#include "mdec.h" #include "YBaseLib/Log.h" #include "common/state_wrapper.h" #include "dma.h" #include "interrupt_controller.h" #include "system.h" Log_SetChannel(MDEC); MDEC::MDEC() = default; MDEC::~MDEC() = default; bool MDEC::Initialize(System* system, DMA* dma) { m_system = system; m_dma = dma; return true; } void MDEC::Reset() { SoftReset(); } bool MDEC::DoState(StateWrapper& sw) { sw.Do(&m_status.bits); sw.Do(&m_data_in_fifo); sw.Do(&m_data_out_fifo); sw.Do(&m_command); sw.Do(&m_command_parameter_count); sw.Do(&m_iq_uv); sw.Do(&m_iq_y); sw.Do(&m_scale_table); return !sw.HasError(); } u32 MDEC::ReadRegister(u32 offset) { switch (offset) { case 0: return ReadDataRegister(); case 4: { Log_DebugPrintf("MDEC status register -> 0x%08X", m_status.bits); return m_status.bits; } default: { Log_ErrorPrintf("Unknown MDEC register read: 0x%08X", offset); return UINT32_C(0xFFFFFFFF); } } } void MDEC::WriteRegister(u32 offset, u32 value) { switch (offset) { case 0: { WriteCommandRegister(value); return; } case 4: { Log_DebugPrintf("MDEC control register <- 0x%08X", value); const ControlRegister cr{value}; if (cr.reset) SoftReset(); m_status.data_in_request = cr.enable_dma_in; m_status.data_out_request = cr.enable_dma_out; m_dma->SetRequest(DMA::Channel::MDECin, cr.enable_dma_in); m_dma->SetRequest(DMA::Channel::MDECout, cr.enable_dma_out); return; } default: { Log_ErrorPrintf("Unknown MDEC register write: 0x%08X <- 0x%08X", offset, value); return; } } } u32 MDEC::DMARead() { return ReadDataRegister(); } void MDEC::DMAWrite(u32 value) { WriteCommandRegister(value); } void MDEC::SoftReset() { m_status = {}; m_data_in_fifo.Clear(); m_data_out_fifo.Clear(); UpdateStatusRegister(); } void MDEC::UpdateStatusRegister() { m_status.data_out_fifo_empty = m_data_out_fifo.IsEmpty(); m_status.data_in_fifo_full = m_data_in_fifo.IsFull(); m_status.command_busy = !m_data_in_fifo.IsEmpty(); if (!m_data_in_fifo.IsEmpty()) { const CommandWord cw{m_data_in_fifo.Peek(0)}; m_status.parameter_words_remaining = Truncate16(m_command_parameter_count - m_data_in_fifo.GetSize()); } else { m_status.parameter_words_remaining = 0; } } u32 MDEC::ReadDataRegister() { if (m_data_out_fifo.IsEmpty()) { // Log_WarningPrintf("MDEC data out FIFO empty on read"); return UINT32_C(0xFFFFFFFF); } const u32 value = m_data_out_fifo.Pop(); UpdateStatusRegister(); return value; } void MDEC::WriteCommandRegister(u32 value) { Log_DebugPrintf("MDEC command/data register <- 0x%08X", value); if (m_data_in_fifo.IsEmpty()) { // first word const CommandWord cw{value}; m_command = cw.command; m_status.data_output_depth = cw.data_output_depth; m_status.data_output_signed = cw.data_output_signed; m_status.data_output_bit15 = cw.data_output_bit15; switch (cw.command) { case Command::DecodeMacroblock: m_command_parameter_count = ZeroExtend32(cw.parameter_word_count.GetValue()); break; case Command::SetIqTab: m_command_parameter_count = 16 + (((value & 1) != 0) ? 16 : 0); break; case Command::SetScale: m_command_parameter_count = 32; break; default: Panic("Unknown command"); break; } Log_DebugPrintf("MDEC command: 0x%08X (%u, %u words in parameter, %u expected)", cw.bits, ZeroExtend32(static_cast(cw.command.GetValue())), ZeroExtend32(cw.parameter_word_count.GetValue()), m_command_parameter_count); } m_data_in_fifo.Push(value); if (m_data_in_fifo.GetSize() <= m_command_parameter_count) { UpdateStatusRegister(); return; } // pop command m_data_in_fifo.RemoveOne(); switch (m_command) { case Command::DecodeMacroblock: HandleDecodeMacroblockCommand(); break; case Command::SetIqTab: HandleSetQuantTableCommand(); break; case Command::SetScale: HandleSetScaleCommand(); break; } m_data_in_fifo.Clear(); m_command = Command::None; m_command_parameter_count = 0; UpdateStatusRegister(); } void MDEC::HandleDecodeMacroblockCommand() { // TODO: Remove this copy and strict aliasing violation.. std::vector temp(m_data_in_fifo.GetSize() * 2); m_data_in_fifo.PopRange(reinterpret_cast(temp.data()), m_data_in_fifo.GetSize()); const u16* src = temp.data(); const u16* src_end = src + temp.size(); if (m_status.data_output_depth <= DataOutputDepth_8Bit) { while (src != src_end) { src = DecodeMonoMacroblock(src, src_end); Log_DevPrintf("Decoded mono macroblock"); } } else { while (src != src_end) { u32 old_offs = static_cast(src - temp.data()); src = DecodeColoredMacroblock(src, src_end); Log_DevPrintf("Decoded colour macroblock, ptr was %u, now %u", old_offs, static_cast(src - temp.data())); } } } const u16* MDEC::DecodeMonoMacroblock(const u16* src, const u16* src_end) { std::array Yblk; if (!rl_decode_block(Yblk.data(), src, src_end, m_iq_y.data())) return src_end; std::array out_r; y_to_mono(Yblk, out_r); switch (m_status.data_output_depth) { case DataOutputDepth_4Bit: { const u8* in_ptr = out_r.data(); for (u32 i = 0; i < (64 / 8); i++) { u32 value = ZeroExtend32(*(in_ptr++) >> 4); value |= ZeroExtend32(*(in_ptr++) >> 4) << 4; value |= ZeroExtend32(*(in_ptr++) >> 4) << 8; value |= ZeroExtend32(*(in_ptr++) >> 4) << 12; value |= ZeroExtend32(*(in_ptr++) >> 4) << 16; value |= ZeroExtend32(*(in_ptr++) >> 4) << 20; value |= ZeroExtend32(*(in_ptr++) >> 4) << 24; value |= ZeroExtend32(*(in_ptr++) >> 4) << 28; m_data_out_fifo.Push(value); } } break; case DataOutputDepth_8Bit: { const u8* in_ptr = out_r.data(); for (u32 i = 0; i < (64 / 4); i++) { u32 value = ZeroExtend32(*in_ptr++); value |= ZeroExtend32(*in_ptr++) << 8; value |= ZeroExtend32(*in_ptr++) << 16; value |= ZeroExtend32(*in_ptr++) << 24; m_data_out_fifo.Push(value); } } break; default: break; } return src; } const u16* MDEC::DecodeColoredMacroblock(const u16* src, const u16* src_end) { std::array Crblk; std::array Cbblk; std::array, 4> Yblk; std::array out_rgb; if (!rl_decode_block(Crblk.data(), src, src_end, m_iq_uv.data()) || !rl_decode_block(Cbblk.data(), src, src_end, m_iq_uv.data()) || !rl_decode_block(Yblk[0].data(), src, src_end, m_iq_y.data()) || !rl_decode_block(Yblk[1].data(), src, src_end, m_iq_y.data()) || !rl_decode_block(Yblk[2].data(), src, src_end, m_iq_y.data()) || !rl_decode_block(Yblk[3].data(), src, src_end, m_iq_y.data())) { return src_end; } yuv_to_rgb(0, 0, Crblk, Cbblk, Yblk[0], out_rgb); yuv_to_rgb(8, 0, Crblk, Cbblk, Yblk[1], out_rgb); yuv_to_rgb(0, 8, Crblk, Cbblk, Yblk[2], out_rgb); yuv_to_rgb(8, 8, Crblk, Cbblk, Yblk[3], out_rgb); switch (m_status.data_output_depth) { case DataOutputDepth_24Bit: { // pack tightly u32 index = 0; u32 state = 0; u32 rgb = 0; while (index < out_rgb.size()) { switch (state) { case 0: rgb = out_rgb[index++]; // RGB- state = 1; break; case 1: rgb |= (out_rgb[index] & 0xFF) << 24; // RGBR m_data_out_fifo.Push(rgb); rgb = out_rgb[index] >> 8; // GB-- index++; state = 2; break; case 2: rgb |= out_rgb[index] << 16; // GBRG m_data_out_fifo.Push(rgb); rgb = out_rgb[index] >> 16; // B--- index++; state = 3; break; case 3: rgb |= out_rgb[index] << 8; // BRGB m_data_out_fifo.Push(rgb); index++; state = 0; break; } } break; } case DataOutputDepth_15Bit: { const u16 a = ZeroExtend16(m_status.data_output_bit15.GetValue()); for (u32 i = 0; i < static_cast(out_rgb.size());) { u32 color = out_rgb[i++]; u16 r = Truncate16((color >> 3) & 0x1Fu); u16 g = Truncate16((color >> 11) & 0x1Fu); u16 b = Truncate16((color >> 19) & 0x1Fu); const u16 color15a = r | (g << 5) | (b << 10) | (a << 15); color = out_rgb[i++]; r = Truncate16((color >> 3) & 0x1Fu); g = Truncate16((color >> 11) & 0x1Fu); b = Truncate16((color >> 