// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com> // SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0) #include "vulkan_device.h" #include "vulkan_builders.h" #include "vulkan_pipeline.h" #include "vulkan_stream_buffer.h" #include "vulkan_swap_chain.h" #include "vulkan_texture.h" #include "core/host.h" #include "common/align.h" #include "common/assert.h" #include "common/bitutils.h" #include "common/error.h" #include "common/file_system.h" #include "common/log.h" #include "common/path.h" #include "common/scoped_guard.h" #include "common/small_string.h" #include "fmt/format.h" #include "xxhash.h" #include <cstdlib> #include <limits> #include <mutex> Log_SetChannel(VulkanDevice); // TODO: VK_KHR_display. #pragma pack(push, 4) struct VK_PIPELINE_CACHE_HEADER { u32 header_length; u32 header_version; u32 vendor_id; u32 device_id; u8 uuid[VK_UUID_SIZE]; }; #pragma pack(pop) static VkAttachmentLoadOp GetLoadOpForTexture(const GPUTexture* tex) { static constexpr VkAttachmentLoadOp ops[3] = {VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_LOAD_OP_DONT_CARE}; return ops[static_cast<u8>(tex->GetState())]; } // Tweakables enum : u32 { MAX_DRAW_CALLS_PER_FRAME = 2048, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME = GPUDevice::MAX_TEXTURE_SAMPLERS * MAX_DRAW_CALLS_PER_FRAME, MAX_INPUT_ATTACHMENT_DESCRIPTORS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME, MAX_DESCRIPTOR_SETS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME, MAX_SAMPLER_DESCRIPTORS = 8192, VERTEX_BUFFER_SIZE = 32 * 1024 * 1024, INDEX_BUFFER_SIZE = 16 * 1024 * 1024, VERTEX_UNIFORM_BUFFER_SIZE = 8 * 1024 * 1024, FRAGMENT_UNIFORM_BUFFER_SIZE = 8 * 1024 * 1024, TEXTURE_BUFFER_SIZE = 64 * 1024 * 1024, UNIFORM_PUSH_CONSTANTS_STAGES = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, UNIFORM_PUSH_CONSTANTS_SIZE = 128, MAX_UNIFORM_BUFFER_SIZE = 1024, }; const std::array<VkFormat, static_cast<u32>(GPUTexture::Format::MaxCount)> VulkanDevice::TEXTURE_FORMAT_MAPPING = { VK_FORMAT_UNDEFINED, // Unknown VK_FORMAT_R8G8B8A8_UNORM, // RGBA8 VK_FORMAT_B8G8R8A8_UNORM, // BGRA8 VK_FORMAT_R5G6B5_UNORM_PACK16, // RGB565 VK_FORMAT_R5G5B5A1_UNORM_PACK16, // RGBA5551 VK_FORMAT_R8_UNORM, // R8 VK_FORMAT_D16_UNORM, // D16 VK_FORMAT_R16_UNORM, // R16 VK_FORMAT_R16_SINT, // R16I VK_FORMAT_R16_UINT, // R16U VK_FORMAT_R16_SFLOAT, // R16F VK_FORMAT_R32_SINT, // R32I VK_FORMAT_R32_UINT, // R32U VK_FORMAT_R32_SFLOAT, // R32F VK_FORMAT_R8G8_UNORM, // RG8 VK_FORMAT_R16G16_UNORM, // RG16 VK_FORMAT_R16G16_SFLOAT, // RG16F VK_FORMAT_R32G32_SFLOAT, // RG32F VK_FORMAT_R16G16B16A16_UNORM, // RGBA16 VK_FORMAT_R16G16B16A16_SFLOAT, // RGBA16F VK_FORMAT_R32G32B32A32_SFLOAT, // RGBA32F VK_FORMAT_A2R10G10B10_UNORM_PACK32, // RGB10A2 }; static constexpr VkClearValue s_present_clear_color = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; // Handles are always 64-bit, even on 32-bit platforms. static const VkRenderPass DYNAMIC_RENDERING_RENDER_PASS = ((VkRenderPass) static_cast<s64>(-1LL)); #ifdef _DEBUG static u32 s_debug_scope_depth = 0; #endif // We need to synchronize instance creation because of adapter enumeration from the UI thread. static std::mutex s_instance_mutex; VulkanDevice::VulkanDevice() { #ifdef _DEBUG s_debug_scope_depth = 0; #endif } VulkanDevice::~VulkanDevice() { Assert(m_device == VK_NULL_HANDLE); } GPUTexture::Format VulkanDevice::GetFormatForVkFormat(VkFormat format) { for (u32 i = 0; i < static_cast<u32>(std::size(TEXTURE_FORMAT_MAPPING)); i++) { if (TEXTURE_FORMAT_MAPPING[i] == format) return static_cast<GPUTexture::Format>(i); } return GPUTexture::Format::Unknown; } VkInstance VulkanDevice::CreateVulkanInstance(const WindowInfo& wi, OptionalExtensions* oe, bool enable_debug_utils, bool enable_validation_layer) { ExtensionList enabled_extensions; if (!SelectInstanceExtensions(&enabled_extensions, wi, oe, enable_debug_utils)) return VK_NULL_HANDLE; u32 maxApiVersion = VK_API_VERSION_1_0; if (vkEnumerateInstanceVersion) { VkResult res = vkEnumerateInstanceVersion(&maxApiVersion); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceVersion() failed: "); maxApiVersion = VK_API_VERSION_1_0; } } else { WARNING_LOG("Driver does not provide vkEnumerateInstanceVersion()."); } // Cap out at 1.1 for consistency. const u32 apiVersion = std::min(maxApiVersion, VK_API_VERSION_1_1); INFO_LOG("Supported instance version: {}.{}.{}, requesting version {}.{}.{}", VK_API_VERSION_MAJOR(maxApiVersion), VK_API_VERSION_MINOR(maxApiVersion), VK_API_VERSION_PATCH(maxApiVersion), VK_API_VERSION_MAJOR(apiVersion), VK_API_VERSION_MINOR(apiVersion), VK_API_VERSION_PATCH(apiVersion)); // Remember to manually update this every release. We don't pull in svnrev.h here, because // it's only the major/minor version, and rebuilding the file every time something else changes // is unnecessary. VkApplicationInfo app_info = {}; app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app_info.pNext = nullptr; app_info.pApplicationName = "DuckStation"; app_info.applicationVersion = VK_MAKE_VERSION(0, 1, 0); app_info.pEngineName = "DuckStation"; app_info.engineVersion = VK_MAKE_VERSION(0, 1, 0); app_info.apiVersion = apiVersion; VkInstanceCreateInfo instance_create_info = {}; instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_create_info.pNext = nullptr; instance_create_info.flags = 0; instance_create_info.pApplicationInfo = &app_info; instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size()); instance_create_info.ppEnabledExtensionNames = enabled_extensions.data(); instance_create_info.enabledLayerCount = 0; instance_create_info.ppEnabledLayerNames = nullptr; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_KHRONOS_validation"}; instance_create_info.enabledLayerCount = 1; instance_create_info.ppEnabledLayerNames = layer_names; } VkInstance instance; VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateInstance failed: "); return nullptr; } return instance; } bool VulkanDevice::SelectInstanceExtensions(ExtensionList* extension_list, const WindowInfo& wi, OptionalExtensions* oe, bool enable_debug_utils) { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } if (extension_count == 0) { ERROR_LOG("Vulkan: No extensions supported by instance."); return false; } std::vector<VkExtensionProperties> available_extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, available_extension_list.data()); DebugAssert(res == VK_SUCCESS); auto SupportsExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { DEV_LOG("Enabling extension: {}", name); extension_list->push_back(name); return true; } if (required) ERROR_LOG("Vulkan: Missing required extension {}.", name); return false; }; // Common extensions if (wi.type != WindowInfo::Type::Surfaceless && !SupportsExtension(VK_KHR_SURFACE_EXTENSION_NAME, true)) return false; #if defined(VK_USE_PLATFORM_WIN32_KHR) if (wi.type == WindowInfo::Type::Win32 && !SupportsExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_XLIB_KHR) if (wi.type == WindowInfo::Type::X11 && !SupportsExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_WAYLAND_KHR) if (wi.type == WindowInfo::Type::Wayland && !SupportsExtension(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_METAL_EXT) if (wi.type == WindowInfo::Type::MacOS && !SupportsExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_ANDROID_KHR) if (wi.type == WindowInfo::Type::Android && !SupportsExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true)) return false; #endif // VK_EXT_debug_utils if (enable_debug_utils && !SupportsExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false)) WARNING_LOG("Vulkan: Debug report requested, but extension is not available."); // Needed for exclusive fullscreen control. SupportsExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false); oe->vk_khr_get_physical_device_properties2 = SupportsExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false); return true; } VulkanDevice::GPUList VulkanDevice::EnumerateGPUs(VkInstance instance) { GPUList gpus; u32 gpu_count = 0; VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr); if ((res != VK_SUCCESS && res != VK_INCOMPLETE) || gpu_count == 0) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (1) failed: "); return gpus; } std::vector<VkPhysicalDevice> physical_devices(gpu_count); res = vkEnumeratePhysicalDevices(instance, &gpu_count, physical_devices.data()); if (res == VK_INCOMPLETE) { WARNING_LOG("First vkEnumeratePhysicalDevices() call returned {} devices, but second returned {}", physical_devices.size(), gpu_count); } else if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (2) failed: "); return gpus; } // Maybe we lost a GPU? if (gpu_count < physical_devices.size()) physical_devices.resize(gpu_count); gpus.reserve(physical_devices.size()); for (VkPhysicalDevice device : physical_devices) { VkPhysicalDeviceProperties props = {}; vkGetPhysicalDeviceProperties(device, &props); std::string gpu_name = props.deviceName; // handle duplicate adapter names if (std::any_of(gpus.begin(), gpus.end(), [&gpu_name](const auto& other) { return (gpu_name == other.second); })) { std::string original_adapter_name = std::move(gpu_name); u32 current_extra = 2; do { gpu_name = fmt::format("{} ({})", original_adapter_name, current_extra); current_extra++; } while ( std::any_of(gpus.begin(), gpus.end(), [&gpu_name](const auto& other) { return (gpu_name == other.second); })); } gpus.emplace_back(device, std::move(gpu_name)); } return gpus; } bool VulkanDevice::SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface) { u32 extension_count = 0; VkResult res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: "); return false; } if (extension_count == 0) { ERROR_LOG("Vulkan: No extensions supported by device."); return false; } std::vector<VkExtensionProperties> available_extension_list(extension_count); res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, available_extension_list.data()); DebugAssert(res == VK_SUCCESS); auto SupportsExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { if (std::none_of(extension_list->begin(), extension_list->end(), [&](const char* existing_name) { return (std::strcmp(existing_name, name) == 0); })) { DEV_LOG("Enabling extension: {}", name); extension_list->push_back(name); } return true; } if (required) ERROR_LOG("Vulkan: Missing required extension {}.", name); return false; }; if (enable_surface && !SupportsExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true)) return false; m_optional_extensions.vk_ext_memory_budget = SupportsExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false); m_optional_extensions.vk_ext_rasterization_order_attachment_access = SupportsExtension(VK_EXT_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false) || SupportsExtension(VK_ARM_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false); m_optional_extensions.vk_khr_get_memory_requirements2 = SupportsExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, false); m_optional_extensions.vk_khr_bind_memory2 = SupportsExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, false); m_optional_extensions.vk_khr_dedicated_allocation = SupportsExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, false); m_optional_extensions.vk_khr_driver_properties = SupportsExtension(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, false); m_optional_extensions.vk_khr_dynamic_rendering = SupportsExtension(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME, false) && SupportsExtension(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, false) && SupportsExtension(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME, false); m_optional_extensions.vk_khr_dynamic_rendering_local_read = m_optional_extensions.vk_khr_dynamic_rendering && SupportsExtension(VK_KHR_DYNAMIC_RENDERING_LOCAL_READ_EXTENSION_NAME, false); m_optional_extensions.vk_khr_push_descriptor = SupportsExtension(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, false); // glslang generates debug info instructions before phi nodes at the beginning of blocks when non-semantic debug info // is enabled, triggering errors by spirv-val. Gate it by an environment variable if you want source debugging until // this is fixed. if (const char* val = std::getenv("USE_NON_SEMANTIC_DEBUG_INFO"); val && StringUtil::FromChars<bool>(val).value_or(false)) { m_optional_extensions.vk_khr_shader_non_semantic_info = SupportsExtension(VK_KHR_SHADER_NON_SEMANTIC_INFO_EXTENSION_NAME, false); } m_optional_extensions.vk_ext_external_memory_host = SupportsExtension(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, false); #ifdef _WIN32 m_optional_extensions.vk_ext_full_screen_exclusive = enable_surface && SupportsExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, false); INFO_LOG("VK_EXT_full_screen_exclusive is {}", m_optional_extensions.vk_ext_full_screen_exclusive ? "supported" : "NOT supported"); #endif return true; } bool VulkanDevice::SelectDeviceFeatures() { VkPhysicalDeviceFeatures available_features; vkGetPhysicalDeviceFeatures(m_physical_device, &available_features); // Enable the features we use. m_device_features.dualSrcBlend = available_features.dualSrcBlend; m_device_features.largePoints = available_features.largePoints; m_device_features.wideLines = available_features.wideLines; m_device_features.samplerAnisotropy = available_features.samplerAnisotropy; m_device_features.sampleRateShading = available_features.sampleRateShading; m_device_features.geometryShader = available_features.geometryShader; return true; } bool VulkanDevice::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer) { u32 queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr); if (queue_family_count == 0) { ERROR_LOG("No queue families found on specified vulkan physical device."); return false; } std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, queue_family_properties.data()); DEV_LOG("{} vulkan queue families", queue_family_count); // Find graphics and present queues. m_graphics_queue_family_index = queue_family_count; m_present_queue_family_index = queue_family_count; for (uint32_t i = 0; i < queue_family_count; i++) { VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT; if (graphics_supported) { m_graphics_queue_family_index = i; // Quit now, no need for a present queue. if (!surface) { break; } } if (surface) { VkBool32 present_supported; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: "); return false; } if (present_supported) { m_present_queue_family_index = i; } // Prefer one queue family index that does both graphics and present. if (graphics_supported && present_supported) { break; } } } if (m_graphics_queue_family_index == queue_family_count) { ERROR_LOG("Vulkan: Failed to find an acceptable graphics queue."); return false; } if (surface != VK_NULL_HANDLE && m_present_queue_family_index == queue_family_count) { ERROR_LOG("Vulkan: Failed to find an acceptable present queue."); return false; } VkDeviceCreateInfo device_info = {}; device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device_info.pNext = nullptr; device_info.flags = 0; device_info.queueCreateInfoCount = 0; static constexpr float queue_priorities[] = {1.0f}; std::array<VkDeviceQueueCreateInfo, 2> queue_infos; VkDeviceQueueCreateInfo& graphics_queue_info = queue_infos[device_info.queueCreateInfoCount++]; graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; graphics_queue_info.pNext = nullptr; graphics_queue_info.flags = 0; graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index; graphics_queue_info.queueCount = 1; graphics_queue_info.pQueuePriorities = queue_priorities; if (surface != VK_NULL_HANDLE && m_graphics_queue_family_index != m_present_queue_family_index) { VkDeviceQueueCreateInfo& present_queue_info = queue_infos[device_info.queueCreateInfoCount++]; present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; present_queue_info.pNext = nullptr; present_queue_info.flags = 0; present_queue_info.queueFamilyIndex = m_present_queue_family_index; present_queue_info.queueCount = 1; present_queue_info.pQueuePriorities = queue_priorities; } device_info.pQueueCreateInfos = queue_infos.data(); ExtensionList enabled_extensions; if (!SelectDeviceExtensions(&enabled_extensions, surface != VK_NULL_HANDLE)) return false; device_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size()); device_info.ppEnabledExtensionNames = enabled_extensions.data(); // Check for required features before creating. if (!SelectDeviceFeatures()) return false; device_info.pEnabledFeatures = &m_device_features; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"}; device_info.enabledLayerCount = 1; device_info.ppEnabledLayerNames = layer_names; } VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT rasterization_order_access_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT, nullptr, VK_TRUE, VK_FALSE, VK_FALSE}; VkPhysicalDeviceDynamicRenderingFeatures dynamic_rendering_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES, nullptr, VK_TRUE}; VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR dynamic_rendering_local_read_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_LOCAL_READ_FEATURES_KHR, nullptr, VK_TRUE}; if (m_optional_extensions.vk_ext_rasterization_order_attachment_access) Vulkan::AddPointerToChain(&device_info, &rasterization_order_access_feature); if (m_optional_extensions.vk_khr_dynamic_rendering) { Vulkan::AddPointerToChain(&device_info, &dynamic_rendering_feature); if (m_optional_extensions.vk_khr_dynamic_rendering_local_read) Vulkan::AddPointerToChain(&device_info, &dynamic_rendering_local_read_feature); } VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDevice failed: "); return false; } // With the device created, we can fill the remaining entry points. if (!Vulkan::LoadVulkanDeviceFunctions(m_device)) return false; // Grab the graphics and present queues. vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue); if (surface) vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue); m_features.gpu_timing = (m_device_properties.limits.timestampComputeAndGraphics != 0 && queue_family_properties[m_graphics_queue_family_index].timestampValidBits > 0 && m_device_properties.limits.timestampPeriod > 0); DEV_LOG("GPU timing is {} (TS={} TS valid bits={}, TS period={})", m_features.gpu_timing ? "supported" : "not supported", static_cast<u32>(m_device_properties.limits.timestampComputeAndGraphics), queue_family_properties[m_graphics_queue_family_index].timestampValidBits, m_device_properties.limits.timestampPeriod); ProcessDeviceExtensions(); return true; } void VulkanDevice::ProcessDeviceExtensions() { // advanced feature checks VkPhysicalDeviceFeatures2 features2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2, nullptr, {}}; VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT rasterization_order_access_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT, nullptr, VK_FALSE, VK_FALSE, VK_FALSE}; VkPhysicalDeviceDynamicRenderingFeatures dynamic_rendering_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES, nullptr, VK_FALSE}; VkPhysicalDeviceDynamicRenderingLocalReadFeaturesKHR dynamic_rendering_local_read_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_LOCAL_READ_FEATURES_KHR, nullptr, VK_FALSE}; // add in optional feature structs if (m_optional_extensions.vk_ext_rasterization_order_attachment_access) Vulkan::AddPointerToChain(&features2, &rasterization_order_access_feature); if (m_optional_extensions.vk_khr_dynamic_rendering) { Vulkan::AddPointerToChain(&features2, &dynamic_rendering_feature); if (m_optional_extensions.vk_khr_dynamic_rendering_local_read) Vulkan::AddPointerToChain(&features2, &dynamic_rendering_local_read_feature); } // we might not have VK_KHR_get_physical_device_properties2... if (!vkGetPhysicalDeviceFeatures2 || !vkGetPhysicalDeviceProperties2 || !vkGetPhysicalDeviceMemoryProperties2) { if (!vkGetPhysicalDeviceFeatures2KHR || !vkGetPhysicalDeviceProperties2KHR || !vkGetPhysicalDeviceMemoryProperties2KHR) { ERROR_LOG("One or more functions from VK_KHR_get_physical_device_properties2 is missing, disabling extension."); m_optional_extensions.vk_khr_get_physical_device_properties2 = false; vkGetPhysicalDeviceFeatures2 = nullptr; vkGetPhysicalDeviceProperties2 = nullptr; vkGetPhysicalDeviceMemoryProperties2 = nullptr; } else { vkGetPhysicalDeviceFeatures2 = vkGetPhysicalDeviceFeatures2KHR; vkGetPhysicalDeviceProperties2 = vkGetPhysicalDeviceProperties2KHR; vkGetPhysicalDeviceMemoryProperties2 = vkGetPhysicalDeviceMemoryProperties2KHR; } } // don't bother querying if we're not actually looking at any features if (vkGetPhysicalDeviceFeatures2 && features2.pNext) vkGetPhysicalDeviceFeatures2(m_physical_device, &features2); // confirm we actually support it m_optional_extensions.vk_ext_rasterization_order_attachment_access &= (rasterization_order_access_feature.rasterizationOrderColorAttachmentAccess == VK_TRUE); m_optional_extensions.vk_khr_dynamic_rendering &= (dynamic_rendering_feature.dynamicRendering == VK_TRUE); m_optional_extensions.vk_khr_dynamic_rendering_local_read &= (dynamic_rendering_local_read_feature.dynamicRenderingLocalRead == VK_TRUE); VkPhysicalDeviceProperties2 properties2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, nullptr, {}}; VkPhysicalDevicePushDescriptorPropertiesKHR push_descriptor_properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR, nullptr, 0u}; VkPhysicalDeviceExternalMemoryHostPropertiesEXT external_memory_host_properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT, nullptr, 0}; if (m_optional_extensions.vk_khr_driver_properties) { m_device_driver_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES; Vulkan::AddPointerToChain(&properties2, &m_device_driver_properties); } if (m_optional_extensions.vk_khr_push_descriptor) Vulkan::AddPointerToChain(&properties2, &push_descriptor_properties); if (m_optional_extensions.vk_ext_external_memory_host) Vulkan::AddPointerToChain(&properties2, &external_memory_host_properties); // don't bother querying if we're not actually looking at any features if (vkGetPhysicalDeviceProperties2 && properties2.pNext) vkGetPhysicalDeviceProperties2(m_physical_device, &properties2); m_optional_extensions.vk_khr_push_descriptor &= (push_descriptor_properties.maxPushDescriptors >= 1); // vk_ext_external_memory_host is only used if the import alignment is the same as the system's page size m_optional_extensions.vk_ext_external_memory_host &= (external_memory_host_properties.minImportedHostPointerAlignment == HOST_PAGE_SIZE); if (IsBrokenMobileDriver()) { // Push descriptor is broken on Adreno v502.. don't want to think about dynamic rendending. if (m_optional_extensions.vk_khr_dynamic_rendering) { m_optional_extensions.vk_khr_dynamic_rendering = false; m_optional_extensions.vk_khr_dynamic_rendering_local_read = false; WARNING_LOG("Disabling VK_KHR_dynamic_rendering on broken mobile driver."); } if (m_optional_extensions.vk_khr_push_descriptor) { m_optional_extensions.vk_khr_push_descriptor = false; WARNING_LOG("Disabling VK_KHR_push_descriptor on broken mobile driver."); } } INFO_LOG("VK_EXT_memory_budget is {}", m_optional_extensions.vk_ext_memory_budget ? "supported" : "NOT supported"); INFO_LOG("VK_EXT_rasterization_order_attachment_access is {}", m_optional_extensions.vk_ext_rasterization_order_attachment_access ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_get_memory_requirements2 is {}", m_optional_extensions.vk_khr_get_memory_requirements2 ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_bind_memory2 is {}", m_optional_extensions.vk_khr_bind_memory2 ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_get_physical_device_properties2 is {}", m_optional_extensions.vk_khr_get_physical_device_properties2 ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_dedicated_allocation is {}", m_optional_extensions.vk_khr_dedicated_allocation ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_dynamic_rendering is {}", m_optional_extensions.vk_khr_dynamic_rendering ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_dynamic_rendering_local_read is {}", m_optional_extensions.vk_khr_dynamic_rendering_local_read ? "supported" : "NOT supported"); INFO_LOG("VK_KHR_push_descriptor is {}", m_optional_extensions.vk_khr_push_descriptor ? "supported" : "NOT supported"); INFO_LOG("VK_EXT_external_memory_host is {}", m_optional_extensions.vk_ext_external_memory_host ? "supported" : "NOT supported"); } bool VulkanDevice::CreateAllocator() { const u32 apiVersion = std::min(m_device_properties.apiVersion, VK_API_VERSION_1_1); INFO_LOG("Supported device API version: {}.{}.{}, using version {}.{}.{} for allocator.", VK_API_VERSION_MAJOR(m_device_properties.apiVersion), VK_API_VERSION_MINOR(m_device_properties.apiVersion), VK_API_VERSION_PATCH(m_device_properties.apiVersion), VK_API_VERSION_MAJOR(apiVersion), VK_API_VERSION_MINOR(apiVersion), VK_API_VERSION_PATCH(apiVersion)); VmaAllocatorCreateInfo ci = {}; ci.vulkanApiVersion = apiVersion; ci.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT; ci.physicalDevice = m_physical_device; ci.device = m_device; ci.instance = m_instance; if (apiVersion < VK_API_VERSION_1_1) { if (m_optional_extensions.vk_khr_get_memory_requirements2 && m_optional_extensions.vk_khr_dedicated_allocation) { DEV_LOG("Enabling VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT on < Vulkan 1.1."); ci.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; } if (m_optional_extensions.vk_khr_bind_memory2) { DEV_LOG("Enabling VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT on < Vulkan 1.1."); ci.flags |= VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT; } } if (m_optional_extensions.vk_ext_memory_budget) { DEV_LOG("Enabling VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT."); ci.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; } // Limit usage of the DEVICE_LOCAL upload heap when we're using a debug device. // On NVIDIA drivers, it results in frequently running out of device memory when trying to // play back captures in RenderDoc, making life very painful. Re-BAR GPUs should be fine. constexpr VkDeviceSize UPLOAD_HEAP_SIZE_THRESHOLD = 512 * 1024 * 1024; constexpr VkMemoryPropertyFlags UPLOAD_HEAP_PROPERTIES = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; std::array<VkDeviceSize, VK_MAX_MEMORY_HEAPS> heap_size_limits; if (m_debug_device) { VkPhysicalDeviceMemoryProperties memory_properties; vkGetPhysicalDeviceMemoryProperties(m_physical_device, &memory_properties); bool has_upload_heap = false; heap_size_limits.fill(VK_WHOLE_SIZE); for (u32 i = 0; i < memory_properties.memoryTypeCount; i++) { // Look for any memory types which are upload-like. const VkMemoryType& type = memory_properties.memoryTypes[i]; if ((type.propertyFlags & UPLOAD_HEAP_PROPERTIES) != UPLOAD_HEAP_PROPERTIES) continue; const VkMemoryHeap& heap = memory_properties.memoryHeaps[type.heapIndex]; if (heap.size >= UPLOAD_HEAP_SIZE_THRESHOLD) continue; if (heap_size_limits[type.heapIndex] == VK_WHOLE_SIZE) { WARNING_LOG("Disabling allocation from upload heap #{} ({:.2f} MB) due to debug device.", type.heapIndex, static_cast<float>(heap.size) / 1048576.0f); heap_size_limits[type.heapIndex] = 0; has_upload_heap = true; } } if (has_upload_heap) ci.pHeapSizeLimit = heap_size_limits.data(); } VkResult res = vmaCreateAllocator(&ci, &m_allocator); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: "); return false; } return true; } void VulkanDevice::DestroyAllocator() { if (m_allocator == VK_NULL_HANDLE) return; vmaDestroyAllocator(m_allocator); m_allocator = VK_NULL_HANDLE; } bool VulkanDevice::CreateCommandBuffers() { VkResult res; uint32_t frame_index = 0; for (CommandBuffer& resources : m_frame_resources) { resources.needs_fence_wait = false; VkCommandPoolCreateInfo pool_info = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, nullptr, 0, m_graphics_queue_family_index}; res = vkCreateCommandPool(m_device, &pool_info, nullptr, &resources.command_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateCommandPool failed: "); return false; } Vulkan::SetObjectName(m_device, resources.command_pool, TinyString::from_format("Frame Command Pool {}", frame_index)); VkCommandBufferAllocateInfo buffer_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, nullptr, resources.command_pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast<u32>(resources.command_buffers.size())}; res = vkAllocateCommandBuffers(m_device, &buffer_info, resources.command_buffers.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateCommandBuffers failed: "); return false; } for (u32 i = 0; i < resources.command_buffers.size(); i++) { Vulkan::SetObjectName(m_device, resources.command_buffers[i], TinyString::from_format("Frame {} {}Command Buffer", frame_index, (i == 0) ? "Init" : "")); } VkFenceCreateInfo fence_info = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, VK_FENCE_CREATE_SIGNALED_BIT}; res = vkCreateFence(m_device, &fence_info, nullptr, &resources.fence); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateFence failed: "); return false; } Vulkan::SetObjectName(m_device, resources.fence, TinyString::from_format("Frame Fence {}", frame_index)); u32 num_pools = 0; VkDescriptorPoolSize pool_sizes[2]; if (!m_optional_extensions.vk_khr_push_descriptor) { pool_sizes[num_pools++] = {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME}; } pool_sizes[num_pools++] = {VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, MAX_INPUT_ATTACHMENT_DESCRIPTORS_PER_FRAME}; VkDescriptorPoolCreateInfo pool_create_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, 0, MAX_DESCRIPTOR_SETS_PER_FRAME, num_pools, pool_sizes}; res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &resources.descriptor_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: "); return false; } Vulkan::SetObjectName(m_device, resources.descriptor_pool, TinyString::from_format("Frame Descriptor Pool {}", frame_index)); ++frame_index; } BeginCommandBuffer(0); return true; } void VulkanDevice::DestroyCommandBuffers() { for (CommandBuffer& resources : m_frame_resources) { if (resources.fence != VK_NULL_HANDLE) vkDestroyFence(m_device, resources.fence, nullptr); if (resources.descriptor_pool != VK_NULL_HANDLE) vkDestroyDescriptorPool(m_device, resources.descriptor_pool, nullptr); if (resources.command_buffers[0] != VK_NULL_HANDLE) { vkFreeCommandBuffers(m_device, resources.command_pool, static_cast<u32>(resources.command_buffers.size()), resources.command_buffers.data()); } if (resources.command_pool != VK_NULL_HANDLE) vkDestroyCommandPool(m_device, resources.command_pool, nullptr); } } bool VulkanDevice::CreatePersistentDescriptorPool() { static constexpr const VkDescriptorPoolSize pool_sizes[] = { {VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1}, {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, MAX_SAMPLER_DESCRIPTORS}, {VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 16}, {VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 16}, }; const VkDescriptorPoolCreateInfo pool_create_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, MAX_SAMPLER_DESCRIPTORS, static_cast<u32>(std::size(pool_sizes)), pool_sizes}; VkResult res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &m_global_descriptor_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: "); return false; } Vulkan::SetObjectName(m_device, m_global_descriptor_pool, "Global Descriptor Pool"); if (m_features.gpu_timing) { const VkQueryPoolCreateInfo query_create_info = { VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO, nullptr, 0, VK_QUERY_TYPE_TIMESTAMP, NUM_COMMAND_BUFFERS * 4, 0}; res = vkCreateQueryPool(m_device, &query_create_info, nullptr, &m_timestamp_query_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateQueryPool failed: "); m_features.gpu_timing = false; return false; } } return true; } void VulkanDevice::DestroyPersistentDescriptorPool() { if (m_timestamp_query_pool != VK_NULL_HANDLE) vkDestroyQueryPool(m_device, m_timestamp_query_pool, nullptr); if (m_global_descriptor_pool != VK_NULL_HANDLE) vkDestroyDescriptorPool(m_device, m_global_descriptor_pool, nullptr); } bool VulkanDevice::RenderPassCacheKey::operator==(const RenderPassCacheKey& rhs) const { return (std::memcmp(this, &rhs, sizeof(*this)) == 0); } bool VulkanDevice::RenderPassCacheKey::operator!