#include "gpu_hw_opengl.h" #include "common/assert.h" #include "common/log.h" #include "common/timer.h" #include "gpu_hw_shadergen.h" #include "host_display.h" #include "system.h" Log_SetChannel(GPU_HW_OpenGL); GPU_HW_OpenGL::GPU_HW_OpenGL() : GPU_HW() {} GPU_HW_OpenGL::~GPU_HW_OpenGL() { // Destroy objects which don't have destructors to clean them up if (m_vram_fbo_id != 0) glDeleteFramebuffers(1, &m_vram_fbo_id); if (m_vao_id != 0) glDeleteVertexArrays(1, &m_vao_id); if (m_attributeless_vao_id != 0) glDeleteVertexArrays(1, &m_attributeless_vao_id); if (m_texture_buffer_r16ui_texture != 0) glDeleteTextures(1, &m_texture_buffer_r16ui_texture); if (m_host_display) { m_host_display->ClearDisplayTexture(); ResetGraphicsAPIState(); } // One of our programs might've been bound. GL::Program::ResetLastProgram(); glUseProgram(0); } bool GPU_HW_OpenGL::Initialize(HostDisplay* host_display) { if (host_display->GetRenderAPI() != HostDisplay::RenderAPI::OpenGL && host_display->GetRenderAPI() != HostDisplay::RenderAPI::OpenGLES) { Log_ErrorPrintf("Host render API type is incompatible"); return false; } SetCapabilities(host_display); if (!GPU_HW::Initialize(host_display)) return false; if (!CreateFramebuffer()) { Log_ErrorPrintf("Failed to create framebuffer"); return false; } if (!CreateVertexBuffer()) { Log_ErrorPrintf("Failed to create vertex buffer"); return false; } if (!CreateUniformBuffer()) { Log_ErrorPrintf("Failed to create uniform buffer"); return false; } if (!CreateTextureBuffer()) { Log_ErrorPrintf("Failed to create texture buffer"); return false; } if (!CompilePrograms()) { Log_ErrorPrintf("Failed to compile programs"); return false; } RestoreGraphicsAPIState(); return true; } void GPU_HW_OpenGL::Reset() { GPU_HW::Reset(); ClearFramebuffer(); } void GPU_HW_OpenGL::ResetGraphicsAPIState() { GPU_HW::ResetGraphicsAPIState(); glEnable(GL_CULL_FACE); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glBindVertexArray(0); m_uniform_stream_buffer->Unbind(); } void GPU_HW_OpenGL::RestoreGraphicsAPIState() { glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id); glViewport(0, 0, m_vram_texture.GetWidth(), m_vram_texture.GetHeight()); glDisable(GL_CULL_FACE); glEnable(GL_DEPTH_TEST); glEnable(GL_SCISSOR_TEST); glDepthMask(GL_TRUE); glBindVertexArray(m_vao_id); m_uniform_stream_buffer->Bind(); m_vram_read_texture.Bind(); SetBlendMode(); SetDepthFunc(); SetScissorFromDrawingArea(); m_batch_ubo_dirty = true; } void GPU_HW_OpenGL::UpdateSettings() { GPU_HW::UpdateSettings(); bool framebuffer_changed, shaders_changed; UpdateHWSettings(&framebuffer_changed, &shaders_changed); if (framebuffer_changed) { RestoreGraphicsAPIState(); ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT); ResetGraphicsAPIState(); m_host_display->ClearDisplayTexture(); CreateFramebuffer(); } if (shaders_changed) CompilePrograms(); if (framebuffer_changed) { RestoreGraphicsAPIState(); UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, m_vram_ptr); UpdateDepthBufferFromMaskBit(); UpdateDisplay(); ResetGraphicsAPIState(); } } void GPU_HW_OpenGL::MapBatchVertexPointer(u32 required_vertices) { DebugAssert(!m_batch_start_vertex_ptr); const GL::StreamBuffer::MappingResult res = m_vertex_stream_buffer->Map(sizeof(BatchVertex), required_vertices * sizeof(BatchVertex)); m_batch_start_vertex_ptr = static_cast(res.pointer); m_batch_current_vertex_ptr = m_batch_start_vertex_ptr; m_batch_end_vertex_ptr = m_batch_start_vertex_ptr + res.space_aligned; m_batch_base_vertex = res.index_aligned; } void GPU_HW_OpenGL::UnmapBatchVertexPointer(u32 used_vertices) { DebugAssert(m_batch_start_vertex_ptr); m_vertex_stream_buffer->Unmap(used_vertices * sizeof(BatchVertex)); m_vertex_stream_buffer->Bind(); m_batch_start_vertex_ptr = nullptr; m_batch_end_vertex_ptr = nullptr; m_batch_current_vertex_ptr = nullptr; } std::tuple GPU_HW_OpenGL::ConvertToFramebufferCoordinates(s32 x, s32 y) { return std::make_tuple(x, static_cast(static_cast(VRAM_HEIGHT) - y)); } void GPU_HW_OpenGL::SetCapabilities(HostDisplay* host_display) { GLint max_texture_size = VRAM_WIDTH; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size); Log_InfoPrintf("Max texture size: %dx%d", max_texture_size, max_texture_size); m_max_resolution_scale = static_cast(max_texture_size / VRAM_WIDTH); m_max_multisamples = 1; if (GLAD_GL_ARB_texture_storage || GLAD_GL_ES_VERSION_3_1) { glGetIntegerv(GL_MAX_SAMPLES, reinterpret_cast(&m_max_multisamples)); if (m_max_multisamples == 0) m_max_multisamples = 1; } m_supports_per_sample_shading = GLAD_GL_ARB_sample_shading; Log_InfoPrintf("Per-sample shading: %s", m_supports_per_sample_shading ? "supported" : "not supported"); Log_InfoPrintf("Max multisamples: %u", m_max_multisamples); glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, reinterpret_cast(&m_uniform_buffer_alignment)); Log_InfoPrintf("Uniform buffer offset alignment: %u", m_uniform_buffer_alignment); if (!GLAD_GL_VERSION_4_3 && !GLAD_GL_EXT_copy_image) Log_WarningPrintf("GL_EXT_copy_image missing, this may affect performance."); #ifdef __APPLE__ // Partial texture buffer uploads appear to be broken in macOS's OpenGL driver. m_supports_texture_buffer = false; #else m_supports_texture_buffer = (GLAD_GL_VERSION_3_1 || GLAD_GL_ES_VERSION_3_2); #endif if (m_supports_texture_buffer) { glGetIntegerv(GL_MAX_TEXTURE_BUFFER_SIZE, reinterpret_cast(&m_max_texture_buffer_size)); Log_InfoPrintf("Max texel buffer size: %u", m_max_texture_buffer_size); if (m_max_texture_buffer_size < VRAM_WIDTH * VRAM_HEIGHT) { Log_WarningPrintf("Maximum texture buffer size is less than VRAM size, not using texel buffers."); m_supports_texture_buffer = false; } } if (!m_supports_texture_buffer || m_max_texture_buffer_size < VRAM_WIDTH * VRAM_HEIGHT) { // Try SSBOs. GLint64 max_ssbo_size = 0; if (GLAD_GL_VERSION_4_3 || GLAD_GL_ES_VERSION_3_1 || GLAD_GL_ARB_shader_storage_buffer_object) glGetInteger64v(GL_MAX_SHADER_STORAGE_BLOCK_SIZE, &max_ssbo_size); Log_InfoPrintf("Max shader storage buffer size: %u", max_ssbo_size); m_use_ssbo_for_vram_writes = (max_ssbo_size >= (VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16))); if (m_use_ssbo_for_vram_writes) { Log_InfoPrintf("Using shader storage buffers for VRAM writes."); } else { Log_WarningPrintf( "Texture buffers are not supported, VRAM writes will be slower and multisampling will be unavailable."); m_max_multisamples = 1; m_supports_per_sample_shading = false; } } int max_dual_source_draw_buffers = 0; glGetIntegerv(GL_MAX_DUAL_SOURCE_DRAW_BUFFERS, &max_dual_source_draw_buffers); m_supports_dual_source_blend = (max_dual_source_draw_buffers > 0) && (GLAD_GL_VERSION_3_3 || GLAD_GL_ARB_blend_func_extended || GLAD_GL_EXT_blend_func_extended); if (!m_supports_dual_source_blend) Log_WarningPrintf("Dual-source blending is not supported, this may break some mask effects."); m_supports_geometry_shaders = GLAD_GL_VERSION_3_2 || GLAD_GL_ARB_geometry_shader4 || GLAD_GL_ES_VERSION_3_2; if (!m_supports_geometry_shaders) { Log_WarningPrintf("Geometry shaders are not supported, line rendering at higher resolutions may be incorrect. We " "will try to use glLineWidth() to emulate this, but the accuracy depends on your driver."); std::array line_width_range = {{1, 1}}; glGetIntegerv(GL_ALIASED_LINE_WIDTH_RANGE, line_width_range.data()); Log_InfoPrintf("Max line width: %d", line_width_range[1]); m_max_resolution_scale = std::min(m_max_resolution_scale, line_width_range[1]); } } bool GPU_HW_OpenGL::CreateFramebuffer() { // scale vram size to internal resolution const u32 texture_width = VRAM_WIDTH * m_resolution_scale; const u32 texture_height = VRAM_HEIGHT * m_resolution_scale; const u32 multisamples = m_multisamples; if (!m_vram_texture.Create(texture_width, texture_height, multisamples, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false, true) || !m_vram_depth_texture.Create(texture_width, texture_height, multisamples, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, nullptr, false) || !m_vram_read_texture.Create(texture_width, texture_height, 1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false, true) || !m_vram_read_texture.CreateFramebuffer() || !m_vram_encoding_texture.Create(VRAM_WIDTH, VRAM_HEIGHT, 