// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin // SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0) #include "vulkan_device.h" #include "postprocessing_chain.h" // TODO: Remove me #include "vulkan_builders.h" #include "vulkan_pipeline.h" #include "vulkan_stream_buffer.h" #include "vulkan_swap_chain.h" #include "vulkan_texture.h" #include "core/host.h" #include "common/align.h" #include "common/assert.h" #include "common/bitutils.h" #include "common/file_system.h" #include "common/log.h" #include "common/path.h" #include "common/scoped_guard.h" #include "common/string.h" #include "fmt/format.h" #include #include Log_SetChannel(VulkanDevice); // TODO: VK_KHR_display. #pragma pack(push, 4) struct VK_PIPELINE_CACHE_HEADER { u32 header_length; u32 header_version; u32 vendor_id; u32 device_id; u8 uuid[VK_UUID_SIZE]; }; #pragma pack(pop) // Tweakables enum : u32 { MIN_TEXEL_BUFFER_ELEMENTS = 1024 * 512, MAX_DRAW_CALLS_PER_FRAME = 2048, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME = GPUDevice::MAX_TEXTURE_SAMPLERS * MAX_DRAW_CALLS_PER_FRAME, MAX_DESCRIPTOR_SETS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME, VERTEX_BUFFER_SIZE = 32 * 1024 * 1024, INDEX_BUFFER_SIZE = 16 * 1024 * 1024, VERTEX_UNIFORM_BUFFER_SIZE = 8 * 1024 * 1024, FRAGMENT_UNIFORM_BUFFER_SIZE = 8 * 1024 * 1024, TEXTURE_BUFFER_SIZE = 64 * 1024 * 1024, UNIFORM_PUSH_CONSTANTS_STAGES = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, UNIFORM_PUSH_CONSTANTS_SIZE = 128, MAX_UNIFORM_BUFFER_SIZE = 1024, }; const std::array(GPUTexture::Format::MaxCount)> VulkanDevice::TEXTURE_FORMAT_MAPPING = { VK_FORMAT_UNDEFINED, // Unknown VK_FORMAT_R8G8B8A8_UNORM, // RGBA8 VK_FORMAT_B8G8R8A8_UNORM, // BGRA8 VK_FORMAT_R5G6B5_UNORM_PACK16, // RGB565 VK_FORMAT_R5G5B5A1_UNORM_PACK16, // RGBA5551 VK_FORMAT_R8_UNORM, // R8 VK_FORMAT_D16_UNORM, // D16 VK_FORMAT_R16_UNORM, // R16 VK_FORMAT_R16_SFLOAT, // R16F VK_FORMAT_R32_SINT, // R32I VK_FORMAT_R32_UINT, // R32U VK_FORMAT_R32_SFLOAT, // R32F VK_FORMAT_R8G8_UNORM, // RG8 VK_FORMAT_R16G16_UNORM, // RG16 VK_FORMAT_R16G16_SFLOAT, // RG16F VK_FORMAT_R32G32_SFLOAT, // RG32F VK_FORMAT_R16G16B16A16_UNORM, // RGBA16 VK_FORMAT_R16G16B16A16_SFLOAT, // RGBA16F VK_FORMAT_R32G32B32A32_SFLOAT, // RGBA32F VK_FORMAT_A2R10G10B10_UNORM_PACK32, // RGB10A2 }; static constexpr VkClearValue s_present_clear_color = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; #ifdef _DEBUG static u32 s_debug_scope_depth = 0; #endif // We need to synchronize instance creation because of adapter enumeration from the UI thread. static std::mutex s_instance_mutex; VulkanDevice::VulkanDevice() { #ifdef _DEBUG s_debug_scope_depth = 0; #endif } VulkanDevice::~VulkanDevice() { Assert(m_device == VK_NULL_HANDLE); } GPUTexture::Format VulkanDevice::GetFormatForVkFormat(VkFormat format) { for (u32 i = 0; i < static_cast(std::size(TEXTURE_FORMAT_MAPPING)); i++) { if (TEXTURE_FORMAT_MAPPING[i] == format) return static_cast(i); } return GPUTexture::Format::Unknown; } VkInstance VulkanDevice::CreateVulkanInstance(const WindowInfo& wi, bool enable_debug_utils, bool enable_validation_layer) { ExtensionList enabled_extensions; if (!SelectInstanceExtensions(&enabled_extensions, wi, enable_debug_utils)) return VK_NULL_HANDLE; // Remember to manually update this every release. We don't pull in svnrev.h here, because // it's only the major/minor version, and rebuilding the file every time something else changes // is unnecessary. VkApplicationInfo app_info = {}; app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app_info.pNext = nullptr; app_info.pApplicationName = "DuckStation"; app_info.applicationVersion = VK_MAKE_VERSION(0, 1, 0); app_info.pEngineName = "DuckStation"; app_info.engineVersion = VK_MAKE_VERSION(0, 1, 0); app_info.apiVersion = VK_API_VERSION_1_1; VkInstanceCreateInfo instance_create_info = {}; instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_create_info.pNext = nullptr; instance_create_info.flags = 0; instance_create_info.pApplicationInfo = &app_info; instance_create_info.enabledExtensionCount = static_cast(enabled_extensions.size()); instance_create_info.ppEnabledExtensionNames = enabled_extensions.data(); instance_create_info.enabledLayerCount = 0; instance_create_info.ppEnabledLayerNames = nullptr; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_KHRONOS_validation"}; instance_create_info.enabledLayerCount = 1; instance_create_info.ppEnabledLayerNames = layer_names; } VkInstance instance; VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateInstance failed: "); return nullptr; } return instance; } bool VulkanDevice::SelectInstanceExtensions(ExtensionList* extension_list, const WindowInfo& wi, bool enable_debug_utils) { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } if (extension_count == 0) { Log_ErrorPrintf("Vulkan: No extensions supported by instance."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, available_extension_list.data()); DebugAssert(res == VK_SUCCESS); auto SupportsExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { Log_DevPrintf("Enabling extension: %s", name); extension_list->push_back(name); return true; } if (required) Log_ErrorPrintf("Vulkan: Missing required extension %s.", name); return false; }; // Common extensions if (wi.type != WindowInfo::Type::Surfaceless && !SupportsExtension(VK_KHR_SURFACE_EXTENSION_NAME, true)) return false; #if defined(VK_USE_PLATFORM_WIN32_KHR) if (wi.type == WindowInfo::Type::Win32 && !SupportsExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_XLIB_KHR) if (wi.type == WindowInfo::Type::X11 && !SupportsExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_WAYLAND_KHR) if (wi.type == WindowInfo::Type::Wayland && !SupportsExtension(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_METAL_EXT) if (wi.type == WindowInfo::Type::MacOS && !SupportsExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true)) return false; #endif // VK_EXT_debug_utils if (enable_debug_utils && !SupportsExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false)) Log_WarningPrintf("Vulkan: Debug report requested, but extension is not available."); // Needed for exclusive fullscreen control. SupportsExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false); return true; } VulkanDevice::GPUList VulkanDevice::EnumerateGPUs(VkInstance instance) { GPUList gpus; u32 gpu_count = 0; VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr); if ((res != VK_SUCCESS && res != VK_INCOMPLETE) || gpu_count == 0) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (1) failed: "); return gpus; } std::vector physical_devices(gpu_count); res = vkEnumeratePhysicalDevices(instance, &gpu_count, physical_devices.data()); if (res == VK_INCOMPLETE) { Log_WarningPrintf("First vkEnumeratePhysicalDevices() call returned %zu devices, but second returned %u", physical_devices.size(), gpu_count); } else if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (2) failed: "); return gpus; } // Maybe we lost a GPU? if (gpu_count < physical_devices.size()) physical_devices.resize(gpu_count); gpus.reserve(physical_devices.size()); for (VkPhysicalDevice device : physical_devices) { VkPhysicalDeviceProperties props = {}; vkGetPhysicalDeviceProperties(device, &props); std::string gpu_name = props.deviceName; // handle duplicate adapter names if (std::any_of(gpus.begin(), gpus.end(), [&gpu_name](const auto& other) { return (gpu_name == other.second); })) { std::string original_adapter_name = std::move(gpu_name); u32 current_extra = 2; do { gpu_name = fmt::format("{} ({})", original_adapter_name, current_extra); current_extra++; } while ( std::any_of(gpus.begin(), gpus.end(), [&gpu_name](const auto& other) { return (gpu_name == other.second); })); } gpus.emplace_back(device, std::move(gpu_name)); } return gpus; } bool VulkanDevice::SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface) { u32 extension_count = 0; VkResult res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: "); return false; } if (extension_count == 0) { Log_ErrorPrintf("Vulkan: No extensions supported by device."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, available_extension_list.data()); DebugAssert(res == VK_SUCCESS); auto SupportsExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { if (std::none_of(extension_list->begin(), extension_list->end(), [&](const char* existing_name) { return (std::strcmp(existing_name, name) == 0); })) { Log_DevPrintf("Enabling extension: %s", name); extension_list->push_back(name); } return true; } if (required) Log_ErrorPrintf("Vulkan: Missing required extension %s.", name); return false; }; if (enable_surface && !SupportsExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true)) return false; m_optional_extensions.vk_ext_memory_budget = SupportsExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false); m_optional_extensions.vk_ext_rasterization_order_attachment_access = SupportsExtension(VK_EXT_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false) || SupportsExtension(VK_ARM_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false); m_optional_extensions.vk_ext_attachment_feedback_loop_layout = SupportsExtension(VK_EXT_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_EXTENSION_NAME, false); m_optional_extensions.vk_khr_driver_properties = SupportsExtension(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, false); m_optional_extensions.vk_khr_push_descriptor = SupportsExtension(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, false); #ifdef _WIN32 m_optional_extensions.vk_ext_full_screen_exclusive = enable_surface && SupportsExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, false); Log_InfoPrintf("VK_EXT_full_screen_exclusive is %s", m_optional_extensions.vk_ext_full_screen_exclusive ? "supported" : "NOT supported"); #endif return true; } bool VulkanDevice::SelectDeviceFeatures() { VkPhysicalDeviceFeatures available_features; vkGetPhysicalDeviceFeatures(m_physical_device, &available_features); // Enable the features we use. m_device_features.dualSrcBlend = available_features.dualSrcBlend; m_device_features.largePoints = available_features.largePoints; m_device_features.wideLines = available_features.wideLines; m_device_features.samplerAnisotropy = available_features.samplerAnisotropy; return true; } bool VulkanDevice::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer) { u32 queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr); if (queue_family_count == 0) { Log_ErrorPrintf("No queue families found on specified vulkan physical device."); return false; } std::vector queue_family_properties(queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, queue_family_properties.data()); Log_DevPrintf("%u vulkan queue families", queue_family_count); // Find graphics and present queues. m_graphics_queue_family_index = queue_family_count; m_present_queue_family_index = queue_family_count; for (uint32_t i = 0; i < queue_family_count; i++) { VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT; if (graphics_supported) { m_graphics_queue_family_index = i; // Quit now, no need for a present queue. if (!surface) { break; } } if (surface) { VkBool32 present_supported; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: "); return false; } if (present_supported) { m_present_queue_family_index = i; } // Prefer one queue family index that does both graphics and present. if (graphics_supported && present_supported) { break; } } } if (m_graphics_queue_family_index == queue_family_count) { Log_ErrorPrintf("Vulkan: Failed to find an acceptable graphics queue."); return