mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1497 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1497 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef _C4_YML_TREE_HPP_
 | |
| #define _C4_YML_TREE_HPP_
 | |
| 
 | |
| 
 | |
| #include "c4/error.hpp"
 | |
| #include "c4/types.hpp"
 | |
| #ifndef _C4_YML_COMMON_HPP_
 | |
| #include "c4/yml/common.hpp"
 | |
| #endif
 | |
| 
 | |
| #include <c4/charconv.hpp>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| 
 | |
| 
 | |
| C4_SUPPRESS_WARNING_MSVC_PUSH
 | |
| C4_SUPPRESS_WARNING_MSVC(4251) // needs to have dll-interface to be used by clients of struct
 | |
| C4_SUPPRESS_WARNING_MSVC(4296) // expression is always 'boolean_value'
 | |
| C4_SUPPRESS_WARNING_GCC_CLANG_PUSH
 | |
| C4_SUPPRESS_WARNING_GCC_CLANG("-Wold-style-cast")
 | |
| C4_SUPPRESS_WARNING_GCC("-Wtype-limits")
 | |
| 
 | |
| 
 | |
| namespace c4 {
 | |
| namespace yml {
 | |
| 
 | |
| struct NodeScalar;
 | |
| struct NodeInit;
 | |
| struct NodeData;
 | |
| class NodeRef;
 | |
| class ConstNodeRef;
 | |
| class Tree;
 | |
| 
 | |
| 
 | |
| /** encode a floating point value to a string. */
 | |
| template<class T>
 | |
| size_t to_chars_float(substr buf, T val)
 | |
| {
 | |
|     C4_SUPPRESS_WARNING_GCC_CLANG_WITH_PUSH("-Wfloat-equal");
 | |
|     static_assert(std::is_floating_point<T>::value, "must be floating point");
 | |
|     if(C4_UNLIKELY(std::isnan(val)))
 | |
|         return to_chars(buf, csubstr(".nan"));
 | |
|     else if(C4_UNLIKELY(val == std::numeric_limits<T>::infinity()))
 | |
|         return to_chars(buf, csubstr(".inf"));
 | |
|     else if(C4_UNLIKELY(val == -std::numeric_limits<T>::infinity()))
 | |
|         return to_chars(buf, csubstr("-.inf"));
 | |
|     return to_chars(buf, val);
 | |
|     C4_SUPPRESS_WARNING_GCC_CLANG_POP
 | |
| }
 | |
| 
 | |
| 
 | |
| /** decode a floating point from string. Accepts special values: .nan,
 | |
|  * .inf, -.inf */
 | |
| template<class T>
 | |
| bool from_chars_float(csubstr buf, T *C4_RESTRICT val)
 | |
| {
 | |
|     static_assert(std::is_floating_point<T>::value, "must be floating point");
 | |
|     if(C4_LIKELY(from_chars(buf, val)))
 | |
|     {
 | |
|         return true;
 | |
|     }
 | |
|     else if(C4_UNLIKELY(buf == ".nan" || buf == ".NaN" || buf == ".NAN"))
 | |
|     {
 | |
|         *val = std::numeric_limits<T>::quiet_NaN();
 | |
|         return true;
 | |
|     }
 | |
|     else if(C4_UNLIKELY(buf == ".inf" || buf == ".Inf" || buf == ".INF"))
 | |
|     {
 | |
|         *val = std::numeric_limits<T>::infinity();
 | |
|         return true;
 | |
|     }
 | |
|     else if(C4_UNLIKELY(buf == "-.inf" || buf == "-.Inf" || buf == "-.INF"))
 | |
|     {
 | |
|         *val = -std::numeric_limits<T>::infinity();
 | |
|         return true;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| /** the integral type necessary to cover all the bits marking node tags */
 | |
| using tag_bits = uint16_t;
 | |
| 
 | |
| /** a bit mask for marking tags for types */
 | |
| typedef enum : tag_bits {
 | |
|     // container types
 | |
|     TAG_NONE      =  0,
 | |
|     TAG_MAP       =  1, /**< !!map   Unordered set of key: value pairs without duplicates. @see https://yaml.org/type/map.html */
 | |
|     TAG_OMAP      =  2, /**< !!omap  Ordered sequence of key: value pairs without duplicates. @see https://yaml.org/type/omap.html */