19) & 0x1Fu); const u16 color15b = r | (g << 5) | (b << 10) | (a << 15); m_data_out_fifo.Push(ZeroExtend32(color15a) | (ZeroExtend32(color15b) << 16)); } } break; default: break; } return src; } static constexpr std::array zigzag = {{0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63}}; static constexpr std::array zagzig = {{0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63}}; bool MDEC::rl_decode_block(s16* blk, const u16*& src, const u16* src_end, const u8* qt) { std::fill_n(blk, 64, s16(0)); // skip padding u16 n; for (;;) { if (src == src_end) return false; n = *(src++); if (n == 0xFE00) continue; else break; } u32 k = 0; u16 q_scale = (n >> 10) & 0x3F; s32 val = SignExtendN<10, s32>(static_cast(n & 0x3FF)) * static_cast(ZeroExtend32(qt[k])); for (;;) { if (q_scale == 0) val = SignExtendN<10, s32>(static_cast(n & 0x3FF)) * 2; val = std::clamp(val, -0x400, 0x3FF); // val = val * static_cast(ZeroExtend32(scalezag[i])); if (q_scale > 0) blk[zagzig[k]] = static_cast(val); else if (q_scale == 0) blk[k] = static_cast(val); if (src == src_end) break; n = *(src++); k += ((n >> 10) & 0x3F) + 1; if (k >= 64) break; val = (SignExtendN<10, s32>(static_cast(n & 0x3FF)) * static_cast(ZeroExtend32(qt[k])) * static_cast(q_scale) + 4) / 8; } #undef READ_SRC // insufficient coefficients if (k < 64) { Log_DebugPrintf("Only %u of 64 coefficients in block, skipping", k); return false; } IDCT(blk); return true; } void MDEC::IDCT(s16* blk) { std::array temp_buffer; for (u32 x = 0; x < 8; x++) { for (u32 y = 0; y < 8; y++) { s64 sum = 0; for (u32 u = 0; u < 8; u++) sum += s32(blk[u * 8 + x]) * s32(m_scale_table[u * 8 + y]); temp_buffer[x + y * 8] = sum; } } for (u32 x = 0; x < 8; x++) { for (u32 y = 0; y < 8; y++) { s64 sum = 0; for (u32 u = 0; u < 8; u++) sum += s64(temp_buffer[u + y * 8]) * s32(m_scale_table[u * 8 + x]); blk[x + y * 8] = static_cast(std::clamp(SignExtendN<9, s32>((sum >> 32) + ((sum >> 31) & 1)), -128, 127)); } } } void MDEC::yuv_to_rgb(u32 xx, u32 yy, const std::array& Crblk, const std::array& Cbblk, const std::array& Yblk, std::array& rgb_out) { for (u32 y = 0; y < 8; y++) { for (u32 x = 0; x < 8; x++) { s16 R = Crblk[((x + xx) / 2) + ((y + yy) / 2) * 8]; s16 B = Cbblk[((x + xx) / 2) + ((y + yy) / 2) * 8]; s16 G = static_cast((-0.3437f * static_cast(B)) + (-0.7143f * static_cast(R))); R = static_cast(1.402f * static_cast(R)); B = static_cast(1.772f * static_cast(B)); s16 Y = Yblk[x + y * 8]; R = static_cast(std::clamp(static_cast(Y) + R, -128, 127)); G = static_cast(std::clamp(static_cast(Y) + G, -128, 127)); B = static_cast(std::clamp(static_cast(Y) + B, -128, 127)); // TODO: Signed output R += 128; G += 128; B += 128; rgb_out[(x + xx) + ((y + yy) * 16)] = ZeroExtend32(static_cast(R)) | (ZeroExtend32(static_cast(G)) << 8) | (ZeroExtend32(static_cast(B)) << 16); } } } void MDEC::y_to_mono(const std::array& Yblk, std::array& r_out) { for (u32 i = 0; i < 64; i++) { s16 Y = Yblk[i]; Y = SignExtendN<10, s16>(Y); Y = std::clamp(Y, -128, 127); Y += 128; r_out[i] = static_cast(Y); } } void MDEC::HandleSetQuantTableCommand() { // TODO: Remove extra copies.. std::array packed_data; m_data_in_fifo.PopRange(packed_data.data(), static_cast(packed_data.size())); std::memcpy(m_iq_y.data(), packed_data.data(), m_iq_y.size()); if (!m_data_in_fifo.IsEmpty()) { m_data_in_fifo.PopRange(packed_data.data(), static_cast(packed_data.size())); std::memcpy(m_iq_uv.data(), packed_data.data(), m_iq_uv.size()); } } void MDEC::HandleSetScaleCommand() { // TODO: Remove extra copies.. std::array packed_data; m_data_in_fifo.PopRange(packed_data.data(), static_cast(packed_data.size())); std::memcpy(m_scale_table.data(), packed_data.data(), m_scale_table.size() * sizeof(s16)); }