#include "gpu.h" #include "YBaseLib/Log.h" #include "bus.h" #include "dma.h" Log_SetChannel(GPU); static constexpr s32 S11ToS32(u32 value) { if (value & (UINT16_C(1) << 10)) return static_cast(UINT32_C(0xFFFFF800) | value); else return value; } GPU::GPU() = default; GPU::~GPU() = default; bool GPU::Initialize(Bus* bus, DMA* dma) { m_bus = bus; m_dma = dma; return true; } void GPU::Reset() { SoftReset(); } void GPU::SoftReset() { m_GPUSTAT.bits = 0x14802000; UpdateDMARequest(); } void GPU::UpdateDMARequest() { const bool request = m_GPUSTAT.dma_direction != DMADirection::Off; m_GPUSTAT.dma_data_request = request; m_dma->SetRequest(DMA::Channel::GPU, request); } u32 GPU::ReadRegister(u32 offset) { switch (offset) { case 0x00: return ReadGPUREAD(); case 0x04: return m_GPUSTAT.bits; default: Log_ErrorPrintf("Unhandled register read: %02X", offset); return UINT32_C(0xFFFFFFFF); } } void GPU::WriteRegister(u32 offset, u32 value) { switch (offset) { case 0x00: WriteGP0(value); return; case 0x04: WriteGP1(value); return; default: Log_ErrorPrintf("Unhandled register write: %02X <- %08X", offset, value); return; } } u32 GPU::DMARead() { if (m_GPUSTAT.dma_direction != DMADirection::GPUREADtoCPU) { Log_ErrorPrintf("Invalid DMA direction from GPU DMA read"); return UINT32_C(0xFFFFFFFF); } return ReadGPUREAD(); } void GPU::DMAWrite(u32 value) { switch (m_GPUSTAT.dma_direction) { case DMADirection::CPUtoGP0: WriteGP0(value); break; default: Log_ErrorPrintf("Unhandled GPU DMA write mode %u for value %08X", static_cast(m_GPUSTAT.dma_direction.GetValue()), value); break; } } u32 GPU::ReadGPUREAD() { Log_ErrorPrintf("GPUREAD not implemented"); return UINT32_C(0xFFFFFFFF); } void GPU::WriteGP0(u32 value) { Assert(m_GP0_command_length < MAX_GP0_COMMAND_LENGTH); m_GP0_command[m_GP0_command_length++] = value; const u8 command = Truncate8(m_GP0_command[0] >> 24); const u32 param = m_GP0_command[0] & UINT32_C(0x00FFFFFF); switch (command) { case 0x00: // NOP break; case 0xE1: // Set draw mode { // 0..10 bits match GPUSTAT const u32 MASK = ((UINT32_C(1) << 11) - 1); m_GPUSTAT.bits = (m_GPUSTAT.bits & ~MASK) | param & MASK; m_GPUSTAT.texture_disable = (param & (UINT32_C(1) << 11)) != 0; m_texture_config.x_flip = (param & (UINT32_C(1) << 12)) != 0; m_texture_config.y_flip = (param & (UINT32_C(1) << 13)) != 0; Log_DebugPrintf("Set draw mode %08X", param); } break; case 0xE2: // set texture window { m_texture_config.window_mask_x = param & UINT32_C(0x1F); m_texture_config.window_mask_y = (param >> 5) & UINT32_C(0x1F); m_texture_config.window_offset_x = (param >> 10) & UINT32_C(0x1F); m_texture_config.window_offset_y = (param >> 15) & UINT32_C(0x1F); Log_DebugPrintf("Set texture window %02X %02X %02X %02X", m_texture_config.window_mask_x, m_texture_config.window_mask_y, m_texture_config.window_offset_x, m_texture_config.window_offset_y); } break; case 0xE3: // Set drawing area top left { m_drawing_area.top_left_x = param & UINT32_C(0x3FF); m_drawing_area.top_left_y = (param >> 10) & UINT32_C(0x1FF); Log_DebugPrintf("Set drawing area top-left: (%u, %u)", m_drawing_area.top_left_x, m_drawing_area.top_left_y); } break; case 0xE4: // Set drawing area bottom right { m_drawing_area.bottom_right_x = param & UINT32_C(0x3FF); m_drawing_area.bottom_right_y = (param >> 10) & UINT32_C(0x1FF); Log_DebugPrintf("Set drawing area bottom-right: (%u, %u)", m_drawing_area.bottom_right_x, m_drawing_area.bottom_right_y); } break; case 0xE5: // Set drawing offset { m_drawing_offset.x = S11ToS32(param & UINT32_C(0x7FF)); m_drawing_offset.y = S11ToS32((param >> 11) & UINT32_C(0x7FF)); Log_DebugPrintf("Set drawing offset (%d, %d)", m_drawing_offset.x, m_drawing_offset.y); } break; case 0xE6: // Mask bit setting { m_GPUSTAT.draw_set_mask_bit = (param & UINT32_C(0x01)) != 0; m_GPUSTAT.draw_to_masked_pixels = (param & UINT32_C(0x01)) != 0; Log_DebugPrintf("Set mask bit %u %u", BoolToUInt32(m_GPUSTAT.draw_set_mask_bit), BoolToUInt32(m_GPUSTAT.draw_to_masked_pixels)); } break; default: { if (command < 0x20) { } else if (command < 0x40) { // Draw polygon if (!HandleRenderPolygonCommand()) return; break; } Log_ErrorPrintf("Unimplemented GP0 command 0x%02X", command); } break; } m_GP0_command.fill(UINT32_C(0)); m_GP0_command_length = 0; } void GPU::WriteGP1(u32 value) { const u8 command = Truncate8(value >> 24); const u32 param = value & UINT32_C(0x00FFFFFF); switch (command) { case 0x04: // DMA Direction { m_GPUSTAT.dma_direction = static_cast(param); Log_DebugPrintf("DMA direction <- 0x%02X", static_cast(m_GPUSTAT.dma_direction.GetValue())); UpdateDMARequest(); } break; default: Log_ErrorPrintf("Unimplemented GP1 command 0x%02X", command); break; } } bool GPU::HandleRenderPolygonCommand() { const u8 command = Truncate8(m_GP0_command[0] >> 24); const bool semi_transparent = !!(command & 0x02); const bool textured = !!(command & 0x04); const bool four_points = !!(command & 0x08); const bool shaded = !!(command & 0x10); // shaded vertices use the colour from the first word for the first vertex const u8 words_per_vertex = 1 + BoolToUInt8(textured) + BoolToUInt8(shaded); const u8 num_vertices = four_points ? 4 : 3; const u8 total_words = words_per_vertex * num_vertices + BoolToUInt8(!shaded); if (m_GP0_command_length < total_words) return false; Log_DebugPrintf("Render %s %s %s %s polygon (%u verts, %u words per vert)", four_points ? "four-point" : "three-point", semi_transparent ? "semi-transparent" : "opaque", textured ? "textured" : "non-textured", shaded ? "shaded" : "monochrome", ZeroExtend32(num_vertices), ZeroExtend32(words_per_vertex)); return true; }