 | |
|     TAG_PAIRS     =  3, /**< !!pairs Ordered sequence of key: value pairs allowing duplicates. @see https://yaml.org/type/pairs.html */
 | |
|     TAG_SET       =  4, /**< !!set   Unordered set of non-equal values. @see https://yaml.org/type/set.html */
 | |
|     TAG_SEQ       =  5, /**< !!seq   Sequence of arbitrary values. @see https://yaml.org/type/seq.html */
 | |
|     // scalar types
 | |
|     TAG_BINARY    =  6, /**< !!binary A sequence of zero or more octets (8 bit values). @see https://yaml.org/type/binary.html */
 | |
|     TAG_BOOL      =  7, /**< !!bool   Mathematical Booleans. @see https://yaml.org/type/bool.html */
 | |
|     TAG_FLOAT     =  8, /**< !!float  Floating-point approximation to real numbers. https://yaml.org/type/float.html */
 | |
|     TAG_INT       =  9, /**< !!float  Mathematical integers. https://yaml.org/type/int.html */
 | |
|     TAG_MERGE     = 10, /**< !!merge  Specify one or more mapping to be merged with the current one. https://yaml.org/type/merge.html */
 | |
|     TAG_NULL      = 11, /**< !!null   Devoid of value. https://yaml.org/type/null.html */
 | |
|     TAG_STR       = 12, /**< !!str    A sequence of zero or more Unicode characters. https://yaml.org/type/str.html */
 | |
|     TAG_TIMESTAMP = 13, /**< !!timestamp A point in time https://yaml.org/type/timestamp.html */
 | |
|     TAG_VALUE     = 14, /**< !!value  Specify the default value of a mapping https://yaml.org/type/value.html */
 | |
|     TAG_YAML      = 15, /**< !!yaml   Specify the default value of a mapping https://yaml.org/type/yaml.html */
 | |
| } YamlTag_e;
 | |
| 
 | |
| YamlTag_e to_tag(csubstr tag);
 | |
| csubstr from_tag(YamlTag_e tag);
 | |
| csubstr from_tag_long(YamlTag_e tag);
 | |
| csubstr normalize_tag(csubstr tag);
 | |
| csubstr normalize_tag_long(csubstr tag);
 | |
| 
 | |
| struct TagDirective
 | |
| {
 | |
|     /** Eg `!e!` in `%TAG !e! tag:example.com,2000:app/` */
 | |
|     csubstr handle;
 | |
|     /** Eg `tag:example.com,2000:app/` in `%TAG !e! tag:example.com,2000:app/` */
 | |
|     csubstr prefix;
 | |
|     /** The next node to which this tag directive applies */
 | |
|     size_t next_node_id;
 | |
| };
 | |
| 
 | |
| #ifndef RYML_MAX_TAG_DIRECTIVES
 | |
| /** the maximum number of tag directives in a Tree */
 | |
| #define RYML_MAX_TAG_DIRECTIVES 4
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| /** the integral type necessary to cover all the bits marking node types */
 | |
| using type_bits = uint64_t;
 | |
| 
 | |
| 
 | |
| /** a bit mask for marking node types */
 | |
| typedef enum : type_bits {
 | |
|     // a convenience define, undefined below
 | |
|     #define c4bit(v) (type_bits(1) << v)
 | |
|     NOTYPE  = 0,            ///< no node type is set
 | |
|     VAL     = c4bit(0),     ///< a leaf node, has a (possibly empty) value
 | |
|     KEY     = c4bit(1),     ///< is member of a map, must have non-empty key
 | |
|     MAP     = c4bit(2),     ///< a map: a parent of keyvals
 | |
|     SEQ     = c4bit(3),     ///< a seq: a parent of vals
 | |
|     DOC     = c4bit(4),     ///< a document
 | |
|     STREAM  = c4bit(5)|SEQ, ///< a stream: a seq of docs
 | |
|     KEYREF  = c4bit(6),     ///< a *reference: the key references an &anchor
 | |
|     VALREF  = c4bit(7),     ///< a *reference: the val references an &anchor
 | |
|     KEYANCH = c4bit(8),     ///< the key has an &anchor
