#include "gpu_hw_shadergen.h" GPU_HW_ShaderGen::GPU_HW_ShaderGen(Backend backend, u32 resolution_scale, bool true_color) : m_backend(backend), m_resolution_scale(resolution_scale), m_true_color(true_color) { } GPU_HW_ShaderGen::~GPU_HW_ShaderGen() = default; static void DefineMacro(std::stringstream& ss, const char* name, bool enabled) { if (enabled) ss << "#define " << name << " 1\n"; else ss << "/* #define " << name << " 0 */\n"; } void GPU_HW_ShaderGen::GenerateShaderHeader(std::stringstream& ss) { ss << "#version 330 core\n\n"; ss << "const int RESOLUTION_SCALE = " << m_resolution_scale << ";\n"; ss << "const ivec2 VRAM_SIZE = ivec2(" << GPU::VRAM_WIDTH << ", " << GPU::VRAM_HEIGHT << ") * RESOLUTION_SCALE;\n"; ss << "const vec2 RCP_VRAM_SIZE = vec2(1.0, 1.0) / vec2(VRAM_SIZE);\n"; ss << R"( float fixYCoord(float y) { return 1.0 - RCP_VRAM_SIZE.y - y; } int fixYCoord(int y) { return VRAM_SIZE.y - y - 1; } uint RGBA8ToRGBA5551(vec4 v) { uint r = uint(v.r * 255.0) >> 3; uint g = uint(v.g * 255.0) >> 3; uint b = uint(v.b * 255.0) >> 3; uint a = (v.a != 0.0) ? 1u : 0u; return (r) | (g << 5) | (b << 10) | (a << 15); } vec4 RGBA5551ToRGBA8(uint v) { uint r = (v & 31u); uint g = ((v >> 5) & 31u); uint b = ((v >> 10) & 31u); uint a = ((v >> 15) & 1u); // repeat lower bits r = (r << 3) | (r & 7u); g = (g << 3) | (g & 7u); b = (b << 3) | (b & 7u); return vec4(float(r) / 255.0, float(g) / 255.0, float(b) / 255.0, float(a)); } )"; } void GPU_HW_ShaderGen::GenerateBatchUniformBuffer(std::stringstream& ss) { ss << R"( uniform UBOBlock { ivec2 u_pos_offset; uvec2 u_texture_window_mask; uvec2 u_texture_window_offset; float u_src_alpha_factor; float u_dst_alpha_factor; }; )"; } std::string GPU_HW_ShaderGen::GenerateBatchVertexShader(bool textured) { std::stringstream ss; GenerateShaderHeader(ss); DefineMacro(ss, "TEXTURED", textured); GenerateBatchUniformBuffer(ss); ss << R"( in ivec2 a_pos; in vec4 a_col0; in int a_texcoord; in int a_texpage; out vec3 v_col0; #if TEXTURED out vec2 v_tex0; flat out ivec4 v_texpage; #endif void main() { // 0..+1023 -> -1..1 float pos_x = (float(a_pos.x + u_pos_offset.x) / 512.0) - 1.0; float pos_y = (float(a_pos.y + u_pos_offset.y) / -256.0) + 1.0; gl_Position = vec4(pos_x, pos_y, 0.0, 1.0); v_col0 = a_col0.rgb; #if TEXTURED v_tex0 = vec2(float(a_texcoord & 0xFFFF), float(a_texcoord >> 16)) / vec2(255.0); // base_x,base_y,palette_x,palette_y v_texpage.x = (a_texpage & 15) * 64 * RESOLUTION_SCALE; v_texpage.y = ((a_texpage >> 4) & 1) * 256 * RESOLUTION_SCALE; v_texpage.z = ((a_texpage >> 16) & 63) * 16 * RESOLUTION_SCALE; v_texpage.w = ((a_texpage >> 22) & 511) * RESOLUTION_SCALE; #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateBatchFragmentShader(GPU_HW::BatchRenderMode transparency, GPU::TextureMode texture_mode, bool dithering) { const GPU::TextureMode actual_texture_mode = texture_mode & ~GPU::TextureMode::RawTextureBit; const bool raw_texture = (texture_mode & GPU::TextureMode::RawTextureBit) == GPU::TextureMode::RawTextureBit; std::stringstream ss; GenerateShaderHeader(ss); GenerateBatchUniformBuffer(ss); DefineMacro(ss, "TRANSPARENCY", transparency != GPU_HW::BatchRenderMode::TransparencyDisabled); DefineMacro(ss, "TRANSPARENCY_ONLY_OPAQUE", transparency == GPU_HW::BatchRenderMode::OnlyOpaque); DefineMacro(ss, "TRANSPARENCY_ONLY_TRANSPARENCY", transparency == GPU_HW::BatchRenderMode::OnlyTransparent); DefineMacro(ss, "TEXTURED", actual_texture_mode != GPU::TextureMode::Disabled); DefineMacro(ss, "PALETTE", actual_texture_mode == GPU::TextureMode::Palette4Bit || actual_texture_mode == GPU::TextureMode::Palette8Bit); DefineMacro(ss, "PALETTE_4_BIT", actual_texture_mode == GPU::TextureMode::Palette4Bit); DefineMacro(ss, "PALETTE_8_BIT", actual_texture_mode == GPU::TextureMode::Palette8Bit); DefineMacro(ss, "RAW_TEXTURE", raw_texture); DefineMacro(ss, "DITHERING", dithering); DefineMacro(ss, "TRUE_COLOR", m_true_color); ss << "const int[16] s_dither_values = int[16]( "; for (u32 i = 0; i < 16; i++) { if (i > 0) ss << ", "; ss << GPU::DITHER_MATRIX[i / 4][i % 4]; } ss << " );\n"; ss << R"( in vec3 v_col0; #if TEXTURED in vec2 v_tex0; flat in ivec4 v_texpage; uniform sampler2D samp0; #endif out vec4 o_col0; ivec3 ApplyDithering(ivec3 icol) { ivec2 fc = (ivec2(gl_FragCoord.xy) / ivec2(RESOLUTION_SCALE, RESOLUTION_SCALE)) & ivec2(3, 3); int offset = s_dither_values[fc.y * 4 + fc.x]; return icol + ivec3(offset, offset, offset); } ivec3 TruncateTo15Bit(ivec3 icol) { icol = clamp(icol, ivec3(0, 0, 0), ivec3(255, 255, 255)); return (icol & ivec3(~7, ~7, ~7)) | ((icol >> 3) & ivec3(7, 7, 7)); } #if TEXTURED ivec2 ApplyNativeTextureWindow(ivec2 coords) { uint x = (uint(coords.x) & ~(u_texture_window_mask.x * 8u)) | ((u_texture_window_offset.x & u_texture_window_mask.x) * 8u); uint y = (uint(coords.y) & ~(u_texture_window_mask.y * 8u)) | ((u_texture_window_offset.y & u_texture_window_mask.y) * 8u); return ivec2(int(x), int(y)); } ivec2 ApplyTextureWindow(ivec2 coords) { if (RESOLUTION_SCALE == 1) return ApplyNativeTextureWindow(coords); ivec2 downscaled_coords = coords / ivec2(RESOLUTION_SCALE); ivec2 coords_offset = coords % ivec2(RESOLUTION_SCALE); return (ApplyNativeTextureWindow(downscaled_coords) * ivec2(RESOLUTION_SCALE)) + coords_offset; } ivec4 SampleFromVRAM(vec2 coord) { // from 0..1 to 0..255 ivec2 icoord = ivec2(coord * vec2(255 * RESOLUTION_SCALE)); icoord = ApplyTextureWindow(icoord); // adjust for tightly packed palette formats ivec2 index_coord = icoord; #if PALETTE_4_BIT index_coord.x /= 4; #elif PALETTE_8_BIT index_coord.x /= 2; #endif // fixup coords ivec2 vicoord = ivec2(v_texpage.x + index_coord.x, fixYCoord(v_texpage.y + index_coord.y)); // load colour/palette vec4 color = texelFetch(samp0, vicoord, 0); // apply palette #if PALETTE #if PALETTE_4_BIT int subpixel = int(icoord.x / RESOLUTION_SCALE) & 3; uint vram_value = RGBA8ToRGBA5551(color); int palette_index = int((vram_value >> (subpixel * 4)) & 0x0Fu); #elif PALETTE_8_BIT int subpixel = int(icoord.x / RESOLUTION_SCALE) & 1; uint vram_value = RGBA8ToRGBA5551(color); int palette_index = int((vram_value >> (subpixel * 8)) & 0xFFu); #endif ivec2 palette_icoord = ivec2(v_texpage.z + (palette_index * RESOLUTION_SCALE), fixYCoord(v_texpage.w)); color = texelFetch(samp0, palette_icoord, 0); #endif return ivec4(color * vec4(255.0, 255.0, 255.0, 255.0)); } #endif void main() { ivec3 vertcol = ivec3(v_col0 * vec3(255.0, 255.0, 255.0)); bool semitransparent; bool new_mask_bit; ivec3 icolor; #if TEXTURED ivec4 texcol = SampleFromVRAM(v_tex0); if (texcol == ivec4(0.0, 0.0, 0.0, 0.0)) discard; // Grab semitransparent bit from the texture color. semitransparent = (texcol.a != 0); #if RAW_TEXTURE icolor = texcol.rgb; #else icolor = (vertcol * texcol.rgb) >> 7; #endif #else // All pixels are semitransparent for untextured polygons. semitransparent = true; icolor = vertcol; #endif // Apply dithering #if DITHERING icolor = ApplyDithering(icolor); #endif // Clip to 15-bit range #if !TRUE_COLOR