#ifndef _C4_YML_TREE_HPP_ #define _C4_YML_TREE_HPP_ #include "c4/error.hpp" #include "c4/types.hpp" #ifndef _C4_YML_COMMON_HPP_ #include "c4/yml/common.hpp" #endif #include #include #include C4_SUPPRESS_WARNING_MSVC_PUSH C4_SUPPRESS_WARNING_MSVC(4251) // needs to have dll-interface to be used by clients of struct C4_SUPPRESS_WARNING_MSVC(4296) // expression is always 'boolean_value' C4_SUPPRESS_WARNING_GCC_CLANG_PUSH C4_SUPPRESS_WARNING_GCC_CLANG("-Wold-style-cast") C4_SUPPRESS_WARNING_GCC("-Wtype-limits") namespace c4 { namespace yml { struct NodeScalar; struct NodeInit; struct NodeData; class NodeRef; class ConstNodeRef; class Tree; /** encode a floating point value to a string. */ template size_t to_chars_float(substr buf, T val) { C4_SUPPRESS_WARNING_GCC_CLANG_WITH_PUSH("-Wfloat-equal"); static_assert(std::is_floating_point::value, "must be floating point"); if(C4_UNLIKELY(std::isnan(val))) return to_chars(buf, csubstr(".nan")); else if(C4_UNLIKELY(val == std::numeric_limits::infinity())) return to_chars(buf, csubstr(".inf")); else if(C4_UNLIKELY(val == -std::numeric_limits::infinity())) return to_chars(buf, csubstr("-.inf")); return to_chars(buf, val); C4_SUPPRESS_WARNING_GCC_CLANG_POP } /** decode a floating point from string. Accepts special values: .nan, * .inf, -.inf */ template bool from_chars_float(csubstr buf, T *C4_RESTRICT val) { static_assert(std::is_floating_point::value, "must be floating point"); if(C4_LIKELY(from_chars(buf, val))) { return true; } else if(C4_UNLIKELY(buf == ".nan" || buf == ".NaN" || buf == ".NAN")) { *val = std::numeric_limits::quiet_NaN(); return true; } else if(C4_UNLIKELY(buf == ".inf" || buf == ".Inf" || buf == ".INF")) { *val = std::numeric_limits::infinity(); return true; } else if(C4_UNLIKELY(buf == "-.inf" || buf == "-.Inf" || buf == "-.INF")) { *val = -std::numeric_limits::infinity(); return true; } else { return false; } } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /** the integral type necessary to cover all the bits marking node tags */ using tag_bits = uint16_t; /** a bit mask for marking tags for types */ typedef enum : tag_bits { // container types TAG_NONE = 0, TAG_MAP = 1, /**< !!map Unordered set of key: value pairs without duplicates. @see https://yaml.org/type/map.html */ TAG_OMAP = 2, /**< !!omap Ordered sequence of key: value pairs without duplicates. @see https://yaml.org/type/omap.html */ TAG_PAIRS = 3, /**< !!pairs Ordered sequence of key: value pairs allowing duplicates. @see https://yaml.org/type/pairs.html */ TAG_SET = 4, /**< !!set Unordered set of non-equal values. @see https://yaml.org/type/set.html */ TAG_SEQ = 5, /**< !!seq Sequence of arbitrary values. @see https://yaml.org/type/seq.html */ // scalar types TAG_BINARY = 6, /**< !!binary A sequence of zero or more octets (8 bit values). @see https://yaml.org/type/binary.html */ TAG_BOOL = 7, /**< !!bool Mathematical Booleans. @see https://yaml.org/type/bool.html */ TAG_FLOAT = 8, /**< !!float Floating-point approximation to real numbers. https://yaml.org/type/float.html */ TAG_INT = 9, /**< !!float Mathematical integers. https://yaml.org/type/int.html */ TAG_MERGE = 10, /**< !!merge Specify one or more mapping to be merged with the current one. https://yaml.org/type/merge.html */ TAG_NULL = 11, /**< !!null Devoid of value. https://yaml.org/type/null.html */ TAG_STR = 12, /**< !!str A sequence of zero or more Unicode characters. https://yaml.org/type/str.html */ TAG_TIMESTAMP = 13, /**< !!timestamp A point in time https://yaml.org/type/timestamp.html */ TAG_VALUE = 14, /**< !!value Specify the default value of a mapping https://yaml.org/type/value.html */ TAG_YAML = 15, /**< !!yaml Specify the default value of a mapping https://yaml.org/type/yaml.html */ } YamlTag_e; YamlTag_e to_tag(csubstr tag); csubstr from_tag(YamlTag_e tag); csubstr from_tag_long(YamlTag_e tag); csubstr normalize_tag(csubstr tag); csubstr normalize_tag_long(csubstr tag); struct TagDirective { /** Eg `!e!` in `%TAG !e! tag:example.com,2000:app/` */ csubstr handle; /** Eg `tag:example.com,2000:app/` in `%TAG !e! tag:example.com,2000:app/` */ csubstr prefix; /** The next node to which this tag directive applies */ size_t next_node_id; }; #ifndef RYML_MAX_TAG_DIRECTIVES /** the maximum number of tag directives in a Tree */ #define RYML_MAX_TAG_DIRECTIVES 4 #endif //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /** the integral type necessary to cover all the bits marking node types */ using type_bits = uint64_t; /** a bit mask for marking node types */ typedef enum : type_bits { // a convenience define, undefined below #define c4bit(v) (type_bits(1) << v) NOTYPE = 0, ///< no node type is set VAL = c4bit(0), ///< a leaf node, has a (possibly empty) value KEY = c4bit(1), ///< is member of a map, must have non-empty key MAP = c4bit(2), ///< a map: a parent of keyvals SEQ = c4bit(3), ///< a seq: a parent of vals DOC = c4bit(4), ///< a document STREAM = c4bit(5)|SEQ, ///< a stream: a seq of docs KEYREF = c4bit(6), ///< a *reference: the key references an &anchor VALREF = c4bit(7), ///< a *reference: the val references an &anchor KEYANCH = c4bit(8), ///< the key has an &anchor VALANCH = c4bit(9), ///< the val has an &anchor KEYTAG = c4bit(10), ///< the key has an explicit tag/type VALTAG = c4bit(11), ///< the val has an explicit tag/type _TYMASK = c4bit(12)-1, // all the bits up to here VALQUO = c4bit(12), ///< the val is quoted by '', "", > or | KEYQUO = c4bit(13), ///< the key is quoted by '', "", > or | KEYVAL = KEY|VAL, KEYSEQ = KEY|SEQ, KEYMAP = KEY|MAP, DOCMAP = DOC|MAP, DOCSEQ = DOC|SEQ, DOCVAL = DOC|VAL, _KEYMASK = KEY | KEYQUO | KEYANCH | KEYREF | KEYTAG, _VALMASK = VAL | VALQUO | VALANCH | VALREF | VALTAG, // these flags are from a work in progress and should be used with care _WIP_STYLE_FLOW_SL = c4bit(14), ///< mark container with single-line flow format (seqs as '[val1,val2], maps as '{key: val, key2: val2}') _WIP_STYLE_FLOW_ML = c4bit(15), ///< mark container with multi-line flow format (seqs as '[val1,\nval2], maps as '{key: val,\nkey2: val2}') _WIP_STYLE_BLOCK = c4bit(16), ///< mark container with block format (seqs as '- val\n', maps as 'key: val') _WIP_KEY_LITERAL = c4bit(17), ///< mark key scalar as multiline, block literal | _WIP_VAL_LITERAL = c4bit(18), ///< mark val scalar as multiline, block literal | _WIP_KEY_FOLDED = c4bit(19), ///< mark key scalar as multiline, block folded > _WIP_VAL_FOLDED = c4bit(20), ///< mark val scalar as multiline, block folded > _WIP_KEY_SQUO = c4bit(21), ///< mark key scalar as single quoted _WIP_VAL_SQUO = c4bit(22), ///< mark val scalar as single quoted _WIP_KEY_DQUO = c4bit(23), ///< mark key scalar as double quoted _WIP_VAL_DQUO = c4bit(24), ///< mark val scalar as double quoted _WIP_KEY_PLAIN = c4bit(25), ///< mark key scalar as plain scalar (unquoted, even when multiline) _WIP_VAL_PLAIN = c4bit(26), ///< mark val scalar as plain scalar (unquoted, even when multiline) _WIP_KEY_STYLE = _WIP_KEY_LITERAL|_WIP_KEY_FOLDED|_WIP_KEY_SQUO|_WIP_KEY_DQUO|_WIP_KEY_PLAIN, _WIP_VAL_STYLE = _WIP_VAL_LITERAL|_WIP_VAL_FOLDED|_WIP_VAL_SQUO|_WIP_VAL_DQUO|_WIP_VAL_PLAIN, _WIP_KEY_FT_NL = c4bit(27), ///< features: mark key scalar as having \n in its contents _WIP_VAL_FT_NL = c4bit(28), ///< features: mark val scalar as having \n in its contents _WIP_KEY_FT_SQ = c4bit(29), ///< features: mark key scalar as having single quotes in its contents _WIP_VAL_FT_SQ = c4bit(30), ///< features: mark val scalar as having single quotes in its contents _WIP_KEY_FT_DQ = c4bit(31), ///< features: mark key scalar as having double quotes in its contents _WIP_VAL_FT_DQ = c4bit(32), ///< features: mark val scalar as having double quotes in its contents #undef c4bit } NodeType_e; //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /** wraps a NodeType_e element with some syntactic sugar and predicates */ struct NodeType { public: NodeType_e type; public: C4_ALWAYS_INLINE NodeType() : type(NOTYPE) {} C4_ALWAYS_INLINE NodeType(NodeType_e t) : type(t) {} C4_ALWAYS_INLINE NodeType(type_bits t) : type((NodeType_e)t) {} C4_ALWAYS_INLINE const char *type_str() const { return type_str(type); } static const char* type_str(NodeType_e t); C4_ALWAYS_INLINE void set(NodeType_e t) { type = t; } C4_ALWAYS_INLINE void set(type_bits t) { type = (NodeType_e)t; } C4_ALWAYS_INLINE void add(NodeType_e t) { type = (NodeType_e)(type|t); } C4_ALWAYS_INLINE void add(type_bits t) { type = (NodeType_e)(type|t); } C4_ALWAYS_INLINE void rem(NodeType_e t) { type = (NodeType_e)(type & ~t); } C4_ALWAYS_INLINE void rem(type_bits t) { type = (NodeType_e)(type & ~t); } C4_ALWAYS_INLINE void clear() { type = NOTYPE; } public: C4_ALWAYS_INLINE operator NodeType_e & C4_RESTRICT () { return type; } C4_ALWAYS_INLINE operator NodeType_e const& C4_RESTRICT () const { return type; } C4_ALWAYS_INLINE bool operator== (NodeType_e t) const { return type == t; } C4_ALWAYS_INLINE bool operator!= (NodeType_e t) const { return type != t; } public: #if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wnull-dereference" #elif defined(__GNUC__) # pragma GCC diagnostic push # if __GNUC__ >= 6 # pragma GCC diagnostic ignored "-Wnull-dereference" # endif #endif C4_ALWAYS_INLINE bool is_notype() const { return type == NOTYPE; } C4_ALWAYS_INLINE bool is_stream() const { return ((type & STREAM) == STREAM) != 0; } C4_ALWAYS_INLINE bool is_doc() const { return (type & DOC) != 0; } C4_ALWAYS_INLINE bool is_container() const { return (type & (MAP|SEQ|STREAM)) != 0; } C4_ALWAYS_INLINE bool is_map() const { return (type & MAP) != 0; } C4_ALWAYS_INLINE bool is_seq() const { return (type & SEQ) != 0; } C4_ALWAYS_INLINE bool has_key() const { return (type & KEY) != 0; } C4_ALWAYS_INLINE bool has_val() const { return (type & VAL) != 0; } C4_ALWAYS_INLINE bool is_val() const { return (type & KEYVAL) == VAL; } C4_ALWAYS_INLINE bool is_keyval() const { return (type & KEYVAL) == KEYVAL; } C4_ALWAYS_INLINE bool has_key_tag() const { return (type & (KEY|KEYTAG)) == (KEY|KEYTAG); } C4_ALWAYS_INLINE bool has_val_tag() const { return ((type & VALTAG) && (type & (VAL|MAP|SEQ))); } C4_ALWAYS_INLINE bool has_key_anchor() const { return (type & (KEY|KEYANCH)) == (KEY|KEYANCH); } C4_ALWAYS_INLINE bool is_key_anchor() const { return (type & (KEY|KEYANCH)) == (KEY|KEYANCH); } C4_ALWAYS_INLINE bool has_val_anchor() const { return (type & VALANCH) != 0 && (type & (VAL|SEQ|MAP)) != 0; } C4_ALWAYS_INLINE bool is_val_anchor() const { return (type & VALANCH) != 0 && (type & (VAL|SEQ|MAP)) != 0; } C4_ALWAYS_INLINE bool has_anchor() const { return (type & (KEYANCH|VALANCH)) != 0; } C4_ALWAYS_INLINE bool is_anchor() const { return (type & (KEYANCH|VALANCH)) != 0; } C4_ALWAYS_INLINE bool is_key_ref() const { return (type & KEYREF) != 0; } C4_ALWAYS_INLINE bool is_val_ref() const { return (type & VALREF) != 0; } C4_ALWAYS_INLINE bool is_ref() const { return (type & (KEYREF|VALREF)) != 0; } C4_ALWAYS_INLINE bool is_anchor_or_ref() const { return (type & (KEYANCH|VALANCH|KEYREF|VALREF)) != 0; } C4_ALWAYS_INLINE bool is_key_quoted() const { return (type & (KEY|KEYQUO)) == (KEY|KEYQUO); } C4_ALWAYS_INLINE bool is_val_quoted() const { return (type & (VAL|VALQUO)) == (VAL|VALQUO); } C4_ALWAYS_INLINE bool is_quoted() const { return (type & (KEY|KEYQUO)) == (KEY|KEYQUO) || (type & (VAL|VALQUO)) == (VAL|VALQUO); } // these predicates are a work in progress and subject to change. Don't use yet. C4_ALWAYS_INLINE bool default_block() const { return (type & (_WIP_STYLE_BLOCK|_WIP_STYLE_FLOW_ML|_WIP_STYLE_FLOW_SL)) == 0; } C4_ALWAYS_INLINE bool marked_block() const { return (type & (_WIP_STYLE_BLOCK)) != 0; } C4_ALWAYS_INLINE bool marked_flow_sl() const { return (type & (_WIP_STYLE_FLOW_SL)) != 0; } C4_ALWAYS_INLINE bool marked_flow_ml() const { return (type & (_WIP_STYLE_FLOW_ML)) != 0; } C4_ALWAYS_INLINE bool marked_flow() const { return (type & (_WIP_STYLE_FLOW_ML|_WIP_STYLE_FLOW_SL)) != 0; } C4_ALWAYS_INLINE bool key_marked_literal() const { return (type & (_WIP_KEY_LITERAL)) != 0; } C4_ALWAYS_INLINE bool val_marked_literal() const { return (type & (_WIP_VAL_LITERAL)) != 0; } C4_ALWAYS_INLINE bool key_marked_folded() const { return (type & (_WIP_KEY_FOLDED)) != 0; } C4_ALWAYS_INLINE bool val_marked_folded() const { return (type & (_WIP_VAL_FOLDED)) != 0; } C4_ALWAYS_INLINE bool key_marked_squo() const { return (type & (_WIP_KEY_SQUO)) != 0; } C4_ALWAYS_INLINE bool val_marked_squo() const { return (type & (_WIP_VAL_SQUO)) != 0; } C4_ALWAYS_INLINE bool key_marked_dquo() const { return (type & (_WIP_KEY_DQUO)) != 0; } C4_ALWAYS_INLINE bool val_marked_dquo() const { return (type & (_WIP_VAL_DQUO)) != 0; } C4_ALWAYS_INLINE bool key_marked_plain() const { return (type & (_WIP_KEY_PLAIN)) != 0; } C4_ALWAYS_INLINE bool val_marked_plain() const { return (type & (_WIP_VAL_PLAIN)) != 0; } #if defined(__clang__) # pragma