 | |
|     VALANCH = c4bit(9),     ///< the val has an &anchor
 | |
|     KEYTAG  = c4bit(10),    ///< the key has an explicit tag/type
 | |
|     VALTAG  = c4bit(11),    ///< the val has an explicit tag/type
 | |
|     _TYMASK = c4bit(12)-1,  // all the bits up to here
 | |
|     VALQUO  = c4bit(12),    ///< the val is quoted by '', "", > or |
 | |
|     KEYQUO  = c4bit(13),    ///< the key is quoted by '', "", > or |
 | |
|     KEYVAL  = KEY|VAL,
 | |
|     KEYSEQ  = KEY|SEQ,
 | |
|     KEYMAP  = KEY|MAP,
 | |
|     DOCMAP  = DOC|MAP,
 | |
|     DOCSEQ  = DOC|SEQ,
 | |
|     DOCVAL  = DOC|VAL,
 | |
|     _KEYMASK = KEY | KEYQUO | KEYANCH | KEYREF | KEYTAG,
 | |
|     _VALMASK = VAL | VALQUO | VALANCH | VALREF | VALTAG,
 | |
|     // these flags are from a work in progress and should be used with care
 | |
|     _WIP_STYLE_FLOW_SL = c4bit(14), ///< mark container with single-line flow format (seqs as '[val1,val2], maps as '{key: val, key2: val2}')
 | |
|     _WIP_STYLE_FLOW_ML = c4bit(15), ///< mark container with multi-line flow format (seqs as '[val1,\nval2], maps as '{key: val,\nkey2: val2}')
 | |
|     _WIP_STYLE_BLOCK   = c4bit(16), ///< mark container with block format (seqs as '- val\n', maps as 'key: val')
 | |
|     _WIP_KEY_LITERAL   = c4bit(17), ///< mark key scalar as multiline, block literal |
 | |
|     _WIP_VAL_LITERAL   = c4bit(18), ///< mark val scalar as multiline, block literal |
 | |
|     _WIP_KEY_FOLDED    = c4bit(19), ///< mark key scalar as multiline, block folded >
 | |
|     _WIP_VAL_FOLDED    = c4bit(20), ///< mark val scalar as multiline, block folded >
 | |
|     _WIP_KEY_SQUO      = c4bit(21), ///< mark key scalar as single quoted
 | |
|     _WIP_VAL_SQUO      = c4bit(22), ///< mark val scalar as single quoted
 | |
|     _WIP_KEY_DQUO      = c4bit(23), ///< mark key scalar as double quoted
 | |
|     _WIP_VAL_DQUO      = c4bit(24), ///< mark val scalar as double quoted
 | |
|     _WIP_KEY_PLAIN     = c4bit(25), ///< mark key scalar as plain scalar (unquoted, even when multiline)
 | |
|     _WIP_VAL_PLAIN     = c4bit(26), ///< mark val scalar as plain scalar (unquoted, even when multiline)
 | |
|     _WIP_KEY_STYLE     = _WIP_KEY_LITERAL|_WIP_KEY_FOLDED|_WIP_KEY_SQUO|_WIP_KEY_DQUO|_WIP_KEY_PLAIN,
 | |
|     _WIP_VAL_STYLE     = _WIP_VAL_LITERAL|_WIP_VAL_FOLDED|_WIP_VAL_SQUO|_WIP_VAL_DQUO|_WIP_VAL_PLAIN,
 | |
|     _WIP_KEY_FT_NL     = c4bit(27), ///< features: mark key scalar as having \n in its contents
 | |
|     _WIP_VAL_FT_NL     = c4bit(28), ///< features: mark val scalar as having \n in its contents
 | |
|     _WIP_KEY_FT_SQ     = c4bit(29), ///< features: mark key scalar as having single quotes in its contents
 | |
|     _WIP_VAL_FT_SQ     = c4bit(30), ///< features: mark val scalar as having single quotes in its contents
 | |
|     _WIP_KEY_FT_DQ     = c4bit(31), ///< features: mark key scalar as having double quotes in its contents
 | |
|     _WIP_VAL_FT_DQ     = c4bit(32), ///< features: mark val scalar as having double quotes in its contents
 | |
|     #undef c4bit
 | |
| } NodeType_e;
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| /** wraps a NodeType_e element with some syntactic sugar and predicates */
 | |
| struct NodeType
 | |
| {
 | |
| public:
 | |
| 
 | |
|     NodeType_e type;
 | |
| 
 | |
| public:
 | |
| 
 | |
|     C4_ALWAYS_INLINE NodeType() : type(NOTYPE) {}