false; } if (surface != VK_NULL_HANDLE && m_present_queue_family_index == queue_family_count) { Log_ErrorPrintf("Vulkan: Failed to find an acceptable present queue."); return false; } VkDeviceCreateInfo device_info = {}; device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device_info.pNext = nullptr; device_info.flags = 0; device_info.queueCreateInfoCount = 0; static constexpr float queue_priorities[] = {1.0f}; std::array queue_infos; VkDeviceQueueCreateInfo& graphics_queue_info = queue_infos[device_info.queueCreateInfoCount++]; graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; graphics_queue_info.pNext = nullptr; graphics_queue_info.flags = 0; graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index; graphics_queue_info.queueCount = 1; graphics_queue_info.pQueuePriorities = queue_priorities; if (surface != VK_NULL_HANDLE && m_graphics_queue_family_index != m_present_queue_family_index) { VkDeviceQueueCreateInfo& present_queue_info = queue_infos[device_info.queueCreateInfoCount++]; present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; present_queue_info.pNext = nullptr; present_queue_info.flags = 0; present_queue_info.queueFamilyIndex = m_present_queue_family_index; present_queue_info.queueCount = 1; present_queue_info.pQueuePriorities = queue_priorities; } device_info.pQueueCreateInfos = queue_infos.data(); ExtensionList enabled_extensions; if (!SelectDeviceExtensions(&enabled_extensions, surface != VK_NULL_HANDLE)) return false; device_info.enabledExtensionCount = static_cast(enabled_extensions.size()); device_info.ppEnabledExtensionNames = enabled_extensions.data(); // Check for required features before creating. if (!SelectDeviceFeatures()) return false; device_info.pEnabledFeatures = &m_device_features; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"}; device_info.enabledLayerCount = 1; device_info.ppEnabledLayerNames = layer_names; } VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT rasterization_order_access_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT}; VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT attachment_feedback_loop_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT}; if (m_optional_extensions.vk_ext_rasterization_order_attachment_access) { rasterization_order_access_feature.rasterizationOrderColorAttachmentAccess = VK_TRUE; Vulkan::AddPointerToChain(&device_info, &rasterization_order_access_feature); } if (m_optional_extensions.vk_ext_attachment_feedback_loop_layout) { attachment_feedback_loop_feature.attachmentFeedbackLoopLayout = VK_TRUE; Vulkan::AddPointerToChain(&device_info, &attachment_feedback_loop_feature); } VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDevice failed: "); return false; } // With the device created, we can fill the remaining entry points. if (!Vulkan::LoadVulkanDeviceFunctions(m_device)) return false; // Grab the graphics and present queues. vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue); if (surface) vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue); m_features.gpu_timing = (m_device_properties.limits.timestampComputeAndGraphics != 0 && queue_family_properties[m_graphics_queue_family_index].timestampValidBits > 0 && m_device_properties.limits.timestampPeriod > 0); Log_DevPrintf("GPU timing is %s (TS=%u TS valid bits=%u, TS period=%f)", m_features.gpu_timing ? "supported" : "not supported", static_cast(m_device_properties.limits.timestampComputeAndGraphics), queue_family_properties[m_graphics_queue_family_index].timestampValidBits, m_device_properties.limits.timestampPeriod); ProcessDeviceExtensions(); return true; } void VulkanDevice::ProcessDeviceExtensions() { // advanced feature checks VkPhysicalDeviceFeatures2 features2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2}; VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT rasterization_order_access_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT}; VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT attachment_feedback_loop_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT}; // add in optional feature structs if (m_optional_extensions.vk_ext_rasterization_order_attachment_access) Vulkan::AddPointerToChain(&features2, &rasterization_order_access_feature); if (m_optional_extensions.vk_ext_attachment_feedback_loop_layout) Vulkan::AddPointerToChain(&features2, &attachment_feedback_loop_feature); // query vkGetPhysicalDeviceFeatures2(m_physical_device, &features2); // confirm we actually support it m_optional_extensions.vk_ext_rasterization_order_attachment_access &= (rasterization_order_access_feature.rasterizationOrderColorAttachmentAccess == VK_TRUE); m_optional_extensions.vk_ext_attachment_feedback_loop_layout &= (attachment_feedback_loop_feature.attachmentFeedbackLoopLayout == VK_TRUE); VkPhysicalDeviceProperties2 properties2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2}; VkPhysicalDevicePushDescriptorPropertiesKHR push_descriptor_properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR}; if (m_optional_extensions.vk_khr_driver_properties) { m_device_driver_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES; Vulkan::AddPointerToChain(&properties2, &m_device_driver_properties); } if (m_optional_extensions.vk_khr_push_descriptor) Vulkan::AddPointerToChain(&properties2, &push_descriptor_properties); // query vkGetPhysicalDeviceProperties2(m_physical_device, &properties2); m_optional_extensions.vk_khr_push_descriptor &= (push_descriptor_properties.maxPushDescriptors >= 1); Log_InfoPrintf("VK_EXT_memory_budget is %s", m_optional_extensions.vk_ext_memory_budget ? "supported" : "NOT supported"); Log_InfoPrintf("VK_EXT_rasterization_order_attachment_access is %s", m_optional_extensions.vk_ext_rasterization_order_attachment_access ? "supported" : "NOT supported"); Log_InfoPrintf("VK_EXT_attachment_feedback_loop_layout is %s", m_optional_extensions.vk_ext_attachment_feedback_loop_layout ? "supported" : "NOT supported"); Log_InfoPrintf("VK_KHR_push_descriptor is %s", m_optional_extensions.vk_khr_push_descriptor ? "supported" : "NOT supported"); } bool VulkanDevice::CreateAllocator() { VmaAllocatorCreateInfo ci = {}; ci.vulkanApiVersion = VK_API_VERSION_1_1; ci.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT; ci.physicalDevice = m_physical_device; ci.device = m_device; ci.instance = m_instance; if (m_optional_extensions.vk_ext_memory_budget) ci.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; // Limit usage of the DEVICE_LOCAL upload heap when we're using a debug device. // On NVIDIA drivers, it results in frequently running out of device memory when trying to // play back captures in RenderDoc, making life very painful. Re-BAR GPUs should be fine. constexpr VkDeviceSize UPLOAD_HEAP_SIZE_THRESHOLD = 512 * 1024 * 1024; constexpr VkMemoryPropertyFlags UPLOAD_HEAP_PROPERTIES = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; std::array heap_size_limits; if (m_debug_device) { VkPhysicalDeviceMemoryProperties memory_properties; vkGetPhysicalDeviceMemoryProperties(m_physical_device, &memory_properties); bool has_upload_heap = false; heap_size_limits.fill(VK_WHOLE_SIZE); for (u32 i = 0; i < memory_properties.memoryTypeCount; i++) { // Look for any memory types which are upload-like. const VkMemoryType& type = memory_properties.memoryTypes[i]; if ((type.propertyFlags & UPLOAD_HEAP_PROPERTIES) != UPLOAD_HEAP_PROPERTIES) continue; const VkMemoryHeap& heap = memory_properties.memoryHeaps[type.heapIndex]; if (heap.size >= UPLOAD_HEAP_SIZE_THRESHOLD) continue; if (heap_size_limits[type.heapIndex] == VK_WHOLE_SIZE) { Log_WarningPrintf("Disabling allocation from upload heap #%u (%.2f MB) due to debug device.", type.heapIndex, static_cast(heap.size) / 1048576.0f); heap_size_limits[type.heapIndex] = 0; has_upload_heap = true; } } if (has_upload_heap) ci.pHeapSizeLimit = heap_size_limits.data(); } VkResult res = vmaCreateAllocator(&ci, &m_allocator); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: "); return false; } return true; } void VulkanDevice::DestroyAllocator() { if (m_allocator == VK_NULL_HANDLE) return; vmaDestroyAllocator(m_allocator); m_allocator = VK_NULL_HANDLE; } bool VulkanDevice::CreateCommandBuffers() { VkResult res; uint32_t frame_index = 0; for (CommandBuffer& resources : m_frame_resources) { resources.needs_fence_wait = false; VkCommandPoolCreateInfo pool_info = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, nullptr, 0, m_graphics_queue_family_index}; res = vkCreateCommandPool(m_device, &pool_info, nullptr, &resources.command_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateCommandPool failed: "); return false; } Vulkan::SetObjectName(m_device, resources.command_pool, TinyString::FromFmt("Frame Command Pool {}", frame_index)); VkCommandBufferAllocateInfo buffer_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, nullptr, resources.command_pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast(resources.command_buffers.size())}; res = vkAllocateCommandBuffers(m_device, &buffer_info, resources.command_buffers.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateCommandBuffers failed: "); return false; } for (u32 i = 0; i < resources.command_buffers.size(); i++) { Vulkan::SetObjectName(m_device, resources.command_buffers[i], TinyString::FromFmt("Frame {} {}Command Buffer", frame_index, (i == 0) ? "Init" : "")); } VkFenceCreateInfo fence_info = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, VK_FENCE_CREATE_SIGNALED_BIT}; res = vkCreateFence(m_device, &fence_info, nullptr, &resources.fence); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateFence failed: "); return false; } Vulkan::SetObjectName(m_device, resources.fence, TinyString::FromFmt("Frame Fence {}", frame_index)); if (!m_optional_extensions.vk_khr_push_descriptor) { VkDescriptorPoolSize pool_sizes[] = { {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME}, }; VkDescriptorPoolCreateInfo pool_create_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, 0, MAX_DESCRIPTOR_SETS_PER_FRAME, static_cast(std::size(pool_sizes)), pool_sizes}; res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &resources.descriptor_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: "); return false; } Vulkan::SetObjectName(m_device, resources.descriptor_pool, TinyString::FromFmt("Frame Descriptor Pool {}", frame_index)); } ++frame_index; } BeginCommandBuffer(0); return true; } void VulkanDevice::DestroyCommandBuffers() { for (CommandBuffer& resources : m_frame_resources) { if (resources.fence != VK_NULL_HANDLE) vkDestroyFence(m_device, resources.fence, nullptr); if (resources.descriptor_pool != VK_NULL_HANDLE) vkDestroyDescriptorPool(m_device, resources.descriptor_pool, nullptr); if (resources.command_buffers[0] != VK_NULL_HANDLE) { vkFreeCommandBuffers(m_device, resources.command_pool, static_cast(resources.command_buffers.size()), resources.command_buffers.data()); } if (resources.command_pool != VK_NULL_HANDLE) vkDestroyCommandPool(m_device, resources.command_pool, nullptr); } } bool VulkanDevice::CreatePersistentDescriptorPool() { static constexpr const VkDescriptorPoolSize pool_sizes[] = { {VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1}, {VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 16}, {VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 16}, }; const VkDescriptorPoolCreateInfo pool_create_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 16, static_cast(std::size(pool_sizes)), pool_sizes}; VkResult res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &m_global_descriptor_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: "); return false; } Vulkan::SetObjectName(m_device, m_global_descriptor_pool, "Global Descriptor Pool"); if (m_features.gpu_timing) { const VkQueryPoolCreateInfo query_create_info = { VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO, nullptr, 0, VK_QUERY_TYPE_TIMESTAMP, NUM_COMMAND_BUFFERS * 4, 0}; res = vkCreateQueryPool(m_device, &query_create_info, nullptr, &m_timestamp_query_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateQueryPool failed: "); m_features.gpu_timing = false; return false; } } return true; } void VulkanDevice::DestroyPersistentDescriptorPool() { if (m_timestamp_query_pool != VK_NULL_HANDLE) vkDestroyQueryPool(m_device, m_timestamp_query_pool, nullptr); if (m_global_descriptor_pool != VK_NULL_HANDLE) vkDestroyDescriptorPool(m_device, m_global_descriptor_pool, nullptr); } VkRenderPass VulkanDevice::GetRenderPass(VkFormat color_format, VkFormat depth_format, VkSampleCountFlagBits samples, VkAttachmentLoadOp color_load_op /* = VK_ATTACHMENT_LOAD_OP_LOAD */, VkAttachmentStoreOp color_store_op /* = VK_ATTACHMENT_STORE_OP_STORE */, VkAttachmentLoadOp depth_load_op /* = VK_ATTACHMENT_LOAD_OP_LOAD */, VkAttachmentStoreOp depth_store_op /* = VK_ATTACHMENT_STORE_OP_STORE */, VkAttachmentLoadOp stencil_load_op /* = VK_ATTACHMENT_LOAD_OP_DONT_CARE */, VkAttachmentStoreOp stencil_store_op /* = VK_ATTACHMENT_STORE_OP_DONT_CARE */, bool color_feedback_loop /* = false */, bool depth_sampling /* = false */) { RenderPassCacheKey key = {}; key.color_format = color_format; key.depth_format = depth_format; key.samples = samples; key.color_load_op = color_load_op; key.color_store_op = color_store_op; key.depth_load_op = depth_load_op; key.depth_store_op = depth_store_op; key.stencil_load_op = stencil_load_op; key.stencil_store_op = stencil_store_op; key.color_feedback_loop = color_feedback_loop; key.depth_sampling = depth_sampling; auto it = m_render_pass_cache.find(key.key); if (it != m_render_pass_cache.end()) return it->second; return CreateCachedRenderPass(key); } VkRenderPass VulkanDevice::GetRenderPassForRestarting(VkRenderPass pass) { for (const auto& it : m_render_pass_cache) { if (it.second != pass) continue; RenderPassCacheKey modified_key; modified_key.key = it.first; if (modified_key.color_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) modified_key.color_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; if (modified_key.depth_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) modified_key.depth_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; if (modified_key.stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) modified_key.stencil_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; if (modified_key.key == it.first) return pass; auto fit = m_render_pass_cache.find(modified_key.key); if (fit != m_render_pass_cache.end()) return fit->second; return CreateCachedRenderPass(modified_key); } return pass; } VkCommandBuffer VulkanDevice::GetCurrentInitCommandBuffer() { CommandBuffer& res = m_frame_resources[m_current_frame]; VkCommandBuffer buf = res.command_buffers[0]; if (res.init_buffer_used) return buf; VkCommandBufferBeginInfo bi{VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr}; vkBeginCommandBuffer(buf, &bi); res.init_buffer_used = true; return buf; } VkDescriptorSet VulkanDevice::AllocateDescriptorSet(VkDescriptorSetLayout set_layout) { VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr, m_frame_resources[m_current_frame].descriptor_pool, 1, &set_layout}; VkDescriptorSet descriptor_set; VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set); if (res != VK_SUCCESS) { // Failing to allocate a descriptor set is not a fatal error, we can // recover by moving to the next command buffer. return VK_NULL_HANDLE; } return descriptor_set; } VkDescriptorSet VulkanDevice::AllocatePersistentDescriptorSet(VkDescriptorSetLayout set_layout) { VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr, m_global_descriptor_pool, 1, &set_layout}; VkDescriptorSet descriptor_set; VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set); if (res != VK_SUCCESS) return VK_NULL_HANDLE; return descriptor_set; } void VulkanDevice::FreePersistentDescriptorSet(VkDescriptorSet set) { vkFreeDescriptorSets(m_device, m_global_descriptor_pool, 1, &set); } void VulkanDevice::WaitForFenceCounter(u64 fence_counter) { if (m_completed_fence_counter >= fence_counter) return; // Find the first command buffer which covers this counter value. u32 index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; while (index != m_current_frame) { if (m_frame_resources[index].fence_counter >= fence_counter) break; index = (index + 1) % NUM_COMMAND_BUFFERS; } DebugAssert(index != m_current_frame); WaitForCommandBufferCompletion(index); } void VulkanDevice::WaitForGPUIdle() { WaitForPresentComplete(); vkDeviceWaitIdle(m_device); } float VulkanDevice::GetAndResetAccumulatedGPUTime() { const float time = m_accumulated_gpu_time; m_accumulated_gpu_time = 0.0f; return time; } bool VulkanDevice::SetGPUTimingEnabled(bool enabled) { m_gpu_timing_enabled = enabled && m_features.gpu_timing; return (enabled == m_gpu_timing_enabled); } void VulkanDevice::WaitForCommandBufferCompletion(u32 index) { // Wait for this command buffer to be completed. VkResult res = vkWaitForFences(m_device, 1, &m_frame_resources[index].fence, VK_TRUE, UINT64_MAX); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkWaitForFences failed: "); m_last_submit_failed.store(true, std::memory_order_release); return; } // Clean up any resources for command buffers between the last known completed buffer and this // now-completed command buffer. If we use >2 buffers, this may be more than one buffer. const u64 now_completed_counter = m_frame_resources[index].fence_counter; u32 cleanup_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; while (cleanup_index != m_current_frame) { CommandBuffer& resources = m_frame_resources[cleanup_index]; if (resources.fence_counter > now_completed_counter) break; if (m_gpu_timing_enabled && resources.timestamp_written) { std::array timestamps; res = vkGetQueryPoolResults(m_device, m_timestamp_query_pool, index * 2, static_cast(timestamps.size()), sizeof(u64) * timestamps.size(), timestamps.data(), sizeof(u64), VK_QUERY_RESULT_64_BIT); if (res == VK_SUCCESS) { // if we didn't write the timestamp at the start of the cmdbuffer (just enabled timing), the first TS will be // zero if (timestamps[0] > 0 && m_gpu_timing_enabled) { const double ns_diff = (timestamps[1] - timestamps[0]) * static_cast(m_device_properties.limits.timestampPeriod); m_accumulated_gpu_time += static_cast(ns_diff / 1000000.0); } } else { LOG_VULKAN_ERROR(res, "vkGetQueryPoolResults failed: "); } } cleanup_index = (cleanup_index + 1) % NUM_COMMAND_BUFFERS; } m_completed_fence_counter = now_completed_counter; while (!m_cleanup_objects.empty()) { auto& it = m_cleanup_objects.front(); if (it.first > now_completed_counter) break; it.second(); m_cleanup_objects.pop_front(); } } void VulkanDevice::SubmitCommandBuffer(VulkanSwapChain* present_swap_chain /* = nullptr */, bool submit_on_thread /* = false */) { if (m_last_submit_failed.load(std::memory_order_acquire)) return; CommandBuffer& resources = m_frame_resources[m_current_frame]; // End the current command buffer. VkResult res; if (resources.init_buffer_used) { res = vkEndCommandBuffer(resources.command_buffers[0]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); Panic("Failed to end command buffer"); } } if (m_gpu_timing_enabled && resources.timestamp_written) { vkCmdWriteTimestamp(m_current_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, m_current_frame * 2 + 1); } res = vkEndCommandBuffer(resources.command_buffers[1]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); Panic("Failed to end command buffer"); } // This command buffer now has commands, so can't be re-used without waiting. resources.needs_fence_wait = true; std::unique_lock lock(m_present_mutex); WaitForPresentComplete(lock); if (!submit_on_thread || !m_present_thread.joinable()) { DoSubmitCommandBuffer(m_current_frame, present_swap_chain); if (present_swap_chain) DoPresent(present_swap_chain); return; } m_queued_present.command_buffer_index = m_current_frame; m_queued_present.swap_chain = present_swap_chain; m_present_done.store(false); m_present_queued_cv.notify_one(); } void VulkanDevice::DoSubmitCommandBuffer(u32 index, VulkanSwapChain* present_swap_chain) { CommandBuffer& resources = m_frame_resources[index]; uint32_t wait_bits = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; VkSubmitInfo submit_info = {VK_STRUCTURE_TYPE_SUBMIT_INFO}; submit_info.commandBufferCount = resources.init_buffer_used ? 2u : 1u; submit_info.pCommandBuffers = resources.init_buffer_used ? resources.command_buffers.data() : &resources.command_buffers[1]; if (present_swap_chain) { submit_info.pWaitSemaphores = present_swap_chain->GetImageAvailableSemaphorePtr(); submit_info.waitSemaphoreCount = 1; submit_info.pWaitDstStageMask = &wait_bits; submit_info.pSignalSemaphores = present_swap_chain->GetRenderingFinishedSemaphorePtr(); submit_info.signalSemaphoreCount = 1; } const VkResult res = vkQueueSubmit(m_graphics_queue, 1, &submit_info, resources.fence); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkQueueSubmit failed: "); m_last_submit_failed.store(true, std::memory_order_release); return; } } void VulkanDevice::DoPresent(VulkanSwapChain* present_swap_chain) { const VkPresentInfoKHR present_info = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, nullptr, 1, present_swap_chain->GetRenderingFinishedSemaphorePtr(), 1, present_swap_chain->GetSwapChainPtr(), present_swap_chain->GetCurrentImageIndexPtr(), nullptr}; present_swap_chain->ReleaseCurrentImage(); const VkResult res = vkQueuePresentKHR(m_present_queue, &present_info); if (res != VK_SUCCESS) { // VK_ERROR_OUT_OF_DATE_KHR is not fatal, just means we need to recreate our swap chain. if (res != VK_ERROR_OUT_OF_DATE_KHR && res != VK_SUBOPTIMAL_KHR) LOG_VULKAN_ERROR(res, "vkQueuePresentKHR failed: "); m_last_present_failed.store(true, std::memory_order_release); return; } // Grab the next image as soon as possible, that way we spend less time blocked on the next // submission. Don't care if it fails, we'll deal with that at the presentation call site. // Credit to dxvk for the idea. present_swap_chain->AcquireNextImage(); } void VulkanDevice::WaitForPresentComplete() { if (m_present_done.load()) return; std::unique_lock lock(m_present_mutex); WaitForPresentComplete(lock); } void VulkanDevice::WaitForPresentComplete(std::unique_lock& lock) { if (m_present_done.load()) return; m_present_done_cv.wait(lock, [this]() { return m_present_done.load(); }); } void VulkanDevice::PresentThread() { std::unique_lock lock(m_present_mutex); while (!m_present_thread_done.load()) { m_present_queued_cv.wait(lock, [this]() { return !m_present_done.load() || m_present_thread_done.load(); }); if (m_present_done.load()) continue; DoSubmitCommandBuffer(m_queued_present.command_buffer_index, m_queued_present.swap_chain); if (m_queued_present.swap_chain) DoPresent(m_queued_present.swap_chain); m_present_done.store(true); m_present_done_cv.notify_one(); } } void VulkanDevice::StartPresentThread() { DebugAssert(!m_present_thread.joinable()); m_present_thread_done.store(false); m_present_thread = std::thread(&VulkanDevice::PresentThread, this); } void VulkanDevice::StopPresentThread() { if (!m_present_thread.joinable()) return; { std::unique_lock