoolUnchecked(interlaced)); if (!prog.Compile(vs, fs)) return false; if (!m_is_gles) prog.BindFragData(0, "o_col0"); if (!prog.Link()) return false; prog.BindUniformBlock("UBOBlock", 1); prog.Bind(); prog.Uniform1i("samp0", 0); } } if (!m_vram_read_program.Compile(shadergen.GenerateScreenQuadVertexShader(), shadergen.GenerateVRAMReadFragmentShader())) { return false; } if (!m_is_gles) m_vram_read_program.BindFragData(0, "o_col0"); if (!m_vram_read_program.Link()) return false; m_vram_read_program.BindUniformBlock("UBOBlock", 1); m_vram_read_program.Bind(); m_vram_read_program.Uniform1i("samp0", 0); if (m_supports_texture_buffer) { if (!m_vram_write_program.Compile(shadergen.GenerateScreenQuadVertexShader(), shadergen.GenerateVRAMWriteFragmentShader())) { return false; } if (!m_is_gles) m_vram_write_program.BindFragData(0, "o_col0"); if (!m_vram_write_program.Link()) return false; m_vram_write_program.BindUniformBlock("UBOBlock", 1); m_vram_write_program.Bind(); m_vram_write_program.Uniform1i("samp0", 0); } return true; } void GPU_HW_OpenGL::SetDrawState(BatchRenderMode render_mode) { const GL::Program& prog = m_render_programs[static_cast(render_mode)][static_cast(m_batch.texture_mode)] [BoolToUInt8(m_batch.dithering)]; prog.Bind(); if (m_batch.texture_mode != TextureMode::Disabled) m_vram_read_texture->Bind(); if (m_batch.transparency_mode == TransparencyMode::Disabled || render_mode == BatchRenderMode::OnlyOpaque) { glDisable(GL_BLEND); } else { glEnable(GL_BLEND); glBlendEquationSeparate( m_batch.transparency_mode == TransparencyMode::BackgroundMinusForeground ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD, GL_FUNC_ADD); glBlendFuncSeparate(GL_ONE, GL_SRC_ALPHA, GL_ONE, GL_ZERO); } if (m_drawing_area_changed) { m_drawing_area_changed = false; m_vram_dirty_rect.Include(m_drawing_area); SetScissorFromDrawingArea(); } if (m_batch_ubo_dirty) { UploadUniformBlock(&m_batch_ubo_data, sizeof(m_batch_ubo_data)); m_batch_ubo_dirty = false; } } void GPU_HW_OpenGL::SetScissorFromDrawingArea() { int left, top, right, bottom; CalcScissorRect(&left, &top, &right, &bottom); const int width = right - left; const int height = bottom - top; const int x = left; const int y = m_vram_texture->GetHeight() - bottom; Log_DebugPrintf("SetScissor: (%d-%d, %d-%d)", x, x + width, y, y + height); glScissor(x, y, width, height); } void GPU_HW_OpenGL::UploadUniformBlock(const void* data, u32 data_size) { const GL::StreamBuffer::MappingResult res = m_uniform_stream_buffer->Map(m_uniform_buffer_alignment, data_size); std::memcpy(res.pointer, data, data_size); m_uniform_stream_buffer->Unmap(data_size); glBindBufferRange(GL_UNIFORM_BUFFER, 1, m_uniform_stream_buffer->GetGLBufferId(), res.buffer_offset, data_size); m_renderer_stats.num_uniform_buffer_updates++; } void GPU_HW_OpenGL::UpdateDisplay() { GPU_HW::UpdateDisplay(); if (m_system->GetSettings().debugging.show_vram) { m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_vram_texture->GetGLId())), 0, m_vram_texture->GetHeight(), m_vram_texture->GetWidth(), -static_cast(m_vram_texture->GetHeight()), m_vram_texture->GetWidth(), m_vram_texture->GetHeight(), 1.0f); } else { const u32 vram_offset_x = m_crtc_state.regs.X; const u32 vram_offset_y = m_crtc_state.regs.Y; const u32 scaled_vram_offset_x = vram_offset_x * m_resolution_scale; const u32 scaled_vram_offset_y = vram_offset_y * m_resolution_scale; const u32 display_width = std::min(m_crtc_state.display_width, VRAM_WIDTH - vram_offset_x); const u32 display_height = std::min(m_crtc_state.display_height, VRAM_HEIGHT - vram_offset_y); const u32 scaled_display_width = display_width * m_resolution_scale; const u32 