 | |
|     C4_ALWAYS_INLINE NodeType(NodeType_e t) : type(t) {}
 | |
|     C4_ALWAYS_INLINE NodeType(type_bits t) : type((NodeType_e)t) {}
 | |
| 
 | |
|     C4_ALWAYS_INLINE const char *type_str() const { return type_str(type); }
 | |
|     static const char* type_str(NodeType_e t);
 | |
| 
 | |
|     C4_ALWAYS_INLINE void set(NodeType_e t) { type = t; }
 | |
|     C4_ALWAYS_INLINE void set(type_bits  t) { type = (NodeType_e)t; }
 | |
| 
 | |
|     C4_ALWAYS_INLINE void add(NodeType_e t) { type = (NodeType_e)(type|t); }
 | |
|     C4_ALWAYS_INLINE void add(type_bits  t) { type = (NodeType_e)(type|t); }
 | |
| 
 | |
|     C4_ALWAYS_INLINE void rem(NodeType_e t) { type = (NodeType_e)(type & ~t); }
 | |
|     C4_ALWAYS_INLINE void rem(type_bits  t) { type = (NodeType_e)(type & ~t); }
 | |
| 
 | |
|     C4_ALWAYS_INLINE void clear() { type = NOTYPE; }
 | |
| 
 | |
| public:
 | |
| 
 | |
|     C4_ALWAYS_INLINE operator NodeType_e      & C4_RESTRICT ()       { return type; }
 | |
|     C4_ALWAYS_INLINE operator NodeType_e const& C4_RESTRICT () const { return type; }
 | |
| 
 | |
|     C4_ALWAYS_INLINE bool operator== (NodeType_e t) const { return type == t; }
 | |
|     C4_ALWAYS_INLINE bool operator!= (NodeType_e t) const { return type != t; }
 | |
| 
 | |
| public:
 | |
| 
 | |
|     #if defined(__clang__)
 | |
|     #   pragma clang diagnostic push
 | |
|     #   pragma clang diagnostic ignored "-Wnull-dereference"
 | |
|     #elif defined(__GNUC__)
 | |
|     #   pragma GCC diagnostic push
 | |
|     #   if __GNUC__ >= 6
 | |
|     #       pragma GCC diagnostic ignored "-Wnull-dereference"
 | |
|     #   endif
 | |
|     #endif
 | |
| 
 | |
|     C4_ALWAYS_INLINE bool is_notype() const { return type == NOTYPE; }
 | |
|     C4_ALWAYS_INLINE bool is_stream() const { return ((type & STREAM) == STREAM) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_doc() const { return (type & DOC) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_container() const { return (type & (MAP|SEQ|STREAM)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_map() const { return (type & MAP) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_seq() const { return (type & SEQ) != 0; }
 | |
|     C4_ALWAYS_INLINE bool has_key() const { return (type & KEY) != 0; }
 | |
|     C4_ALWAYS_INLINE bool has_val() const { return (type & VAL) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_val() const { return (type & KEYVAL) == VAL; }
 | |
|     C4_ALWAYS_INLINE bool is_keyval() const { return (type & KEYVAL) == KEYVAL; }
 | |
|     C4_ALWAYS_INLINE bool has_key_tag() const { return (type & (KEY|KEYTAG)) == (KEY|KEYTAG); }
 | |
|     C4_ALWAYS_INLINE bool has_val_tag() const { return ((type & VALTAG) && (type & (VAL|MAP|SEQ))); }
 | |
|     C4_ALWAYS_INLINE bool has_key_anchor() const { return (type & (KEY|KEYANCH)) == (KEY|KEYANCH); }
 | |
|     C4_ALWAYS_INLINE bool is_key_anchor() const { return (type & (KEY|KEYANCH)) == (KEY|KEYANCH); }
 | |