1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false) || !m_vram_encoding_texture.CreateFramebuffer() || !m_display_texture.Create(texture_width, texture_height, 1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false) || !m_display_texture.CreateFramebuffer()) { return false; } glGenFramebuffers(1, &m_vram_fbo_id); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_vram_texture.GetGLTarget(), m_vram_texture.GetGLId(), 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, m_vram_depth_texture.GetGLTarget(), m_vram_depth_texture.GetGLId(), 0); Assert(glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); SetFullVRAMDirtyRectangle(); return true; } void GPU_HW_OpenGL::ClearFramebuffer() { glDisable(GL_SCISSOR_TEST); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); IsGLES() ? glClearDepthf(0.0f) : glClearDepth(0.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); SetFullVRAMDirtyRectangle(); } bool GPU_HW_OpenGL::CreateVertexBuffer() { m_vertex_stream_buffer = GL::StreamBuffer::Create(GL_ARRAY_BUFFER, VERTEX_BUFFER_SIZE); if (!m_vertex_stream_buffer) return false; m_vertex_stream_buffer->Bind(); glGenVertexArrays(1, &m_vao_id); glBindVertexArray(m_vao_id); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); glEnableVertexAttribArray(4); glVertexAttribPointer(0, 4, GL_FLOAT, false, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, x))); glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, color))); glVertexAttribIPointer(2, 1, GL_UNSIGNED_INT, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, u))); glVertexAttribIPointer(3, 1, GL_UNSIGNED_INT, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, texpage))); glVertexAttribPointer(4, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex), reinterpret_cast(offsetof(BatchVertex, uv_limits))); glBindVertexArray(0); glGenVertexArrays(1, &m_attributeless_vao_id); return true; } bool GPU_HW_OpenGL::CreateUniformBuffer() { m_uniform_stream_buffer = GL::StreamBuffer::Create(GL_UNIFORM_BUFFER, UNIFORM_BUFFER_SIZE); if (!m_uniform_stream_buffer) return false; return true; } bool GPU_HW_OpenGL::CreateTextureBuffer() { // We use the pixel unpack buffer here because we share it with CPU-decoded VRAM writes. const GLenum target = (m_use_ssbo_for_vram_writes ? GL_SHADER_STORAGE_BUFFER : (m_supports_texture_buffer ? GL_TEXTURE_BUFFER : GL_PIXEL_UNPACK_BUFFER)); m_texture_stream_buffer = GL::StreamBuffer::Create(target, VRAM_UPDATE_TEXTURE_BUFFER_SIZE); if (!m_texture_stream_buffer) return false; if (m_max_texture_buffer_size > 0) { glGenTextures(1, &m_texture_buffer_r16ui_texture); glBindTexture(GL_TEXTURE_BUFFER, m_texture_buffer_r16ui_texture); glTexBuffer(GL_TEXTURE_BUFFER, GL_R16UI, m_texture_stream_buffer->GetGLBufferId()); } m_texture_stream_buffer->Unbind(); return true; } bool GPU_HW_OpenGL::CompilePrograms() { GL::ShaderCache shader_cache; shader_cache.Open(IsGLES(), g_host_interface->GetShaderCacheBasePath()); const bool use_binding_layout = GPU_HW_ShaderGen::UseGLSLBindingLayout(); GPU_HW_ShaderGen shadergen(m_host_display->GetRenderAPI(), m_resolution_scale, m_multisamples, m_per_sample_shading, m_true_color, m_scaled_dithering, m_texture_filtering, m_using_uv_limits, m_supports_dual_source_blend); Common::Timer compile_time; const int progress_total = (4 * 9 * 2 * 2) + (2 * 3) + 5; int progress_value = 0; #define UPDATE_PROGRESS() \ do \ { \ progress_value++; \ if (compile_time.GetTimeSeconds() >= 1.0f) \ { \ compile_time.Reset(); \ g_host_interface->DisplayLoadingScreen("Compiling Shaders", 0, progress_total, progress_value); \ } \ } while (0) for (u32 render_mode = 0; render_mode < 4; render_mode++) { for (u32 texture_mode = 0; texture_mode < 9; texture_mode++) { for (u8 dithering = 0; dithering < 2; dithering++) { for (u8 interlacing = 0; interlacing < 2; interlacing++) { const bool textured = (static_cast(texture_mode) != TextureMode::Disabled); const std::string batch_vs = shadergen.GenerateBatchVertexShader(textured); const std::string fs = shadergen.GenerateBatchFragmentShader( static_cast(render_mode), static_cast(texture_mode), ConvertToBoolUnchecked(dithering), ConvertToBoolUnchecked(interlacing)); const