scaled_display_height = display_height * m_resolution_scale; if (m_GPUSTAT.display_disable) { m_host_display->SetDisplayTexture(nullptr, 0, 0, 0, 0, 0, 0, m_crtc_state.display_aspect_ratio); } else if (!m_GPUSTAT.display_area_color_depth_24 && !m_GPUSTAT.vertical_interlace) { m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_vram_texture->GetGLId())), scaled_vram_offset_x, m_vram_texture->GetHeight() - scaled_vram_offset_y, scaled_display_width, -static_cast(scaled_display_height), m_vram_texture->GetWidth(), m_vram_texture->GetHeight(), m_crtc_state.display_aspect_ratio); } else { const u32 flipped_vram_offset_y = VRAM_HEIGHT - vram_offset_y - display_height; const u32 scaled_flipped_vram_offset_y = m_vram_texture->GetHeight() - scaled_vram_offset_y - scaled_display_height; const u32 field_offset = BoolToUInt8(m_GPUSTAT.vertical_interlace && m_GPUSTAT.interlaced_field); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); const GL::Program& prog = m_display_programs[BoolToUInt8(m_GPUSTAT.display_area_color_depth_24)] [BoolToUInt8(m_GPUSTAT.vertical_interlace)]; prog.Bind(); // Because of how the reinterpret shader works, we need to use the downscaled version. if (m_GPUSTAT.display_area_color_depth_24 && m_resolution_scale > 1) { const u32 copy_width = std::min((display_width * 3) / 2, VRAM_WIDTH - vram_offset_x); const u32 scaled_copy_width = copy_width * m_resolution_scale; m_vram_encoding_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_texture->BindFramebuffer(GL_READ_FRAMEBUFFER); glBlitFramebuffer(scaled_vram_offset_x, scaled_flipped_vram_offset_y, scaled_vram_offset_x + scaled_copy_width, scaled_flipped_vram_offset_y + scaled_display_height, vram_offset_x, flipped_vram_offset_y, vram_offset_x + copy_width, flipped_vram_offset_y + display_height, GL_COLOR_BUFFER_BIT, GL_NEAREST); m_display_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_encoding_texture->Bind(); glViewport(0, field_offset, display_width, display_height); const u32 uniforms[4] = {vram_offset_x, flipped_vram_offset_y, field_offset}; UploadUniformBlock(uniforms, sizeof(uniforms)); m_batch_ubo_dirty = true; glDrawArrays(GL_TRIANGLES, 0, 3); m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_display_texture->GetGLId())), 0, display_height, display_width, -static_cast(display_height), m_display_texture->GetWidth(), m_display_texture->GetHeight(), m_crtc_state.display_aspect_ratio); } else { m_display_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_texture->Bind(); glViewport(0, field_offset, scaled_display_width, scaled_display_height); const u32 uniforms[4] = {scaled_vram_offset_x, scaled_flipped_vram_offset_y, field_offset}; UploadUniformBlock(uniforms, sizeof(uniforms)); m_batch_ubo_dirty = true; glDrawArrays(GL_TRIANGLES, 0, 3); m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_display_texture->GetGLId())), 0, scaled_display_height, scaled_display_width, -static_cast(scaled_display_height), m_display_texture->GetWidth(), m_display_texture->GetHeight(), m_crtc_state.display_aspect_ratio); } // restore state m_vram_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); glViewport(0, 0, m_vram_texture->GetWidth(), m_vram_texture->GetHeight()); glEnable(GL_SCISSOR_TEST); } } } void GPU_HW_OpenGL::ReadVRAM(u32 x, u32 y, u32 width, u32 height) { // Get bounds with wrap-around handled. const Common::Rectangle copy_rect = GetVRAMTransferBounds(x, y, width, height); const u32 encoded_width = copy_rect.GetWidth() / 2; const u32 encoded_height = copy_rect.GetHeight(); // Encode the 24-bit texture as 16-bit. const u32 uniforms[4] = {copy_rect.left, VRAM_HEIGHT - copy_rect.top - copy_rect.GetHeight(), copy_rect.GetWidth(), copy_rect.GetHeight()}; m_vram_encoding_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_texture->Bind(); m_vram_read_program.Bind(); UploadUniformBlock(uniforms, sizeof(uniforms)); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); glViewport(0, 0, encoded_width, encoded_height); glDrawArrays(GL_TRIANGLES, 0, 3); // Readback encoded texture. m_vram_encoding_texture->BindFramebuffer(GL_READ_FRAMEBUFFER); glPixelStorei(GL_PACK_ALIGNMENT, 2); glPixelStorei(GL_PACK_ROW_LENGTH, VRAM_WIDTH / 2); glReadPixels(0, 0, encoded_width, encoded_height, GL_RGBA, GL_UNSIGNED_BYTE, &m_vram_shadow[copy_rect.top * VRAM_WIDTH + copy_rect.left]); glPixelStorei(GL_PACK_ALIGNMENT, 4); glPixelStorei(GL_PACK_ROW_LENGTH, 0); RestoreGraphicsAPIState(); } void GPU_HW_OpenGL::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color) { GPU_HW::FillVRAM(x, y, width, height, color); // scale coordinates x *= m_resolution_scale; y *= m_resolution_scale; width *= m_resolution_scale; height *= m_resolution_scale; glScissor(x, m_vram_texture->GetHeight() - y - height, width, height); // drop precision unless true colour is enabled if (!m_true_color) color = RGBA5551ToRGBA8888(RGBA8888ToRGBA5551(color)); const auto [r, g, b, a] = RGBA8ToFloat(color); glClearColor(r, g, b, a); glClear(GL_COLOR_BUFFER_BIT); SetScissorFromDrawingArea(); } void GPU_HW_OpenGL::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data) { GPU_HW::UpdateVRAM(x, y, width, height, data); const u32 num_pixels = width * height; if (num_pixels < m_max_texture_buffer_size) { const auto map_result = m_texture_stream_buffer->Map(sizeof(u16), num_pixels * sizeof(u16)); std::memcpy(map_result.pointer, data, num_pixels * sizeof(u16)); m_texture_stream_buffer->Unmap(num_pixels * sizeof(u16)); m_texture_stream_buffer->Unbind(); // viewport should be set to the whole VRAM size, so we can just set the scissor const u32 flipped_y = VRAM_HEIGHT - y - height; const u32 scaled_width = width * m_resolution_scale; const u32 scaled_height = height * m_resolution_scale; const u32 scaled_x = x * m_resolution_scale; const u32 scaled_y = y * m_resolution_scale; const u32 scaled_flipped_y = m_vram_texture->GetHeight() - scaled_y - scaled_height; glViewport(scaled_x, scaled_flipped_y, scaled_width, scaled_height); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); m_vram_write_program.Bind(); glBindTexture(GL_TEXTURE_BUFFER, m_texture_buffer_r16ui_texture); const u32 uniforms[5] = {x, flipped_y, width, height, map_result.index_aligned}; UploadUniformBlock(uniforms, sizeof(uniforms)); glDrawArrays(GL_TRIANGLES, 0, 3); RestoreGraphicsAPIState(); } else { const auto map_result = m_texture_stream_buffer->Map(sizeof(u32), num_pixels * sizeof(u32)); // reverse copy the rows so it matches opengl's lower-left origin const u32 source_stride = width * sizeof(u16); const u8* source_ptr = static_cast(data) + (source_stride * (height - 1)); u32* dest_ptr = static_cast(map_result.pointer); for (u32 row = 0; row < height; row++) { const u8* source_row_ptr = source_ptr; for (u32 col = 0; col < width; col++) { u16 src_col; std::memcpy(&src_col, source_row_ptr, sizeof(src_col)); source_row_ptr += sizeof(src_col); *(dest_ptr++) = RGBA5551ToRGBA8888(src_col); } source_ptr -= source_stride; } m_texture_stream_buffer->Unmap(num_pixels * sizeof(u32)); m_texture_stream_buffer->Bind(); // have to write to the 1x texture first if (m_resolution_scale > 1) m_vram_encoding_texture->Bind(); else m_vram_texture->Bind(); // lower-left origin flip happens here const u32 flipped_y = VRAM_HEIGHT - y - height; // update texture data glTexSubImage2D(GL_TEXTURE_2D, 