|     C4_ALWAYS_INLINE bool has_val_anchor() const { return (type & VALANCH) != 0 && (type & (VAL|SEQ|MAP)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_val_anchor() const { return (type & VALANCH) != 0 && (type & (VAL|SEQ|MAP)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool has_anchor() const { return (type & (KEYANCH|VALANCH)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_anchor() const { return (type & (KEYANCH|VALANCH)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_key_ref() const { return (type & KEYREF) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_val_ref() const { return (type & VALREF) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_ref() const { return (type & (KEYREF|VALREF)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_anchor_or_ref() const { return (type & (KEYANCH|VALANCH|KEYREF|VALREF)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool is_key_quoted() const { return (type & (KEY|KEYQUO)) == (KEY|KEYQUO); }
 | |
|     C4_ALWAYS_INLINE bool is_val_quoted() const { return (type & (VAL|VALQUO)) == (VAL|VALQUO); }
 | |
|     C4_ALWAYS_INLINE bool is_quoted() const { return (type & (KEY|KEYQUO)) == (KEY|KEYQUO) || (type & (VAL|VALQUO)) == (VAL|VALQUO); }
 | |
| 
 | |
|     // these predicates are a work in progress and subject to change. Don't use yet.
 | |
|     C4_ALWAYS_INLINE bool default_block() const { return (type & (_WIP_STYLE_BLOCK|_WIP_STYLE_FLOW_ML|_WIP_STYLE_FLOW_SL)) == 0; }
 | |
|     C4_ALWAYS_INLINE bool marked_block() const { return (type & (_WIP_STYLE_BLOCK)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool marked_flow_sl() const { return (type & (_WIP_STYLE_FLOW_SL)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool marked_flow_ml() const { return (type & (_WIP_STYLE_FLOW_ML)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool marked_flow() const { return (type & (_WIP_STYLE_FLOW_ML|_WIP_STYLE_FLOW_SL)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool key_marked_literal() const { return (type & (_WIP_KEY_LITERAL)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool val_marked_literal() const { return (type & (_WIP_VAL_LITERAL)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool key_marked_folded() const { return (type & (_WIP_KEY_FOLDED)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool val_marked_folded() const { return (type & (_WIP_VAL_FOLDED)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool key_marked_squo() const { return (type & (_WIP_KEY_SQUO)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool val_marked_squo() const { return (type & (_WIP_VAL_SQUO)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool key_marked_dquo() const { return (type & (_WIP_KEY_DQUO)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool val_marked_dquo() const { return (type & (_WIP_VAL_DQUO)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool key_marked_plain() const { return (type & (_WIP_KEY_PLAIN)) != 0; }
 | |
|     C4_ALWAYS_INLINE bool val_marked_plain() const { return (type & (_WIP_VAL_PLAIN)) != 0; }
 | |
| 
 | |
|     #if defined(__clang__)
 | |
|     #   pragma clang diagnostic pop
 | |
|     #elif defined(__GNUC__)
 | |
|     #   pragma GCC diagnostic pop
 | |
|     #endif
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| /** a node scalar is a csubstr, which may be tagged and anchored. */
 | |
| struct NodeScalar
 | |
| {
 | |
|     csubstr tag;
 | |
|     csubstr scalar;
 | |
|     csubstr anchor;
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /// initialize as an empty scalar
 | |
|     inline NodeScalar() noexcept : tag(), scalar(), anchor() {}
 | |
| 
 | |
|     /// initialize as an untagged scalar
 | |
|     template<size_t N>
 | |