auto link_callback = [this, textured, use_binding_layout](GL::Program& prog) { if (!use_binding_layout) { prog.BindAttribute(0, "a_pos"); prog.BindAttribute(1, "a_col0"); if (textured) { prog.BindAttribute(2, "a_texcoord"); prog.BindAttribute(3, "a_texpage"); prog.BindAttribute(4, "a_uv_limits"); } if (!IsGLES() || m_supports_dual_source_blend) { if (m_supports_dual_source_blend) { prog.BindFragDataIndexed(0, "o_col0"); prog.BindFragDataIndexed(1, "o_col1"); } else { prog.BindFragData(0, "o_col0"); } } } }; std::optional prog = shader_cache.GetProgram(batch_vs, {}, fs, link_callback); if (!prog) return false; if (!use_binding_layout) { prog->BindUniformBlock("UBOBlock", 1); if (textured) { prog->Bind(); prog->Uniform1i("samp0", 0); } } m_render_programs[render_mode][texture_mode][dithering][interlacing] = std::move(*prog); UPDATE_PROGRESS(); } } } } for (u8 depth_24bit = 0; depth_24bit < 2; depth_24bit++) { for (u8 interlaced = 0; interlaced < 3; interlaced++) { const std::string vs = shadergen.GenerateScreenQuadVertexShader(); const std::string fs = shadergen.GenerateDisplayFragmentShader( ConvertToBoolUnchecked(depth_24bit), static_cast(interlaced), m_chroma_smoothing); std::optional prog = shader_cache.GetProgram(vs, {}, fs, [this, use_binding_layout](GL::Program& prog) { if (!IsGLES() && !use_binding_layout) prog.BindFragData(0, "o_col0"); }); if (!prog) return false; if (!use_binding_layout) { prog->BindUniformBlock("UBOBlock", 1); prog->Bind(); prog->Uniform1i("samp0", 0); } m_display_programs[depth_24bit][interlaced] = std::move(*prog); UPDATE_PROGRESS(); } } std::optional prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateInterlacedFillFragmentShader(), [this, use_binding_layout](GL::Program& prog) { if (!IsGLES() && !use_binding_layout) prog.BindFragData(0, "o_col0"); }); if (!prog) return false; if (!use_binding_layout) prog->BindUniformBlock("UBOBlock", 1); m_vram_interlaced_fill_program = std::move(*prog); UPDATE_PROGRESS(); prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateVRAMReadFragmentShader(), [this, use_binding_layout](GL::Program& prog) { if (!IsGLES() && !use_binding_layout) prog.BindFragData(0, "o_col0"); }); if (!prog) return false; if (!use_binding_layout) { prog->BindUniformBlock("UBOBlock", 1); prog->Bind(); prog->Uniform1i("samp0", 0); } m_vram_read_program = std::move(*prog); UPDATE_PROGRESS(); prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateVRAMCopyFragmentShader(), [this, use_binding_layout](GL::Program& prog) { if (!IsGLES() && !use_binding_layout) prog.BindFragData(0, "o_col0"); }); if (!prog) return false; if (!use_binding_layout) { prog->BindUniformBlock("UBOBlock", 1); prog->Bind(); prog->Uniform1i("samp0", 0); } m_vram_copy_program = std::move(*prog); UPDATE_PROGRESS(); prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateVRAMUpdateDepthFragmentShader()); if (!prog) return false; prog->Bind(); prog->Uniform1i("samp0", 0); m_vram_update_depth_program = std::move(*prog); UPDATE_PROGRESS(); if (m_supports_texture_buffer || m_use_ssbo_for_vram_writes) { prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateVRAMWriteFragmentShader(m_use_ssbo_for_vram_writes), [this, use_binding_layout](GL::Program& prog) { if (!IsGLES() && !use_binding_layout) prog.BindFragData(0, "o_col0"); }); if (!prog) return false; if (!use_binding_layout) { prog->BindUniformBlock("UBOBlock", 1); prog->Bind(); prog->Uniform1i("samp0", 0); } m_vram_write_program = std::move(*prog); } UPDATE_PROGRESS(); #undef UPDATE_PROGRESS return true; } void GPU_HW_OpenGL::DrawBatchVertices(BatchRenderMode render_mode, u32 base_vertex, u32 num_vertices) { const GL::Program& prog = m_render_programs[static_cast(render_mode)][static_cast(m_batch.texture_mode)] [BoolToUInt8(m_batch.dithering)][BoolToUInt8(m_batch.interlacing)]; prog.Bind(); if (m_current_transparency_mode != m_batch.transparency_mode || m_current_render_mode != render_mode) { m_current_transparency_mode = m_batch.transparency_mode; m_current_render_mode = render_mode; SetBlendMode(); } if (m_current_check_mask_before_draw != m_batch.check_mask_before_draw) { m_current_check_mask_before_draw = m_batch.check_mask_before_draw; SetDepthFunc(); } glDrawArrays(GL_TRIANGLES, m_batch_base_vertex, num_vertices); } void GPU_HW_OpenGL::SetBlendMode() { if (UseAlphaBlending(m_current_transparency_mode, m_current_render_mode)) { glEnable(GL_BLEND); glBlendEquationSeparate(m_current_transparency_mode == TransparencyMode::BackgroundMinusForeground ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD, GL_FUNC_ADD); glBlendFuncSeparate(GL_ONE, m_supports_dual_source_blend ? GL_SRC1_ALPHA : GL_SRC_ALPHA, GL_ONE, GL_ZERO); } else { glDisable(GL_BLEND); } } void GPU_HW_OpenGL::SetDepthFunc() { glDepthFunc(m_current_check_mask_before_draw ? GL_GEQUAL : GL_ALWAYS); } void GPU_HW_OpenGL::SetScissorFromDrawingArea() { int left, top, right, bottom; CalcScissorRect(&left, &top, &right, &bottom); const int width = right - left; const int height = bottom - top; const int x = left; const int y = m_vram_texture.GetHeight() - bottom; Log_DebugPrintf("SetScissor: (%d-%d, %d-%d)", x, x + width, y, y + height); glScissor(x, y, width, height); } void GPU_HW_OpenGL::UploadUniformBuffer(const void* data, u32 data_size) { const GL::StreamBuffer::MappingResult res = m_uniform_stream_buffer->Map(m_uniform_buffer_alignment, data_size); std::memcpy(res.pointer, data, data_size); m_uniform_stream_buffer->Unmap(data_size); glBindBufferRange(GL_UNIFORM_BUFFER, 1, m_uniform_stream_buffer->GetGLBufferId(), res.buffer_offset, data_size); m_renderer_stats.num_uniform_buffer_updates++; } void GPU_HW_OpenGL::ClearDisplay() { GPU_HW::ClearDisplay(); m_display_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER); glDisable(GL_SCISSOR_TEST); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id); } void GPU_HW_OpenGL::UpdateDisplay() { GPU_HW::UpdateDisplay(); if (g_settings.debugging.show_vram) { if (IsUsingMultisampling()) { UpdateVRAMReadTexture(); m_host_display->SetDisplayTexture( reinterpret_cast(static_cast(m_vram_read_texture.GetGLId())), m_vram_read_texture.GetWidth(), static_cast(m_vram_read_texture.GetHeight()), 0, m_vram_read_texture.GetHeight(), m_vram_read_texture.GetWidth(), -static_cast(m_vram_read_texture.GetHeight())); } else { m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_vram_texture.GetGLId())), m_vram_texture.GetWidth(), static_cast(m_vram_texture.GetHeight()), 0, m_vram_texture.GetHeight(), m_vram_texture.GetWidth(), -static_cast(m_vram_texture.GetHeight())); } m_host_display->SetDisplayParameters(VRAM_WIDTH, VRAM_HEIGHT, 0, 0, VRAM_WIDTH, VRAM_HEIGHT, static_cast(VRAM_WIDTH) / static_cast(VRAM_HEIGHT)); } else { const u32 resolution_scale = m_GPUSTAT.display_area_color_depth_24 ? 1 : m_resolution_scale; const u32 vram_offset_x = m_crtc_state.display_vram_left; const u32 vram_offset_y = m_crtc_state.display_vram_top; const u32 scaled_vram_offset_x = vram_offset_x * resolution_scale; const u32 scaled_vram_offset_y = vram_offset_y * resolution_scale; const u32 display_width = m_crtc_state.display_vram_width; const u32 display_height = m_crtc_state.display_vram_height; const u32 scaled_display_width = display_width * resolution_scale; const u32 scaled_display_height = display_height * resolution_scale; const InterlacedRenderMode interlaced = GetInterlacedRenderMode(); if (IsDisplayDisabled()) { m_host_display->ClearDisplayTexture(); } else if (!m_GPUSTAT.display_area_color_depth_24 && interlaced == GPU_HW::InterlacedRenderMode::None && !IsUsingMultisampling() && (scaled_vram_offset_x + scaled_display_width) <= m_vram_texture.GetWidth() && (scaled_vram_offset_y + scaled_display_height) <= m_vram_texture.GetHeight()) { m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_vram_texture.GetGLId())), m_vram_texture.GetWidth(), m_vram_texture.GetHeight(), scaled_vram_offset_x, m_vram_texture.GetHeight() - scaled_vram_offset_y, scaled_display_width, -static_cast(scaled_display_height)); } else { glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); glDisable(GL_DEPTH_TEST); m_display_programs[BoolToUInt8(m_GPUSTAT.display_area_color_depth_24)][static_cast(interlaced)].Bind(); m_display_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_texture.Bind(); const