clang diagnostic pop #elif defined(__GNUC__) # pragma GCC diagnostic pop #endif }; //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /** a node scalar is a csubstr, which may be tagged and anchored. */ struct NodeScalar { csubstr tag; csubstr scalar; csubstr anchor; public: /// initialize as an empty scalar inline NodeScalar() noexcept : tag(), scalar(), anchor() {} /// initialize as an untagged scalar template inline NodeScalar(const char (&s)[N]) noexcept : tag(), scalar(s), anchor() {} inline NodeScalar(csubstr s ) noexcept : tag(), scalar(s), anchor() {} /// initialize as a tagged scalar template inline NodeScalar(const char (&t)[N], const char (&s)[N]) noexcept : tag(t), scalar(s), anchor() {} inline NodeScalar(csubstr t , csubstr s ) noexcept : tag(t), scalar(s), anchor() {} public: ~NodeScalar() noexcept = default; NodeScalar(NodeScalar &&) noexcept = default; NodeScalar(NodeScalar const&) noexcept = default; NodeScalar& operator= (NodeScalar &&) noexcept = default; NodeScalar& operator= (NodeScalar const&) noexcept = default; public: bool empty() const noexcept { return tag.empty() && scalar.empty() && anchor.empty(); } void clear() noexcept { tag.clear(); scalar.clear(); anchor.clear(); } void set_ref_maybe_replacing_scalar(csubstr ref, bool has_scalar) noexcept { csubstr trimmed = ref.begins_with('*') ? ref.sub(1) : ref; anchor = trimmed; if((!has_scalar) || !scalar.ends_with(trimmed)) scalar = ref; } }; C4_MUST_BE_TRIVIAL_COPY(NodeScalar); //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /** convenience class to initialize nodes */ struct NodeInit { NodeType type; NodeScalar key; NodeScalar val; public: /// initialize as an empty node NodeInit() : type(NOTYPE), key(), val() {} /// initialize as a typed node NodeInit(NodeType_e t) : type(t), key(), val() {} /// initialize as a sequence member NodeInit(NodeScalar const& v) : type(VAL), key(), val(v) { _add_flags(); } /// initialize as a mapping member NodeInit( NodeScalar const& k, NodeScalar const& v) : type(KEYVAL), key(k.tag, k.scalar), val(v.tag, v.scalar) { _add_flags(); } /// initialize as a mapping member with explicit type NodeInit(NodeType_e t, NodeScalar const& k, NodeScalar const& v) : type(t ), key(k.tag, k.scalar), val(v.tag, v.scalar) { _add_flags(); } /// initialize as a mapping member with explicit type (eg SEQ or MAP) NodeInit(NodeType_e t, NodeScalar const& k ) : type(t ), key(k.tag, k.scalar), val( ) { _add_flags(KEY); } public: void clear() { type.clear(); key.clear(); val.clear(); } void _add_flags(type_bits more_flags=0) { type = (type|more_flags); if( ! key.tag.empty()) type = (type|KEYTAG); if( ! val.tag.empty()) type = (type|VALTAG); if( ! key.anchor.empty()) type = (type|KEYANCH); if( ! val.anchor.empty()) type = (type|VALANCH); } bool _check() const { // key cannot be empty RYML_ASSERT(key.scalar.empty() == ((type & KEY) == 0)); // key tag cannot be empty RYML_ASSERT(key.tag.empty() == ((type & KEYTAG) == 0)); // val may be empty even though VAL is set. But when VAL is not set, val must be empty RYML_ASSERT(((type & VAL) != 0) || val.scalar.empty()); // val tag cannot be empty RYML_ASSERT(val.tag.empty() == ((type & VALTAG) == 0)); return true; } }; //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /** contains the data for each YAML node. */ struct NodeData { NodeType m_type; NodeScalar m_key; NodeScalar m_val; size_t m_parent; size_t m_first_child; size_t m_last_child; size_t m_next_sibling; size_t m_prev_sibling; }; C4_MUST_BE_TRIVIAL_COPY(NodeData); //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- class RYML_EXPORT Tree { public: /** @name construction and assignment */ /** @{ */ Tree() : Tree(get_callbacks()) {} Tree(Callbacks const& cb); Tree(size_t node_capacity, size_t arena_capacity=0) : Tree(node_capacity, arena_capacity, get_callbacks()) {} Tree(size_t node_capacity, size_t arena_capacity, Callbacks const& cb); ~Tree(); Tree(Tree const& that) noexcept; Tree(Tree && that) noexcept; Tree& operator= (Tree const& that) noexcept; Tree& operator= (Tree && that) noexcept; /** @} */ public: /** @name memory and sizing */ /** @{ */ void reserve(size_t node_capacity); /** clear the tree and zero every node * @note does NOT clear the arena * @see clear_arena() */ void clear(); inline void clear_arena() { m_arena_pos = 0; } inline bool empty() const { return m_size == 0; } inline size_t size() const { return m_size; } inline size_t capacity() const { return m_cap; } inline size_t slack() const { RYML_ASSERT(m_cap >= m_size); return m_cap - m_size; } Callbacks const& callbacks() const { return m_callbacks; } void callbacks(Callbacks const& cb) { m_callbacks = cb; } /** @} */ public: /** @name node getters */ /** @{ */ //! get the index of a node belonging to this tree. //! @p n can be nullptr, in which case a size_t id(NodeData const* n) const { if( ! n) { return NONE; } RYML_ASSERT(n >= m_buf && n < m_buf + m_cap); return static_cast(n - m_buf); } //! get a pointer to a node's NodeData. //! i can be NONE, in which case a nullptr is returned inline NodeData *get(size_t i) { if(i == NONE) return nullptr; RYML_ASSERT(i >= 0 && i < m_cap); return m_buf + i; } //! get a pointer to a node's NodeData. //! i can be NONE, in which case a nullptr is returned. inline NodeData const *get(size_t i) const { if(i == NONE) return nullptr; RYML_ASSERT(i >= 0 && i < m_cap); return m_buf + i; } //! An if-less form of get() that demands a valid node index. //! This function is implementation only; use at your own risk. inline NodeData * _p(size_t i) { RYML_ASSERT(i != NONE && i >= 0 && i < m_cap); return m_buf + i; } //! An if-less form of get() that demands a valid node index. //! This function is implementation only; use at your own risk. inline NodeData const * _p(size_t i) const { RYML_ASSERT(i != NONE && i >= 0 && i < m_cap); return m_buf + i; } //! Get the id of the root node size_t root_id() { if(m_cap == 0) { reserve(16); } RYML_ASSERT(m_cap > 0 && m_size > 0); return 0; } //! Get the id of the root node size_t root_id() const { RYML_ASSERT(m_cap > 0 && m_size > 0); return 0; } //! Get a NodeRef of a node by id NodeRef ref(size_t id); //! Get a NodeRef of a node by id ConstNodeRef ref(size_t id) const; //! Get a NodeRef of a node by id ConstNodeRef cref(size_t id); //! Get a NodeRef of a node by id ConstNodeRef cref(size_t id) const; //! Get the root as a NodeRef NodeRef rootref(); //! Get the root as a