|     inline NodeScalar(const char (&s)[N]) noexcept : tag(), scalar(s), anchor() {}
 | |
|     inline NodeScalar(csubstr      s    ) noexcept : tag(), scalar(s), anchor() {}
 | |
| 
 | |
|     /// initialize as a tagged scalar
 | |
|     template<size_t N, size_t M>
 | |
|     inline NodeScalar(const char (&t)[N], const char (&s)[N]) noexcept : tag(t), scalar(s), anchor() {}
 | |
|     inline NodeScalar(csubstr      t    , csubstr      s    ) noexcept : tag(t), scalar(s), anchor() {}
 | |
| 
 | |
| public:
 | |
| 
 | |
|     ~NodeScalar() noexcept = default;
 | |
|     NodeScalar(NodeScalar &&) noexcept = default;
 | |
|     NodeScalar(NodeScalar const&) noexcept = default;
 | |
|     NodeScalar& operator= (NodeScalar &&) noexcept = default;
 | |
|     NodeScalar& operator= (NodeScalar const&) noexcept = default;
 | |
| 
 | |
| public:
 | |
| 
 | |
|     bool empty() const noexcept { return tag.empty() && scalar.empty() && anchor.empty(); }
 | |
| 
 | |
|     void clear() noexcept { tag.clear(); scalar.clear(); anchor.clear(); }
 | |
| 
 | |
|     void set_ref_maybe_replacing_scalar(csubstr ref, bool has_scalar) noexcept
 | |
|     {
 | |
|         csubstr trimmed = ref.begins_with('*') ? ref.sub(1) : ref;
 | |
|         anchor = trimmed;
 | |
|         if((!has_scalar) || !scalar.ends_with(trimmed))
 | |
|             scalar = ref;
 | |
|     }
 | |
| };
 | |
| C4_MUST_BE_TRIVIAL_COPY(NodeScalar);
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| /** convenience class to initialize nodes */
 | |
| struct NodeInit
 | |
| {
 | |
| 
 | |
|     NodeType   type;
 | |
|     NodeScalar key;
 | |
|     NodeScalar val;
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /// initialize as an empty node
 | |
|     NodeInit() : type(NOTYPE), key(), val() {}
 | |
|     /// initialize as a typed node
 | |
|     NodeInit(NodeType_e t) : type(t), key(), val() {}
 | |
|     /// initialize as a sequence member
 | |
|     NodeInit(NodeScalar const& v) : type(VAL), key(), val(v) { _add_flags(); }
 | |
|     /// initialize as a mapping member
 | |
|     NodeInit(              NodeScalar const& k, NodeScalar const& v) : type(KEYVAL), key(k.tag, k.scalar), val(v.tag, v.scalar) { _add_flags(); }
 | |
|     /// initialize as a mapping member with explicit type
 | |
|     NodeInit(NodeType_e t, NodeScalar const& k, NodeScalar const& v) : type(t     ), key(k.tag, k.scalar), val(v.tag, v.scalar) { _add_flags(); }
 | |
|     /// initialize as a mapping member with explicit type (eg SEQ or MAP)
 | |
|     NodeInit(NodeType_e t, NodeScalar const& k                     ) : type(t     ), key(k.tag, k.scalar), val(               ) { _add_flags(KEY); }
 | |
| 
 | |
| public:
 | |
| 
 | |
|     void clear()
 | |
|     {
 | |
|         type.clear();
 | |
|         key.clear();
 | |
|         val.clear();
 | |
|     }
 | |
| 
 | |
|     void _add_flags(type_bits more_flags=0)
 | |
|     {
 | |
|         type = (type|more_flags);
 | |
|         if( ! key.tag.empty())
 | |
|             type = (type|KEYTAG);
 | |
|         if( ! val.tag.empty())
 | |
|             type = (type|VALTAG);
 | |
|         if( ! key.anchor.empty())
 | |
|             type = (type|KEYANCH);
 | |
|         if( ! val.anchor.empty())
 | |
|             type = (type|VALANCH);
 | |
|     }
 | |
| 
 | |
|     bool _check() const
 | |
|     {
 | |
|         // key cannot be empty
 | |
|         RYML_ASSERT(key.scalar.empty() == ((type & KEY) == 0));