=(const RenderPassCacheKey& rhs) const { return (std::memcmp(this, &rhs, sizeof(*this)) != 0); } size_t VulkanDevice::RenderPassCacheKeyHash::operator()(const RenderPassCacheKey& rhs) const { if constexpr (sizeof(void*) == 8) return XXH3_64bits(&rhs, sizeof(rhs)); else return XXH32(&rhs, sizeof(rhs), 0x1337); } VkRenderPass VulkanDevice::GetRenderPass(const GPUPipeline::GraphicsConfig& config) { RenderPassCacheKey key; std::memset(&key, 0, sizeof(key)); for (u32 i = 0; i < MAX_RENDER_TARGETS; i++) { if (config.color_formats[i] == GPUTexture::Format::Unknown) break; key.color[i].format = static_cast<u8>(config.color_formats[i]); key.color[i].load_op = VK_ATTACHMENT_LOAD_OP_LOAD; key.color[i].store_op = VK_ATTACHMENT_STORE_OP_STORE; } if (config.depth_format != GPUTexture::Format::Unknown) { key.depth_format = static_cast<u8>(config.depth_format); key.depth_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; key.depth_store_op = VK_ATTACHMENT_STORE_OP_STORE; const bool stencil = GPUTexture::IsDepthStencilFormat(config.depth_format); key.stencil_load_op = stencil ? VK_ATTACHMENT_LOAD_OP_LOAD : VK_ATTACHMENT_LOAD_OP_DONT_CARE; key.stencil_store_op = stencil ? VK_ATTACHMENT_STORE_OP_STORE : VK_ATTACHMENT_STORE_OP_DONT_CARE; } key.samples = static_cast<u8>(config.samples); key.feedback_loop = config.render_pass_flags; const auto it = m_render_pass_cache.find(key); return (it != m_render_pass_cache.end()) ? it->second : CreateCachedRenderPass(key); } VkRenderPass VulkanDevice::GetRenderPass(VulkanTexture* const* rts, u32 num_rts, VulkanTexture* ds, GPUPipeline::RenderPassFlag feedback_loop) { RenderPassCacheKey key; std::memset(&key, 0, sizeof(key)); static_assert(static_cast<u8>(GPUTexture::Format::Unknown) == 0); for (u32 i = 0; i < num_rts; i++) { key.color[i].format = static_cast<u8>(rts[i]->GetFormat()); key.color[i].load_op = GetLoadOpForTexture(rts[i]); key.color[i].store_op = VK_ATTACHMENT_STORE_OP_STORE; key.samples = static_cast<u8>(rts[i]->GetSamples()); } if (ds) { const VkAttachmentLoadOp load_op = GetLoadOpForTexture(ds); key.depth_format = static_cast<u8>(ds->GetFormat()); key.depth_load_op = load_op; key.depth_store_op = VK_ATTACHMENT_STORE_OP_STORE; const bool stencil = GPUTexture::IsDepthStencilFormat(ds->GetFormat()); key.stencil_load_op = stencil ? load_op : VK_ATTACHMENT_LOAD_OP_DONT_CARE; key.stencil_store_op = stencil ? VK_ATTACHMENT_STORE_OP_STORE : VK_ATTACHMENT_STORE_OP_DONT_CARE; key.samples = static_cast<u8>(ds->GetSamples()); } key.feedback_loop = feedback_loop; const auto it = m_render_pass_cache.find(key); return (it != m_render_pass_cache.end()) ? it->second : CreateCachedRenderPass(key); } VkRenderPass VulkanDevice::GetSwapChainRenderPass(GPUTexture::Format format, VkAttachmentLoadOp load_op) { DebugAssert(format != GPUTexture::Format::Unknown); RenderPassCacheKey key; std::memset(&key, 0, sizeof(key)); key.color[0].format = static_cast<u8>(format); key.color[0].load_op = load_op; key.color[0].store_op = VK_ATTACHMENT_STORE_OP_STORE; key.samples = 1; const auto it = m_render_pass_cache.find(key); return (it != m_render_pass_cache.end()) ? it->second : CreateCachedRenderPass(key); } VkRenderPass VulkanDevice::GetRenderPassForRestarting(VkRenderPass pass) { for (const auto& it : m_render_pass_cache) { if (it.second != pass) continue; RenderPassCacheKey modified_key = it.first; for (u32 i = 0; i < MAX_RENDER_TARGETS; i++) { if (modified_key.color[i].load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) modified_key.color[i].load_op = VK_ATTACHMENT_LOAD_OP_LOAD; } if (modified_key.depth_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) modified_key.depth_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; if (modified_key.stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) modified_key.stencil_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; if (modified_key == it.first) return pass; auto fit = m_render_pass_cache.find(modified_key); if (fit != m_render_pass_cache.end()) return fit->second; return CreateCachedRenderPass(modified_key); } return pass; } VkCommandBuffer VulkanDevice::GetCurrentInitCommandBuffer() { CommandBuffer& res = m_frame_resources[m_current_frame]; VkCommandBuffer buf = res.command_buffers[0]; if (res.init_buffer_used) return buf; VkCommandBufferBeginInfo bi{VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr}; vkBeginCommandBuffer(buf, &bi); res.init_buffer_used = true; return buf; } VkDescriptorSet VulkanDevice::AllocateDescriptorSet(VkDescriptorSetLayout set_layout) { VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr, m_frame_resources[m_current_frame].descriptor_pool, 1, &set_layout}; VkDescriptorSet descriptor_set; VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set); if (res != VK_SUCCESS) { // Failing to allocate a descriptor set is not a fatal error, we can // recover by moving to the next command buffer. return VK_NULL_HANDLE; } return descriptor_set; } VkDescriptorSet VulkanDevice::AllocatePersistentDescriptorSet(VkDescriptorSetLayout set_layout) { VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr, m_global_descriptor_pool, 1, &set_layout}; VkDescriptorSet descriptor_set; VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set); if (res != VK_SUCCESS) return VK_NULL_HANDLE; return descriptor_set; } void VulkanDevice::FreePersistentDescriptorSet(VkDescriptorSet set) { vkFreeDescriptorSets(m_device, m_global_descriptor_pool, 1, &set); } void VulkanDevice::WaitForFenceCounter(u64 fence_counter) { if (m_completed_fence_counter >= fence_counter) return; // Find the first command buffer which covers this counter value. u32 index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; while (index != m_current_frame) { if (m_frame_resources[index].fence_counter >= fence_counter) break; index = (index + 1) % NUM_COMMAND_BUFFERS; } DebugAssert(index != m_current_frame); WaitForCommandBufferCompletion(index); } void VulkanDevice::WaitForGPUIdle() { WaitForPresentComplete(); vkDeviceWaitIdle(m_device); } float VulkanDevice::GetAndResetAccumulatedGPUTime() { const float time = m_accumulated_gpu_time; m_accumulated_gpu_time = 0.0f; return time; } bool VulkanDevice::SetGPUTimingEnabled(bool enabled) { m_gpu_timing_enabled = enabled && m_features.gpu_timing; return (enabled == m_gpu_timing_enabled); } void VulkanDevice::WaitForCommandBufferCompletion(u32 index) { // We might be waiting for the buffer we just submitted to the worker thread. if (m_queued_present.command_buffer_index == index && !m_present_done.load(std::memory_order_acquire)) { WARNING_LOG("Waiting for threaded submission of cmdbuffer {}", index); WaitForPresentComplete(); } // Wait for this command buffer to be completed. static constexpr u32 MAX_TIMEOUTS = 10; u32 timeouts = 0; for (;;) { VkResult res = vkWaitForFences(m_device, 1, &m_frame_resources[index].fence, VK_TRUE, UINT64_MAX); if (res == VK_SUCCESS) break; if (res == VK_TIMEOUT && (++timeouts) <= MAX_TIMEOUTS) { ERROR_LOG("vkWaitForFences() for cmdbuffer {} failed with VK_TIMEOUT, trying again.", index); continue; } else if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, TinyString::from_format("vkWaitForFences() for cmdbuffer {} failed: ", index)); m_last_submit_failed.store(true, std::memory_order_release); return; } } // Clean up any resources for command buffers between the last known completed buffer and this // now-completed command buffer. If we use >2 buffers, this may be more than one buffer. const u64 now_completed_counter = m_frame_resources[index].fence_counter; u32 cleanup_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; while (cleanup_index != m_current_frame) { CommandBuffer& resources = m_frame_resources[cleanup_index]; if (resources.fence_counter > now_completed_counter) break; if (m_gpu_timing_enabled && resources.timestamp_written) { std::array<u64, 2> timestamps; VkResult res = vkGetQueryPoolResults(m_device, m_timestamp_query_pool, index * 2, static_cast<u32>(timestamps.size()), sizeof(u64) * timestamps.size(), timestamps.data(), sizeof(u64), VK_QUERY_RESULT_64_BIT); if (res == VK_SUCCESS) { // if we didn't write the timestamp at the start of the cmdbuffer (just enabled timing), the first TS will be // zero if (timestamps[0] > 0 && m_gpu_timing_enabled) { const double ns_diff = (timestamps[1] - timestamps[0]) * static_cast<double>(m_device_properties.limits.timestampPeriod); m_accumulated_gpu_time += static_cast<float>(ns_diff / 1000000.0); } } else { LOG_VULKAN_ERROR(res, "vkGetQueryPoolResults failed: "); } } cleanup_index = (cleanup_index + 1) % NUM_COMMAND_BUFFERS; } m_completed_fence_counter = now_completed_counter; while (!m_cleanup_objects.empty()) { auto& it = m_cleanup_objects.front(); if (it.first > now_completed_counter) break; it.second(); m_cleanup_objects.pop_front(); } } void VulkanDevice::EndAndSubmitCommandBuffer(VulkanSwapChain* present_swap_chain, bool explicit_present, bool submit_on_thread) { if (m_last_submit_failed.load(std::memory_order_acquire)) return; CommandBuffer& resources = m_frame_resources[m_current_frame]; // End the current command buffer. VkResult res; if (resources.init_buffer_used) { res = vkEndCommandBuffer(resources.command_buffers[0]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); Panic("Failed to end command buffer"); } } if (m_gpu_timing_enabled && resources.timestamp_written) { vkCmdWriteTimestamp(m_current_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, m_current_frame * 2 + 1); } res = vkEndCommandBuffer(resources.command_buffers[1]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); Panic("Failed to end command buffer"); } // This command buffer now has commands, so can't be re-used without waiting. resources.needs_fence_wait = true; std::unique_lock<std::mutex> lock(m_present_mutex); WaitForPresentComplete(lock); if (!submit_on_thread || explicit_present || !m_present_thread.joinable()) { DoSubmitCommandBuffer(m_current_frame, present_swap_chain); if (present_swap_chain && !explicit_present) DoPresent(present_swap_chain); return; } m_queued_present.command_buffer_index = m_current_frame; m_queued_present.swap_chain = present_swap_chain; m_present_done.store(false, std::memory_order_release); m_present_queued_cv.notify_one(); } void VulkanDevice::DoSubmitCommandBuffer(u32 index, VulkanSwapChain* present_swap_chain) { CommandBuffer& resources = m_frame_resources[index]; uint32_t wait_bits = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; VkSubmitInfo submit_info = {VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, 0u, nullptr, nullptr, resources.init_buffer_used ? 2u : 1u, resources.init_buffer_used ? resources.command_buffers.data() : &resources.command_buffers[1], 0u, nullptr}; if (present_swap_chain) { submit_info.pWaitSemaphores = present_swap_chain->GetImageAvailableSemaphorePtr(); submit_info.waitSemaphoreCount = 1; submit_info.pWaitDstStageMask = &wait_bits; submit_info.pSignalSemaphores = present_swap_chain->GetRenderingFinishedSemaphorePtr(); submit_info.signalSemaphoreCount = 1; } const VkResult res = vkQueueSubmit(m_graphics_queue, 1, &submit_info, resources.fence); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkQueueSubmit failed: "); m_last_submit_failed.store(true, std::memory_order_release); return; } } void VulkanDevice::DoPresent(VulkanSwapChain* present_swap_chain) { const VkPresentInfoKHR present_info = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, nullptr, 1, present_swap_chain->GetRenderingFinishedSemaphorePtr(), 1, present_swap_chain->GetSwapChainPtr(), present_swap_chain->GetCurrentImageIndexPtr(), nullptr}; present_swap_chain->ReleaseCurrentImage(); const VkResult res = vkQueuePresentKHR(m_present_queue, &present_info); if (res != VK_SUCCESS) { // VK_ERROR_OUT_OF_DATE_KHR is not fatal, just means we need to recreate our swap chain. if (res != VK_ERROR_OUT_OF_DATE_KHR && res != VK_SUBOPTIMAL_KHR) LOG_VULKAN_ERROR(res, "vkQueuePresentKHR failed: "); m_last_present_failed.store(true, std::memory_order_release); return; } // Grab the next image as soon as possible, that way we spend less time blocked on the next // submission. Don't care if it fails, we'll deal with that at the presentation call site. // Credit to dxvk for the idea. present_swap_chain->AcquireNextImage(); } void VulkanDevice::WaitForPresentComplete() { if (m_present_done.load(std::memory_order_acquire)) return; std::unique_lock<std::mutex> lock(m_present_mutex); WaitForPresentComplete(lock); } void VulkanDevice::WaitForPresentComplete(std::unique_lock<std::mutex>& lock) { if (m_present_done.load(std::memory_order_acquire)) return; m_present_done_cv.wait(lock, [this]() { return m_present_done.load(std::memory_order_acquire); }); } void VulkanDevice::PresentThread() { std::unique_lock<std::mutex> lock(m_present_mutex); while (!m_present_thread_done.load(std::memory_order_acquire)) { m_present_queued_cv.wait(lock, [this]() { return !m_present_done.load(std::memory_order_acquire) || m_present_thread_done.load(std::memory_order_acquire); }); if (m_present_done.load(std::memory_order_acquire)) continue; DoSubmitCommandBuffer(m_queued_present.command_buffer_index, m_queued_present.swap_chain); if (m_queued_present.swap_chain) DoPresent(m_queued_present.swap_chain); m_present_done.store(true, std::memory_order_release); m_present_done_cv.notify_one(); } } void VulkanDevice::StartPresentThread() { DebugAssert(!m_present_thread.joinable()); m_present_thread_done.store(false, std::memory_order_release); m_present_thread = std::thread(&VulkanDevice::PresentThread, this); } void VulkanDevice::StopPresentThread() { if (!m_present_thread.joinable()) return; { std::unique_lock<std::mutex> lock(m_present_mutex); WaitForPresentComplete(lock); m_present_thread_done.store(true, std::memory_order_release); m_present_queued_cv.notify_one(); } m_present_thread.join(); } void VulkanDevice::MoveToNextCommandBuffer() { BeginCommandBuffer((m_current_frame + 1) % NUM_COMMAND_BUFFERS); } void VulkanDevice::BeginCommandBuffer(u32 index) { CommandBuffer& resources = m_frame_resources[index]; // Wait for the GPU to finish with all resources for this command buffer. if (resources.fence_counter > m_completed_fence_counter) WaitForCommandBufferCompletion(index); // Reset fence to unsignaled before starting. VkResult res = vkResetFences(m_device, 1, &resources.fence); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetFences failed: "); // Reset command pools to beginning since we can re-use the memory now res = vkResetCommandPool(m_device, resources.command_pool, 0); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetCommandPool failed: "); // Enable commands to be recorded to the two buffers again. VkCommandBufferBeginInfo begin_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr}; res = vkBeginCommandBuffer(resources.command_buffers[1], &begin_info); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkBeginCommandBuffer failed: "); // Also can do the same for the descriptor pools if (resources.descriptor_pool != VK_NULL_HANDLE) { res = vkResetDescriptorPool(m_device, resources.descriptor_pool, 0); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetDescriptorPool failed: "); } if (m_gpu_timing_enabled) { vkCmdResetQueryPool(resources.command_buffers[1], m_timestamp_query_pool, index * 2, 2); vkCmdWriteTimestamp(resources.command_buffers[1], VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, index * 2); } resources.fence_counter = m_next_fence_counter++; resources.init_buffer_used = false; resources.timestamp_written = m_gpu_timing_enabled; m_current_frame = index; m_current_command_buffer = resources.command_buffers[1]; // using the lower 32 bits of the fence index should be sufficient here, I hope... vmaSetCurrentFrameIndex(m_allocator, static_cast<u32>(m_next_fence_counter)); } void VulkanDevice::SubmitCommandBuffer(bool wait_for_completion) { DebugAssert(!InRenderPass()); const u32 current_frame = m_current_frame; EndAndSubmitCommandBuffer(nullptr, false, false); MoveToNextCommandBuffer(); if (wait_for_completion) WaitForCommandBufferCompletion(current_frame); InvalidateCachedState(); } void VulkanDevice::SubmitCommandBuffer(bool wait_for_completion, const char* reason, ...) { std::va_list ap; va_start(ap, reason); const std::string reason_str(StringUtil::StdStringFromFormatV(reason, ap)); va_end(ap); WARNING_LOG("Executing command buffer due to '{}'", reason_str); SubmitCommandBuffer(wait_for_completion); } void VulkanDevice::SubmitCommandBufferAndRestartRenderPass(const char* reason) { if (InRenderPass()) EndRenderPass(); VulkanPipeline* pl = m_current_pipeline; SubmitCommandBuffer(false, "%s", reason); SetPipeline(pl); BeginRenderPass(); } bool VulkanDevice::CheckLastPresentFail() { return m_last_present_failed.exchange(false, std::memory_order_acq_rel); } bool VulkanDevice::CheckLastSubmitFail() { return m_last_submit_failed.load(std::memory_order_acquire); } void VulkanDevice::DeferBufferDestruction(VkBuffer object, VmaAllocation allocation) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object, allocation]() { vmaDestroyBuffer(m_allocator, object, allocation); }); } void VulkanDevice::DeferBufferDestruction(VkBuffer object, VkDeviceMemory memory) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object, memory]() { vkDestroyBuffer(m_device, object, nullptr); vkFreeMemory(m_device, memory, nullptr); }); } void VulkanDevice::DeferFramebufferDestruction(VkFramebuffer object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyFramebuffer(m_device, object, nullptr); }); } void VulkanDevice::DeferImageDestruction(VkImage object, VmaAllocation allocation) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object, allocation]() { vmaDestroyImage(m_allocator, object, allocation); }); } void VulkanDevice::DeferImageViewDestruction(VkImageView object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyImageView(m_device, object, nullptr); }); } void VulkanDevice::DeferPipelineDestruction(VkPipeline object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyPipeline(m_device, object, nullptr); }); } void VulkanDevice::DeferBufferViewDestruction(VkBufferView object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyBufferView(m_device, object, nullptr); }); } void VulkanDevice::DeferPersistentDescriptorSetDestruction(VkDescriptorSet object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { FreePersistentDescriptorSet(object); }); } VKAPI_ATTR VkBool32 VKAPI_CALL DebugMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { ERROR_LOG("Vulkan debug report: ({}) {}", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else if (severity & (VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT)) { WARNING_LOG("Vulkan debug report: ({}) {}", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) { INFO_LOG("Vulkan debug report: ({}) {}", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else { DEV_LOG("Vulkan debug report: ({}) {}", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } return VK_FALSE; } bool VulkanDevice::EnableDebugUtils() { // Already enabled? if (m_debug_messenger_callback != VK_NULL_HANDLE) return true; // Check for presence of the functions before calling if (!vkCreateDebugUtilsMessengerEXT || !vkDestroyDebugUtilsMessengerEXT || !vkSubmitDebugUtilsMessageEXT) { return false; } VkDebugUtilsMessengerCreateInfoEXT messenger_info = { VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, nullptr, 0, VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT, VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT, DebugMessengerCallback, nullptr}; const VkResult res = vkCreateDebugUtilsMessengerEXT(m_instance, &messenger_info, nullptr, &m_debug_messenger_callback); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDebugUtilsMessengerEXT failed: "); return false; } return true; } void VulkanDevice::DisableDebugUtils() { if (m_debug_messenger_callback != VK_NULL_HANDLE) { vkDestroyDebugUtilsMessengerEXT(m_instance, m_debug_messenger_callback, nullptr); m_debug_messenger_callback = VK_NULL_HANDLE; } } bool VulkanDevice::IsDeviceNVIDIA() const { return (m_device_properties.vendorID == 0x10DE); } bool VulkanDevice::IsDeviceAdreno() const { // Assume turnip is fine... return ((m_device_properties.vendorID == 0x5143 || m_device_driver_properties.driverID == VK_DRIVER_ID_QUALCOMM_PROPRIETARY) && m_device_driver_properties.driverID != VK_DRIVER_ID_MESA_TURNIP); } bool VulkanDevice::IsDeviceMali() const { return (m_device_properties.vendorID == 0x13B5 || m_device_driver_properties.driverID == VK_DRIVER_ID_ARM_PROPRIETARY); } bool VulkanDevice::IsDeviceImgTec() const { return (m_device_properties.vendorID == 0x1010 || m_device_driver_properties.driverID == VK_DRIVER_ID_IMAGINATION_PROPRIETARY); } bool VulkanDevice::IsBrokenMobileDriver() const { return (IsDeviceAdreno() || IsDeviceMali() || IsDeviceImgTec()); } VkRenderPass VulkanDevice::CreateCachedRenderPass(RenderPassCacheKey key) { std::array<VkAttachmentReference, MAX_RENDER_TARGETS> color_references; VkAttachmentReference* color_reference_ptr = nullptr; VkAttachmentReference depth_reference; VkAttachmentReference* depth_reference_ptr = nullptr; VkAttachmentReference input_reference; VkAttachmentReference* input_reference_ptr = nullptr; VkSubpassDependency subpass_dependency; VkSubpassDependency* subpass_dependency_ptr = nullptr; std::array<VkAttachmentDescription, MAX_RENDER_TARGETS + 1> attachments; u32 num_attachments = 0; for (u32 i = 0; i < MAX_RENDER_TARGETS; i++) { if (key.color[i].format == static_cast<u8>(GPUTexture::Format::Unknown)) break; const VkImageLayout layout = (key.feedback_loop & GPUPipeline::ColorFeedbackLoop) ? (m_optional_extensions.vk_khr_dynamic_rendering_local_read ? VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR : VK_IMAGE_LAYOUT_GENERAL) : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; const RenderPassCacheKey::RenderTarget key_rt = key.color[i]; attachments[num_attachments] = {i, TEXTURE_FORMAT_MAPPING[key_rt.format], static_cast<VkSampleCountFlagBits>(key.samples), static_cast<VkAttachmentLoadOp>(key_rt.load_op), static_cast<VkAttachmentStoreOp>(key_rt.store_op), VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, layout, layout}; color_references[num_attachments].attachment = num_attachments; color_references[num_attachments].layout = layout; color_reference_ptr = color_references.data(); if (key.feedback_loop & GPUPipeline::ColorFeedbackLoop) { DebugAssert(i == 0); input_reference.attachment = num_attachments; input_reference.layout = layout; input_reference_ptr = &input_reference; if (!m_optional_extensions.vk_ext_rasterization_order_attachment_access) { // don't need the framebuffer-local dependency when we have rasterization order attachment access subpass_dependency.srcSubpass = 0; subpass_dependency.dstSubpass = 0; subpass_dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; subpass_dependency.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; subpass_dependency.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; subpass_dependency.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; subpass_dependency.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; subpass_dependency_ptr = &subpass_dependency; } } num_attachments++; } const u32 num_rts = num_attachments; if (key.depth_format != static_cast<u8>(GPUTexture::Format::Unknown)) { const VkImageLayout layout = (key.feedback_loop & GPUPipeline::SampleDepthBuffer) ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[num_attachments] = {0, static_cast<VkFormat>(TEXTURE_FORMAT_MAPPING[key.depth_format]), static_cast<VkSampleCountFlagBits>(key.samples), static_cast<VkAttachmentLoadOp>(key.depth_load_op), static_cast<VkAttachmentStoreOp>(key.depth_store_op), static_cast<VkAttachmentLoadOp>(key.stencil_load_op), static_cast<VkAttachmentStoreOp>(key.stencil_store_op), layout, layout}; depth_reference.attachment = num_attachments; depth_reference.layout = layout; depth_reference_ptr = &depth_reference; num_attachments++; } const VkSubpassDescriptionFlags subpass_flags = ((key.feedback_loop & GPUPipeline::ColorFeedbackLoop) && m_optional_extensions.vk_ext_rasterization_order_attachment_access) ? VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT : 0; const VkSubpassDescription subpass = {subpass_flags, VK_PIPELINE_BIND_POINT_GRAPHICS, input_reference_ptr ? num_rts : 0u, input_reference_ptr, num_rts, color_reference_ptr, nullptr, depth_reference_ptr, 0, nullptr}; const VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0u, num_attachments, attachments.data(), 1u, &subpass, subpass_dependency_ptr ? 1u : 0u, subpass_dependency_ptr}; VkRenderPass pass; const VkResult res = vkCreateRenderPass(m_device, &pass_info, nullptr, &pass); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: "); return VK_NULL_HANDLE; } m_render_pass_cache.emplace(key, pass); return pass; } VkFramebuffer VulkanDevice::CreateFramebuffer(GPUTexture* const* rts, u32 num_rts, GPUTexture* ds, u32 flags) { VulkanDevice& dev = VulkanDevice::GetInstance(); VkRenderPass render_pass = dev.GetRenderPass(reinterpret_cast<VulkanTexture* const*>(rts), num_rts, static_cast<VulkanTexture*>(ds), static_cast<GPUPipeline::RenderPassFlag>(flags)); const GPUTexture* rt_or_ds = (num_rts > 0) ? rts[0] : ds; DebugAssert(rt_or_ds); Vulkan::FramebufferBuilder fbb; fbb.SetRenderPass(render_pass); fbb.SetSize(rt_or_ds->GetWidth(), rt_or_ds->GetHeight(), 1); for (u32 i = 0; i < num_rts; i++) fbb.AddAttachment(static_cast<VulkanTexture*>(rts[i])->GetView()); if (ds) fbb.AddAttachment(static_cast<VulkanTexture*>(ds)->GetView()); return fbb.Create(dev.m_device, false); } void VulkanDevice::DestroyFramebuffer(VkFramebuffer fbo) { if (fbo == VK_NULL_HANDLE) return; VulkanDevice::GetInstance().DeferFramebufferDestruction(fbo); } void VulkanDevice::GetAdapterAndModeList(AdapterAndModeList* ret, VkInstance instance) { GPUList gpus = EnumerateGPUs(instance); ret->adapter_names.clear(); for (auto& [gpu, name] : gpus) ret->adapter_names.push_back(std::move(name)); } GPUDevice::AdapterAndModeList VulkanDevice::StaticGetAdapterAndModeList() { AdapterAndModeList ret; std::unique_lock lock(s_instance_mutex); // Device shouldn't be torn down since we have the lock. if (g_gpu_device && g_gpu_device->GetRenderAPI() == RenderAPI::Vulkan && Vulkan::IsVulkanLibraryLoaded()) { GetAdapterAndModeList(&ret, VulkanDevice::GetInstance().m_instance); } else { if (Vulkan::LoadVulkanLibrary(nullptr)) { OptionalExtensions oe = {}; const VkInstance instance = CreateVulkanInstance(WindowInfo(), &oe, false, false); if (instance != VK_NULL_HANDLE) { if (Vulkan::LoadVulkanInstanceFunctions(instance)) GetAdapterAndModeList(&ret, instance); vkDestroyInstance(instance, nullptr); } Vulkan::UnloadVulkanLibrary(); } } return ret; } GPUDevice::AdapterAndModeList VulkanDevice::GetAdapterAndModeList() { AdapterAndModeList ret; GetAdapterAndModeList(&ret, m_instance); return ret; } bool VulkanDevice::IsSuitableDefaultRenderer() { #ifdef __ANDROID__ // No way in hell. return false; #else AdapterAndModeList aml = StaticGetAdapterAndModeList(); if (aml.adapter_names.empty()) { // No adapters, not gonna be able to use VK. return false; } // Check the first GPU, should be enough. const std::string& name = aml.adapter_names.front(); INFO_LOG("Using Vulkan GPU '{}' for automatic renderer check.", name); // Any software rendering (LLVMpipe, SwiftShader). if (StringUtil::StartsWithNoCase(name, "llvmpipe") || StringUtil::StartsWithNoCase(name, "SwiftShader")) { INFO_LOG("Not using Vulkan for software renderer."); return false; } // For Intel, OpenGL usually ends up faster on Linux, because of fbfetch. // Plus, the Ivy Bridge and Haswell drivers are incomplete. if (StringUtil::StartsWithNoCase(name, "Intel")) { INFO_LOG("Not using Vulkan for Intel GPU."); return false; } INFO_LOG("Allowing Vulkan as default renderer."); return true; #endif } RenderAPI VulkanDevice::GetRenderAPI() const { return RenderAPI::Vulkan; } bool VulkanDevice::HasSurface() const { return static_cast<bool>(m_swap_chain); } bool VulkanDevice::CreateDevice(std::string_view adapter, bool threaded_presentation, std::optional<bool> exclusive_fullscreen_control, FeatureMask disabled_features, Error* error) { std::unique_lock lock(s_instance_mutex); bool enable_debug_utils = m_debug_device; bool enable_validation_layer = m_debug_device; if (!Vulkan::LoadVulkanLibrary(error)) { Error::AddPrefix(error, "Failed to load Vulkan library. Does your GPU and/or driver support Vulkan?