NodeRef ConstNodeRef rootref() const; //! Get the root as a NodeRef ConstNodeRef crootref(); //! Get the root as a NodeRef ConstNodeRef crootref() const; //! find a root child by name, return it as a NodeRef //! @note requires the root to be a map. NodeRef operator[] (csubstr key); //! find a root child by name, return it as a NodeRef //! @note requires the root to be a map. ConstNodeRef operator[] (csubstr key) const; //! find a root child by index: return the root node's @p i-th child as a NodeRef //! @note @i is NOT the node id, but the child's position NodeRef operator[] (size_t i); //! find a root child by index: return the root node's @p i-th child as a NodeRef //! @note @i is NOT the node id, but the child's position ConstNodeRef operator[] (size_t i) const; //! get the i-th document of the stream //! @note @i is NOT the node id, but the doc position within the stream NodeRef docref(size_t i); //! get the i-th document of the stream //! @note @i is NOT the node id, but the doc position within the stream ConstNodeRef docref(size_t i) const; /** @} */ public: /** @name node property getters */ /** @{ */ NodeType type(size_t node) const { return _p(node)->m_type; } const char* type_str(size_t node) const { return NodeType::type_str(_p(node)->m_type); } csubstr const& key (size_t node) const { RYML_ASSERT(has_key(node)); return _p(node)->m_key.scalar; } csubstr const& key_tag (size_t node) const { RYML_ASSERT(has_key_tag(node)); return _p(node)->m_key.tag; } csubstr const& key_ref (size_t node) const { RYML_ASSERT(is_key_ref(node) && ! has_key_anchor(node)); return _p(node)->m_key.anchor; } csubstr const& key_anchor(size_t node) const { RYML_ASSERT( ! is_key_ref(node) && has_key_anchor(node)); return _p(node)->m_key.anchor; } NodeScalar const& keysc (size_t node) const { RYML_ASSERT(has_key(node)); return _p(node)->m_key; } csubstr const& val (size_t node) const { RYML_ASSERT(has_val(node)); return _p(node)->m_val.scalar; } csubstr const& val_tag (size_t node) const { RYML_ASSERT(has_val_tag(node)); return _p(node)->m_val.tag; } csubstr const& val_ref (size_t node) const { RYML_ASSERT(is_val_ref(node) && ! has_val_anchor(node)); return _p(node)->m_val.anchor; } csubstr const& val_anchor(size_t node) const { RYML_ASSERT( ! is_val_ref(node) && has_val_anchor(node)); return _p(node)->m_val.anchor; } NodeScalar const& valsc (size_t node) const { RYML_ASSERT(has_val(node)); return _p(node)->m_val; } /** @} */ public: /** @name node predicates */ /** @{ */ C4_ALWAYS_INLINE bool is_stream(size_t node) const { return _p(node)->m_type.is_stream(); } C4_ALWAYS_INLINE bool is_doc(size_t node) const { return _p(node)->m_type.is_doc(); } C4_ALWAYS_INLINE bool is_container(size_t node) const { return _p(node)->m_type.is_container(); } C4_ALWAYS_INLINE bool is_map(size_t node) const { return _p(node)->m_type.is_map(); } C4_ALWAYS_INLINE bool is_seq(size_t node) const { return _p(node)->m_type.is_seq(); } C4_ALWAYS_INLINE bool has_key(size_t node) const { return _p(node)->m_type.has_key(); } C4_ALWAYS_INLINE bool has_val(size_t node) const { return _p(node)->m_type.has_val(); } C4_ALWAYS_INLINE bool is_val(size_t node) const { return _p(node)->m_type.is_val(); } C4_ALWAYS_INLINE bool is_keyval(size_t node) const { return _p(node)->m_type.is_keyval(); } C4_ALWAYS_INLINE bool has_key_tag(size_t node) const { return _p(node)->m_type.has_key_tag(); } C4_ALWAYS_INLINE bool has_val_tag(size_t node) const { return _p(node)->m_type.has_val_tag(); } C4_ALWAYS_INLINE bool has_key_anchor(size_t node) const { return _p(node)->m_type.has_key_anchor(); } C4_ALWAYS_INLINE bool is_key_anchor(size_t node) const { return _p(node)->m_type.is_key_anchor(); } C4_ALWAYS_INLINE bool has_val_anchor(size_t node) const { return _p(node)->m_type.has_val_anchor(); } C4_ALWAYS_INLINE bool is_val_anchor(size_t node) const { return _p(node)->m_type.is_val_anchor(); } C4_ALWAYS_INLINE bool has_anchor(size_t node) const { return _p(node)->m_type.has_anchor(); } C4_ALWAYS_INLINE bool is_anchor(size_t node) const { return _p(node)->m_type.is_anchor(); } C4_ALWAYS_INLINE bool is_key_ref(size_t node) const { return _p(node)->m_type.is_key_ref(); } C4_ALWAYS_INLINE bool is_val_ref(size_t node) const { return _p(node)->m_type.is_val_ref(); } C4_ALWAYS_INLINE bool is_ref(size_t node) const { return _p(node)->m_type.is_ref(); } C4_ALWAYS_INLINE bool is_anchor_or_ref(size_t node) const { return _p(node)->m_type.is_anchor_or_ref(); } C4_ALWAYS_INLINE bool is_key_quoted(size_t node) const { return _p(node)->m_type.is_key_quoted(); } C4_ALWAYS_INLINE bool is_val_quoted(size_t node) const { return _p(node)->m_type.is_val_quoted(); } C4_ALWAYS_INLINE bool is_quoted(size_t node) const { return _p(node)->m_type.is_quoted(); } C4_ALWAYS_INLINE bool parent_is_seq(size_t node) const { RYML_ASSERT(has_parent(node)); return is_seq(_p(node)->m_parent); } C4_ALWAYS_INLINE bool parent_is_map(size_t node) const { RYML_ASSERT(has_parent(node)); return is_map(_p(node)->m_parent); } /** true when key and val are empty, and has no children */ C4_ALWAYS_INLINE bool empty(size_t node) const { return ! has_children(node) && _p(node)->m_key.empty() && (( ! (_p(node)->m_type & VAL)) || _p(node)->m_val.empty()); } /** true when the node has an anchor named a */ C4_ALWAYS_INLINE bool has_anchor(size_t node, csubstr a) const { return _p(node)->m_key.anchor == a || _p(node)->m_val.anchor == a; } C4_ALWAYS_INLINE bool key_is_null(size_t node) const { RYML_ASSERT(has_key(node)); NodeData const* C4_RESTRICT n = _p(node); return !n->m_type.is_key_quoted() && _is_null(n->m_key.scalar); } C4_ALWAYS_INLINE bool val_is_null(size_t node) const { RYML_ASSERT(has_val(node)); NodeData const* C4_RESTRICT n = _p(node); return !n->m_type.is_val_quoted() && _is_null(n->m_val.scalar); } static bool _is_null(csubstr s) noexcept { return s.str == nullptr || s == "~" || s == "null" || s == "Null" || s == "NULL"; } /** @} */ public: /** @name hierarchy predicates */ /** @{ */ bool is_root(size_t node) const { RYML_ASSERT(_p(node)->m_parent != NONE || node == 0); return _p(node)->m_parent == NONE; } bool has_parent(size_t node) const { return _p(node)->m_parent != NONE; } /** true if @p node has a child with id @p ch */ bool has_child(size_t node, size_t ch) const { return _p(ch)->m_parent == node; } /** true if @p node has a child with key @p key */ bool has_child(size_t node, csubstr key) const { return