icolor = TruncateTo15Bit(icolor); #endif // Normalize vec3 color = vec3(icolor) / vec3(255.0, 255.0, 255.0); #if TRANSPARENCY // Apply semitransparency. If not a semitransparent texel, destination alpha is ignored. if (semitransparent) { #if TRANSPARENCY_ONLY_OPAQUE discard; #endif o_col0 = vec4(color * u_src_alpha_factor, u_dst_alpha_factor); } else { #if TRANSPARENCY_ONLY_TRANSPARENCY discard; #endif o_col0 = vec4(color, 0.0); } #else o_col0 = vec4(color, 0.0); #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateScreenQuadVertexShader() { std::stringstream ss; GenerateShaderHeader(ss); ss << R"( out vec2 v_tex0; void main() { v_tex0 = vec2(float((gl_VertexID << 1) & 2), float(gl_VertexID & 2)); gl_Position = vec4(v_tex0 * vec2(2.0f, -2.0f) + vec2(-1.0f, 1.0f), 0.0f, 1.0f); gl_Position.y = -gl_Position.y; } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateFillFragmentShader() { std::stringstream ss; GenerateShaderHeader(ss); ss << R"( uniform vec4 fill_color; out vec4 o_col0; void main() { o_col0 = fill_color; } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateDisplayFragmentShader(bool depth_24bit, bool interlaced) { std::stringstream ss; GenerateShaderHeader(ss); DefineMacro(ss, "DEPTH_24BIT", depth_24bit); DefineMacro(ss, "INTERLACED", interlaced); ss << R"( in vec2 v_tex0; out vec4 o_col0; uniform sampler2D samp0; uniform ivec3 u_base_coords; ivec2 GetCoords(vec2 fragcoord) { ivec2 icoords = ivec2(fragcoord); #if INTERLACED if ((((icoords.y - u_base_coords.z) / RESOLUTION_SCALE) & 1) != 0) discard; #endif return icoords; } void main() { ivec2 icoords = GetCoords(gl_FragCoord.xy); #if DEPTH_24BIT // compute offset in dwords from the start of the 24-bit values ivec2 base = ivec2(u_base_coords.x, u_base_coords.y + icoords.y); int xoff = int(icoords.x); int dword_index = (xoff / 2) + (xoff / 4); // sample two adjacent dwords, or four 16-bit values as the 24-bit value will lie somewhere between these uint s0 = RGBA8ToRGBA5551(texelFetch(samp0, ivec2(base.x + dword_index * 2 + 0, base.y), 0)); uint s1 = RGBA8ToRGBA5551(texelFetch(samp0, ivec2(base.x + dword_index * 2 + 1, base.y), 0)); uint s2 = RGBA8ToRGBA5551(texelFetch(samp0, ivec2(base.x + (dword_index + 1) * 2 + 0, base.y), 0)); uint s3 = RGBA8ToRGBA5551(texelFetch(samp0, ivec2(base.x + (dword_index + 1) * 2 + 1, base.y), 0)); // select the bit for this pixel depending on its offset in the 4-pixel block uint r, g, b; int block_offset = xoff & 3; if (block_offset == 0) { r = s0 & 0xFFu; g = s0 >> 8; b = s1 & 0xFFu; } else if (block_offset == 1) { r = s1 >> 8; g = s2 & 0xFFu; b = s2 >> 8; } else if (block_offset == 2) { r = s1 & 0xFFu; g = s1 >> 8; b = s2 & 0xFFu; } else { r = s2 >> 8; g = s3 & 0xFFu; b = s3 >> 8; } // and normalize o_col0 = vec4(float(r) / 255.0, float(g) / 255.0, float(b) / 255.0, 1.0); #else // load and return o_col0 = texelFetch(samp0, u_base_coords.xy + icoords, 0); #endif } )"; return ss.str(); } std::string GPU_HW_ShaderGen::GenerateVRAMWriteFragmentShader() { std::stringstream ss; GenerateShaderHeader(ss); ss << R"( uniform ivec2 u_base_coords; uniform ivec2 u_size; uniform usamplerBuffer samp0; out vec4 o_col0; void main() { ivec2 coords = ivec2(gl_FragCoord.xy) / ivec2(RESOLUTION_SCALE, RESOLUTION_SCALE); ivec2 offset = coords - u_base_coords; offset.y = u_size.y - offset.y - 1; int buffer_offset = offset.y * u_size.x + offset.x; uint value = texelFetch(samp0, buffer_offset).r; o_col0 = RGBA5551ToRGBA8(value); })"; return ss.str(); }