lock(m_present_mutex); WaitForPresentComplete(lock); m_present_thread_done.store(true); m_present_queued_cv.notify_one(); } m_present_thread.join(); } void VulkanDevice::MoveToNextCommandBuffer() { BeginCommandBuffer((m_current_frame + 1) % NUM_COMMAND_BUFFERS); } void VulkanDevice::BeginCommandBuffer(u32 index) { CommandBuffer& resources = m_frame_resources[index]; if (!m_present_done.load() && m_queued_present.command_buffer_index == index) WaitForPresentComplete(); // Wait for the GPU to finish with all resources for this command buffer. if (resources.fence_counter > m_completed_fence_counter) WaitForCommandBufferCompletion(index); // Reset fence to unsignaled before starting. VkResult res = vkResetFences(m_device, 1, &resources.fence); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetFences failed: "); // Reset command pools to beginning since we can re-use the memory now res = vkResetCommandPool(m_device, resources.command_pool, 0); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetCommandPool failed: "); // Enable commands to be recorded to the two buffers again. VkCommandBufferBeginInfo begin_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr}; res = vkBeginCommandBuffer(resources.command_buffers[1], &begin_info); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkBeginCommandBuffer failed: "); // Also can do the same for the descriptor pools if (resources.descriptor_pool != VK_NULL_HANDLE) { res = vkResetDescriptorPool(m_device, resources.descriptor_pool, 0); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetDescriptorPool failed: "); } if (m_gpu_timing_enabled) { vkCmdResetQueryPool(resources.command_buffers[1], m_timestamp_query_pool, index * 2, 2); vkCmdWriteTimestamp(resources.command_buffers[1], VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, index * 2); } resources.fence_counter = m_next_fence_counter++; resources.init_buffer_used = false; resources.timestamp_written = m_gpu_timing_enabled; m_current_frame = index; m_current_command_buffer = resources.command_buffers[1]; // using the lower 32 bits of the fence index should be sufficient here, I hope... vmaSetCurrentFrameIndex(m_allocator, static_cast(m_next_fence_counter)); } void VulkanDevice::SubmitCommandBuffer(bool wait_for_completion) { DebugAssert(!InRenderPass()); const u32 current_frame = m_current_frame; SubmitCommandBuffer(); MoveToNextCommandBuffer(); if (wait_for_completion) WaitForCommandBufferCompletion(current_frame); InvalidateCachedState(); } void VulkanDevice::SubmitCommandBuffer(bool wait_for_completion, const char* reason, ...) { std::va_list ap; va_start(ap, reason); const std::string reason_str(StringUtil::StdStringFromFormatV(reason, ap)); va_end(ap); Log_WarningPrintf("Executing command buffer due to '%s'", reason_str.c_str()); SubmitCommandBuffer(wait_for_completion); } void VulkanDevice::SubmitCommandBufferAndRestartRenderPass(const char* reason) { if (InRenderPass()) EndRenderPass(); VulkanFramebuffer* fb = m_current_framebuffer; VulkanPipeline* pl = m_current_pipeline; SubmitCommandBuffer(false, "%s", reason); if (fb) SetFramebuffer(fb); SetPipeline(pl); BeginRenderPass(); } bool VulkanDevice::CheckLastPresentFail() { return m_last_present_failed.exchange(false, std::memory_order_acq_rel); } bool VulkanDevice::CheckLastSubmitFail() { return m_last_submit_failed.load(std::memory_order_acquire); } void VulkanDevice::DeferBufferDestruction(VkBuffer object, VmaAllocation allocation) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object, allocation]() { vmaDestroyBuffer(m_allocator, object, allocation); }); } void VulkanDevice::DeferFramebufferDestruction(VkFramebuffer object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyFramebuffer(m_device, object, nullptr); }); } void VulkanDevice::DeferImageDestruction(VkImage object, VmaAllocation allocation) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object, allocation]() { vmaDestroyImage(m_allocator, object, allocation); }); } void VulkanDevice::DeferImageViewDestruction(VkImageView object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyImageView(m_device, object, nullptr); }); } void VulkanDevice::DeferPipelineDestruction(VkPipeline object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyPipeline(m_device, object, nullptr); }); } void VulkanDevice::DeferBufferViewDestruction(VkBufferView object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { vkDestroyBufferView(m_device, object, nullptr); }); } void VulkanDevice::DeferPersistentDescriptorSetDestruction(VkDescriptorSet object) { m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { FreePersistentDescriptorSet(object); }); } VKAPI_ATTR VkBool32 VKAPI_CALL DebugMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { Log_ErrorPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else if (severity & (VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT)) { Log_WarningPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) { Log_InfoPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else { Log_DevPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } return VK_FALSE; } bool VulkanDevice::EnableDebugUtils() { // Already enabled? if (m_debug_messenger_callback != VK_NULL_HANDLE) return true; // Check for presence of the functions before calling if (!vkCreateDebugUtilsMessengerEXT || !vkDestroyDebugUtilsMessengerEXT || !vkSubmitDebugUtilsMessageEXT) { return false; } VkDebugUtilsMessengerCreateInfoEXT messenger_info = { VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, nullptr, 0, VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT, VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT, DebugMessengerCallback, nullptr}; const VkResult res = vkCreateDebugUtilsMessengerEXT(m_instance, &messenger_info, nullptr, &m_debug_messenger_callback); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDebugUtilsMessengerEXT failed: "); return false; } return true; } void VulkanDevice::DisableDebugUtils() { if (m_debug_messenger_callback != VK_NULL_HANDLE) { vkDestroyDebugUtilsMessengerEXT(m_instance, m_debug_messenger_callback, nullptr); m_debug_messenger_callback = VK_NULL_HANDLE; } } VkRenderPass VulkanDevice::CreateCachedRenderPass(RenderPassCacheKey key) { VkAttachmentReference color_reference; VkAttachmentReference* color_reference_ptr = nullptr; VkAttachmentReference depth_reference; VkAttachmentReference* depth_reference_ptr = nullptr; VkAttachmentReference input_reference; VkAttachmentReference* input_reference_ptr = nullptr; VkSubpassDependency subpass_dependency; VkSubpassDependency* subpass_dependency_ptr = nullptr; std::array attachments; u32 num_attachments = 0; if (key.color_format != VK_FORMAT_UNDEFINED) { const VkImageLayout layout = key.color_feedback_loop ? (UseFeedbackLoopLayout() ? VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT : VK_IMAGE_LAYOUT_GENERAL) : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[num_attachments] = {0, static_cast(key.color_format), static_cast(key.samples), static_cast(key.color_load_op), static_cast(key.color_store_op), VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, layout, layout}; color_reference.attachment = num_attachments; color_reference.layout = layout; color_reference_ptr = &color_reference; if (key.color_feedback_loop) { if (!UseFeedbackLoopLayout()) { input_reference.attachment = num_attachments; input_reference.layout = layout; input_reference_ptr = &input_reference; } if (!m_optional_extensions.vk_ext_rasterization_order_attachment_access) { // don't need the framebuffer-local dependency when we have rasterization order attachment access subpass_dependency.srcSubpass = 0; subpass_dependency.dstSubpass = 0; subpass_dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; subpass_dependency.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; subpass_dependency.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; subpass_dependency.dstAccessMask = UseFeedbackLoopLayout() ? VK_ACCESS_SHADER_READ_BIT : VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; subpass_dependency.dependencyFlags = UseFeedbackLoopLayout() ? (VK_DEPENDENCY_BY_REGION_BIT | VK_DEPENDENCY_FEEDBACK_LOOP_BIT_EXT) : VK_DEPENDENCY_BY_REGION_BIT; subpass_dependency_ptr = &subpass_dependency; } } num_attachments++; } if (key.depth_format != VK_FORMAT_UNDEFINED) { const VkImageLayout layout = key.depth_sampling ? (UseFeedbackLoopLayout() ? VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT : VK_IMAGE_LAYOUT_GENERAL) : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[num_attachments] = {0, static_cast(key.depth_format), static_cast(key.samples), static_cast(key.depth_load_op), static_cast(key.depth_store_op), static_cast(key.stencil_load_op), static_cast(key.stencil_store_op), layout, layout}; depth_reference.attachment = num_attachments; depth_reference.layout = layout; depth_reference_ptr = &depth_reference; num_attachments++; } const VkSubpassDescriptionFlags subpass_flags = (key.color_feedback_loop && m_optional_extensions.vk_ext_rasterization_order_attachment_access) ? VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT : 0; const VkSubpassDescription subpass = {subpass_flags, VK_PIPELINE_BIND_POINT_GRAPHICS, input_reference_ptr ? 1u : 0u, input_reference_ptr ? input_reference_ptr : nullptr, color_reference_ptr ? 1u : 0u, color_reference_ptr ? color_reference_ptr : nullptr, nullptr, depth_reference_ptr, 0, nullptr}; const VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0u, num_attachments, attachments.data(), 1u, &subpass, subpass_dependency_ptr ? 1u : 0u, subpass_dependency_ptr}; VkRenderPass pass; const VkResult res = vkCreateRenderPass(m_device, &pass_info, nullptr, &pass); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: "); return VK_NULL_HANDLE; } m_render_pass_cache.emplace(key.key, pass); return pass; } void VulkanDevice::GetAdapterAndModeList(AdapterAndModeList* ret, VkInstance instance) { GPUList gpus = EnumerateGPUs(instance); ret->adapter_names.clear(); for (auto& [gpu, name] : gpus) ret->adapter_names.push_back(std::move(name)); } GPUDevice::AdapterAndModeList VulkanDevice::StaticGetAdapterAndModeList() { AdapterAndModeList ret; std::unique_lock lock(s_instance_mutex); // Device shouldn't be torn down since we have the lock. if (g_gpu_device && g_gpu_device->GetRenderAPI() == RenderAPI::Vulkan && Vulkan::IsVulkanLibraryLoaded()) { GetAdapterAndModeList(&ret, VulkanDevice::GetInstance().m_instance); } else { if (Vulkan::LoadVulkanLibrary()) { ScopedGuard lib_guard([]() { Vulkan::UnloadVulkanLibrary(); }); const VkInstance instance = CreateVulkanInstance(WindowInfo(), false, false); if (instance != VK_NULL_HANDLE) { if (Vulkan::LoadVulkanInstanceFunctions(instance)) GetAdapterAndModeList(&ret, instance); vkDestroyInstance(instance, nullptr); } } } return ret; } GPUDevice::AdapterAndModeList VulkanDevice::GetAdapterAndModeList() { AdapterAndModeList ret; GetAdapterAndModeList(&ret, m_instance); return ret; } bool VulkanDevice::IsSuitableDefaultRenderer() { #ifdef __ANDROID__ // No way in hell. return false; #else AdapterAndModeList aml = StaticGetAdapterAndModeList(); if (aml.adapter_names.empty()) { // No adapters, not gonna be able to use VK. return false; } // Check the first GPU, should be enough. const std::string& name = aml.adapter_names.front(); Log_InfoPrintf(fmt::format("Using Vulkan GPU '{}' for automatic renderer check.", name).c_str()); // Any software rendering (LLVMpipe, SwiftShader). if (StringUtil::StartsWithNoCase(name, "llvmpipe") || StringUtil::StartsWithNoCase(name, "SwiftShader")) { Log_InfoPrintf("Not using Vulkan for software renderer."); return false; } // For