#include "dma.h" #include "bus.h" #include "cdrom.h" #include "common/log.h" #include "common/state_wrapper.h" #include "common/string_util.h" #include "gpu.h" #include "interrupt_controller.h" #include "mdec.h" #include "spu.h" #include "system.h" Log_SetChannel(DMA); DMA::DMA() = default; DMA::~DMA() = default; void DMA::Initialize(System* system, Bus* bus, InterruptController* interrupt_controller, GPU* gpu, CDROM* cdrom, SPU* spu, MDEC* mdec) { m_system = system; m_bus = bus; m_interrupt_controller = interrupt_controller; m_gpu = gpu; m_cdrom = cdrom; m_spu = spu; m_mdec = mdec; m_max_slice_ticks = system->GetSettings().dma_max_slice_ticks; m_halt_ticks = system->GetSettings().dma_halt_ticks; m_transfer_buffer.resize(32); m_unhalt_event = system->CreateTimingEvent("DMA Transfer Unhalt", 1, m_max_slice_ticks, std::bind(&DMA::UnhaltTransfer, this, std::placeholders::_1), false); } void DMA::Reset() { for (u32 i = 0; i < NUM_CHANNELS; i++) { ChannelState& cs = m_state[i]; cs.base_address = 0; cs.block_control.bits = 0; cs.channel_control.bits = 0; cs.request = false; } m_DPCR.bits = 0x07654321; m_DICR.bits = 0; m_halt_ticks_remaining = 0; m_unhalt_event->Deactivate(); } bool DMA::DoState(StateWrapper& sw) { sw.Do(&m_halt_ticks_remaining); for (u32 i = 0; i < NUM_CHANNELS; i++) { ChannelState& cs = m_state[i]; sw.Do(&cs.base_address); sw.Do(&cs.block_control.bits); sw.Do(&cs.channel_control.bits); sw.Do(&cs.request); } sw.Do(&m_DPCR.bits); sw.Do(&m_DICR.bits); if (sw.IsReading()) { if (m_halt_ticks_remaining > 0) m_unhalt_event->SetIntervalAndSchedule(m_halt_ticks_remaining); else m_unhalt_event->Deactivate(); } return !sw.HasError(); } u32 DMA::ReadRegister(u32 offset) { const u32 channel_index = offset >> 4; if (channel_index < 7) { switch (offset & UINT32_C(0x0F)) { case 0x00: { Log_TracePrintf("DMA%u base address -> 0x%08X", channel_index, m_state[channel_index].base_address); return m_state[channel_index].base_address; } case 0x04: { Log_TracePrintf("DMA%u block control -> 0x%08X", channel_index, m_state[channel_index].block_control.bits); return m_state[channel_index].block_control.bits; } case 0x08: { Log_TracePrintf("DMA%u channel control -> 0x%08X", channel_index, m_state[channel_index].channel_control.bits); return m_state[channel_index].channel_control.bits; } default: break; } } else { if (offset == 0x70) { Log_TracePrintf("DPCR -> 0x%08X", m_DPCR.bits); return m_DPCR.bits; } else if (offset == 0x74) { Log_TracePrintf("DPCR -> 0x%08X", m_DPCR.bits); return m_DICR.bits; } } Log_ErrorPrintf("Unhandled register read: %02X", offset); return UINT32_C(0xFFFFFFFF); } void DMA::WriteRegister(u32 offset, u32 value) { const u32 channel_index = offset >> 4; if (channel_index < 7) { ChannelState& state = m_state[channel_index]; switch (offset & UINT32_C(0x0F)) { case 0x00: { state.base_address = value & BASE_ADDRESS_MASK; Log_TracePrintf("DMA channel %u base address <- 0x%08X", channel_index, state.base_address); return; } case 0x04: { Log_TracePrintf("DMA channel %u block control <- 0x%08X", channel_index, value); state.block_control.bits = value; return; } case 0x08: { state.channel_control.bits = (state.channel_control.bits & ~ChannelState::ChannelControl::WRITE_MASK) | (value & ChannelState::ChannelControl::WRITE_MASK); Log_TracePrintf("DMA channel %u channel control <- 0x%08X", channel_index, state.channel_control.bits); // start/trigger bit must be enabled for OTC if (static_cast(channel_index) == Channel::OTC) SetRequest(static_cast(channel_index), state.channel_control.start_trigger); if (!IsTransferHalted() && CanTransferChannel(static_cast(channel_index))) TransferChannel(static_cast(channel_index)); return; } default: break; } } else { switch (offset) { case 0x70: { Log_TracePrintf("DPCR <- 0x%08X", value); m_DPCR.bits = value; if (!IsTransferHalted()) { for (u32 i = 0; i < NUM_CHANNELS; i++) { if (CanTransferChannel(static_cast(i))) { if (!TransferChannel(static_cast(i))) break; } } } return; } case 0x74: { Log_TracePrintf("DCIR <- 0x%08X", value); m_DICR.bits = (m_DICR.bits & ~DICR_WRITE_MASK) | (value & DICR_WRITE_MASK); m_DICR.bits = m_DICR.bits & ~(value & DICR_RESET_MASK); m_DICR.UpdateMasterFlag(); return; } default: break; } } Log_ErrorPrintf("Unhandled register write: %02X <- %08X", offset, value); } void DMA::SetRequest(Channel channel, bool request) { ChannelState& cs = m_state[static_cast(channel)]; if (cs.request == request) return; cs.request = request; if (!IsTransferHalted() && CanTransferChannel(channel)) TransferChannel(channel); } bool DMA::CanTransferChannel(Channel channel) const { if (!m_DPCR.GetMasterEnable(channel)) return false; const ChannelState& cs = m_state[static_cast(channel)]; if (!cs.channel_control.enable_busy) return false; return cs.request; } bool DMA::IsTransferHalted() const { return m_unhalt_event->IsActive(); } void DMA::UpdateIRQ() { m_DICR.UpdateMasterFlag(); if (m_DICR.master_flag) { Log_TracePrintf("Firing DMA master interrupt"); m_interrupt_controller->InterruptRequest(InterruptController::IRQ::DMA); } } bool DMA::TransferChannel(Channel channel) { ChannelState& cs = m_state[static_cast(channel)]; const bool copy_to_device = cs.channel_control.copy_to_device; // start/trigger bit is cleared on beginning of transfer cs.channel_control.start_trigger = false; PhysicalMemoryAddress current_address = cs.base_address; const PhysicalMemoryAddress increment = cs.channel_control.address_step_reverse ? static_cast(-4) : UINT32_C(4); switch (cs.channel_control.sync_mode) { case SyncMode::Manual: { const u32 word_count = cs.block_control.manual.GetWordCount(); Log_DebugPrintf("DMA%u: Copying %u words %s 0x%08X", static_cast(channel), word_count, copy_to_device ? "from" : "to", current_address & ADDRESS_MASK); TickCount used_ticks; if (copy_to_device) used_ticks = TransferMemoryToDevice(channel, current_address & ADDRESS_MASK, increment, word_count); else used_ticks = TransferDeviceToMemory(channel, current_address & ADDRESS_MASK, increment, word_count); m_system->StallCPU(used_ticks); } break; case SyncMode::LinkedList: { TickCount used_ticks = 0; if (!copy_to_device) { Panic("Linked list not implemented for DMA reads"); } else { Log_DebugPrintf("DMA%u: Copying linked list starting at 0x%08X to device", static_cast(channel), current_address & ADDRESS_MASK); u8* ram_pointer = m_bus->GetRAM(); while (cs.request && used_ticks < m_max_slice_ticks) { u32 header; std::memcpy(&header, &ram_pointer[current_address & ADDRESS_MASK], sizeof(header)); used_ticks++; const u32 word_count = header >> 24; const u32 next_address = header & UINT32_C(0x00FFFFFF); Log_TracePrintf(" .. linked list entry at 0x%08X size=%u(%u words) next=0x%08X", current_address & ADDRESS_MASK, word_count * UINT32_C(4), word_count, next_address); if (word_count > 0) { used_ticks += TransferMemoryToDevice(channel, (current_address + sizeof(header)) & ADDRESS_MASK, 4, word_count); } current_address = next_address; if (current_address & UINT32_C(0x800000)) break; } } cs.base_address = current_address; m_system->StallCPU(used_ticks); if (used_ticks >= m_max_slice_ticks) { // stall the transfer for a bit if we ran for too long // Log_WarningPrintf("breaking dma chain at 0x%08X", current_address); HaltTransfer(m_halt_ticks); return false; } if ((current_address & UINT32_C(0x800000)) == 0) { // linked list not yet complete return true; } } break; case SyncMode::Request: { Log_DebugPrintf("DMA%u: Copying %u blocks of size %u (%u total words) %s 0x%08X", static_cast(channel), cs.block_control.request.GetBlockCount(), cs.block_control.request.GetBlockSize(), cs.block_control.request.GetBlockCount() * cs.block_control.request.GetBlockSize(), copy_to_device ? "from" : "to", current_address & ADDRESS_MASK); const u32 block_size = cs.block_control.request.GetBlockSize(); u32 blocks_remaining = cs.block_control.request.GetBlockCount(); TickCount used_ticks = 0; if (copy_to_device) { do { blocks_remaining--; used_ticks += TransferMemoryToDevice(channel, current_address & ADDRESS_MASK, increment, block_size); current_address = (current_address + (increment * block_size)); } while (cs.request && blocks_remaining > 0); } else { do { blocks_remaining--; used_ticks += TransferDeviceToMemory(channel, current_address & ADDRESS_MASK, increment, block_size); current_address = (current_address + (increment * block_size)); } while (cs.request && blocks_remaining > 0); } cs.base_address = current_address & BASE_ADDRESS_MASK; cs.block_control.request.block_count = blocks_remaining; m_system->StallCPU(used_ticks); // finish transfer later if the request was cleared if (blocks_remaining > 0) return true; } break; default: Panic("Unimplemented sync mode"); break; } // start/busy bit is cleared on end of transfer cs.channel_control.enable_busy = false; if (m_DICR.IsIRQEnabled(channel)) { Log_DebugPrintf("Set DMA interrupt for channel %u", static_cast(channel)); m_DICR.SetIRQFlag(channel); UpdateIRQ(); } return true; } void DMA::HaltTransfer(TickCount duration) { m_halt_ticks_remaining += duration; Log_DebugPrintf("Halting DMA for %d ticks", m_halt_ticks_remaining); DebugAssert(!m_unhalt_event->IsActive()); m_unhalt_event->SetIntervalAndSchedule(m_halt_ticks_remaining); } void DMA::UnhaltTransfer(TickCount ticks) { Log_DebugPrintf("Resuming DMA after %d ticks, %d ticks late", ticks, -(m_halt_ticks_remaining - ticks)); m_halt_ticks_remaining -= ticks; m_unhalt_event->Deactivate(); // TODO: Use channel priority. But doing it in ascending order is probably good enough. // Main thing is that OTC happens after GPU, because otherwise it'll wipe out the LL. for (u32 i = 0; i < NUM_CHANNELS; i++) { if (CanTransferChannel(static_cast(i))) { if (!TransferChannel(static_cast(i))) return; } } // We didn't run too long, so reset timer. m_halt_ticks_remaining = 0; } TickCount DMA::TransferMemoryToDevice(Channel channel, u32 address, u32 increment, u32 word_count) { const u32* src_pointer = reinterpret_cast(m_bus->GetRAM() + address); if (static_cast(increment) < 0 || ((address + (increment * word_count)) & ADDRESS_MASK) <= address) { // Use temp buffer if it's wrapping around if (m_transfer_buffer.size() < word_count) m_transfer_buffer.resize(word_count); src_pointer = m_transfer_buffer.data(); m_bus->ReadWords(address, m_transfer_buffer.data(), word_count); } switch (channel) { case Channel::GPU: m_gpu->DMAWrite(src_pointer, word_count); break; case Channel::SPU: m_spu->DMAWrite(src_pointer, word_count); break; case Channel::MDECin: m_mdec->DMAWrite(src_pointer, word_count); break; case Channel::CDROM: case Channel::MDECout: case Channel::PIO: default: Panic("Unhandled DMA channel for device write"); break; } return m_bus->GetDMARAMTickCount(word_count); } TickCount DMA::TransferDeviceToMemory(Channel channel, u32 address, u32 increment, u32 word_count) { if (channel == Channel::OTC) { // clear ordering table u8* ram_pointer = m_bus->GetRAM(); const u32 word_count_less_1 = word_count - 1; for (u32 i = 0; i < word_count_less_1; i++) { u32 value = ((address - 4) & ADDRESS_MASK); std::memcpy(&ram_pointer[address], &value, sizeof(value)); address = (address - 4) & ADDRESS_MASK; } const u32 terminator = UINT32_C(0xFFFFFFF); std::memcpy(&ram_pointer[address], &terminator, sizeof(terminator)); m_bus->InvalidateCodePages(address, word_count); return m_bus->GetDMARAMTickCount(word_count); } u32* dest_pointer = reinterpret_cast(&m_bus->m_ram[address]); if (static_cast(increment) < 0 || ((address + (increment * word_count)) & ADDRESS_MASK) <= address) { // Use temp buffer if it's wrapping around if (m_transfer_buffer.size() < word_count) m_transfer_buffer.resize(word_count); dest_pointer = m_transfer_buffer.data(); } // Read from device. switch (channel) { case Channel::GPU: m_gpu->DMARead(dest_pointer, word_count); break; case Channel::CDROM: m_cdrom->DMARead(dest_pointer, word_count); break; case Channel::SPU: m_spu->DMARead(dest_pointer, word_count); break; case Channel::MDECout: m_mdec->DMARead(dest_pointer, word_count); break; default: Panic("Unhandled DMA channel for device read"); std::fill_n(dest_pointer, word_count, UINT32_C(0xFFFFFFFF)); break; } if (dest_pointer == m_transfer_buffer.data()) { u8* ram_pointer = m_bus->m_ram.data(); for (u32 i = 0; i < word_count; i++) { std::memcpy(&ram_pointer[address], &m_transfer_buffer[i], sizeof(u32)); address = (address + increment) & ADDRESS_MASK; } } m_bus->InvalidateCodePages(address, word_count); return m_bus->GetDMARAMTickCount(word_count); }