0, x, flipped_y, width, height, GL_RGBA, GL_UNSIGNED_BYTE, reinterpret_cast(map_result.index_aligned * sizeof(u32))); m_texture_stream_buffer->Unbind(); if (m_resolution_scale > 1) { // scale to internal resolution const u32 scaled_width = width * m_resolution_scale; const u32 scaled_height = height * m_resolution_scale; const u32 scaled_x = x * m_resolution_scale; const u32 scaled_y = y * m_resolution_scale; const u32 scaled_flipped_y = m_vram_texture->GetHeight() - scaled_y - scaled_height; glDisable(GL_SCISSOR_TEST); m_vram_encoding_texture->BindFramebuffer(GL_READ_FRAMEBUFFER); glBlitFramebuffer(x, flipped_y, x + width, flipped_y + height, scaled_x, scaled_flipped_y, scaled_x + scaled_width, scaled_flipped_y + scaled_height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glEnable(GL_SCISSOR_TEST); } } } void GPU_HW_OpenGL::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height) { GPU_HW::CopyVRAM(src_x, src_y, dst_x, dst_y, width, height); src_x *= m_resolution_scale; src_y *= m_resolution_scale; dst_x *= m_resolution_scale; dst_y *= m_resolution_scale; width *= m_resolution_scale; height *= m_resolution_scale; // lower-left origin flip src_y = m_vram_texture->GetHeight() - src_y - height; dst_y = m_vram_texture->GetHeight() - dst_y - height; glDisable(GL_SCISSOR_TEST); m_vram_texture->BindFramebuffer(GL_READ_FRAMEBUFFER); glBlitFramebuffer(src_x, src_y, src_x + width, src_y + height, dst_x, dst_y, dst_x + width, dst_y + height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glEnable(GL_SCISSOR_TEST); } void GPU_HW_OpenGL::UpdateVRAMReadTexture() { const auto scaled_rect = m_vram_dirty_rect * m_resolution_scale; const u32 width = scaled_rect.GetWidth(); const u32 height = scaled_rect.GetHeight(); const u32 x = scaled_rect.left; const u32 y = m_vram_texture->GetHeight() - scaled_rect.top - height; if (GLAD_GL_VERSION_4_3) { glCopyImageSubData(m_vram_texture->GetGLId(), GL_TEXTURE_2D, 0, x, y, 0, m_vram_read_texture->GetGLId(), GL_TEXTURE_2D, 0, x, y, 0, width, height, 1); } else if (GLAD_GL_EXT_copy_image) { glCopyImageSubDataEXT(m_vram_texture->GetGLId(), GL_TEXTURE_2D, 0, x, y, 0, m_vram_read_texture->GetGLId(), GL_TEXTURE_2D, 0, x, y, 0, width, height, 1); } else { m_vram_read_texture->BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_texture->BindFramebuffer(GL_READ_FRAMEBUFFER); glDisable(GL_SCISSOR_TEST); glBlitFramebuffer(x, y, x + width, y + height, x, y, x + width, y + height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glEnable(GL_SCISSOR_TEST); m_vram_texture->BindFramebuffer(GL_FRAMEBUFFER); } m_renderer_stats.num_vram_read_texture_updates++; ClearVRAMDirtyRectangle(); } void GPU_HW_OpenGL::FlushRender() { const u32 vertex_count = GetBatchVertexCount(); if (vertex_count == 0) return; m_renderer_stats.num_batches++; m_vertex_stream_buffer->Unmap(vertex_count * sizeof(BatchVertex)); m_vertex_stream_buffer->Bind(); m_batch_start_vertex_ptr = nullptr; m_batch_end_vertex_ptr = nullptr; m_batch_current_vertex_ptr = nullptr; static constexpr std::array gl_primitives = {{GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP}}; if (m_batch.NeedsTwoPassRendering()) { SetDrawState(BatchRenderMode::OnlyTransparent); glDrawArrays(gl_primitives[static_cast(m_batch.primitive)], m_batch_base_vertex, vertex_count); SetDrawState(BatchRenderMode::OnlyOpaque); glDrawArrays(gl_primitives[static_cast(m_batch.primitive)], m_batch_base_vertex, vertex_count); } else { SetDrawState(m_batch.GetRenderMode()); glDrawArrays(gl_primitives[static_cast(m_batch.primitive)], m_batch_base_vertex, vertex_count); } } std::unique_ptr GPU::CreateHardwareOpenGLRenderer() { return std::make_unique(); }