\nThe error was:"); return false; } m_instance = CreateVulkanInstance(m_window_info, &m_optional_extensions, enable_debug_utils, enable_validation_layer); if (m_instance == VK_NULL_HANDLE) { if (enable_debug_utils || enable_validation_layer) { // Try again without the validation layer. enable_debug_utils = false; enable_validation_layer = false; m_instance = CreateVulkanInstance(m_window_info, &m_optional_extensions, enable_debug_utils, enable_validation_layer); if (m_instance == VK_NULL_HANDLE) { Error::SetStringView(error, "Failed to create Vulkan instance. Does your GPU and/or driver support Vulkan?"); return false; } ERROR_LOG("Vulkan validation/debug layers requested but are unavailable. Creating non-debug device."); } } if (!Vulkan::LoadVulkanInstanceFunctions(m_instance)) { ERROR_LOG("Failed to load Vulkan instance functions"); Error::SetStringView(error, "Failed to load Vulkan instance functions"); return false; } GPUList gpus = EnumerateGPUs(m_instance); if (gpus.empty()) { Error::SetStringView(error, "No physical devices found. Does your GPU and/or driver support Vulkan?"); return false; } if (!adapter.empty()) { u32 gpu_index = 0; for (; gpu_index < static_cast<u32>(gpus.size()); gpu_index++) { INFO_LOG("GPU {}: {}", gpu_index, gpus[gpu_index].second); if (gpus[gpu_index].second == adapter) { m_physical_device = gpus[gpu_index].first; break; } } if (gpu_index == static_cast<u32>(gpus.size())) { WARNING_LOG("Requested GPU '{}' not found, using first ({})", adapter, gpus[0].second); m_physical_device = gpus[0].first; } } else { INFO_LOG("No GPU requested, using first ({})", gpus[0].second); m_physical_device = gpus[0].first; } // Read device physical memory properties, we need it for allocating buffers vkGetPhysicalDeviceProperties(m_physical_device, &m_device_properties); m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast<VkDeviceSize>(1)); m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast<VkDeviceSize>(1)); m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast<VkDeviceSize>(1)); m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max(m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast<VkDeviceSize>(1)); m_device_properties.limits.bufferImageGranularity = std::max(m_device_properties.limits.bufferImageGranularity, static_cast<VkDeviceSize>(1)); if (enable_debug_utils) EnableDebugUtils(); VkSurfaceKHR surface = VK_NULL_HANDLE; ScopedGuard surface_cleanup = [this, &surface]() { if (surface != VK_NULL_HANDLE) vkDestroySurfaceKHR(m_instance, surface, nullptr); }; if (m_window_info.type != WindowInfo::Type::Surfaceless) { surface = VulkanSwapChain::CreateVulkanSurface(m_instance, m_physical_device, &m_window_info); if (surface == VK_NULL_HANDLE) return false; } // Attempt to create the device. if (!CreateDevice(surface, enable_validation_layer)) return false; if (!CheckFeatures(disabled_features)) { Error::SetStringView(error, "Your GPU does not support the required Vulkan features."); return false; } // And critical resources. if (!CreateAllocator() || !CreatePersistentDescriptorPool() || !CreateCommandBuffers() || !CreatePipelineLayouts()) return false; if (threaded_presentation) StartPresentThread(); m_exclusive_fullscreen_control = exclusive_fullscreen_control; if (surface != VK_NULL_HANDLE) { VkPresentModeKHR present_mode; if (!VulkanSwapChain::SelectPresentMode(surface, &m_vsync_mode, &present_mode) || !(m_swap_chain = VulkanSwapChain::Create(m_window_info, surface, present_mode, m_exclusive_fullscreen_control))) { Error::SetStringView(error, "Failed to create swap chain"); return false; } // NOTE: This is assigned afterwards, because some platforms can modify the window info (e.g. Metal). m_window_info = m_swap_chain->GetWindowInfo(); } surface_cleanup.Cancel(); // Render a frame as soon as possible to clear out whatever was previously being displayed. if (m_window_info.type != WindowInfo::Type::Surfaceless) RenderBlankFrame(); if (!CreateNullTexture()) { Error::SetStringView(error, "Failed to create dummy texture"); return false; } if (!CreateBuffers() || !CreatePersistentDescriptorSets()) { Error::SetStringView(error, "Failed to create buffers/descriptor sets"); return false; } return true; } void VulkanDevice::DestroyDevice() { std::unique_lock lock(s_instance_mutex); if (InRenderPass()) EndRenderPass(); // Don't both submitting the current command buffer, just toss it. if (m_device != VK_NULL_HANDLE) WaitForGPUIdle(); StopPresentThread(); m_swap_chain.reset(); if (m_null_texture) { m_null_texture->Destroy(false); m_null_texture.reset(); } for (auto& it : m_cleanup_objects) it.second(); m_cleanup_objects.clear(); DestroyPersistentDescriptorSets(); DestroyBuffers(); DestroySamplers(); DestroyPersistentDescriptorPool(); DestroyPipelineLayouts(); DestroyCommandBuffers(); DestroyAllocator(); for (auto& it : m_render_pass_cache) vkDestroyRenderPass(m_device, it.second, nullptr); m_render_pass_cache.clear(); if (m_pipeline_cache != VK_NULL_HANDLE) { vkDestroyPipelineCache(m_device, m_pipeline_cache, nullptr); m_pipeline_cache = VK_NULL_HANDLE; } if (m_device != VK_NULL_HANDLE) { vkDestroyDevice(m_device, nullptr); m_device = VK_NULL_HANDLE; } if (m_debug_messenger_callback != VK_NULL_HANDLE) DisableDebugUtils(); if (m_instance != VK_NULL_HANDLE) { vkDestroyInstance(m_instance, nullptr); m_instance = VK_NULL_HANDLE; } Vulkan::UnloadVulkanLibrary(); } bool VulkanDevice::ValidatePipelineCacheHeader(const VK_PIPELINE_CACHE_HEADER& header) { if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER)) { ERROR_LOG("Pipeline cache failed validation: Invalid header length"); return false; } if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { ERROR_LOG("Pipeline cache failed validation: Invalid header version"); return false; } if (header.vendor_id != m_device_properties.vendorID) { ERROR_LOG("Pipeline cache failed validation: Incorrect vendor ID (file: 0x{:X}, device: 0x{:X})", header.vendor_id, m_device_properties.vendorID); return false; } if (header.device_id != m_device_properties.deviceID) { ERROR_LOG("Pipeline cache failed validation: Incorrect device ID (file: 0x{:X}, device: 0x{:X})", header.device_id, m_device_properties.deviceID); return false; } if (std::memcmp(header.uuid, m_device_properties.pipelineCacheUUID, VK_UUID_SIZE) != 0) { ERROR_LOG("Pipeline cache failed validation: Incorrect UUID"); return false; } return true; } void VulkanDevice::FillPipelineCacheHeader(VK_PIPELINE_CACHE_HEADER* header) { header->header_length = sizeof(VK_PIPELINE_CACHE_HEADER); header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE; header->vendor_id = m_device_properties.vendorID; header->device_id = m_device_properties.deviceID; std::memcpy(header->uuid, m_device_properties.pipelineCacheUUID, VK_UUID_SIZE); } bool VulkanDevice::ReadPipelineCache(const std::string& filename) { std::optional<std::vector<u8>> data; auto fp = FileSystem::OpenManagedCFile(filename.c_str(), "rb"); if (fp) { data = FileSystem::ReadBinaryFile(fp.get()); if (data.has_value()) { if (data->size() < sizeof(VK_PIPELINE_CACHE_HEADER)) { ERROR_LOG("Pipeline cache at '{}' is too small", Path::GetFileName(filename)); return false; } VK_PIPELINE_CACHE_HEADER header; std::memcpy(&header, data->data(), sizeof(header)); if (!ValidatePipelineCacheHeader(header)) data.reset(); } } const VkPipelineCacheCreateInfo ci{VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, nullptr, 0, data.has_value() ? data->size() : 0, data.has_value() ? data->data() : nullptr}; VkResult res = vkCreatePipelineCache(m_device, &ci, nullptr, &m_pipeline_cache); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreatePipelineCache() failed: "); return false; } return true; } bool VulkanDevice::GetPipelineCacheData(DynamicHeapArray<u8>* data) { if (m_pipeline_cache == VK_NULL_HANDLE) return false; size_t data_size; VkResult res = vkGetPipelineCacheData(m_device, m_pipeline_cache, &data_size, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData() failed: "); return false; } data->resize(data_size); res = vkGetPipelineCacheData(m_device, m_pipeline_cache, &data_size, data->data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData() (2) failed: "); return false; } data->resize(data_size); return true; } bool VulkanDevice::UpdateWindow() { DestroySurface(); if (!AcquireWindow(false)) return false; if (m_window_info.IsSurfaceless()) return true; // make sure previous frames are presented if (InRenderPass()) EndRenderPass(); SubmitCommandBuffer(false); WaitForGPUIdle(); VkSurfaceKHR surface = VulkanSwapChain::CreateVulkanSurface(m_instance, m_physical_device, &m_window_info); if (surface == VK_NULL_HANDLE) { ERROR_LOG("Failed to create new surface for swap chain"); return false; } VkPresentModeKHR present_mode; if (!VulkanSwapChain::SelectPresentMode(surface, &m_vsync_mode, &present_mode) || !(m_swap_chain = VulkanSwapChain::Create(m_window_info, surface, present_mode, m_exclusive_fullscreen_control))) { ERROR_LOG("Failed to create swap chain"); VulkanSwapChain::DestroyVulkanSurface(m_instance, &m_window_info, surface); return false; } m_window_info = m_swap_chain->GetWindowInfo(); RenderBlankFrame(); return true; } void VulkanDevice::ResizeWindow(s32 new_window_width, s32 new_window_height, float new_window_scale) { if (!m_swap_chain) return; if (m_swap_chain->GetWidth() == static_cast<u32>(new_window_width) && m_swap_chain->GetHeight() == static_cast<u32>(new_window_height)) { // skip unnecessary resizes m_window_info.surface_scale = new_window_scale; return; } // make sure previous frames are presented WaitForGPUIdle(); if (!m_swap_chain->ResizeSwapChain(new_window_width, new_window_height, new_window_scale)) { // AcquireNextImage() will fail, and we'll recreate the surface. ERROR_LOG("Failed to resize swap chain. Next present will fail."); return; } m_window_info = m_swap_chain->GetWindowInfo(); } void VulkanDevice::DestroySurface() { WaitForGPUIdle(); m_swap_chain.reset(); } bool VulkanDevice::SupportsTextureFormat(GPUTexture::Format format) const { return (TEXTURE_FORMAT_MAPPING[static_cast<u8>(format)] != VK_FORMAT_UNDEFINED); } std::string VulkanDevice::GetDriverInfo() const { std::string ret; const u32 api_version = m_device_properties.apiVersion; const u32 driver_version = m_device_properties.driverVersion; if (m_optional_extensions.vk_khr_driver_properties) { const VkPhysicalDeviceDriverProperties& props = m_device_driver_properties; ret = fmt::format( "Driver {}.{}.{}\nVulkan {}.{}.{}\nConformance Version {}.{}.{}.{}\n{}\n{}\n{}", VK_VERSION_MAJOR(driver_version), VK_VERSION_MINOR(driver_version), VK_VERSION_PATCH(driver_version), VK_API_VERSION_MAJOR(api_version), VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version), props.conformanceVersion.major, props.conformanceVersion.minor, props.conformanceVersion.subminor, props.conformanceVersion.patch, props.driverInfo, props.driverName, m_device_properties.deviceName); } else { ret = fmt::format("Driver {}.{}.{}\nVulkan {}.{}.{}\n{}", VK_VERSION_MAJOR(driver_version), VK_VERSION_MINOR(driver_version), VK_VERSION_PATCH(driver_version), VK_API_VERSION_MAJOR(api_version), VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version), m_device_properties.deviceName); } return ret; } void VulkanDevice::SetVSyncMode(GPUVSyncMode mode, bool allow_present_throttle) { m_allow_present_throttle = allow_present_throttle; if (!m_swap_chain) { // For when it is re-created. m_vsync_mode = mode; return; } VkPresentModeKHR present_mode; if (!VulkanSwapChain::SelectPresentMode(m_swap_chain->GetSurface(), &mode, &present_mode)) { ERROR_LOG("Ignoring vsync mode change."); return; } // Actually changed? If using a fallback, it might not have. if (m_vsync_mode == mode) return; m_vsync_mode = mode; // This swap chain should not be used by the current buffer, thus safe to destroy. WaitForGPUIdle(); if (!m_swap_chain->SetPresentMode(present_mode)) { Panic("Failed to update swap chain present mode."); m_swap_chain.reset(); } } bool VulkanDevice::BeginPresent(bool frame_skip) { if (InRenderPass()) EndRenderPass(); if (frame_skip) return false; // If we're running surfaceless, kick the command buffer so we don't run out of descriptors. if (!m_swap_chain) { SubmitCommandBuffer(false); TrimTexturePool(); return false; } // Previous frame needs to be presented before we can acquire the swap chain. WaitForPresentComplete(); // Check if the device was lost. if (CheckLastSubmitFail()) { Panic("Fixme"); // TODO TrimTexturePool(); return false; } VkResult res = m_swap_chain->AcquireNextImage(); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAcquireNextImageKHR() failed: "); m_swap_chain->ReleaseCurrentImage(); if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR) { ResizeWindow(0, 0, m_window_info.surface_scale); res = m_swap_chain->AcquireNextImage(); } else if (res == VK_ERROR_SURFACE_LOST_KHR) { WARNING_LOG("Surface lost, attempting to recreate"); if (!m_swap_chain->RecreateSurface(m_window_info)) { ERROR_LOG("Failed to recreate surface after loss"); SubmitCommandBuffer(false); TrimTexturePool(); return false; } res = m_swap_chain->AcquireNextImage(); } // This can happen when multiple resize events happen in quick succession. // In this case, just wait until the next frame to try again. if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) { // Still submit the command buffer, otherwise we'll end up with several frames waiting. SubmitCommandBuffer(false); TrimTexturePool(); return false; } } BeginSwapChainRenderPass(); return true; } void VulkanDevice::EndPresent(bool explicit_present) { DebugAssert(InRenderPass() && m_num_current_render_targets == 0 && !m_current_depth_target); EndRenderPass(); VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, m_swap_chain->GetCurrentImage(), GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::ColorAttachment, VulkanTexture::Layout::PresentSrc); EndAndSubmitCommandBuffer(m_swap_chain.get(), explicit_present, !m_swap_chain->IsPresentModeSynchronizing()); MoveToNextCommandBuffer(); InvalidateCachedState(); TrimTexturePool(); } void VulkanDevice::SubmitPresent() { DebugAssert(m_swap_chain); DoPresent(m_swap_chain.get()); } #ifdef _DEBUG static std::array<float, 3> Palette(float phase, const std::array<float, 3>& a, const std::array<float, 3>& b, const std::array<float, 3>& c, const std::array<float, 3>& d) { std::array<float, 3> result; result[0] = a[0] + b[0] * std::cos(6.28318f * (c[0] * phase + d[0])); result[1] = a[1] + b[1] * std::cos(6.28318f * (c[1] * phase + d[1])); result[2] = a[2] + b[2] * std::cos(6.28318f * (c[2] * phase + d[2])); return result; } #endif void VulkanDevice::PushDebugGroup(const char* name) { #ifdef _DEBUG if (!vkCmdBeginDebugUtilsLabelEXT || !m_debug_device) return; const std::array<float, 3> color = Palette(static_cast<float>(++s_debug_scope_depth), {0.5f, 0.5f, 0.5f}, {0.5f, 0.5f, 0.5f}, {1.0f, 1.0f, 0.5f}, {0.8f, 0.90f, 0.30f}); const VkDebugUtilsLabelEXT label = { VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, nullptr, name, {color[0], color[1], color[2], 1.0f}, }; vkCmdBeginDebugUtilsLabelEXT(GetCurrentCommandBuffer(), &label); #endif } void VulkanDevice::PopDebugGroup() { #ifdef _DEBUG if (!vkCmdEndDebugUtilsLabelEXT || !m_debug_device) return; s_debug_scope_depth = (s_debug_scope_depth == 0) ? 