u8 height_div2 = BoolToUInt8(interlaced == GPU_HW::InterlacedRenderMode::SeparateFields); const u32 reinterpret_field_offset = (interlaced != InterlacedRenderMode::None) ? GetInterlacedDisplayField() : 0; const u32 scaled_flipped_vram_offset_y = m_vram_texture.GetHeight() - scaled_vram_offset_y - reinterpret_field_offset - (scaled_display_height >> height_div2); const u32 reinterpret_start_x = m_crtc_state.regs.X * resolution_scale; const u32 reinterpret_crop_left = (m_crtc_state.display_vram_left - m_crtc_state.regs.X) * resolution_scale; const u32 uniforms[4] = {reinterpret_start_x, scaled_flipped_vram_offset_y, reinterpret_crop_left, reinterpret_field_offset}; UploadUniformBuffer(uniforms, sizeof(uniforms)); m_batch_ubo_dirty = true; glViewport(0, 0, scaled_display_width, scaled_display_height); glBindVertexArray(m_attributeless_vao_id); glDrawArrays(GL_TRIANGLES, 0, 3); m_host_display->SetDisplayTexture(reinterpret_cast(static_cast(m_display_texture.GetGLId())), m_display_texture.GetWidth(), m_display_texture.GetHeight(), 0, scaled_display_height, scaled_display_width, -static_cast(scaled_display_height)); // restore state glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id); glBindVertexArray(m_vao_id); glViewport(0, 0, m_vram_texture.GetWidth(), m_vram_texture.GetHeight()); glEnable(GL_DEPTH_TEST); glEnable(GL_SCISSOR_TEST); m_vram_read_texture.Bind(); SetBlendMode(); SetDepthFunc(); } m_host_display->SetDisplayParameters(m_crtc_state.display_width, m_crtc_state.display_height, m_crtc_state.display_origin_left, m_crtc_state.display_origin_top, m_crtc_state.display_vram_width, m_crtc_state.display_vram_height, GetDisplayAspectRatio()); } } void GPU_HW_OpenGL::ReadVRAM(u32 x, u32 y, u32 width, u32 height) { // Get bounds with wrap-around handled. const Common::Rectangle copy_rect = GetVRAMTransferBounds(x, y, width, height); const u32 encoded_width = (copy_rect.GetWidth() + 1) / 2; const u32 encoded_height = copy_rect.GetHeight(); // Encode the 24-bit texture as 16-bit. const u32 uniforms[4] = {copy_rect.left, VRAM_HEIGHT - copy_rect.top - copy_rect.GetHeight(), copy_rect.GetWidth(), copy_rect.GetHeight()}; m_vram_encoding_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER); m_vram_texture.Bind(); m_vram_read_program.Bind(); UploadUniformBuffer(uniforms, sizeof(uniforms)); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); glViewport(0, 0, encoded_width, encoded_height); glBindVertexArray(m_attributeless_vao_id); glDrawArrays(GL_TRIANGLES, 0, 3); // Readback encoded texture. m_vram_encoding_texture.BindFramebuffer(GL_READ_FRAMEBUFFER); glPixelStorei(GL_PACK_ALIGNMENT, 2); glPixelStorei(GL_PACK_ROW_LENGTH, VRAM_WIDTH / 2); glReadPixels(0, 0, encoded_width, encoded_height, GL_RGBA, GL_UNSIGNED_BYTE, &m_vram_shadow[copy_rect.top * VRAM_WIDTH + copy_rect.left]); glPixelStorei(GL_PACK_ALIGNMENT, 4); glPixelStorei(GL_PACK_ROW_LENGTH, 0); RestoreGraphicsAPIState(); } void GPU_HW_OpenGL::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color) { if ((x + width) > VRAM_WIDTH || (y + height) > VRAM_HEIGHT) { // CPU round trip if oversized for now. Log_WarningPrintf("Oversized VRAM fill (%u-%u, %u-%u), CPU round trip", x, x + width, y, y + height); ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT); GPU::FillVRAM(x, y, width, height, color); UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, m_vram_shadow.data()); return; } GPU_HW::FillVRAM(x, y, width, height, color); // scale coordinates x *= m_resolution_scale; y *= m_resolution_scale; width *= m_resolution_scale; height *= m_resolution_scale; glScissor(x, m_vram_texture.GetHeight() - y - height, width, height); // fast path when not using interlaced rendering if (!IsInterlacedRenderingEnabled()) { const auto [r, g, b, a] = RGBA8ToFloat(m_true_color ? color : RGBA5551ToRGBA8888(RGBA8888ToRGBA5551(color))); glClearColor(r, g, b, a); IsGLES() ? glClearDepthf(a) : glClearDepth(a); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); SetScissorFromDrawingArea(); } else { const VRAMFillUBOData uniforms = GetVRAMFillUBOData(x, y, width, height, color); m_vram_interlaced_fill_program.Bind(); UploadUniformBuffer(&uniforms, sizeof(uniforms)); glDisable(GL_BLEND); glDepthFunc(GL_ALWAYS); glBindVertexArray(m_attributeless_vao_id); glDrawArrays(GL_TRIANGLES, 0, 3); RestoreGraphicsAPIState(); } } void GPU_HW_OpenGL::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data) { const u32 num_pixels = width * height; if (num_pixels < m_max_texture_buffer_size || m_use_ssbo_for_vram_writes) { const Common::Rectangle bounds = GetVRAMTransferBounds(x, y, width, height); GPU_HW::UpdateVRAM(bounds.left, bounds.top, bounds.GetWidth(), bounds.GetHeight(), data); const auto map_result = m_texture_stream_buffer->Map(sizeof(u16), num_pixels * sizeof(u16)); std::memcpy(map_result.pointer, data, num_pixels * sizeof(u16)); m_texture_stream_buffer->Unmap(num_pixels * sizeof(u16)); m_texture_stream_buffer->Unbind(); glDisable(GL_BLEND); glDepthFunc(m_GPUSTAT.check_mask_before_draw ? GL_GEQUAL : GL_ALWAYS); m_vram_write_program.Bind(); if (m_use_ssbo_for_vram_writes) glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, m_texture_stream_buffer->GetGLBufferId()); else glBindTexture(GL_TEXTURE_BUFFER, m_texture_buffer_r16ui_texture); const VRAMWriteUBOData uniforms = GetVRAMWriteUBOData(x, y, width, height, map_result.index_aligned); UploadUniformBuffer(&uniforms, sizeof(uniforms)); // the viewport should already be set to the full vram, so just adjust the scissor const Common::Rectangle scaled_bounds = bounds * m_resolution_scale; glScissor(scaled_bounds.left, m_vram_texture.GetHeight() - scaled_bounds.top - scaled_bounds.GetHeight(), scaled_bounds.GetWidth(), scaled_bounds.GetHeight()); glBindVertexArray(m_attributeless_vao_id); glDrawArrays(GL_TRIANGLES, 0, 3); RestoreGraphicsAPIState(); } else { if ((x + width) > VRAM_WIDTH || (y + height) > VRAM_HEIGHT) { // CPU round trip if oversized for now. Log_WarningPrintf("Oversized VRAM update (%u-%u, %u-%u), CPU round trip", x, x + width, y, y + height); ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT); GPU::UpdateVRAM(x, y, width, height, data); UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, m_vram_shadow.data()); return; } GPU_HW::UpdateVRAM(x, y, width, height, data); const auto map_result = m_texture_stream_buffer->Map(sizeof(u32), num_pixels * sizeof(u32)); // reverse copy the rows so it matches opengl's lower-left origin const u32 source_stride = width * sizeof(u16); const u8* source_ptr = static_cast(data) + (source_stride * (height - 1)); u32* dest_ptr = static_cast(map_result.pointer); for (u32 row = 0; row < height; row++) { const u8* source_row_ptr = source_ptr; for (u32 col = 0; col < width; col++) { u16 src_col; std::memcpy(&src_col, source_row_ptr, sizeof(src_col)); source_row_ptr += sizeof(src_col); *(dest_ptr++) = RGBA5551ToRGBA8888(src_col); } source_ptr -= source_stride; } m_texture_stream_buffer->Unmap(num_pixels * sizeof(u32)); m_texture_stream_buffer->Bind(); // have to write to the 1x texture first if (m_resolution_scale > 1) m_vram_encoding_texture.Bind(); else m_vram_texture.Bind(); // lower-left origin flip happens here const u32 flipped_y = VRAM_HEIGHT - y - height; // update texture data glTexSubImage2D(m_vram_texture.GetGLTarget(), 0, x, flipped_y, width, height, GL_RGBA, GL_UNSIGNED_BYTE, reinterpret_cast(static_cast(map_result.buffer_offset))); m_texture_stream_buffer->Unbind(); if (m_resolution_scale > 1) { // scale to internal resolution const u32 scaled_width = width * m_resolution_scale; const u32 scaled_height = height * m_resolution_scale; const u32 scaled_x = x * m_resolution_scale; const u32 scaled_y = y * m_resolution_scale; const u32 scaled_flipped_y = m_vram_texture.GetHeight() - scaled_y - scaled_height; glDisable(GL_SCISSOR_TEST); m_vram_encoding_texture.BindFramebuffer(GL_READ_FRAMEBUFFER); glBlitFramebuffer(x, flipped_y, x + width, flipped_y + height, scaled_x, scaled_flipped_y, scaled_x + scaled_width, scaled_flipped_y + scaled_height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glEnable(GL_SCISSOR_TEST); } } } void