Intel, OpenGL usually ends up faster on Linux, because of fbfetch. // Plus, the Ivy Bridge and Haswell drivers are incomplete. if (StringUtil::StartsWithNoCase(name, "Intel")) { Log_InfoPrintf("Not using Vulkan for Intel GPU."); return false; } Log_InfoPrintf("Allowing Vulkan as default renderer."); return true; #endif } RenderAPI VulkanDevice::GetRenderAPI() const { return RenderAPI::Vulkan; } bool VulkanDevice::HasSurface() const { return static_cast(m_swap_chain); } bool VulkanDevice::CreateDevice(const std::string_view& adapter, bool threaded_presentation) { std::unique_lock lock(s_instance_mutex); bool enable_debug_utils = m_debug_device; bool enable_validation_layer = m_debug_device; std::optional exclusive_fullscreen_control; if (!Vulkan::LoadVulkanLibrary()) { Host::ReportErrorAsync("Error", "Failed to load Vulkan library. Does your GPU and/or driver support Vulkan?"); return false; } m_instance = CreateVulkanInstance(m_window_info, enable_debug_utils, enable_validation_layer); if (m_instance == VK_NULL_HANDLE) { if (enable_debug_utils || enable_validation_layer) { // Try again without the validation layer. enable_debug_utils = false; enable_validation_layer = false; m_instance = CreateVulkanInstance(m_window_info, enable_debug_utils, enable_validation_layer); if (m_instance == VK_NULL_HANDLE) { Host::ReportErrorAsync("Error", "Failed to create Vulkan instance. Does your GPU and/or driver support Vulkan?"); return false; } Log_ErrorPrintf("Vulkan validation/debug layers requested but are unavailable. Creating non-debug device."); } } if (!Vulkan::LoadVulkanInstanceFunctions(m_instance)) { Log_ErrorPrintf("Failed to load Vulkan instance functions"); return false; } GPUList gpus = EnumerateGPUs(m_instance); if (gpus.empty()) { Host::ReportErrorAsync("Error", "No physical devices found. Does your GPU and/or driver support Vulkan?"); return false; } if (!adapter.empty()) { u32 gpu_index = 0; for (; gpu_index < static_cast(gpus.size()); gpu_index++) { Log_InfoPrint(fmt::format("GPU {}: {}", gpu_index, gpus[gpu_index].second).c_str()); if (gpus[gpu_index].second == adapter) { m_physical_device = gpus[gpu_index].first; break; } } if (gpu_index == static_cast(gpus.size())) { Log_WarningPrint(fmt::format("Requested GPU '{}' not found, using first ({})", adapter, gpus[0].second).c_str()); m_physical_device = gpus[0].first; } } else { Log_InfoPrint(fmt::format("No GPU requested, using first ({})", gpus[0].second).c_str()); m_physical_device = gpus[0].first; } // Read device physical memory properties, we need it for allocating buffers vkGetPhysicalDeviceProperties(m_physical_device, &m_device_properties); m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast(1)); m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast(1)); m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast(1)); m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max(m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast(1)); m_device_properties.limits.bufferImageGranularity = std::max(m_device_properties.limits.bufferImageGranularity, static_cast(1)); if (enable_debug_utils) EnableDebugUtils(); VkSurfaceKHR surface = VK_NULL_HANDLE; ScopedGuard surface_cleanup = [this, &surface]() { if (surface != VK_NULL_HANDLE) vkDestroySurfaceKHR(m_instance, surface, nullptr); }; if (m_window_info.type != WindowInfo::Type::Surfaceless) { surface = VulkanSwapChain::CreateVulkanSurface(m_instance, m_physical_device, &m_window_info); if (surface == VK_NULL_HANDLE) return false; } // Attempt to create the device. if (!CreateDevice(surface, enable_validation_layer)) return false; if (!CheckFeatures()) { Host::ReportErrorAsync("Error", "Your GPU does not support the required Vulkan features."); return false; } // And critical resources. if (!CreateAllocator() || !CreatePersistentDescriptorPool() || !CreateCommandBuffers() || !CreatePipelineLayouts()) return false; if (threaded_presentation) StartPresentThread(); if (surface != VK_NULL_HANDLE) { m_swap_chain = VulkanSwapChain::Create(m_window_info, surface, m_vsync_enabled, exclusive_fullscreen_control); if (!m_swap_chain) { Log_ErrorPrintf("Failed to create swap chain"); return false; } // NOTE: This is assigned afterwards, because some platforms can modify the window info (e.g. Metal). m_window_info = m_swap_chain->GetWindowInfo(); } surface_cleanup.Cancel(); // Render a frame as soon as possible to clear out whatever was previously being displayed. if (m_window_info.type != WindowInfo::Type::Surfaceless) RenderBlankFrame(); if (!CreateNullTexture()) { Log_ErrorPrint("Failed to create dummy texture"); return false; } if (!CreateBuffers() || !CreatePersistentDescriptorSets()) return false; return true; } void VulkanDevice::DestroyDevice() { std::unique_lock lock(s_instance_mutex); if (InRenderPass()) EndRenderPass(); // Don't both submitting the current command buffer, just toss it. if (m_device != VK_NULL_HANDLE) WaitForGPUIdle(); StopPresentThread(); m_swap_chain.reset(); if (m_null_texture) { m_null_texture->Destroy(false); m_null_texture.reset(); } for (auto& it : m_cleanup_objects) it.second(); m_cleanup_objects.clear(); DestroyDownloadBuffer(); DestroyPersistentDescriptorSets(); DestroyBuffers(); DestroySamplers(); DestroyPersistentDescriptorPool(); DestroyPipelineLayouts(); DestroyCommandBuffers(); DestroyAllocator(); for (auto& it : m_render_pass_cache) vkDestroyRenderPass(m_device, it.second, nullptr); m_render_pass_cache.clear(); if (m_pipeline_cache != VK_NULL_HANDLE) { vkDestroyPipelineCache(m_device, m_pipeline_cache, nullptr); m_pipeline_cache = VK_NULL_HANDLE; } if (m_device != VK_NULL_HANDLE) { vkDestroyDevice(m_device, nullptr); m_device = VK_NULL_HANDLE; } if (m_debug_messenger_callback != VK_NULL_HANDLE) DisableDebugUtils(); if (m_instance != VK_NULL_HANDLE) { vkDestroyInstance(m_instance, nullptr); m_instance = VK_NULL_HANDLE; } Vulkan::UnloadVulkanLibrary(); } bool VulkanDevice::ValidatePipelineCacheHeader(const VK_PIPELINE_CACHE_HEADER& header) { if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER)) { Log_ErrorPrintf("Pipeline cache failed validation: Invalid header length"); return false; } if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { Log_ErrorPrintf("Pipeline cache failed validation: Invalid header version"); return false; } if (header.vendor_id != m_device_properties.vendorID) { Log_ErrorPrintf("Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)", header.vendor_id, m_device_properties.vendorID); return false; } if (header.device_id != m_device_properties.deviceID) { Log_ErrorPrintf("Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)", header.device_id, m_device_properties.deviceID); return false; } if (std::memcmp(header.uuid, m_device_properties.pipelineCacheUUID, VK_UUID_SIZE) != 0) { Log_ErrorPrintf("Pipeline cache failed validation: Incorrect UUID"); return false; } return true; } void VulkanDevice::FillPipelineCacheHeader(VK_PIPELINE_CACHE_HEADER* header) { header->header_length = sizeof(VK_PIPELINE_CACHE_HEADER); header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE; header->vendor_id = m_device_properties.vendorID; header->device_id = m_device_properties.deviceID; std::memcpy(header->uuid, m_device_properties.pipelineCacheUUID, VK_UUID_SIZE); } bool VulkanDevice::ReadPipelineCache(const std::string& filename) { std::optional> data; auto fp = FileSystem::OpenManagedCFile(filename.c_str(), "rb"); if (fp) { data = FileSystem::ReadBinaryFile(fp.get()); if (data.has_value()) { if (data->size() < sizeof(VK_PIPELINE_CACHE_HEADER)) { Log_ErrorPrintf("Pipeline cache at '%s' is too small", filename.c_str()); return false; } VK_PIPELINE_CACHE_HEADER header; std::memcpy(&header, data->data(), sizeof(header)); if (!ValidatePipelineCacheHeader(header)) data.reset(); } } const VkPipelineCacheCreateInfo ci{VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, nullptr, 0, data.has_value() ? data->size() : 0, data.has_value() ? data->data() : nullptr}; VkResult res = vkCreatePipelineCache(m_device, &ci, nullptr, &m_pipeline_cache); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreatePipelineCache() failed: "); return false; } return true; } bool VulkanDevice::GetPipelineCacheData(DynamicHeapArray* data) { if (m_pipeline_cache == VK_NULL_HANDLE) return false; size_t data_size; VkResult res = vkGetPipelineCacheData(m_device, m_pipeline_cache, &data_size, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData() failed: "); return false; } data->resize(data_size); res = vkGetPipelineCacheData(m_device, m_pipeline_cache, &data_size, data->data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData() (2) failed: "); return false; } data->resize(data_size); return true; } bool VulkanDevice::UpdateWindow() { DestroySurface(); if (!AcquireWindow(false)) return false; if (m_window_info.IsSurfaceless()) return true; // make sure previous frames are presented if (InRenderPass()) EndRenderPass(); SubmitCommandBuffer(false); WaitForGPUIdle(); // recreate surface in existing swap chain if it already exists if (m_swap_chain) { if (m_swap_chain->RecreateSurface(m_window_info)) { m_window_info = m_swap_chain->GetWindowInfo(); return true; } m_swap_chain.reset(); } VkSurfaceKHR surface = VulkanSwapChain::CreateVulkanSurface(m_instance, m_physical_device, &m_window_info); if (surface == VK_NULL_HANDLE) { Log_ErrorPrintf("Failed to create new surface for swap chain"); return false; } // TODO: exclusive fullscreen control m_swap_chain = VulkanSwapChain::Create(m_window_info, surface, m_vsync_enabled, std::nullopt); if (!m_swap_chain) { Log_ErrorPrintf("Failed to create swap chain"); VulkanSwapChain::DestroyVulkanSurface(m_instance, &m_window_info, surface); return false; } m_window_info = m_swap_chain->GetWindowInfo(); RenderBlankFrame(); return true; } void VulkanDevice::ResizeWindow(s32 new_window_width, s32 new_window_height, float new_window_scale) { if (m_swap_chain->GetWidth() == static_cast(new_window_width) && m_swap_chain->GetHeight() == static_cast(new_window_height)) { // skip unnecessary resizes m_window_info.surface_scale = new_window_scale; return; } // make sure previous frames are presented WaitForGPUIdle(); if (!m_swap_chain->ResizeSwapChain(new_window_width, new_window_height, new_window_scale)) { // AcquireNextImage() will fail, and we'll recreate the surface. Log_ErrorPrintf("Failed to resize swap chain. Next present will fail."); return; } m_window_info = m_swap_chain->GetWindowInfo(); } void VulkanDevice::DestroySurface() { WaitForGPUIdle(); m_swap_chain.reset(); } bool VulkanDevice::SupportsTextureFormat(GPUTexture::Format format) const { return (TEXTURE_FORMAT_MAPPING[static_cast(format)] != VK_FORMAT_UNDEFINED); } std::string VulkanDevice::GetDriverInfo() const { std::string ret; const u32 api_version = m_device_properties.apiVersion; const u32 driver_version = m_device_properties.driverVersion; if (m_optional_extensions.vk_khr_driver_properties) { const VkPhysicalDeviceDriverProperties& props = m_device_driver_properties; ret = StringUtil::StdStringFromFormat( "Driver %u.%u.%u\nVulkan %u.%u.%u\nConformance Version %u.%u.%u.%u\n%s\n%s\n%s", VK_VERSION_MAJOR(driver_version), VK_VERSION_MINOR(driver_version), VK_VERSION_PATCH(driver_version), VK_API_VERSION_MAJOR(api_version), VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version), props.conformanceVersion.major, props.conformanceVersion.minor, props.conformanceVersion.subminor, props.conformanceVersion.patch, props.driverInfo, props.driverName, m_device_properties.deviceName); } else { ret = StringUtil::StdStringFromFormat("Driver %u.