 | |
|         // key tag cannot be empty
 | |
|         RYML_ASSERT(key.tag.empty() == ((type & KEYTAG) == 0));
 | |
|         // val may be empty even though VAL is set. But when VAL is not set, val must be empty
 | |
|         RYML_ASSERT(((type & VAL) != 0) || val.scalar.empty());
 | |
|         // val tag cannot be empty
 | |
|         RYML_ASSERT(val.tag.empty() == ((type & VALTAG) == 0));
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| /** contains the data for each YAML node. */
 | |
| struct NodeData
 | |
| {
 | |
|     NodeType   m_type;
 | |
| 
 | |
|     NodeScalar m_key;
 | |
|     NodeScalar m_val;
 | |
| 
 | |
|     size_t     m_parent;
 | |
|     size_t     m_first_child;
 | |
|     size_t     m_last_child;
 | |
|     size_t     m_next_sibling;
 | |
|     size_t     m_prev_sibling;
 | |
| };
 | |
| C4_MUST_BE_TRIVIAL_COPY(NodeData);
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| class RYML_EXPORT Tree
 | |
| {
 | |
| public:
 | |
| 
 | |
|     /** @name construction and assignment */
 | |
|     /** @{ */
 | |
| 
 | |
|     Tree() : Tree(get_callbacks()) {}
 | |
|     Tree(Callbacks const& cb);
 | |
|     Tree(size_t node_capacity, size_t arena_capacity=0) : Tree(node_capacity, arena_capacity, get_callbacks()) {}
 | |
|     Tree(size_t node_capacity, size_t arena_capacity, Callbacks const& cb);
 | |
| 
 | |
|     ~Tree();
 | |
| 
 | |
|     Tree(Tree const& that) noexcept;
 | |
|     Tree(Tree     && that) noexcept;
 | |
| 
 | |
|     Tree& operator= (Tree const& that) noexcept;
 | |
|     Tree& operator= (Tree     && that) noexcept;
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name memory and sizing */
 | |
|     /** @{ */
 | |
| 
 | |
|     void reserve(size_t node_capacity);
 | |
| 
 | |
|     /** clear the tree and zero every node
 | |
|      * @note does NOT clear the arena
 | |
|      * @see clear_arena() */
 | |
|     void clear();
 | |
|     inline void clear_arena() { m_arena_pos = 0; }
 | |
| 
 | |
|     inline bool   empty() const { return m_size == 0; }
 | |
| 
 | |
|     inline size_t size() const { return m_size; }
 | |
|     inline size_t capacity() const { return m_cap; }
 | |
|     inline size_t slack() const { RYML_ASSERT(m_cap >= m_size); return m_cap - m_size; }
 | |
| 
 | |
|     Callbacks const& callbacks() const { return m_callbacks; }
 | |
|     void callbacks(Callbacks const& cb) { m_callbacks = cb; }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name node getters */
 | |
|     /** @{ */
 | |
| 
 | |
|     //! get the index of a node belonging to this tree.
 | |
|     //! @p n can be nullptr, in which case a
 | |
|     size_t id(NodeData const* n) const
 | |
|     {
 | |
|         if( ! n)
 | |
|         {
 | |
|             return NONE;
 | |
|         }
 | |
|         RYML_ASSERT(n >= m_buf && n < m_buf + m_cap);
 | |
|         return static_cast<size_t>(n - m_buf);
 | |
|     }
 | |
| 
 | |
|     //! get a pointer to a node's NodeData.
 | |
|     //! i can be NONE, in which case a nullptr is returned
 | |
|     inline NodeData *get(size_t i)
 | |
|     {
 | |
|         if(i == NONE)
 | |
|             return nullptr;
 | |
|         RYML_ASSERT(i >= 0 && i < m_cap);
 | |
|         return m_buf + i;
 | |
|     }
 | |
|     //! get a pointer to a node's NodeData.
 | |
|     //! i can be NONE, in which case a nullptr is returned.