find_child(node, key) != npos; } /** true if @p node has any children key */ bool has_children(size_t node) const { return _p(node)->m_first_child != NONE; } /** true if @p node has a sibling with id @p sib */ bool has_sibling(size_t node, size_t sib) const { return _p(node)->m_parent == _p(sib)->m_parent; } /** true if one of the node's siblings has the given key */ bool has_sibling(size_t node, csubstr key) const { return find_sibling(node, key) != npos; } /** true if node is not a single child */ bool has_other_siblings(size_t node) const { NodeData const *n = _p(node); if(C4_LIKELY(n->m_parent != NONE)) { n = _p(n->m_parent); return n->m_first_child != n->m_last_child; } return false; } RYML_DEPRECATED("use has_other_siblings()") bool has_siblings(size_t /*node*/) const { return true; } /** @} */ public: /** @name hierarchy getters */ /** @{ */ size_t parent(size_t node) const { return _p(node)->m_parent; } size_t prev_sibling(size_t node) const { return _p(node)->m_prev_sibling; } size_t next_sibling(size_t node) const { return _p(node)->m_next_sibling; } /** O(#num_children) */ size_t num_children(size_t node) const; size_t child_pos(size_t node, size_t ch) const; size_t first_child(size_t node) const { return _p(node)->m_first_child; } size_t last_child(size_t node) const { return _p(node)->m_last_child; } size_t child(size_t node, size_t pos) const; size_t find_child(size_t node, csubstr const& key) const; /** O(#num_siblings) */ /** counts with this */ size_t num_siblings(size_t node) const { return is_root(node) ? 1 : num_children(_p(node)->m_parent); } /** does not count with this */ size_t num_other_siblings(size_t node) const { size_t ns = num_siblings(node); RYML_ASSERT(ns > 0); return ns-1; } size_t sibling_pos(size_t node, size_t sib) const { RYML_ASSERT( ! is_root(node) || node == root_id()); return child_pos(_p(node)->m_parent, sib); } size_t first_sibling(size_t node) const { return is_root(node) ? node : _p(_p(node)->m_parent)->m_first_child; } size_t last_sibling(size_t node) const { return is_root(node) ? node : _p(_p(node)->m_parent)->m_last_child; } size_t sibling(size_t node, size_t pos) const { return child(_p(node)->m_parent, pos); } size_t find_sibling(size_t node, csubstr const& key) const { return find_child(_p(node)->m_parent, key); } size_t doc(size_t i) const { size_t rid = root_id(); RYML_ASSERT(is_stream(rid)); return child(rid, i); } //!< gets the @p i document node index. requires that the root node is a stream. /** @} */ public: /** @name node modifiers */ /** @{ */ void to_keyval(size_t node, csubstr key, csubstr val, type_bits more_flags=0); void to_map(size_t node, csubstr key, type_bits more_flags=0); void to_seq(size_t node, csubstr key, type_bits more_flags=0); void to_val(size_t node, csubstr val, type_bits more_flags=0); void to_map(size_t node, type_bits more_flags=0); void to_seq(size_t node, type_bits more_flags=0); void to_doc(size_t node, type_bits more_flags=0); void to_stream(size_t node, type_bits more_flags=0); void set_key(size_t node, csubstr key) { RYML_ASSERT(has_key(node)); _p(node)->m_key.scalar = key; } void set_val(size_t node, csubstr val) { RYML_ASSERT(has_val(node)); _p(node)->m_val.scalar = val; } void set_key_tag(size_t node, csubstr tag) { RYML_ASSERT(has_key(node)); _p(node)->m_key.tag = tag; _add_flags(node, KEYTAG); } void set_val_tag(size_t node, csubstr tag) { RYML_ASSERT(has_val(node) || is_container(node)); _p(node)->m_val.tag = tag; _add_flags(node, VALTAG); } void set_key_anchor(size_t node, csubstr anchor) { RYML_ASSERT( ! is_key_ref(node)); _p(node)->m_key.anchor = anchor.triml('&'); _add_flags(node, KEYANCH); } void set_val_anchor(size_t node, csubstr anchor) { RYML_ASSERT( ! is_val_ref(node)); _p(node)->m_val.anchor = anchor.triml('&'); _add_flags(node, VALANCH); } void set_key_ref (size_t node, csubstr ref ) { RYML_ASSERT( ! has_key_anchor(node)); NodeData* C4_RESTRICT n = _p(node); n->m_key.set_ref_maybe_replacing_scalar(ref, n->m_type.has_key()); _add_flags(node, KEY|KEYREF); } void set_val_ref (size_t node, csubstr ref ) { RYML_ASSERT( ! has_val_anchor(node)); NodeData* C4_RESTRICT n = _p(node); n->m_val.set_ref_maybe_replacing_scalar(ref, n->m_type.has_val()); _add_flags(node, VAL|VALREF); } void rem_key_anchor(size_t node) { _p(node)->m_key.anchor.clear(); _rem_flags(node, KEYANCH); } void rem_val_anchor(size_t node) { _p(node)->m_val.anchor.clear(); _rem_flags(node, VALANCH); } void rem_key_ref (size_t node) { _p(node)->m_key.anchor.clear(); _rem_flags(node, KEYREF); } void rem_val_ref (size_t node) { _p(node)->m_val.anchor.clear(); _rem_flags(node, VALREF); } void rem_anchor_ref(size_t node) { _p(node)->m_key.anchor.clear(); _p(node)->m_val.anchor.clear(); _rem_flags(node, KEYANCH|VALANCH|KEYREF|VALREF); } /** @} */ public: /** @name tree modifiers */ /** @{ */ /** reorder the tree in memory so that all the nodes are stored * in a linear sequence when visited in depth-first order. * This will invalidate existing ids, since the node id is its * position in the node array. */ void reorder(); /** Resolve references (aliases <- anchors) in the tree. * * Dereferencing is opt-in; after parsing, Tree::resolve() * has to be called explicitly for obtaining resolved references in the * tree. This method will resolve all references and substitute the * anchored values in place of the reference. * * This method first does a full traversal of the tree to gather all * anchors and references in a separate collection, then it goes through * that collection to locate the names, which it does by obeying the YAML * standard diktat that "an alias node refers to the most recent node in * the serialization having the specified anchor" * * So, depending on the number of anchor/alias nodes, this is a * potentially expensive operation, with a best-case linear complexity * (from the initial traversal). This potential cost is the reason for * requiring an explicit call. */ void resolve(); /** @} */ public: /** @name tag directives */ /** @{ */ void resolve_tags(); size_t num_tag_directives() const; size_t add_tag_directive(TagDirective const& td); void clear_tag_directives(); size_t resolve_tag(substr output, csubstr tag, size_t node_id) const; csubstr resolve_tag_sub(substr output, csubstr tag, size_t node_id) const { size_t needed = resolve_tag(output, tag, node_id); return needed <= output.len ? output.first(needed) : output; } using tag_directive_const_iterator = TagDirective const*; tag_directive_const_iterator begin_tag_directives() const { return m_tag_directives; } tag_directive_const_iterator end_tag_directives() const { return m_tag_directives + num_tag_directives(); } struct TagDirectiveProxy { tag_directive_const_iterator b, e; tag_directive_const_iterator begin() const { return b; } tag_directive_const_iterator end() const { return e; } }; TagDirectiveProxy tag_directives() const { return TagDirectiveProxy{begin_tag_directives(), end_tag_directives()}; } /** @} */ public: /** @name modifying hierarchy */ /** @{ */ /** create and insert a new child of @p parent. insert after the (to-be) * sibling @p after, which must be a child of @p parent. To insert as the * first child, set after to NONE */ C4_ALWAYS_INLINE size_t insert_child(size_t parent, size_t after) { RYML_ASSERT(parent != NONE); RYML_ASSERT(is_container(parent) || is_root(parent)); RYML_ASSERT(after == NONE || (_p(after)->m_parent == parent)); size_t child = _claim(); _set_hierarchy(child, parent, after); return child; } /** create and insert a node as the first child of @p parent */ C4_ALWAYS_INLINE size_t prepend_child(size_t parent) { return insert_child(parent, NONE); } /** create and insert a node as the last child of @p parent */ C4_ALWAYS_INLINE size_t append_child(size_t parent) { return insert_child(parent, _p(parent)->m_last_child); } public: #if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wnull-dereference" #elif defined(__GNUC__) # pragma GCC diagnostic push # if __GNUC__ >= 6 # pragma GCC diagnostic ignored "-Wnull-dereference" # endif #endif //! create and insert a new sibling of n. insert after "after" C4_ALWAYS_INLINE size_t insert_sibling(size_t node, size_t after) { return insert_child(_p(node)->m_parent, after); } /** create and insert a node as the first node of @p parent */ C4_ALWAYS_INLINE size_t prepend_sibling(size_t node) { return prepend_child(_p(node)->m_parent); } C4_ALWAYS_INLINE size_t append_sibling(size_t node) { return append_child(_p(node)->m_parent); } public: /** remove an entire branch at once: ie remove the children and the node itself */ inline void remove(size_t node) { remove_children(node); _release(node); } /** remove all the node's children, but keep the node itself */ void remove_children(size_t node); /** change the @p type of the node to one of MAP, SEQ or VAL. @p * type must have one and only one of MAP,SEQ,VAL; @p type may * possibly have KEY, but if it does, then the @p node must also * have KEY. Changing to the same type is a no-op. Otherwise, * changing to a different type will initialize the node with an * empty value of the desired type: changing to VAL will * initialize with a null scalar (~), changing to MAP will * initialize with an empty map ({}), and changing to SEQ will * initialize with an empty seq ([]). */ bool change_type(size_t node, NodeType type); bool change_type(size_t node, type_bits type) { return change_type(node, (NodeType)type); } #if defined(__clang__) # pragma clang diagnostic pop #elif defined(__GNUC__) # pragma GCC diagnostic pop #endif public: /** change the node's position in the parent */ void move(size_t node, size_t after); /** change the node's parent and position */ void move(size_t node, size_t new_parent, size_t after); /** change the node's parent and position to a different tree * @return the index of the new node in the destination tree */ size_t move(Tree * src, size_t node, size_t new_parent, size_t after); /** ensure the first node is a stream. Eg, change this tree * * DOCMAP * MAP * KEYVAL * KEYVAL * SEQ * VAL * * to * * STREAM * DOCMAP * MAP * KEYVAL * KEYVAL * SEQ * VAL * * If the root is already a stream, this is a no-op. */ void set_root_as_stream(); public: /** recursively duplicate a node from this tree into a new parent, * placing it after one of its children * @return the index of the copy */ size_t duplicate(size_t node, size_t new_parent, size_t after); /** recursively duplicate a node from a different tree into a new parent, * placing it after one of its children * @return the index of the copy */ size_t duplicate(Tree const* src, size_t node, size_t new_parent, size_t after); /** recursively duplicate the node's children (but not the node) * @return the index of the last duplicated child */ size_t duplicate_children(size_t node, size_t parent, size_t after); /** recursively duplicate the node's children (but not the node), where * the node is from a different tree * @return the index of the last duplicated child */ size_t duplicate_children(Tree const* src, size_t node, size_t parent, size_t after); void duplicate_contents(size_t node, size_t where); void duplicate_contents(Tree const* src, size_t node, size_t where); /** duplicate the node's children (but not the node) in a new parent, but * omit repetitions where a duplicated node has the same key (in maps) or * value (in seqs). If one of the duplicated children has the same key * (in maps) or value (in seqs) as one of the parent's children, the one * that is placed closest to the end will prevail. */ size_t duplicate_children_no_rep(size_t node, size_t parent, size_t after); size_t duplicate_children_no_rep(Tree const* src, size_t node, size_t parent, size_t after); public: void merge_with(Tree const* src, size_t src_node=NONE, size_t dst_root=NONE); /** @} */ public: /** @name internal string arena */ /** @{ */ /** get the current size of the tree's internal arena */ RYML_DEPRECATED("use arena_size() instead") size_t arena_pos() const { return m_arena_pos; } /** get the current size of the tree's internal arena */ inline size_t arena_size() const { return m_arena_pos; } /** get the current capacity of the tree's internal arena */ inline size_t arena_capacity() const { return m_arena.len; } /** get the current slack of the tree's internal arena */ inline size_t arena_slack() const { RYML_ASSERT(m_arena.len >= m_arena_pos); return m_arena.len - m_arena_pos; } /** get the current arena */ substr arena() const { return m_arena.first(m_arena_pos); } /** return true if the given substring is part of the tree's string arena */ bool in_arena(csubstr s) const { return m_arena.is_super(s); } /** serialize the given floating-point variable to the tree's * arena, growing it as needed to accomodate the serialization. * * @note Growing the arena may cause relocation of the entire * existing arena, and thus change the contents of individual * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this * cost, ensure that the arena is reserved to an appropriate size * using .reserve_arena() * * @see alloc_arena() */ template typename std::enable_if::value, csubstr>::type to_arena(T const& C4_RESTRICT a) { substr rem(m_arena.sub(m_arena_pos)); size_t num = to_chars_float(rem, a); if(num > rem.len) { rem = _grow_arena(num); num = to_chars_float(rem, a); RYML_ASSERT(num <= rem.len); } rem = _request_span(num); return rem; } /** serialize the given non-floating-point variable to the tree's * arena, growing it as needed to accomodate the serialization. * * @note Growing the arena may cause relocation of the entire * existing arena, and thus change the contents of individual * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this * cost, ensure that the arena is reserved to an appropriate size * using .reserve_arena() * * @see alloc_arena() */ template typename std::enable_if::value, csubstr>::type to_arena(T const& C4_RESTRICT a) { substr rem(m_arena.sub(m_arena_pos)); size_t num = to_chars(rem, a); if(num > rem.len) { rem = _grow_arena(num); num = to_chars(rem, a); RYML_ASSERT(num <= rem.len); } rem = _request_span(num); return rem; } /** serialize the given csubstr to the tree's arena, growing the * arena as needed to accomodate the serialization. * * @note Growing the arena may cause relocation of the entire * existing arena, and thus change the contents of individual * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this * cost, ensure that the arena is reserved to an appropriate size * using .reserve_arena() * * @see alloc_arena() */ csubstr to_arena(csubstr a) { if(a.len > 0) { substr rem(m_arena.sub(m_arena_pos)); size_t num = to_chars(rem, a); if(num > rem.len) { rem = _grow_arena(num); num = to_chars(rem, a); RYML_ASSERT(num <= rem.len); } return _request_span(num); } else { if(a.str == nullptr) { return csubstr{}; } else if(m_arena.str == nullptr) { // Arena is empty and we want to store a non-null // zero-length string. // Even though the string has zero length, we need // some "memory" to store a non-nullptr string _grow_arena(1); } return _request_span(0); } } C4_ALWAYS_INLINE csubstr to_arena(const char *s) { return to_arena(to_csubstr(s)); } C4_ALWAYS_INLINE csubstr to_arena(std::nullptr_t) { return csubstr{}; } /** copy the given substr to the tree's arena, growing it by the * required size * * @note Growing the arena may cause relocation of the entire * existing arena, and thus change the contents of individual * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this * cost, ensure that the arena is reserved to an appropriate size * using .reserve_arena() * * @see alloc_arena() */ substr copy_to_arena(csubstr s) { substr cp = alloc_arena(s.len); RYML_ASSERT(cp.len == s.len); RYML_ASSERT(!s.overlaps(cp)); #if (!defined(__clang__)) && (defined(__GNUC__) && __GNUC__ >= 10) C4_SUPPRESS_WARNING_GCC_PUSH C4_SUPPRESS_WARNING_GCC("-Wstringop-overflow=") // no need for terminating \0 C4_SUPPRESS_WARNING_GCC( "-Wrestrict") // there's an assert to ensure no violation of restrict behavior #endif if(s.len) memcpy(cp.str, s.str, s.len); #if (!defined(__clang__)) && (defined(__GNUC__) && __GNUC__ >= 10) C4_SUPPRESS_WARNING_GCC_POP #endif return cp; } /** grow the tree's string arena by the given size and return a substr * of the added portion * * @note Growing the arena may cause relocation of the entire * existing arena, and thus change the contents of individual * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this * cost, ensure that the arena is reserved to an appropriate size * using .reserve_arena(). * * @see reserve_arena() */ substr alloc_arena(size_t sz) { if(sz > arena_slack()) _grow_arena(sz - arena_slack()); substr s = _request_span(sz); return s; } /** ensure the tree's internal string arena is at least the given capacity * @note This operation has a potential complexity of O(numNodes)+O(arenasize). * Growing the arena may cause relocation of the entire * existing arena, and thus change the contents of individual nodes. */ void reserve_arena(size_t arena_cap) { if(arena_cap > m_arena.len) { substr buf; buf.str = (char*) m_callbacks.m_allocate(arena_cap, m_arena.str, m_callbacks.m_user_data); buf.len = arena_cap; if(m_arena.str) { RYML_ASSERT(m_arena.len >= 0); _relocate(buf); // does a memcpy and changes nodes using the arena m_callbacks.m_free(m_arena.str, m_arena.len, m_callbacks.m_user_data); } m_arena = buf; } } /** @} */ private: substr _grow_arena(size_t more) { size_t cap = m_arena.len + more; cap = cap < 2 * m_arena.len ? 2 * m_arena.len : cap; cap = cap < 64 ? 64 : cap; reserve_arena(cap); return m_arena.sub(m_arena_pos); } substr _request_span(size_t sz) { substr s; s = m_arena.sub(m_arena_pos, sz); m_arena_pos += sz; return s; } substr _relocated(csubstr s, substr next_arena) const { RYML_ASSERT(m_arena.is_super(s)); RYML_ASSERT(m_arena.sub(0, m_arena_pos).is_super(s)); auto pos = (s.str - m_arena.str); substr r(next_arena.str + pos, s.len); RYML_ASSERT(r.str - next_arena.str == pos); RYML_ASSERT(next_arena.sub(0, m_arena_pos).is_super(r)); return r; } public: /** @name lookup */ /** @{ */ struct lookup_result { size_t target; size_t closest; size_t path_pos; csubstr path; inline operator bool() const { return target != NONE; } lookup_result() : target(NONE), closest(NONE), path_pos(0), path() {} lookup_result(csubstr path_, size_t start) : target(NONE), closest(start), path_pos(0), path(path_) {} /** get the part ot the input path that was resolved */ csubstr resolved() const; /** get the part ot the input path that was unresolved */ csubstr unresolved() const; }; /** for example foo.bar[0].baz */ lookup_result lookup_path(csubstr path, size_t start=NONE) const; /** defaulted lookup: lookup @p path; if the lookup fails, recursively modify * the tree so that the corresponding lookup_path() would return the * default value. * @see lookup_path() */ size_t lookup_path_or_modify(csubstr default_value, csubstr path, size_t start=NONE); /** defaulted lookup: lookup @p path; if the lookup fails, recursively modify * the tree so that the corresponding lookup_path() would return the * branch @p src_node (from the tree @p src). * @see lookup_path() */ size_t lookup_path_or_modify(Tree const *src, size_t src_node, csubstr path, size_t start=NONE); /** @} */ private: struct _lookup_path_token { csubstr value; NodeType