%u.%u\nVulkan %u.%u.%u\n%s", VK_VERSION_MAJOR(driver_version), VK_VERSION_MINOR(driver_version), VK_VERSION_PATCH(driver_version), VK_API_VERSION_MAJOR(api_version), VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version), m_device_properties.deviceName); } return ret; } void VulkanDevice::SetVSync(bool enabled) { if (!m_swap_chain || m_vsync_enabled == enabled) return; // This swap chain should not be used by the current buffer, thus safe to destroy. WaitForGPUIdle(); if (!m_swap_chain->SetVSync(enabled)) { // Try switching back to the old mode.. if (!m_swap_chain->SetVSync(m_vsync_enabled)) { Panic("Failed to reset old vsync mode after failure"); m_swap_chain.reset(); } } m_vsync_enabled = enabled; } bool VulkanDevice::BeginPresent(bool frame_skip) { if (InRenderPass()) EndRenderPass(); if (frame_skip) return false; // If we're running surfaceless, kick the command buffer so we don't run out of descriptors. if (!m_swap_chain) { SubmitCommandBuffer(false); return false; } // Previous frame needs to be presented before we can acquire the swap chain. WaitForPresentComplete(); // Check if the device was lost. if (CheckLastSubmitFail()) { Panic("Fixme"); // TODO return false; } VkResult res = m_swap_chain->AcquireNextImage(); if (res != VK_SUCCESS) { m_swap_chain->ReleaseCurrentImage(); if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR) { ResizeWindow(0, 0, m_window_info.surface_scale); res = m_swap_chain->AcquireNextImage(); } else if (res == VK_ERROR_SURFACE_LOST_KHR) { Log_WarningPrintf("Surface lost, attempting to recreate"); if (!m_swap_chain->RecreateSurface(m_window_info)) { Log_ErrorPrintf("Failed to recreate surface after loss"); SubmitCommandBuffer(false); return false; } res = m_swap_chain->AcquireNextImage(); } // This can happen when multiple resize events happen in quick succession. // In this case, just wait until the next frame to try again. if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) { // Still submit the command buffer, otherwise we'll end up with several frames waiting. LOG_VULKAN_ERROR(res, "vkAcquireNextImageKHR() failed: "); SubmitCommandBuffer(false); return false; } } BeginSwapChainRenderPass(); return true; } void VulkanDevice::EndPresent() { DebugAssert(InRenderPass() && !m_current_framebuffer); EndRenderPass(); VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, m_swap_chain->GetCurrentImage(), GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::ColorAttachment, VulkanTexture::Layout::PresentSrc); SubmitCommandBuffer(m_swap_chain.get(), !m_swap_chain->IsPresentModeSynchronizing()); MoveToNextCommandBuffer(); InvalidateCachedState(); } #ifdef _DEBUG static std::array Palette(float phase, const std::array& a, const std::array& b, const std::array& c, const std::array& d) { std::array result; result[0] = a[0] + b[0] * std::cos(6.28318f * (c[0] * phase + d[0])); result[1] = a[1] + b[1] * std::cos(6.28318f * (c[1] * phase + d[1])); result[2] = a[2] + b[2] * std::cos(6.28318f * (c[2] * phase + d[2])); return result; } #endif void VulkanDevice::PushDebugGroup(const char* fmt, ...) { #ifdef _DEBUG if (!vkCmdBeginDebugUtilsLabelEXT || !m_debug_device) return; std::va_list ap; va_start(ap, fmt); const std::string buf(StringUtil::StdStringFromFormatV(fmt, ap)); va_end(ap); const std::array color = Palette(static_cast(++s_debug_scope_depth), {0.5f, 0.5f, 0.5f}, {0.5f, 0.5f, 0.5f}, {1.0f, 1.0f, 0.5f}, {0.8f, 0.90f, 0.30f}); const VkDebugUtilsLabelEXT label = { VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, nullptr, buf.c_str(), {color[0], color[1], color[2], 1.0f}, }; vkCmdBeginDebugUtilsLabelEXT(GetCurrentCommandBuffer(), &label); #endif } void VulkanDevice::PopDebugGroup() { #ifdef _DEBUG if (!vkCmdEndDebugUtilsLabelEXT || !m_debug_device) return; s_debug_scope_depth = (s_debug_scope_depth == 0) ? 0 : (s_debug_scope_depth - 1u); vkCmdEndDebugUtilsLabelEXT(GetCurrentCommandBuffer()); #endif } void VulkanDevice::InsertDebugMessage(const char* fmt, ...) { #ifdef _DEBUG if (!vkCmdInsertDebugUtilsLabelEXT || !m_debug_device) return; std::va_list ap; va_start(ap, fmt); const std::string buf(StringUtil::StdStringFromFormatV(fmt, ap)); va_end(ap); if (buf.empty()) return; const VkDebugUtilsLabelEXT label = { VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, nullptr, buf.c_str(), {0.0f, 0.0f, 0.0f, 1.0f}}; vkCmdInsertDebugUtilsLabelEXT(GetCurrentCommandBuffer(), &label); #endif } bool VulkanDevice::CheckFeatures() { m_max_texture_size = m_device_properties.limits.maxImageDimension2D; VkImageFormatProperties color_properties = {}; vkGetPhysicalDeviceImageFormatProperties(m_physical_device, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &color_properties); VkImageFormatProperties depth_properties = {}; vkGetPhysicalDeviceImageFormatProperties(m_physical_device, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &depth_properties); const VkSampleCountFlags combined_properties = m_device_properties.limits.framebufferColorSampleCounts & m_device_properties.limits.framebufferDepthSampleCounts & color_properties.sampleCounts & depth_properties.sampleCounts; if (combined_properties & VK_SAMPLE_COUNT_64_BIT) m_max_multisamples = 64; else if (combined_properties & VK_SAMPLE_COUNT_32_BIT) m_max_multisamples = 32; else if (combined_properties & VK_SAMPLE_COUNT_16_BIT) m_max_multisamples = 16; else if (combined_properties & VK_SAMPLE_COUNT_8_BIT) m_max_multisamples = 8; else if (combined_properties & VK_SAMPLE_COUNT_4_BIT) m_max_multisamples = 4; else if (combined_properties & VK_SAMPLE_COUNT_2_BIT) m_max_multisamples = 2; else m_max_multisamples = 1; m_features.dual_source_blend = m_device_features.dualSrcBlend; // TODO: Option to disable if (!m_features.dual_source_blend) Log_WarningPrintf("Vulkan driver is missing dual-source blending. This will have an impact on performance."); m_features.noperspective_interpolation = true; m_features.per_sample_shading = true; m_features.supports_texture_buffers = true; #ifdef __APPLE__ // Partial texture buffer uploads appear to be broken in macOS/MoltenVK. m_features.texture_buffers_emulated_with_ssbo = true; #else const u32 max_texel_buffer_elements = m_device_properties.limits.maxTexelBufferElements; Log_InfoPrintf("Max texel buffer elements: %u", max_texel_buffer_elements); if (max_texel_buffer_elements < MIN_TEXEL_BUFFER_ELEMENTS) { m_features.texture_buffers_emulated_with_ssbo = true; } #endif if (m_features.texture_buffers_emulated_with_ssbo) Log_WarningPrintf("Emulating texture buffers with SSBOs."); m_features.partial_msaa_resolve = true; m_features.shader_cache = true; m_features.pipeline_cache = true; return true; } void VulkanDevice::CopyTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level, GPUTexture* src, u32 src_x, u32 src_y, u32 src_layer, u32 src_level, u32 width, u32 height) { VulkanTexture* const S = static_cast(src); VulkanTexture* const D = static_cast(dst); if (S->GetState() == GPUTexture::State::Cleared) { // source is cleared. if destination is a render target, we can carry the clear forward if (D->IsRenderTargetOrDepthStencil()) { if (dst_level == 0 && dst_x == 0 && dst_y == 0 && width == D->GetWidth() && height == D->GetHeight()) { // pass it forward if we're clearing the whole thing if (S->IsDepthStencil()) D->SetClearDepth(S->GetClearDepth()); else D->SetClearColor(S->GetClearColor()); return; } if (D->GetState() == GPUTexture::State::Cleared) { // destination is cleared, if it's the same colour and rect, we can just avoid this entirely if (D->IsDepthStencil()) { if (D->GetClearDepth() == S->GetClearDepth()) return; } else { if (D->GetClearColor() == S->GetClearColor()) return; } } // TODO: Could use attachment clear here.. } // commit the clear to the source first, then do normal copy S->CommitClear(); } // if the destination has been cleared, and we're not overwriting the whole thing, commit the clear first // (the area outside of where we're copying to) if (D->GetState() == GPUTexture::State::Cleared && (dst_level != 0 || dst_x != 0 || dst_y != 0 || width != D->GetWidth() || height != D->GetHeight())) { D->CommitClear(); } // *now* we can do a normal image copy. const VkImageAspectFlags src_aspect = (S->IsDepthStencil()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT; const VkImageAspectFlags dst_aspect = (D->IsDepthStencil()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT; const VkImageCopy ic = {{src_aspect, src_level, src_layer, 1u}, {static_cast(src_x), static_cast(src_y), 0}, {dst_aspect, dst_level, dst_layer, 1u}, {static_cast(dst_x), static_cast(dst_y), 0}, {static_cast(width), static_cast(height), 1u}}; if (InRenderPass()) EndRenderPass(); S->SetUseFenceCounter(GetCurrentFenceCounter()); D->SetUseFenceCounter(GetCurrentFenceCounter()); S->TransitionToLayout((D == S) ? VulkanTexture::Layout::TransferSelf : VulkanTexture::Layout::TransferSrc); D->TransitionToLayout((D == S) ? VulkanTexture::Layout::TransferSelf : VulkanTexture::Layout::TransferDst); vkCmdCopyImage(GetCurrentCommandBuffer(), S->GetImage(), S->GetVkLayout(), D->GetImage(), D->GetVkLayout(), 1, &ic); D->SetState(GPUTexture::State::Dirty); } void VulkanDevice::ResolveTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level, GPUTexture* src, u32 src_x, u32 src_y, u32 width, u32 height) { DebugAssert((src_x + width) <= src->GetWidth()); DebugAssert((src_y + height) <= src->GetHeight()); DebugAssert(src->IsMultisampled()); DebugAssert(dst_level < dst->GetLevels() && dst_layer < dst->GetLayers()); DebugAssert((dst_x + width) <= dst->GetMipWidth(dst_level)); DebugAssert((dst_y + height) <= dst->GetMipHeight(dst_level)); DebugAssert(!dst->IsMultisampled() && src->IsMultisampled()); if (InRenderPass()) EndRenderPass(); VulkanTexture* D = static_cast(dst); VulkanTexture* S = static_cast(src); const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); S->CommitClear(cmdbuf); D->CommitClear(cmdbuf); S->TransitionSubresourcesToLayout(cmdbuf, 0, 1, 0, 1, S->GetLayout(), VulkanTexture::Layout::TransferSrc); D->TransitionSubresourcesToLayout(cmdbuf, dst_layer, 1, dst_level, 1, D->GetLayout(), VulkanTexture::Layout::TransferSrc); const VkImageResolve resolve = {{VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u}, {static_cast(src_x), static_cast(src_y), 0}, {VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, 1u}, {static_cast(dst_x), static_cast(dst_y), 0}, {width, height, 1}}; vkCmdResolveImage(cmdbuf, S->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, D->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &resolve); S->TransitionSubresourcesToLayout(cmdbuf, 0, 1, 0, 1, VulkanTexture::Layout::TransferSrc, S->GetLayout()); D->TransitionSubresourcesToLayout(cmdbuf, dst_layer, 1, dst_level, 1, VulkanTexture::Layout::TransferSrc, D->GetLayout()); } void VulkanDevice::ClearRenderTarget(GPUTexture* t, u32 c) { GPUDevice::ClearRenderTarget(t, c); if (InRenderPass() && m_current_framebuffer && m_current_framebuffer->GetRT() == t) EndRenderPass(); } void VulkanDevice::ClearDepth(GPUTexture* t, float d) { GPUDevice::ClearDepth(t, d); if (InRenderPass() && m_current_framebuffer && m_current_framebuffer->GetDS() == t) EndRenderPass(); } void VulkanDevice::InvalidateRenderTarget(GPUTexture* t) { GPUDevice::InvalidateRenderTarget(t); if (InRenderPass() && m_current_framebuffer && (m_current_framebuffer->GetRT() == t || m_current_framebuffer->GetDS() == t)) { EndRenderPass(); } } bool VulkanDevice::CreateBuffers() { if (!m_vertex_buffer.Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VERTEX_BUFFER_SIZE)) { Log_ErrorPrint("Failed to allocate vertex buffer"); return false; } if (!m_index_buffer.Create(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, INDEX_BUFFER_SIZE)) { Log_ErrorPrint("Failed to allocate index buffer"); return false; } if (!m_uniform_buffer.Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VERTEX_UNIFORM_BUFFER_SIZE)) { Log_ErrorPrint("Failed to allocate uniform buffer"); return false; } if (!m_texture_upload_buffer.Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, TEXTURE_BUFFER_SIZE)) { Log_ErrorPrint("Failed to allocate texture upload buffer"); return false; } return true; } void VulkanDevice::DestroyBuffers() { m_texture_upload_buffer.Destroy(false); m_uniform_buffer.Destroy(false); m_index_buffer.Destroy(false); m_vertex_buffer.Destroy(false); } void VulkanDevice::MapVertexBuffer(u32 vertex_size, u32 vertex_count, void** map_ptr, u32* map_space, u32* map_base_vertex) { const u32 req_size = vertex_size * vertex_count; if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size)) { SubmitCommandBufferAndRestartRenderPass("out of vertex space"); if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size)) Panic("Failed to allocate vertex space"); } *map_ptr = m_vertex_buffer.GetCurrentHostPointer(); *map_space = m_vertex_buffer.GetCurrentSpace() / vertex_size; *map_base_vertex = m_vertex_buffer.GetCurrentOffset() / vertex_size; } void VulkanDevice::UnmapVertexBuffer(u32 vertex_size, u32 vertex_count) { m_vertex_buffer.CommitMemory(vertex_size * vertex_count); } void VulkanDevice::MapIndexBuffer(u32 index_count, DrawIndex** map_ptr, u32* map_space, u32* map_base_index) { const u32 req_size = sizeof(DrawIndex) * index_count; if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex))) { SubmitCommandBufferAndRestartRenderPass("out of index space"); if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex))) Panic("Failed to allocate index space"); } *map_ptr = reinterpret_cast(m_index_buffer.GetCurrentHostPointer()); *map_space = m_index_buffer.GetCurrentSpace() / sizeof(DrawIndex); *map_base_index = m_index_buffer.GetCurrentOffset() / sizeof(DrawIndex); } void VulkanDevice::UnmapIndexBuffer(u32 used_index_count) { m_index_buffer.CommitMemory(sizeof(DrawIndex) * used_index_count); } void VulkanDevice::PushUniformBuffer(const void* data, u32 data_size) { DebugAssert(data_size < UNIFORM_PUSH_CONSTANTS_SIZE); vkCmdPushConstants(GetCurrentCommandBuffer(), GetCurrentVkPipelineLayout(), UNIFORM_PUSH_CONSTANTS_STAGES, 0, data_size, data); } void* VulkanDevice::MapUniformBuffer(u32 size) { const u32 align = static_cast(m_device_properties.limits.minUniformBufferOffsetAlignment); const u32 used_space = Common::AlignUpPow2(size, align); if (!m_uniform_buffer.ReserveMemory(used_space + MAX_UNIFORM_BUFFER_SIZE, align)) { SubmitCommandBufferAndRestartRenderPass("out of uniform space"); if (!m_uniform_buffer.ReserveMemory(used_space + MAX_UNIFORM_BUFFER_SIZE, align)) Panic("Failed to allocate uniform space."); } return m_uniform_buffer.GetCurrentHostPointer(); } void VulkanDevice::UnmapUniformBuffer(u32 size) { m_uniform_buffer_position = m_uniform_buffer.GetCurrentOffset(); m_uniform_buffer.CommitMemory(size); m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS; } bool VulkanDevice::CreateNullTexture() { m_null_texture = VulkanTexture::Create(1, 1, 1, 1, 1, GPUTexture::Type::RenderTarget, GPUTexture::Format::RGBA8, VK_FORMAT_R8G8B8A8_UNORM); if (!m_null_texture) return false; const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); const VkImageSubresourceRange srr{VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u}; const VkClearColorValue ccv{}; m_null_texture->TransitionToLayout(cmdbuf, VulkanTexture::Layout::ClearDst); vkCmdClearColorImage(cmdbuf, m_null_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &ccv, 1, &srr); m_null_texture->TransitionToLayout(cmdbuf, VulkanTexture::Layout::General); Vulkan::SetObjectName(m_device, m_null_texture->GetImage(), "Null texture"); Vulkan::SetObjectName(m_device, m_null_texture->GetView(), "Null texture view"); // Bind null texture and point sampler state to all. const VkSampler point_sampler = GetSampler(GPUSampler::GetNearestConfig()); if (point_sampler == VK_NULL_HANDLE) return false; for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { m_current_textures[i] = m_null_texture.get(); m_current_samplers[i] = point_sampler; } return true; } bool VulkanDevice::CreatePipelineLayouts() { Vulkan::DescriptorSetLayoutBuilder dslb; Vulkan::PipelineLayoutBuilder plb; { dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_ubo_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_ubo_ds_layout, "UBO Descriptor Set Layout"); } { dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_single_texture_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_single_texture_ds_layout, "Single Texture Descriptor Set Layout"); } { dslb.AddBinding(0, m_features.texture_buffers_emulated_with_ssbo ? VK_DESCRIPTOR_TYPE_STORAGE_BUFFER : VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_single_texture_buffer_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_single_texture_buffer_ds_layout, "Texture Buffer Descriptor Set Layout"); } { if (m_optional_extensions.vk_khr_push_descriptor) dslb.SetPushFlag(); for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) dslb.AddBinding(i, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT); if ((m_multi_texture_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, m_multi_texture_ds_layout, "Multi Texture Descriptor Set Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast(GPUPipeline::Layout::SingleTextureAndUBO)]; plb.AddDescriptorSet(m_ubo_ds_layout); plb.AddDescriptorSet(m_single_texture_ds_layout); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Single Texture + UBO Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast(GPUPipeline::Layout::SingleTextureAndPushConstants)]; plb.AddDescriptorSet(m_single_texture_ds_layout); plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Single Texture Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast(GPUPipeline::Layout::SingleTextureBufferAndPushConstants)]; plb.AddDescriptorSet(m_single_texture_buffer_ds_layout); plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Single Texture Buffer + UBO Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast(GPUPipeline::Layout::MultiTextureAndUBO)]; plb.AddDescriptorSet(m_ubo_ds_layout); plb.AddDescriptorSet(m_multi_texture_ds_layout); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Multi Texture + UBO Pipeline Layout"); } { VkPipelineLayout& pl = m_pipeline_layouts[static_cast(GPUPipeline::Layout::MultiTextureAndPushConstants)]; plb.AddDescriptorSet(m_multi_texture_ds_layout); plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE); if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE) return false; Vulkan::SetObjectName(m_device, pl, "Multi Texture Pipeline Layout"); } return true; } void VulkanDevice::DestroyPipelineLayouts() { for (VkPipelineLayout& pl : m_pipeline_layouts) { if (pl != VK_NULL_HANDLE) { vkDestroyPipelineLayout(m_device, pl, nullptr); pl = VK_NULL_HANDLE; } } auto destroy_dsl = [this](VkDescriptorSetLayout& l) { if (l != VK_NULL_HANDLE) { vkDestroyDescriptorSetLayout(m_device, l, nullptr); l = VK_NULL_HANDLE; } }; destroy_dsl(m_multi_texture_ds_layout); destroy_dsl(m_single_texture_buffer_ds_layout); destroy_dsl(m_single_texture_ds_layout); destroy_dsl(m_ubo_ds_layout); } bool VulkanDevice::CreatePersistentDescriptorSets() { Vulkan::DescriptorSetUpdateBuilder dsub; // TODO: is this a bad thing? choosing an upper bound.. so long as it's not going to fetch all of it :/ m_ubo_descriptor_set = AllocatePersistentDescriptorSet(m_ubo_ds_layout); if (m_ubo_descriptor_set == VK_NULL_HANDLE) return false; dsub.AddBufferDescriptorWrite(m_ubo_descriptor_set, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, m_uniform_buffer.GetBuffer(), 0, MAX_UNIFORM_BUFFER_SIZE); dsub.Update(m_device, false); return true; } void VulkanDevice::DestroyPersistentDescriptorSets() { if (m_ubo_descriptor_set != VK_NULL_HANDLE) FreePersistentDescriptorSet(m_ubo_descriptor_set); } void VulkanDevice::RenderBlankFrame() { VkResult res = m_swap_chain->AcquireNextImage(); if (res != VK_SUCCESS) { Log_ErrorPrintf("Failed to acquire image for blank frame present"); return; } VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); const VkImage image = m_swap_chain->GetCurrentImage(); static constexpr VkImageSubresourceRange srr = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}; VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::Undefined, VulkanTexture::Layout::TransferDst); vkCmdClearColorImage(cmdbuf, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &s_present_clear_color.color, 1, &srr); VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::TransferDst, VulkanTexture::Layout::PresentSrc); SubmitCommandBuffer(m_swap_chain.get(), !m_swap_chain->IsPresentModeSynchronizing()); MoveToNextCommandBuffer(); InvalidateCachedState(); } void VulkanDevice::SetFramebuffer(GPUFramebuffer* fb) { if (m_current_framebuffer == fb) return; if (InRenderPass()) EndRenderPass(); m_current_framebuffer = static_cast(fb); } void VulkanDevice::BeginRenderPass() { DebugAssert(!InRenderPass()); VkRenderPassBeginInfo bi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr}; std::array clear_values; if (LIKELY(m_current_framebuffer)) { VkFormat rt_format = VK_FORMAT_UNDEFINED; VkFormat ds_format = VK_FORMAT_UNDEFINED; VkSampleCountFlagBits samples = VK_SAMPLE_COUNT_1_BIT; VkAttachmentLoadOp rt_load_op = VK_ATTACHMENT_LOAD_OP_DONT_CARE; VkAttachmentStoreOp rt_store_op = VK_ATTACHMENT_STORE_OP_DONT_CARE; VkAttachmentLoadOp ds_load_op = VK_ATTACHMENT_LOAD_OP_DONT_CARE; VkAttachmentStoreOp ds_store_op = VK_ATTACHMENT_STORE_OP_DONT_CARE; VulkanTexture* rt = static_cast(m_current_framebuffer->GetRT()); if (rt) { samples = static_cast(rt->GetSamples()); rt_format = rt->GetVkFormat(); rt_store_op = VK_ATTACHMENT_STORE_OP_STORE; switch (rt->GetState()) { case GPUTexture::State::Cleared: { std::memcpy(clear_values[0].color.float32, rt->GetUNormClearColor().data(), sizeof(clear_values[0].color.float32)); rt_load_op = VK_ATTACHMENT_LOAD_OP_CLEAR; rt->SetState(GPUTexture::State::Dirty); bi.pClearValues = clear_values.data(); bi.clearValueCount = 1; } break; case GPUTexture::State::Invalidated: { // already DONT_CARE rt->SetState(GPUTexture::State::Dirty); } break; case GPUTexture::State::Dirty: { rt_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; } break; default: UnreachableCode(); break; } rt->TransitionToLayout(VulkanTexture::Layout::ColorAttachment); rt->SetUseFenceCounter(GetCurrentFenceCounter()); } VulkanTexture* ds = static_cast(m_current_framebuffer->GetDS()); if (ds) { samples = static_cast(ds->GetSamples()); ds_format = ds->GetVkFormat(); ds_store_op = VK_ATTACHMENT_STORE_OP_STORE; switch (ds->GetState()) { case GPUTexture::State::Cleared: { const u32 idx = rt ? 