0 : (s_debug_scope_depth - 1u); vkCmdEndDebugUtilsLabelEXT(GetCurrentCommandBuffer()); #endif } void VulkanDevice::InsertDebugMessage(const char* msg) { #ifdef _DEBUG if (!vkCmdInsertDebugUtilsLabelEXT || !m_debug_device) return; const VkDebugUtilsLabelEXT label = {VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, nullptr, msg, {0.0f, 0.0f, 0.0f, 1.0f}}; vkCmdInsertDebugUtilsLabelEXT(GetCurrentCommandBuffer(), &label); #endif } bool VulkanDevice::CheckFeatures(FeatureMask disabled_features) { m_max_texture_size = m_device_properties.limits.maxImageDimension2D; VkImageFormatProperties color_properties = {}; vkGetPhysicalDeviceImageFormatProperties(m_physical_device, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &color_properties); VkImageFormatProperties depth_properties = {}; vkGetPhysicalDeviceImageFormatProperties(m_physical_device, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &depth_properties); const VkSampleCountFlags combined_properties = m_device_properties.limits.framebufferColorSampleCounts & m_device_properties.limits.framebufferDepthSampleCounts & color_properties.sampleCounts & depth_properties.sampleCounts; if (combined_properties & VK_SAMPLE_COUNT_64_BIT) m_max_multisamples = 64; else if (combined_properties & VK_SAMPLE_COUNT_32_BIT) m_max_multisamples = 32; else if (combined_properties & VK_SAMPLE_COUNT_16_BIT) m_max_multisamples = 16; else if (combined_properties & VK_SAMPLE_COUNT_8_BIT) m_max_multisamples = 8; else if (combined_properties & VK_SAMPLE_COUNT_4_BIT) m_max_multisamples = 4; else if (combined_properties & VK_SAMPLE_COUNT_2_BIT) m_max_multisamples = 2; else m_max_multisamples = 1; m_features.dual_source_blend = !(disabled_features & FEATURE_MASK_DUAL_SOURCE_BLEND) && m_device_features.dualSrcBlend; m_features.framebuffer_fetch = !(disabled_features & (FEATURE_MASK_FEEDBACK_LOOPS | FEATURE_MASK_FRAMEBUFFER_FETCH)) && m_optional_extensions.vk_ext_rasterization_order_attachment_access; if (!m_features.dual_source_blend) WARNING_LOG("Vulkan driver is missing dual-source blending. This will have an impact on performance."); m_features.noperspective_interpolation = true; m_features.texture_copy_to_self = !(disabled_features & FEATURE_MASK_TEXTURE_COPY_TO_SELF); m_features.per_sample_shading = m_device_features.sampleRateShading; m_features.supports_texture_buffers = !(disabled_features & FEATURE_MASK_TEXTURE_BUFFERS); m_features.feedback_loops = !(disabled_features & FEATURE_MASK_FEEDBACK_LOOPS); #ifdef __APPLE__ // Partial texture buffer uploads appear to be broken in macOS/MoltenVK. m_features.texture_buffers_emulated_with_ssbo = true; #else const u32 max_texel_buffer_elements = m_device_properties.limits.maxTexelBufferElements; INFO_LOG("Max texel buffer elements: {}", max_texel_buffer_elements); if (max_texel_buffer_elements < MIN_TEXEL_BUFFER_ELEMENTS) { m_features.texture_buffers_emulated_with_ssbo = true; } #endif if (m_features.texture_buffers_emulated_with_ssbo) WARNING_LOG("Emulating texture buffers with SSBOs."); m_features.geometry_shaders = !(disabled_features & FEATURE_MASK_GEOMETRY_SHADERS) && m_device_features.geometryShader; m_features.partial_msaa_resolve = true; m_features.memory_import = m_optional_extensions.vk_ext_external_memory_host; m_features.explicit_present = true; m_features.shader_cache = true; m_features.pipeline_cache = true; m_features.prefer_unused_textures = true; return true; } void VulkanDevice::CopyTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level, GPUTexture* src, u32 src_x, u32 src_y, u32 src_layer, u32 src_level, u32 width, u32 height) { VulkanTexture* const S = static_cast<VulkanTexture*>(src); VulkanTexture* const D = static_cast<VulkanTexture*>(dst); if (S->GetState() == GPUTexture::State::Cleared) { // source is cleared. if destination is a render target, we can carry the clear forward if (D->IsRenderTargetOrDepthStencil()) { if (dst_level == 0 && dst_x == 0 && dst_y == 0 && width == D->GetWidth() && height == D->GetHeight()) { // pass it forward if we're clearing the whole thing if (S->IsDepthStencil()) D->SetClearDepth(S->GetClearDepth()); else D->SetClearColor(S->GetClearColor()); return; } if (D->GetState() == GPUTexture::State::Cleared) { // destination is cleared, if it's the same colour and rect, we can just avoid this entirely if (D->IsDepthStencil()) { if (D->GetClearDepth() == S->GetClearDepth()) return; } else { if (D->GetClearColor() == S->GetClearColor()) return; } } // TODO: Could use attachment clear here.. } // commit the clear to the source first, then do normal copy S->CommitClear(); } // if the destination has been cleared, and we're not overwriting the whole thing, commit the clear first // (the area outside of where we're copying to) if (D->GetState() == GPUTexture::State::Cleared && (dst_level != 0 || dst_x != 0 || dst_y != 0 || width != D->GetWidth() || height != D->GetHeight())) { D->CommitClear(); } // *now* we can do a normal image copy. const VkImageAspectFlags src_aspect = (S->IsDepthStencil()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT; const VkImageAspectFlags dst_aspect = (D->IsDepthStencil()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT; const VkImageCopy ic = {{src_aspect, src_level, src_layer, 1u}, {static_cast<s32>(src_x), static_cast<s32>(src_y), 0}, {dst_aspect, dst_level, dst_layer, 1u}, {static_cast<s32>(dst_x), static_cast<s32>(dst_y), 0}, {static_cast<u32>(width), static_cast<u32>(height), 1u}}; if (InRenderPass()) EndRenderPass(); s_stats.num_copies++; S->SetUseFenceCounter(GetCurrentFenceCounter()); D->SetUseFenceCounter(GetCurrentFenceCounter()); S->TransitionToLayout((D == S) ? VulkanTexture::Layout::TransferSelf : VulkanTexture::Layout::TransferSrc); D->TransitionToLayout((D == S) ? VulkanTexture::Layout::TransferSelf : VulkanTexture::Layout::TransferDst); vkCmdCopyImage(GetCurrentCommandBuffer(), S->GetImage(), S->GetVkLayout(), D->GetImage(), D->GetVkLayout(), 1, &ic); D->SetState(GPUTexture::State::Dirty); } void VulkanDevice::ResolveTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level, GPUTexture* src, u32 src_x, u32 src_y, u32 width, u32 height) { DebugAssert((src_x + width) <= src->GetWidth()); DebugAssert((src_y + height) <= src->GetHeight()); DebugAssert(src->IsMultisampled()); DebugAssert(dst_level < dst->GetLevels() && dst_layer < dst->GetLayers()); DebugAssert((dst_x + width) <= dst->GetMipWidth(dst_level)); DebugAssert((dst_y + height) <= dst->GetMipHeight(dst_level)); DebugAssert(!dst->IsMultisampled() && src->IsMultisampled()); if (InRenderPass()) EndRenderPass(); s_stats.num_copies++; VulkanTexture* D = static_cast<VulkanTexture*>(dst); VulkanTexture* S = static_cast<VulkanTexture*>(src); const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); if (S->GetState() == GPUTexture::State::Cleared) S->CommitClear(cmdbuf); if (D->IsRenderTargetOrDepthStencil() && D->GetState() == GPUTexture::State::Cleared) { if (width < dst->GetWidth() || height < dst->GetHeight()) D->CommitClear(cmdbuf); else D->SetState(GPUTexture::State::Dirty); } S->TransitionSubresourcesToLayout(cmdbuf, 0, 1, 0, 1, S->GetLayout(), VulkanTexture::Layout::TransferSrc); D->TransitionSubresourcesToLayout(cmdbuf, dst_layer, 1, dst_level, 1, D->GetLayout(), VulkanTexture::Layout::TransferDst); const VkImageResolve resolve = {{VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u}, {static_cast<s32>(src_x), static_cast<s32>(src_y), 0}, {VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, 1u}, {static_cast<s32>(dst_x), static_cast<s32>(dst_y), 0}, {width, height, 1}}; vkCmdResolveImage(cmdbuf, S->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, D->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &resolve); S->TransitionSubresourcesToLayout(cmdbuf, 0, 1, 0, 1, VulkanTexture::Layout::TransferSrc, S->GetLayout()); D->TransitionSubresourcesToLayout(cmdbuf, dst_layer, 1, dst_level, 1, VulkanTexture::Layout::TransferDst, D->GetLayout()); } void VulkanDevice::ClearRenderTarget(GPUTexture* t, u32 c) { GPUDevice::ClearRenderTarget(t, c); if (InRenderPass()) { const s32 idx = IsRenderTargetBoundIndex(t); if (idx >= 0) { VulkanTexture* T = static_cast<VulkanTexture*>(t); if (IsDeviceNVIDIA()) { EndRenderPass(); } else { // Use an attachment clear so the render pass isn't restarted. const VkClearAttachment ca = {VK_IMAGE_ASPECT_COLOR_BIT, static_cast<u32>(idx), {.color = static_cast<VulkanTexture*>(T)->GetClearColorValue()}}; const VkClearRect rc = {{{0, 0}, {T->GetWidth(), T->GetHeight()}}, 0u, 1u}; vkCmdClearAttachments(m_current_command_buffer, 1, &ca, 1, &rc); T->SetState(GPUTexture::State::Dirty); } } } } void VulkanDevice::ClearDepth(GPUTexture* t, float d) { GPUDevice::ClearDepth(t, d); if (InRenderPass() && m_current_depth_target == t) { // Using vkCmdClearAttachments() within a render pass on NVIDIA seems to cause dependency issues // between draws that are testing depth which precede it. The result is flickering where Z tests // should be failing. Breaking/restarting the render pass isn't enough to work around the bug, // it needs an explicit pipeline barrier. VulkanTexture* T = static_cast<VulkanTexture*>(t); if (IsDeviceNVIDIA()) { EndRenderPass(); T->TransitionSubresourcesToLayout(GetCurrentCommandBuffer(), 0, 1, 0, 1, T->GetLayout(), T->GetLayout()); } else { // Use an attachment clear so the render pass isn't restarted. const VkClearAttachment ca = {VK_IMAGE_ASPECT_DEPTH_BIT, 0, {.depthStencil = T->GetClearDepthValue()}}; const VkClearRect rc = {{{0, 0}, {T->GetWidth(), T->GetHeight()}}, 0u, 1u}; vkCmdClearAttachments(m_current_command_buffer, 1, &ca, 1, &rc); T->SetState(GPUTexture::State::Dirty); } } } void VulkanDevice::InvalidateRenderTarget(GPUTexture* t) { GPUDevice::InvalidateRenderTarget(t); if (InRenderPass() && (t->IsRenderTarget() ? (IsRenderTargetBoundIndex(t) >= 0) : (m_current_depth_target == t))) { // Invalidate includes leaving whatever's in the current buffer. GL_INS_FMT("Invalidating current {}", t->IsRenderTarget() ? "RT" : "DS"); t->SetState(GPUTexture::State::Dirty); } } bool VulkanDevice::CreateBuffers() { if (!m_vertex_buffer.Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VERTEX_BUFFER_SIZE)) { ERROR_LOG("Failed to allocate vertex buffer"); return false; } if (!m_index_buffer.Create(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, INDEX_BUFFER_SIZE)) { ERROR_LOG("Failed to allocate index buffer"); return false; } if (!m_uniform_buffer.Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VERTEX_UNIFORM_BUFFER_SIZE)) { ERROR_LOG("Failed to allocate uniform buffer"); return false; } if (!m_texture_upload_buffer.Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, TEXTURE_BUFFER_SIZE)) { ERROR_LOG("Failed to allocate texture upload buffer"); return false; } return true; } void VulkanDevice::DestroyBuffers() { m_texture_upload_buffer.Destroy(false); m_uniform_buffer.Destroy(false); m_index_buffer.Destroy(false); m_vertex_buffer.Destroy(false); } void VulkanDevice::MapVertexBuffer(u32 vertex_size, u32 vertex_count, void** map_ptr, u32* map_space, u32* map_base_vertex) { const u32 req_size = vertex_size * vertex_count; if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size)) { SubmitCommandBufferAndRestartRenderPass("out of vertex space"); if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size)) Panic("Failed to allocate vertex space"); } *map_ptr = m_vertex_buffer.GetCurrentHostPointer(); *map_space = m_vertex_buffer.GetCurrentSpace() / vertex_size; *map_base_vertex = m_vertex_buffer.GetCurrentOffset() / vertex_size; } void VulkanDevice::UnmapVertexBuffer(u32 vertex_size, u32 vertex_count) { const u32 size = vertex_size * vertex_count; s_stats.buffer_streamed += size; m_vertex_buffer.CommitMemory(size); } void VulkanDevice::MapIndexBuffer(u32 index_count, DrawIndex** map_ptr, u32* map_space, u32* map_base_index) { const u32 req_size = sizeof(DrawIndex) * index_count; if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex))) { SubmitCommandBufferAndRestartRenderPass("out of index space"); if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex))) Panic("Failed to allocate index space"); } *map_ptr = reinterpret_cast<DrawIndex*>(m_index_buffer.GetCurrentHostPointer()); *map_space = m_index_buffer.GetCurrentSpace() / sizeof(DrawIndex); *map_base_index = m_index_buffer.GetCurrentOffset() / sizeof(DrawIndex); } void VulkanDevice::UnmapIndexBuffer(u32 used_index_count) { const u32 size = sizeof(DrawIndex) * used_index_count; s_stats.buffer_streamed += size; m_index_buffer.CommitMemory(size); } void VulkanDevice::PushUniformBuffer(const void* data, u32 data_size) { DebugAssert(data_size < UNIFORM_PUSH_CONSTANTS_SIZE); s_stats.buffer_streamed += data_size; vkCmdPushConstants(GetCurrentCommandBuffer(), GetCurrentVkPipelineLayout(), UNIFORM_PUSH_CONSTANTS_STAGES, 0, data_size, data); } void* VulkanDevice::MapUniformBuffer(u32 size) { const u32 align = static_cast<u32>(m_device_properties.limits.minUniformBufferOffsetAlignment); const u32 used_space = Common::AlignUpPow2(size, align); if (!m_uniform_buffer.ReserveMemory(used_space + MAX_UNIFORM_BUFFER_SIZE, align)) { SubmitCommandBufferAndRestartRenderPass("out of uniform space"); if (!m_uniform_buffer.ReserveMemory(used_space + MAX_UNIFORM_BUFFER_SIZE, align)) Panic("Failed to allocate uniform space."); } return m_uniform_buffer.GetCurrentHostPointer(); } void VulkanDevice::UnmapUniformBuffer(u32 size) { s_stats.buffer_streamed += size; m_uniform_buffer_position = m_uniform_buffer.GetCurrentOffset(); m_uniform_buffer.CommitMemory(size); m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS; } bool VulkanDevice::CreateNullTexture() { m_null_texture = VulkanTexture::Create(1, 1, 1, 1, 1, GPUTexture::Type::RenderTarget, GPUTexture::Format::RGBA8, VK_FORMAT_R8G8B8A8_UNORM); if (!m_null_texture) return false; const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); const VkImageSubresourceRange srr{VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u}; const VkClearColorValue ccv{}; m_null_texture->TransitionToLayout(cmdbuf, VulkanTexture::Layout::ClearDst); vkCmdClearColorImage(cmdbuf, m_null_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &ccv, 1, &srr); m_null_texture->TransitionToLayout(cmdbuf, VulkanTexture::Layout::General); Vulkan::SetObjectName(m_device, m_null_texture->GetImage(), "Null texture"); Vulkan::SetObjectName(m_device, m_null_texture->GetView(), "Null texture view"); // Bind null texture and point sampler state to all. const VkSampler point_sampler = GetSampler(GPUSampler::GetNearestConfig()); if (point_sampler == VK_NULL_HANDLE) return false; for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { m_current_textures[i] = m_null_texture.get(); m_current_samplers[i] = point_sampler; } return true; } bool VulkanDevice::CreatePipelineLayouts() { Vulkan::DescriptorSetLayoutBuilder dslb; Vulkan::PipelineLayoutBuilder plb; { dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_ubo_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_ubo_ds_layout, "UBO Descriptor Set Layout"); } { dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_single_texture_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_single_texture_ds_layout, "Single Texture Descriptor Set Layout"); } { dslb.AddBinding(0, m_features.texture_buffers_emulated_with_ssbo ? VK_DESCRIPTOR_TYPE_STORAGE_BUFFER : VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_single_texture_buffer_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_single_texture_buffer_ds_layout, "Texture Buffer Descriptor Set Layout"); } { if (m_optional_extensions.vk_khr_push_descriptor) dslb.SetPushFlag(); for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) dslb.AddBinding(i, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_multi_texture_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_multi_texture_ds_layout, "Multi Texture Descriptor Set Layout"); } if (m_features.feedback_loops) { // TODO: This isn't ideal, since we can't push the RT descriptors. dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_feedback_loop_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_feedback_loop_ds_layout, "Feedback Loop Descriptor Set Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::SingleTextureAndUBO)]; plb.AddDescriptorSet(m_ubo_ds_layout); plb.AddDescriptorSet(m_single_texture_ds_layout); // TODO: REMOVE ME if (m_features.feedback_loops) plb.AddDescriptorSet(m_feedback_loop_ds_layout); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Single Texture + UBO Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::SingleTextureAndPushConstants)]; plb.AddDescriptorSet(m_single_texture_ds_layout); // TODO: REMOVE ME if (m_features.feedback_loops) plb.AddDescriptorSet(m_feedback_loop_ds_layout); plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Single Texture Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::SingleTextureBufferAndPushConstants)]; plb.AddDescriptorSet(m_single_texture_buffer_ds_layout); // TODO: REMOVE ME if (m_features.feedback_loops) plb.AddDescriptorSet(m_feedback_loop_ds_layout); plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Single Texture Buffer + UBO Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::MultiTextureAndUBO)]; plb.AddDescriptorSet(m_ubo_ds_layout); plb.AddDescriptorSet(m_multi_texture_ds_layout); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Multi Texture + UBO Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::MultiTextureAndPushConstants)]; plb.AddDescriptorSet(m_multi_texture_ds_layout); plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Multi Texture Pipeline Layout"); } return true; } void VulkanDevice::DestroyPipelineLayouts() { for (VkPipelineLayout& pl : m_pipeline_layouts) { if (pl != VK_NULL_HANDLE) { vkDestroyPipelineLayout(m_device, pl, nullptr); pl = VK_NULL_HANDLE; } } auto destroy_dsl = [this](VkDescriptorSetLayout& l) { if (l != VK_NULL_HANDLE) { vkDestroyDescriptorSetLayout(m_device, l, nullptr); l = VK_NULL_HANDLE; } }; destroy_dsl(m_feedback_loop_ds_layout); destroy_dsl(m_multi_texture_ds_layout); destroy_dsl(m_single_texture_buffer_ds_layout); destroy_dsl(m_single_texture_ds_layout); destroy_dsl(m_ubo_ds_layout); } bool VulkanDevice::CreatePersistentDescriptorSets() { Vulkan::DescriptorSetUpdateBuilder dsub; // TODO: is this a bad thing? choosing an upper bound.. so long as it's not going to fetch all of it :/ m_ubo_descriptor_set = AllocatePersistentDescriptorSet(m_ubo_ds_layout); if (m_ubo_descriptor_set == VK_NULL_HANDLE) return false; dsub.AddBufferDescriptorWrite(m_ubo_descriptor_set, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, m_uniform_buffer.GetBuffer(), 0, MAX_UNIFORM_BUFFER_SIZE); dsub.Update(m_device, false); return true; } void VulkanDevice::DestroyPersistentDescriptorSets() { if (m_ubo_descriptor_set != VK_NULL_HANDLE) FreePersistentDescriptorSet(m_ubo_descriptor_set); } void VulkanDevice::RenderBlankFrame() { VkResult res = m_swap_chain->AcquireNextImage(); if (res != VK_SUCCESS) { ERROR_LOG("Failed to acquire image for blank frame present"); return; } VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); const VkImage image = m_swap_chain->GetCurrentImage(); static constexpr VkImageSubresourceRange srr = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}; VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::Undefined, VulkanTexture::Layout::TransferDst); vkCmdClearColorImage(cmdbuf, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &s_present_clear_color.color, 1, &srr); VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::TransferDst, VulkanTexture::Layout::PresentSrc); EndAndSubmitCommandBuffer(m_swap_chain.get(), false, !m_swap_chain->IsPresentModeSynchronizing()); MoveToNextCommandBuffer(); InvalidateCachedState(); } bool VulkanDevice::TryImportHostMemory(void* data, size_t data_size, VkBufferUsageFlags buffer_usage, VkDeviceMemory* out_memory, VkBuffer* out_buffer, VkDeviceSize* out_offset) { if (!m_optional_extensions.vk_ext_external_memory_host) return false; // Align to the nearest page void* data_aligned = reinterpret_cast<void*>(Common::AlignDownPow2(reinterpret_cast<uintptr_t>(data), HOST_PAGE_SIZE)); // Offset to the start of the data within the page const size_t data_offset = reinterpret_cast<uintptr_t>(data) & static_cast<uintptr_t>(HOST_PAGE_MASK); // Full amount of data that must be imported, including the pages const size_t data_size_aligned = Common::AlignUpPow2(data_offset + data_size, HOST_PAGE_SIZE); VkMemoryHostPointerPropertiesEXT pointer_properties = {VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT, nullptr, 0}; VkResult res = vkGetMemoryHostPointerPropertiesEXT(m_device, VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, data_aligned, &pointer_properties); if (res != VK_SUCCESS || pointer_properties.memoryTypeBits == 0) { LOG_VULKAN_ERROR(res, "vkGetMemoryHostPointerPropertiesEXT() failed: "); return false; } VmaAllocationCreateInfo vma_alloc_info = {}; vma_alloc_info.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; vma_alloc_info.memoryTypeBits = pointer_properties.memoryTypeBits; u32 memory_index = 0; res = vmaFindMemoryTypeIndex(m_allocator, pointer_properties.memoryTypeBits, &vma_alloc_info, &memory_index); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vmaFindMemoryTypeIndex() failed: "); return false; } const VkImportMemoryHostPointerInfoEXT import_info = {VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT, nullptr, VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, const_cast<void*>(data_aligned)}; const VkMemoryAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, &import_info, data_size_aligned, memory_index}; VkDeviceMemory imported_memory = VK_NULL_HANDLE; res = vkAllocateMemory(m_device, &alloc_info, nullptr, &imported_memory); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateMemory() failed: "); return false; } const VkExternalMemoryBufferCreateInfo external_info = {VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO, nullptr, VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT}; const VkBufferCreateInfo buffer_info = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, &external_info, 0, data_size_aligned, buffer_usage, VK_SHARING_MODE_EXCLUSIVE, 0, nullptr}; VkBuffer imported_buffer = VK_NULL_HANDLE; res = vkCreateBuffer(m_device, &buffer_info, nullptr, &imported_buffer); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateBuffer() failed: "); if (imported_memory != VK_NULL_HANDLE) vkFreeMemory(m_device, imported_memory, nullptr); return false; } vkBindBufferMemory(m_device, imported_buffer, imported_memory, 0); *out_memory = imported_memory; *out_buffer = imported_buffer; *out_offset = data_offset; DEV_LOG("Imported {} byte buffer covering {} bytes at {}", data_size, data_size_aligned, data); return true; } void VulkanDevice::SetRenderTargets(GPUTexture* const* rts, u32 num_rts, GPUTexture* ds, GPUPipeline::RenderPassFlag feedback_loop) { bool changed = (m_num_current_render_targets != num_rts || m_current_depth_target != ds || m_current_feedback_loop != feedback_loop); bool needs_ds_clear = (ds && ds->IsClearedOrInvalidated()); bool needs_rt_clear = false; m_current_depth_target = static_cast<VulkanTexture*>(ds); for (u32 i = 0; i < num_rts; i++) { VulkanTexture* const RT = static_cast<VulkanTexture*>(rts[i]); changed |= m_current_render_targets[i] != RT; m_current_render_targets[i] = RT; needs_rt_clear |= RT->IsClearedOrInvalidated(); } for (u32 i = num_rts; i < m_num_current_render_targets; i++) m_current_render_targets[i] = nullptr; m_num_current_render_targets = Truncate8(num_rts); m_current_feedback_loop = feedback_loop; if (changed) { if (InRenderPass()) EndRenderPass(); if (m_num_current_render_targets == 0 && !m_current_depth_target) { m_current_framebuffer = VK_NULL_HANDLE; return; } if (!m_optional_extensions.vk_khr_dynamic_rendering || ((feedback_loop & GPUPipeline::ColorFeedbackLoop) && !m_optional_extensions.vk_khr_dynamic_rendering_local_read)) { m_current_framebuffer = m_framebuffer_manager.Lookup( (m_num_current_render_targets > 0) ? reinterpret_cast<GPUTexture**>(m_current_render_targets.data()) : nullptr, m_num_current_render_targets, m_current_depth_target, feedback_loop); if (m_current_framebuffer == VK_NULL_HANDLE) { ERROR_LOG("Failed to create framebuffer"); return; } } m_dirty_flags = (m_dirty_flags & ~DIRTY_FLAG_INPUT_ATTACHMENT) | ((feedback_loop & GPUPipeline::ColorFeedbackLoop) ? DIRTY_FLAG_INPUT_ATTACHMENT : 0); } // TODO: This could use vkCmdClearAttachments() instead. if (needs_rt_clear || needs_ds_clear) { if (InRenderPass()) EndRenderPass(); } } void VulkanDevice::BeginRenderPass() { DebugAssert(!InRenderPass()); // All textures should be in shader read only optimal already, but just in case.. const u32 num_textures = GetActiveTexturesForLayout(m_current_pipeline_layout); for (u32 i = 0; i < num_textures; i++) m_current_textures[i]->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly); // NVIDIA drivers appear to return random garbage when sampling the RT via a feedback loop, if the load op for // the render pass is CLEAR. Using vkCmdClearAttachments() doesn't work, so we have to clear the image instead. if (m_current_feedback_loop & GPUPipeline::ColorFeedbackLoop) { for (u32 i = 0; i < m_num_current_render_targets; i++) { if (m_current_render_targets[i]->GetState() == GPUTexture::State::Cleared) m_current_render_targets[i]->CommitClear(m_current_command_buffer); } } if (m_optional_extensions.vk_khr_dynamic_rendering && (m_optional_extensions.vk_khr_dynamic_rendering_local_read || !(m_current_feedback_loop & GPUPipeline::ColorFeedbackLoop))) { VkRenderingInfoKHR ri = { VK_STRUCTURE_TYPE_RENDERING_INFO_KHR, nullptr, 0u, {}, 1u, 0u, 0u, nullptr, nullptr, nullptr}; std::array<VkRenderingAttachmentInfoKHR, MAX_RENDER_TARGETS> attachments; VkRenderingAttachmentInfoKHR depth_attachment; if (m_num_current_render_targets > 0 || m_current_depth_target) { ri.colorAttachmentCount = m_num_current_render_targets; ri.pColorAttachments = (m_num_current_render_targets > 0) ? attachments.data() : nullptr; // set up clear values and transition targets for (u32 i = 0; i < m_num_current_render_targets; i++) { VulkanTexture* const rt = static_cast<VulkanTexture*>(m_current_render_targets[i]); rt->TransitionToLayout((m_current_feedback_loop & GPUPipeline::ColorFeedbackLoop) ? VulkanTexture::Layout::FeedbackLoop : VulkanTexture::Layout::ColorAttachment); rt->SetUseFenceCounter(GetCurrentFenceCounter()); VkRenderingAttachmentInfo& ai = attachments[i]; ai.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; ai.pNext = nullptr; ai.imageView = rt->GetView(); ai.imageLayout = rt->GetVkLayout(); ai.resolveMode = VK_RESOLVE_MODE_NONE_KHR; ai.resolveImageView = VK_NULL_HANDLE; ai.resolveImageLayout = VK_IMAGE_LAYOUT_UNDEFINED; ai.loadOp = GetLoadOpForTexture(rt); ai.storeOp = VK_ATTACHMENT_STORE_OP_STORE; if (rt->GetState() == GPUTexture::State::Cleared) { std::memcpy(ai.clearValue.color.float32, rt->GetUNormClearColor().data(), sizeof(ai.clearValue.color.float32)); } rt->SetState(GPUTexture::State::Dirty); } if (VulkanTexture* const ds = m_current_depth_target) { ds->TransitionToLayout(VulkanTexture::Layout::DepthStencilAttachment); ds->SetUseFenceCounter(GetCurrentFenceCounter()); depth_attachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; depth_attachment.pNext = nullptr; depth_attachment.imageView = ds->GetView(); depth_attachment.imageLayout = ds->GetVkLayout(); depth_attachment.resolveMode = VK_RESOLVE_MODE_NONE_KHR; depth_attachment.resolveImageView = VK_NULL_HANDLE; depth_attachment.resolveImageLayout = VK_IMAGE_LAYOUT_UNDEFINED; depth_attachment.loadOp = GetLoadOpForTexture(ds); depth_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; ri.pDepthAttachment = &depth_attachment; if (ds->GetState() == GPUTexture::State::Cleared) depth_attachment.clearValue.depthStencil = {ds->GetClearDepth(), 0u}; ds->SetState(GPUTexture::State::Dirty); } const VulkanTexture* const rt_or_ds = (m_num_current_render_targets > 0) ? m_current_render_targets[0] : m_current_depth_target; ri.renderArea = {{}, {rt_or_ds->GetWidth(), rt_or_ds->GetHeight()}}; } else { VkRenderingAttachmentInfo& ai = attachments[0]; ai.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; ai.pNext = nullptr; ai.imageView = m_swap_chain->GetCurrentImageView(); ai.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; ai.resolveMode = VK_RESOLVE_MODE_NONE_KHR; ai.resolveImageView = VK_NULL_HANDLE; ai.resolveImageLayout = VK_IMAGE_LAYOUT_UNDEFINED; ai.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; ai.storeOp = VK_ATTACHMENT_STORE_OP_STORE; ri.colorAttachmentCount = 1; ri.pColorAttachments = attachments.data(); ri.renderArea = {{}, {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}}; } m_current_render_pass = DYNAMIC_RENDERING_RENDER_PASS; vkCmdBeginRenderingKHR(GetCurrentCommandBuffer(), &ri); } else { VkRenderPassBeginInfo bi = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, VK_NULL_HANDLE, VK_NULL_HANDLE, {}, 0u, nullptr}; std::array<VkClearValue, MAX_RENDER_TARGETS + 1> clear_values; if (m_current_framebuffer != VK_NULL_HANDLE) { bi.framebuffer = m_current_framebuffer; bi.renderPass = m_current_render_pass = GetRenderPass( m_current_render_targets.data(), m_num_current_render_targets, m_current_depth_target, m_current_feedback_loop); if (bi.renderPass == VK_NULL_HANDLE) { ERROR_LOG("Failed to create render pass"); return; } // set up clear values and transition targets for (u32 i = 0; i < m_num_current_render_targets; i++) { VulkanTexture* const rt = static_cast<VulkanTexture*>(m_current_render_targets[i]); if (rt->GetState() == GPUTexture::State::Cleared) { std::memcpy(clear_values[i].color.float32, rt->GetUNormClearColor().data(), sizeof(clear_values[i].color.float32)); bi.pClearValues = clear_values.data(); bi.clearValueCount = i + 1; } rt->SetState(GPUTexture::State::Dirty); rt->TransitionToLayout((m_current_feedback_loop & GPUPipeline::ColorFeedbackLoop) ? VulkanTexture::Layout::FeedbackLoop : VulkanTexture::Layout::ColorAttachment); rt->SetUseFenceCounter(GetCurrentFenceCounter()); } if (VulkanTexture* const ds = static_cast<VulkanTexture*>(m_current_depth_target)) { if (ds->GetState() == GPUTexture::State::Cleared) { clear_values[m_num_current_render_targets].depthStencil = {ds->GetClearDepth(), 0u}; bi.pClearValues = clear_values.data(); bi.clearValueCount = m_num_current_render_targets + 1; } ds->SetState(GPUTexture::State::Dirty); ds->TransitionToLayout(VulkanTexture::Layout::DepthStencilAttachment); ds->SetUseFenceCounter(GetCurrentFenceCounter()); } const VulkanTexture* const rt_or_ds = static_cast<const VulkanTexture*>( (m_num_current_render_targets > 0) ? m_current_render_targets[0] : m_current_depth_target); bi.renderArea.extent = {rt_or_ds->GetWidth(), rt_or_ds->GetHeight()}; } else { // Re-rendering to swap chain. bi.framebuffer = m_swap_chain->GetCurrentFramebuffer(); bi.renderPass = m_current_render_pass = GetSwapChainRenderPass(m_swap_chain->GetWindowInfo().surface_format, VK_ATTACHMENT_LOAD_OP_LOAD); bi.renderArea.extent = {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}; } DebugAssert(m_current_render_pass); vkCmdBeginRenderPass(GetCurrentCommandBuffer(), &bi, VK_SUBPASS_CONTENTS_INLINE); } s_stats.num_render_passes++; // If