GPU_HW_OpenGL::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height) { if (UseVRAMCopyShader(src_x, src_y, dst_x, dst_y, width, height)) { const Common::Rectangle src_bounds = GetVRAMTransferBounds(src_x, src_y, width, height); const Common::Rectangle dst_bounds = GetVRAMTransferBounds(dst_x, dst_y, width, height); if (m_vram_dirty_rect.Intersects(src_bounds)) UpdateVRAMReadTexture(); IncludeVRAMDityRectangle(dst_bounds); VRAMCopyUBOData uniforms = GetVRAMCopyUBOData(src_x, src_y, dst_x, dst_y, width, height); uniforms.u_src_y = m_vram_texture.GetHeight() - uniforms.u_src_y - uniforms.u_height; uniforms.u_dst_y = m_vram_texture.GetHeight() - uniforms.u_dst_y - uniforms.u_height; UploadUniformBuffer(&uniforms, sizeof(uniforms)); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glDepthFunc(m_GPUSTAT.check_mask_before_draw ? GL_GEQUAL : GL_ALWAYS); const Common::Rectangle dst_bounds_scaled(dst_bounds * m_resolution_scale); glViewport(dst_bounds_scaled.left, m_vram_texture.GetHeight() - dst_bounds_scaled.top - dst_bounds_scaled.GetHeight(), dst_bounds_scaled.GetWidth(), dst_bounds_scaled.GetHeight()); m_vram_read_texture.Bind(); m_vram_copy_program.Bind(); glDrawArrays(GL_TRIANGLES, 0, 3); RestoreGraphicsAPIState(); if (m_GPUSTAT.check_mask_before_draw) m_current_depth++; return; } GPU_HW::CopyVRAM(src_x, src_y, dst_x, dst_y, width, height); src_x *= m_resolution_scale; src_y *= m_resolution_scale; dst_x *= m_resolution_scale; dst_y *= m_resolution_scale; width *= m_resolution_scale; height *= m_resolution_scale; // lower-left origin flip src_y = m_vram_texture.GetHeight() - src_y - height; dst_y = m_vram_texture.GetHeight() - dst_y - height; if (GLAD_GL_VERSION_4_3) { glCopyImageSubData(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, src_x, src_y, 0, m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, dst_x, dst_y, 0, width, height, 1); } else if (GLAD_GL_EXT_copy_image) { glCopyImageSubDataEXT(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, src_x, src_y, 0, m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, dst_x, dst_y, 0, width, height, 1); } else { glDisable(GL_SCISSOR_TEST); glBindFramebuffer(GL_READ_FRAMEBUFFER, m_vram_fbo_id); glBlitFramebuffer(src_x, src_y, src_x + width, src_y + height, dst_x, dst_y, dst_x + width, dst_y + height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glEnable(GL_SCISSOR_TEST); } } void GPU_HW_OpenGL::UpdateVRAMReadTexture() { const auto scaled_rect = m_vram_dirty_rect * m_resolution_scale; const u32 width = scaled_rect.GetWidth(); const u32 height = scaled_rect.GetHeight(); const u32 x = scaled_rect.left; const u32 y = m_vram_texture.GetHeight() - scaled_rect.top - height; const bool multisampled = m_vram_texture.IsMultisampled(); if (!multisampled && GLAD_GL_VERSION_4_3) { glCopyImageSubData(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, m_vram_read_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, width, height, 1); } else if (!multisampled && GLAD_GL_EXT_copy_image) { glCopyImageSubDataEXT(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, m_vram_read_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, width, height, 1); } else { m_vram_read_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER); glBindFramebuffer(GL_READ_FRAMEBUFFER, m_vram_fbo_id); glDisable(GL_SCISSOR_TEST); glBlitFramebuffer(x, y, x + width, y + height, x, y, x + width, y + height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glEnable(GL_SCISSOR_TEST); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id); } GPU_HW::UpdateVRAMReadTexture(); } void GPU_HW_OpenGL::UpdateDepthBufferFromMaskBit() { glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glDepthFunc(GL_ALWAYS); m_vram_texture.Bind(); m_vram_update_depth_program.Bind(); glBindVertexArray(m_attributeless_vao_id); glDrawArrays(GL_TRIANGLES, 0, 3); glBindVertexArray(m_vao_id); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glEnable(GL_SCISSOR_TEST); m_vram_read_texture.Bind(); } std::unique_ptr GPU::CreateHardwareOpenGLRenderer() { return std::make_unique(); }