1 : 0; clear_values[idx].depthStencil = {ds->GetClearDepth()}; ds_load_op = VK_ATTACHMENT_LOAD_OP_CLEAR; ds->SetState(GPUTexture::State::Dirty); bi.pClearValues = clear_values.data(); bi.clearValueCount = idx + 1; } break; case GPUTexture::State::Invalidated: { // already DONT_CARE ds->SetState(GPUTexture::State::Dirty); } break; case GPUTexture::State::Dirty: { ds_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; } break; default: UnreachableCode(); break; } ds->TransitionToLayout(VulkanTexture::Layout::DepthStencilAttachment); ds->SetUseFenceCounter(GetCurrentFenceCounter()); } bi.framebuffer = m_current_framebuffer->GetFramebuffer(); bi.renderPass = m_current_render_pass = GetRenderPass(rt_format, ds_format, samples, rt_load_op, rt_store_op, ds_load_op, ds_store_op); bi.renderArea.extent = {m_current_framebuffer->GetWidth(), m_current_framebuffer->GetHeight()}; } else { // Re-rendering to swap chain. bi.framebuffer = m_swap_chain->GetCurrentFramebuffer(); bi.renderPass = m_current_render_pass = GetRenderPass(m_swap_chain->GetImageFormat(), VK_FORMAT_UNDEFINED, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); bi.renderArea.extent = {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}; } DebugAssert(m_current_render_pass); // All textures should be in shader read only optimal already, but just in case.. const u32 num_textures = GetActiveTexturesForLayout(m_current_pipeline_layout); for (u32 i = 0; i < num_textures; i++) m_current_textures[i]->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly); // TODO: Stats vkCmdBeginRenderPass(GetCurrentCommandBuffer(), &bi, VK_SUBPASS_CONTENTS_INLINE); // If this is a new command buffer, bind the pipeline and such. if (m_dirty_flags & DIRTY_FLAG_INITIAL) SetInitialPipelineState(); } void VulkanDevice::BeginSwapChainRenderPass() { DebugAssert(!InRenderPass()); const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); const VkImage swap_chain_image = m_swap_chain->GetCurrentImage(); // Swap chain images start in undefined VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, swap_chain_image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1, VulkanTexture::Layout::Undefined, VulkanTexture::Layout::ColorAttachment); // All textures should be in shader read only optimal already, but just in case.. const u32 num_textures = GetActiveTexturesForLayout(m_current_pipeline_layout); for (u32 i = 0; i < num_textures; i++) m_current_textures[i]->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly); const VkRenderPass render_pass = GetRenderPass(m_swap_chain->GetImageFormat(), VK_FORMAT_UNDEFINED, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE); DebugAssert(render_pass); const VkRenderPassBeginInfo rp = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, render_pass, m_swap_chain->GetCurrentFramebuffer(), {{0, 0}, {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}}, 1u, &s_present_clear_color}; vkCmdBeginRenderPass(GetCurrentCommandBuffer(), &rp, VK_SUBPASS_CONTENTS_INLINE); m_current_render_pass = render_pass; m_current_framebuffer = nullptr; // Clear pipeline, it's likely incompatible. m_current_pipeline = nullptr; } bool VulkanDevice::InRenderPass() { return m_current_render_pass != VK_NULL_HANDLE; } void VulkanDevice::EndRenderPass() { DebugAssert(m_current_render_pass != VK_NULL_HANDLE); // TODO: stats m_current_render_pass = VK_NULL_HANDLE; vkCmdEndRenderPass(GetCurrentCommandBuffer()); } void VulkanDevice::UnbindFramebuffer(VulkanFramebuffer* fb) { if (m_current_framebuffer != fb) return; if (InRenderPass()) EndRenderPass(); m_current_framebuffer = nullptr; } void VulkanDevice::UnbindFramebuffer(VulkanTexture* tex) { if (!m_current_framebuffer) return; if (m_current_framebuffer->GetRT() != tex && m_current_framebuffer->GetDS() != tex) return; if (InRenderPass()) EndRenderPass(); m_current_framebuffer = nullptr; } void VulkanDevice::SetPipeline(GPUPipeline* pipeline) { // First draw? Bind everything. if (m_dirty_flags & DIRTY_FLAG_INITIAL) { m_current_pipeline = static_cast(pipeline); if (!m_current_pipeline) return; SetInitialPipelineState(); return; } else if (m_current_pipeline == pipeline) { return; } m_current_pipeline = static_cast(pipeline); vkCmdBindPipeline(m_current_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_current_pipeline->GetPipeline()); if (m_current_pipeline_layout != m_current_pipeline->GetLayout()) { m_current_pipeline_layout = m_current_pipeline->GetLayout(); m_dirty_flags |= DIRTY_FLAG_PIPELINE_LAYOUT; } } void VulkanDevice::UnbindPipeline(VulkanPipeline* pl) { if (m_current_pipeline != pl) return; m_current_pipeline = nullptr; } void VulkanDevice::InvalidateCachedState() { m_dirty_flags = ALL_DIRTY_STATE; m_current_render_pass = VK_NULL_HANDLE; m_current_framebuffer = nullptr; m_current_pipeline = nullptr; } VkPipelineLayout VulkanDevice::GetCurrentVkPipelineLayout() const { return m_pipeline_layouts[static_cast(m_current_pipeline_layout)]; } void VulkanDevice::SetInitialPipelineState() { DebugAssert(m_current_pipeline); m_dirty_flags &= ~DIRTY_FLAG_INITIAL; const VkDeviceSize offset = 0; const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer(); vkCmdBindVertexBuffers(cmdbuf, 0, 1, m_vertex_buffer.GetBufferPtr(), &offset); vkCmdBindIndexBuffer(cmdbuf, m_index_buffer.GetBuffer(), 0, VK_INDEX_TYPE_UINT16); m_current_pipeline_layout = m_current_pipeline->GetLayout(); vkCmdBindPipeline(cmdbuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_current_pipeline->GetPipeline()); const VkViewport vp = {static_cast(m_current_viewport.left), static_cast(m_current_viewport.top), static_cast(m_current_viewport.GetWidth()), static_cast(m_current_viewport.GetHeight()), 0.0f, 1.0f}; vkCmdSetViewport(GetCurrentCommandBuffer(), 0, 1, &vp); const VkRect2D vrc = { {m_current_scissor.left, m_current_scissor.top}, {static_cast(m_current_scissor.GetWidth()), static_cast(m_current_scissor.GetHeight())}}; vkCmdSetScissor(GetCurrentCommandBuffer(), 0, 1, &vrc); } void VulkanDevice::SetTextureSampler(u32 slot, GPUTexture* texture, GPUSampler* sampler) { VulkanTexture* T = static_cast(texture); const VkSampler vsampler = sampler ? static_cast(sampler)->GetSampler() : VK_NULL_HANDLE; if (m_current_textures[slot] != texture || m_current_samplers[slot] != vsampler) { m_current_textures[slot] = T; m_current_samplers[slot] = vsampler; m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } if (T) { T->SetUseFenceCounter(GetCurrentFenceCounter()); if (T->GetLayout() != VulkanTexture::Layout::ShaderReadOnly) { if (InRenderPass()) EndRenderPass(); T->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly); } } } void VulkanDevice::SetTextureBuffer(u32 slot, GPUTextureBuffer* buffer) { DebugAssert(slot == 0); if (m_current_texture_buffer == buffer) return; m_current_texture_buffer = static_cast(buffer); if (m_current_pipeline_layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } void VulkanDevice::UnbindTexture(VulkanTexture* tex) { for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { if (m_current_textures[i] == tex) { m_current_textures[i] = m_null_texture.get(); m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } } } void VulkanDevice::UnbindTextureBuffer(VulkanTextureBuffer* buf) { if (m_current_texture_buffer != buf) return; m_current_texture_buffer = nullptr; if (m_current_pipeline_layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS; } void VulkanDevice::SetViewport(s32 x, s32 y, s32 width, s32 height) { const Common::Rectangle rc = Common::Rectangle::FromExtents(x, y, width, height); if (m_current_viewport == rc) return; m_current_viewport = rc; if (m_dirty_flags & DIRTY_FLAG_INITIAL) return; const VkViewport vp = { static_cast(x), static_cast(y), static_cast(width), static_cast(height), 0.0f, 1.0f}; vkCmdSetViewport(GetCurrentCommandBuffer(), 0, 1, &vp); } void VulkanDevice::SetScissor(s32 x, s32 y, s32 width, s32 height) { const Common::Rectangle rc = Common::Rectangle::FromExtents(x, y, width, height); if (m_current_scissor == rc) return; m_current_scissor = rc; if (m_dirty_flags & DIRTY_FLAG_INITIAL) return; const VkRect2D vrc = {{x, y}, {static_cast(width), static_cast(height)}}; vkCmdSetScissor(GetCurrentCommandBuffer(), 0, 1, &vrc); } void VulkanDevice::PreDrawCheck() { DebugAssert(!(m_dirty_flags & DIRTY_FLAG_INITIAL)); const u32 dirty = std::exchange(m_dirty_flags, 0); if (dirty != 0) { if (dirty & (DIRTY_FLAG_PIPELINE_LAYOUT | DIRTY_FLAG_DYNAMIC_OFFSETS | DIRTY_FLAG_TEXTURES_OR_SAMPLERS)) { if (!UpdateDescriptorSets(dirty)) { SubmitCommandBufferAndRestartRenderPass("out of descriptor sets"); PreDrawCheck(); return; } } } if (!InRenderPass()) BeginRenderPass(); } template bool VulkanDevice::UpdateDescriptorSetsForLayout(bool new_layout, bool new_dynamic_offsets) { std::array ds; u32 first_ds = 0; u32 num_ds = 0; if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO || layout == GPUPipeline::Layout::MultiTextureAndUBO) { if (new_layout || new_dynamic_offsets) { ds[num_ds++] = m_ubo_descriptor_set; new_dynamic_offsets = true; } } if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO || layout == GPUPipeline::Layout::SingleTextureAndPushConstants) { DebugAssert(m_current_textures[0] && m_current_samplers[0] != VK_NULL_HANDLE); ds[num_ds++] = m_current_textures[0]->GetDescriptorSetWithSampler(m_current_samplers[0]); } else if constexpr (layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants) { DebugAssert(m_current_texture_buffer); ds[num_ds++] = m_current_texture_buffer->GetDescriptorSet(); } else if constexpr (layout == GPUPipeline::Layout::MultiTextureAndUBO || layout == GPUPipeline::Layout::MultiTextureAndPushConstants) { Vulkan::DescriptorSetUpdateBuilder dsub; if (m_optional_extensions.vk_khr_push_descriptor) { for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { DebugAssert(m_current_textures[i] && m_current_samplers[i] != VK_NULL_HANDLE); dsub.AddCombinedImageSamplerDescriptorWrite(VK_NULL_HANDLE, i, m_current_textures[i]->GetView(), m_current_samplers[i], VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); } dsub.PushUpdate(GetCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_layouts[static_cast(m_current_pipeline_layout)], false); if (num_ds == 0) return true; } else { VkDescriptorSet tds = AllocateDescriptorSet(m_multi_texture_ds_layout); if (tds == VK_NULL_HANDLE) return false; ds[num_ds++] = tds; for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++) { DebugAssert(m_current_textures[i] && m_current_samplers[i] != VK_NULL_HANDLE); dsub.AddCombinedImageSamplerDescriptorWrite(tds, i, m_current_textures[i]->GetView(), m_current_samplers[i], VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); } dsub.Update(m_device, false); } } DebugAssert(num_ds > 0); vkCmdBindDescriptorSets(GetCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_layouts[static_cast(m_current_pipeline_layout)], first_ds, num_ds, ds.data(), static_cast(new_dynamic_offsets), new_dynamic_offsets ? &m_uniform_buffer_position : nullptr); return true; } bool VulkanDevice::UpdateDescriptorSets(u32 dirty) { const bool new_layout = (dirty & DIRTY_FLAG_PIPELINE_LAYOUT) != 0; const bool new_dynamic_offsets = (dirty & DIRTY_FLAG_DYNAMIC_OFFSETS) != 0; switch (m_current_pipeline_layout) { case GPUPipeline::Layout::SingleTextureAndUBO: return UpdateDescriptorSetsForLayout(new_layout, new_dynamic_offsets); case GPUPipeline::Layout::SingleTextureAndPushConstants: return UpdateDescriptorSetsForLayout(new_layout, false); case GPUPipeline::Layout::SingleTextureBufferAndPushConstants: return UpdateDescriptorSetsForLayout(new_layout, false); case GPUPipeline::Layout::MultiTextureAndUBO: return UpdateDescriptorSetsForLayout(new_layout, new_dynamic_offsets); case GPUPipeline::Layout::MultiTextureAndPushConstants: return UpdateDescriptorSetsForLayout(new_layout, false); default: UnreachableCode(); return false; } } void VulkanDevice::Draw(u32 vertex_count, u32 base_vertex) { PreDrawCheck(); vkCmdDraw(GetCurrentCommandBuffer(), vertex_count, 1, base_vertex, 0); } void VulkanDevice::DrawIndexed(u32 index_count, u32 base_index, u32 base_vertex) { PreDrawCheck(); vkCmdDrawIndexed(GetCurrentCommandBuffer(), index_count, 1, base_index, base_vertex, 0); }