this is a new command buffer, bind the pipeline and such. if (m_dirty_flags & DIRTY_FLAG_INITIAL) SetInitialPipelineState(); } void VulkanDevice::BeginSwapChainRenderPass() { DebugAssert(!InRenderPass()); const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); const VkImage swap_chain_image = m_swap_chain->GetCurrentImage(); // Swap chain images start in undefined VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, swap_chain_image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::Undefined, VulkanTexture::Layout::ColorAttachment); // All textures should be in shader read only optimal already, but just in case.. const u32 num_textures = GetActiveTexturesForLayout(m_current_pipeline_layout); for (u32 i = 0; i < num_textures; i++) m_current_textures[i]->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly); if (m_optional_extensions.vk_khr_dynamic_rendering) { const VkRenderingAttachmentInfo ai = {VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR, nullptr, m_swap_chain->GetCurrentImageView(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_RESOLVE_MODE_NONE_KHR, VK_NULL_HANDLE, VK_IMAGE_LAYOUT_UNDEFINED, VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE, s_present_clear_color}; const VkRenderingInfoKHR ri = {VK_STRUCTURE_TYPE_RENDERING_INFO_KHR, nullptr, 0u, {{}, {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}}, 1u, 0u, 1u, &ai, nullptr, nullptr}; m_current_render_pass = DYNAMIC_RENDERING_RENDER_PASS; vkCmdBeginRenderingKHR(GetCurrentCommandBuffer(), &ri); } else { m_current_render_pass = GetSwapChainRenderPass(m_swap_chain->GetWindowInfo().surface_format, VK_ATTACHMENT_LOAD_OP_CLEAR); DebugAssert(m_current_render_pass); const VkRenderPassBeginInfo rp = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, m_current_render_pass, m_swap_chain->GetCurrentFramebuffer(), {{0, 0}, {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}}, 1u, &s_present_clear_color}; vkCmdBeginRenderPass(GetCurrentCommandBuffer(), &rp, VK_SUBPASS_CONTENTS_INLINE); } s_stats.num_render_passes++; m_num_current_render_targets = 0; m_current_feedback_loop = GPUPipeline::NoRenderPassFlags; std::memset(m_current_render_targets.data(), 0, sizeof(m_current_render_targets)); m_current_depth_target = nullptr; m_current_framebuffer = VK_NULL_HANDLE; // Clear pipeline, it's likely incompatible. m_current_pipeline = nullptr; } bool VulkanDevice::InRenderPass() { return m_current_render_pass != VK_NULL_HANDLE; } void VulkanDevice::EndRenderPass() { DebugAssert(m_current_render_pass != VK_NULL_HANDLE); // TODO: stats VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); if (std::exchange(m_current_render_pass, VK_NULL_HANDLE) == DYNAMIC_RENDERING_RENDER_PASS) vkCmdEndRenderingKHR(cmdbuf); else vkCmdEndRenderPass(GetCurrentCommandBuffer()); } void VulkanDevice::SetPipeline(GPUPipeline* pipeline) { // First draw? Bind everything. if (m_dirty_flags & DIRTY_FLAG_INITIAL) { m_current_pipeline = static_cast<VulkanPipeline*>(pipeline); if (!m_current_pipeline) return; SetInitialPipelineState(); return; } else if (m_current_pipeline == pipeline) { return; } m_current_pipeline = static_cast<VulkanPipeline*>(pipeline); vkCmdBindPipeline(m_current_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_current_pipeline->GetPipeline()); if (m_current_pipeline_layout != m_current_pipeline->GetLayout()) { m_current_pipeline_layout = m_current_pipeline->GetLayout(); m_dirty_flags |= DIRTY_FLAG_PIPELINE_LAYOUT; } } void VulkanDevice::UnbindPipeline(VulkanPipeline* pl) { if (m_current_pipeline != pl) return; m_current_pipeline = nullptr; } void VulkanDevice::InvalidateCachedState() { m_dirty_flags = ALL_DIRTY_STATE | ((m_current_feedback_loop & GPUPipeline::ColorFeedbackLoop) ? DIRTY_FLAG_INPUT_ATTACHMENT : 0); m_current_render_pass = VK_NULL_HANDLE; m_current_pipeline = nullptr; } s32 VulkanDevice::IsRenderTargetBoundIndex(const GPUTexture* tex) const { for (u32 i = 0; i < m_num_current_render_targets; i++) { if (m_current_render_targets[i] == tex) return static_cast<s32>(i); } return -1; } VkPipelineLayout VulkanDevice::GetCurrentVkPipelineLayout() const { return m_pipeline_layouts[static_cast<u8>(m_current_pipeline_layout)]; } void VulkanDevice::SetInitialPipelineState() { DebugAssert(m_current_pipeline); m_dirty_flags &= ~DIRTY_FLAG_INITIAL; const VkDeviceSize offset = 0; const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); vkCmdBindVertexBuffers(cmdbuf, 0, 1, m_vertex_buffer.GetBufferPtr(), &offset); vkCmdBindIndexBuffer(cmdbuf, m_index_buffer.GetBuffer(), 0, VK_INDEX_TYPE_UINT16); m_current_pipeline_layout = m_current_pipeline->GetLayout(); vkCmdBindPipeline(cmdbuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_current_pipeline->GetPipeline()); const VkViewport vp = {static_cast<float>(m_current_viewport.left), static_cast<float>(m_current_viewport.top), static_cast<float>(m_current_viewport.GetWidth()), static_cast<float>(m_current_viewport.GetHeight()), 0.0f, 1.0f}; vkCmdSetViewport(GetCurrentCommandBuffer(), 0, 1, &vp); const VkRect2D vrc = { {m_current_scissor.left, m_current_scissor.top}, {static_cast<u32>(m_current_scissor.GetWidth()), static_cast<u32>(m_current_scissor.GetHeight())}}; vkCmdSetScissor(GetCurrentCommandBuffer(), 0, 1, &vrc); } void VulkanDevice::SetTextureSampler(u32 slot, GPUTexture* texture, GPUSampler* sampler) { VulkanTexture* T = texture ? static_cast<VulkanTexture*>(texture) : m_null_texture.get(); const VkSampler vsampler = static_cast<VulkanSampler*>(sampler ? sampler : m_nearest_sampler.get())->GetSampler(); if (m_current_textures[slot] != T || m_current_samplers[slot] != vsampler) { m_current_textures[slot] = T; m_current_samplers[slot] = vsampler; m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } if (texture) { T->CommitClear(); T->SetUseFenceCounter(GetCurrentFenceCounter()); if (T->GetLayout() != VulkanTexture::Layout::ShaderReadOnly) { if (InRenderPass()) EndRenderPass(); T->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly); } } } void VulkanDevice::SetTextureBuffer(u32 slot, GPUTextureBuffer* buffer) { DebugAssert(slot == 0); if (m_current_texture_buffer == buffer) return; m_current_texture_buffer = static_cast<VulkanTextureBuffer*>(buffer); if (m_current_pipeline_layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } void VulkanDevice::UnbindTexture(VulkanTexture* tex) { for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { if (m_current_textures[i] == tex) { m_current_textures[i] = m_null_texture.get(); m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } } if (tex->IsRenderTarget()) { for (u32 i = 0; i < m_num_current_render_targets; i++) { if (m_current_render_targets[i] == tex) { WARNING_LOG("Unbinding current RT"); SetRenderTargets(nullptr, 0, m_current_depth_target); break; } } m_framebuffer_manager.RemoveRTReferences(tex); } else if (tex->IsDepthStencil()) { if (m_current_depth_target == tex) { WARNING_LOG("Unbinding current DS"); SetRenderTargets(nullptr, 0, nullptr); } m_framebuffer_manager.RemoveDSReferences(tex); } } void VulkanDevice::UnbindTextureBuffer(VulkanTextureBuffer* buf) { if (m_current_texture_buffer != buf) return; m_current_texture_buffer = nullptr; if (m_current_pipeline_layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } void VulkanDevice::SetViewport(s32 x, s32 y, s32 width, s32 height) { const Common::Rectangle<s32> rc = Common::Rectangle<s32>::FromExtents(x, y, width, height); if (m_current_viewport == rc) return; m_current_viewport = rc; if (m_dirty_flags & DIRTY_FLAG_INITIAL) return; const VkViewport vp = { static_cast<float>(x), static_cast<float>(y), static_cast<float>(width), static_cast<float>(height), 0.0f, 1.0f}; vkCmdSetViewport(GetCurrentCommandBuffer(), 0, 1, &vp); } void VulkanDevice::SetScissor(s32 x, s32 y, s32 width, s32 height) { const Common::Rectangle<s32> rc = Common::Rectangle<s32>::FromExtents(x, y, width, height); if (m_current_scissor == rc) return; m_current_scissor = rc; if (m_dirty_flags & DIRTY_FLAG_INITIAL) return; const VkRect2D vrc = {{x, y}, {static_cast<u32>(width), static_cast<u32>(height)}}; vkCmdSetScissor(GetCurrentCommandBuffer(), 0, 1, &vrc); } void VulkanDevice::PreDrawCheck() { if (!InRenderPass()) BeginRenderPass(); DebugAssert(!(m_dirty_flags & DIRTY_FLAG_INITIAL)); const u32 update_mask = (m_current_feedback_loop ? ~0u : ~DIRTY_FLAG_INPUT_ATTACHMENT); const u32 dirty = m_dirty_flags & update_mask; m_dirty_flags = m_dirty_flags & ~update_mask; if (dirty != 0) { if (!UpdateDescriptorSets(dirty)) { SubmitCommandBufferAndRestartRenderPass("out of descriptor sets"); PreDrawCheck(); return; } } } template<GPUPipeline::Layout layout> bool VulkanDevice::UpdateDescriptorSetsForLayout(u32 dirty) { [[maybe_unused]] bool new_dynamic_offsets = false; std::array<VkDescriptorSet, 3> ds; u32 first_ds = 0; u32 num_ds = 0; if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO || layout == GPUPipeline::Layout::MultiTextureAndUBO) { new_dynamic_offsets = ((dirty & DIRTY_FLAG_DYNAMIC_OFFSETS) != 0); if (dirty & (DIRTY_FLAG_PIPELINE_LAYOUT | DIRTY_FLAG_DYNAMIC_OFFSETS)) { ds[num_ds++] = m_ubo_descriptor_set; new_dynamic_offsets = true; } else { first_ds++; } } if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO || layout == GPUPipeline::Layout::SingleTextureAndPushConstants) { DebugAssert(m_current_textures[0] && m_current_samplers[0] != VK_NULL_HANDLE); ds[num_ds++] = m_current_textures[0]->GetDescriptorSetWithSampler(m_current_samplers[0]); } else if constexpr (layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) { DebugAssert(m_current_texture_buffer); ds[num_ds++] = m_current_texture_buffer->GetDescriptorSet(); } else if constexpr (layout == GPUPipeline::Layout::MultiTextureAndUBO || layout == GPUPipeline::Layout::MultiTextureAndPushConstants) { Vulkan::DescriptorSetUpdateBuilder dsub; if (m_optional_extensions.vk_khr_push_descriptor) { for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { DebugAssert(m_current_textures[i] && m_current_samplers[i] != VK_NULL_HANDLE); dsub.AddCombinedImageSamplerDescriptorWrite(VK_NULL_HANDLE, i, m_current_textures[i]->GetView(), m_current_samplers[i], m_current_textures[i]->GetVkLayout()); } const u32 set = (layout == GPUPipeline::Layout::MultiTextureAndUBO) ? 1 : 0; dsub.PushUpdate(GetCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_layouts[static_cast<u8>(m_current_pipeline_layout)], set); if (num_ds == 0) return true; } else { VkDescriptorSet tds = AllocateDescriptorSet(m_multi_texture_ds_layout); if (tds == VK_NULL_HANDLE) return false; ds[num_ds++] = tds; for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { DebugAssert(m_current_textures[i] && m_current_samplers[i] != VK_NULL_HANDLE); dsub.AddCombinedImageSamplerDescriptorWrite(tds, i, m_current_textures[i]->GetView(), m_current_samplers[i], m_current_textures[i]->GetVkLayout()); } dsub.Update(m_device, false); } } if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO || layout == GPUPipeline::Layout::SingleTextureAndPushConstants || layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) { if ((dirty & DIRTY_FLAG_INPUT_ATTACHMENT) || (dirty & DIRTY_FLAG_PIPELINE_LAYOUT && (m_current_feedback_loop & GPUPipeline::ColorFeedbackLoop))) { VkDescriptorSet ids = AllocateDescriptorSet(m_feedback_loop_ds_layout); if (ids == VK_NULL_HANDLE) return false; ds[num_ds++] = ids; Vulkan::DescriptorSetUpdateBuilder dsub; dsub.AddInputAttachmentDescriptorWrite(ids, 0, m_current_render_targets[0]->GetView(), m_current_render_targets[0]->GetVkLayout()); dsub.Update(m_device, false); } } DebugAssert(num_ds > 0); vkCmdBindDescriptorSets(GetCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_layouts[static_cast<u8>(m_current_pipeline_layout)], first_ds, num_ds, ds.data(), static_cast<u32>(new_dynamic_offsets), new_dynamic_offsets ? &m_uniform_buffer_position : nullptr); return true; } bool VulkanDevice::UpdateDescriptorSets(u32 dirty) { switch (m_current_pipeline_layout) { case GPUPipeline::Layout::SingleTextureAndUBO: return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::SingleTextureAndUBO>(dirty); case GPUPipeline::Layout::SingleTextureAndPushConstants: return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::SingleTextureAndPushConstants>(dirty); case GPUPipeline::Layout::SingleTextureBufferAndPushConstants: return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::SingleTextureBufferAndPushConstants>(dirty); case GPUPipeline::Layout::MultiTextureAndUBO: return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::MultiTextureAndUBO>(dirty); case GPUPipeline::Layout::MultiTextureAndPushConstants: return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::MultiTextureAndPushConstants>(dirty); default: UnreachableCode(); } } void VulkanDevice::Draw(u32 vertex_count, u32 base_vertex) { PreDrawCheck(); s_stats.num_draws++; vkCmdDraw(GetCurrentCommandBuffer(), vertex_count, 1, base_vertex, 0); } void VulkanDevice::DrawIndexed(u32 index_count, u32 base_index, u32 base_vertex) { PreDrawCheck(); s_stats.num_draws++; vkCmdDrawIndexed(GetCurrentCommandBuffer(), index_count, 1, base_index, base_vertex, 0); } VkImageMemoryBarrier VulkanDevice::GetColorBufferBarrier(const VulkanTexture* rt) const { const VkImageLayout vk_layout = m_optional_extensions.vk_khr_dynamic_rendering_local_read ? VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR : VK_IMAGE_LAYOUT_GENERAL; DebugAssert(rt->GetLayout() == VulkanTexture::Layout::FeedbackLoop); return {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, nullptr, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, vk_layout, vk_layout, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, rt->GetImage(), {VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u}}; } void VulkanDevice::DrawIndexedWithBarrier(u32 index_count, u32 base_index, u32 base_vertex, DrawBarrier type) { PreDrawCheck(); // TODO: The first barrier is unnecessary if we're starting the render pass. switch (type) { case GPUDevice::DrawBarrier::None: { s_stats.num_draws++; vkCmdDrawIndexed(GetCurrentCommandBuffer(), index_count, 1, base_index, base_vertex, 0); } break; case GPUDevice::DrawBarrier::One: { DebugAssert(m_num_current_render_targets == 1); s_stats.num_barriers++; s_stats.num_draws++; const VkImageMemoryBarrier barrier = GetColorBufferBarrier(static_cast<VulkanTexture*>(m_current_render_targets[0])); vkCmdPipelineBarrier(m_current_command_buffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1, &barrier); vkCmdDrawIndexed(GetCurrentCommandBuffer(), index_count, 1, base_index, base_vertex, 0); } break; case GPUDevice::DrawBarrier::Full: { DebugAssert(m_num_current_render_targets == 1); const VkImageMemoryBarrier barrier = GetColorBufferBarrier(static_cast<VulkanTexture*>(m_current_render_targets[0])); const u32 indices_per_primitive = m_current_pipeline->GetVerticesPerPrimitive(); const u32 end_batch = base_index + index_count; for (; base_index < end_batch; base_index += indices_per_primitive) { s_stats.num_barriers++; s_stats.num_draws++; vkCmdPipelineBarrier(m_current_command_buffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_DEPENDENCY_BY_REGION_BIT, 0, nullptr, 0, nullptr, 1, &barrier); vkCmdDrawIndexed(GetCurrentCommandBuffer(), indices_per_primitive, 1, base_index, base_vertex, 0); } } break; DefaultCaseIsUnreachable(); } }