type; _lookup_path_token() : value(), type() {} _lookup_path_token(csubstr v, NodeType t) : value(v), type(t) {} inline operator bool() const { return type != NOTYPE; } bool is_index() const { return value.begins_with('[') && value.ends_with(']'); } }; size_t _lookup_path_or_create(csubstr path, size_t start); void _lookup_path (lookup_result *r) const; void _lookup_path_modify(lookup_result *r); size_t _next_node (lookup_result *r, _lookup_path_token *parent) const; size_t _next_node_modify(lookup_result *r, _lookup_path_token *parent); void _advance(lookup_result *r, size_t more) const; _lookup_path_token _next_token(lookup_result *r, _lookup_path_token const& parent) const; private: void _clear(); void _free(); void _copy(Tree const& that); void _move(Tree & that); void _relocate(substr next_arena); public: #if ! RYML_USE_ASSERT C4_ALWAYS_INLINE void _check_next_flags(size_t, type_bits) {} #else void _check_next_flags(size_t node, type_bits f) { auto n = _p(node); type_bits o = n->m_type; // old C4_UNUSED(o); if(f & MAP) { RYML_ASSERT_MSG((f & SEQ) == 0, "cannot mark simultaneously as map and seq"); RYML_ASSERT_MSG((f & VAL) == 0, "cannot mark simultaneously as map and val"); RYML_ASSERT_MSG((o & SEQ) == 0, "cannot turn a seq into a map; clear first"); RYML_ASSERT_MSG((o & VAL) == 0, "cannot turn a val into a map; clear first"); } else if(f & SEQ) { RYML_ASSERT_MSG((f & MAP) == 0, "cannot mark simultaneously as seq and map"); RYML_ASSERT_MSG((f & VAL) == 0, "cannot mark simultaneously as seq and val"); RYML_ASSERT_MSG((o & MAP) == 0, "cannot turn a map into a seq; clear first"); RYML_ASSERT_MSG((o & VAL) == 0, "cannot turn a val into a seq; clear first"); } if(f & KEY) { RYML_ASSERT(!is_root(node)); auto pid = parent(node); C4_UNUSED(pid); RYML_ASSERT(is_map(pid)); } if((f & VAL) && !is_root(node)) { auto pid = parent(node); C4_UNUSED(pid); RYML_ASSERT(is_map(pid) || is_seq(pid)); } } #endif inline void _set_flags(size_t node, NodeType_e f) { _check_next_flags(node, f); _p(node)->m_type = f; } inline void _set_flags(size_t node, type_bits f) { _check_next_flags(node, f); _p(node)->m_type = f; } inline void _add_flags(size_t node, NodeType_e f) { NodeData *d = _p(node); type_bits fb = f | d->m_type; _check_next_flags(node, fb); d->m_type = (NodeType_e) fb; } inline void _add_flags(size_t node, type_bits f) { NodeData *d = _p(node); f |= d->m_type; _check_next_flags(node, f); d->m_type = f; } inline void _rem_flags(size_t node, NodeType_e f) { NodeData *d = _p(node); type_bits fb = d->m_type & ~f; _check_next_flags(node, fb); d->m_type = (NodeType_e) fb; } inline void _rem_flags(size_t node, type_bits f) { NodeData *d = _p(node); f = d->m_type & ~f; _check_next_flags(node, f); d->m_type = f; } void _set_key(size_t node, csubstr key, type_bits more_flags=0) { _p(node)->m_key.scalar = key; _add_flags(node, KEY|more_flags); } void _set_key(size_t node, NodeScalar const& key, type_bits more_flags=0) { _p(node)->m_key = key; _add_flags(node, KEY|more_flags); } void _set_val(size_t node, csubstr val, type_bits more_flags=0) { RYML_ASSERT(num_children(node) == 0); RYML_ASSERT(!is_seq(node) && !is_map(node)); _p(node)->m_val.scalar = val; _add_flags(node, VAL|more_flags); } void _set_val(size_t node, NodeScalar const& val, type_bits more_flags=0) { RYML_ASSERT(num_children(node) == 0); RYML_ASSERT( ! is_container(node)); _p(node)->m_val = val; _add_flags(node, VAL|more_flags); } void _set(size_t node, NodeInit const& i) { RYML_ASSERT(i._check()); NodeData *n = _p(node); RYML_ASSERT(n->m_key.scalar.empty() || i.key.scalar.empty() || i.key.scalar == n->m_key.scalar); _add_flags(node, i.type); if(n->m_key.scalar.empty()) { if( ! i.key.scalar.empty()) { _set_key(node, i.key.scalar); } } n->m_key.tag = i.key.tag; n->m_val = i.val; } void _set_parent_as_container_if_needed(size_t in) { NodeData const* n = _p(in); size_t ip = parent(in); if(ip != NONE) { if( ! (is_seq(ip) || is_map(ip))) { if((in == first_child(ip)) && (in == last_child(ip))) { if( ! n->m_key.empty() || has_key(in)) { _add_flags(ip, MAP); } else { _add_flags(ip, SEQ); } } } } } void _seq2map(size_t node) { RYML_ASSERT(is_seq(node)); for(size_t i = first_child(node); i != NONE; i = next_sibling(i)) { NodeData *C4_RESTRICT ch = _p(i); if(ch->m_type.is_keyval()) continue; ch->m_type.add(KEY); ch->m_key = ch->m_val; } auto *C4_RESTRICT n = _p(node); n->m_type.rem(SEQ); n->m_type.add(MAP); } size_t _do_reorder(size_t *node, size_t count); void _swap(size_t n_, size_t m_); void _swap_props(size_t n_, size_t m_); void _swap_hierarchy(size_t n_, size_t m_); void _copy_hierarchy(size_t dst_, size_t src_); inline void _copy_props(size_t dst_, size_t src_) { _copy_props(dst_, this, src_); } inline void _copy_props_wo_key(size_t dst_, size_t src_) { _copy_props_wo_key(dst_, this, src_); } void _copy_props(size_t dst_, Tree const* that_tree, size_t src_) { auto & C4_RESTRICT dst = *_p(dst_); auto const& C4_RESTRICT src = *that_tree->_p(src_); dst.m_type = src.m_type; dst.m_key = src.m_key; dst.m_val = src.m_val; } void _copy_props_wo_key(size_t dst_, Tree const* that_tree, size_t src_) { auto & C4_RESTRICT dst = *_p(dst_); auto const& C4_RESTRICT src = *that_tree->_p(src_); dst.m_type = (src.m_type & ~_KEYMASK) | (dst.m_type & _KEYMASK); dst.m_val = src.m_val; } inline void _clear_type(size_t node) { _p(node)->m_type = NOTYPE; } inline void _clear(size_t node) { auto *C4_RESTRICT n = _p(node); n->m_type = NOTYPE; n->m_key.clear(); n->m_val.clear(); n->m_parent = NONE; n->m_first_child = NONE; n->m_last_child = NONE; } inline void _clear_key(size_t node) { _p(node)->m_key.clear(); _rem_flags(node, KEY); } inline void _clear_val(size_t node) { _p(node)->m_val.clear(); _rem_flags(node, VAL); } private: void _clear_range(size_t first, size_t num); size_t _claim(); void _claim_root(); void _release(size_t node); void _free_list_add(size_t node); void _free_list_rem(size_t node); void _set_hierarchy(size_t node, size_t parent, size_t after_sibling); void _rem_hierarchy(size_t node); public: // members are exposed, but you should NOT access them directly NodeData * m_buf; size_t m_cap; size_t m_size; size_t m_free_head; size_t m_free_tail; substr m_arena; size_t m_arena_pos; Callbacks m_callbacks; TagDirective m_tag_directives[RYML_MAX_TAG_DIRECTIVES]; }; } // namespace yml } // namespace c4 C4_SUPPRESS_WARNING_MSVC_POP C4_SUPPRESS_WARNING_GCC_CLANG_POP #endif /* _C4_YML_TREE_HPP_ */