 | |
|     inline NodeData const *get(size_t i) const
 | |
|     {
 | |
|         if(i == NONE)
 | |
|             return nullptr;
 | |
|         RYML_ASSERT(i >= 0 && i < m_cap);
 | |
|         return m_buf + i;
 | |
|     }
 | |
| 
 | |
|     //! An if-less form of get() that demands a valid node index.
 | |
|     //! This function is implementation only; use at your own risk.
 | |
|     inline NodeData       * _p(size_t i)       { RYML_ASSERT(i != NONE && i >= 0 && i < m_cap); return m_buf + i; }
 | |
|     //! An if-less form of get() that demands a valid node index.
 | |
|     //! This function is implementation only; use at your own risk.
 | |
|     inline NodeData const * _p(size_t i) const { RYML_ASSERT(i != NONE && i >= 0 && i < m_cap); return m_buf + i; }
 | |
| 
 | |
|     //! Get the id of the root node
 | |
|     size_t root_id()       { if(m_cap == 0) { reserve(16); } RYML_ASSERT(m_cap > 0 && m_size > 0); return 0; }
 | |
|     //! Get the id of the root node
 | |
|     size_t root_id() const {                                 RYML_ASSERT(m_cap > 0 && m_size > 0); return 0; }
 | |
| 
 | |
|     //! Get a NodeRef of a node by id
 | |
|     NodeRef      ref(size_t id);
 | |
|     //! Get a NodeRef of a node by id
 | |
|     ConstNodeRef ref(size_t id) const;
 | |
|     //! Get a NodeRef of a node by id
 | |
|     ConstNodeRef cref(size_t id);
 | |
|     //! Get a NodeRef of a node by id
 | |
|     ConstNodeRef cref(size_t id) const;
 | |
| 
 | |
|     //! Get the root as a NodeRef
 | |
|     NodeRef      rootref();
 | |
|     //! Get the root as a NodeRef
 | |
|     ConstNodeRef rootref() const;
 | |
|     //! Get the root as a NodeRef
 | |
|     ConstNodeRef crootref();
 | |
|     //! Get the root as a NodeRef
 | |
|     ConstNodeRef crootref() const;
 | |
| 
 | |
|     //! find a root child by name, return it as a NodeRef
 | |
|     //! @note requires the root to be a map.
 | |
|     NodeRef      operator[] (csubstr key);
 | |
|     //! find a root child by name, return it as a NodeRef
 | |
|     //! @note requires the root to be a map.
 | |
|     ConstNodeRef operator[] (csubstr key) const;
 | |
| 
 | |
|     //! find a root child by index: return the root node's @p i-th child as a NodeRef
 | |
|     //! @note @i is NOT the node id, but the child's position
 | |
|     NodeRef      operator[] (size_t i);
 | |
|     //! find a root child by index: return the root node's @p i-th child as a NodeRef
 | |
|     //! @note @i is NOT the node id, but the child's position
 | |
|     ConstNodeRef operator[] (size_t i) const;
 | |
| 
 | |
|     //! get the i-th document of the stream
 | |
|     //! @note @i is NOT the node id, but the doc position within the stream
 | |
|     NodeRef      docref(size_t i);
 | |
|     //! get the i-th document of the stream
 | |
|     //! @note @i is NOT the node id, but the doc position within the stream
 | |
|     ConstNodeRef docref(size_t i) const;
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name node property getters */
 | |
|     /** @{ */
 | |
| 
 | |
|     NodeType type(size_t node) const { return _p(node)->m_type; }
 | |
|     const char* type_str(size_t node) const { return NodeType::type_str(_p(node)->m_type); }
 | |
| 
 | |
|     csubstr    const& key       (size_t node) const { RYML_ASSERT(has_key(node)); return _p(node)->m_key.scalar; }
 | |
|     csubstr    const& key_tag   (size_t node) const { RYML_ASSERT(has_key_tag(node)); return _p(node)->m_key.tag; }
 | |
|     csubstr    const& key_ref   (size_t node) const { RYML_ASSERT(is_key_ref(node) && ! has_key_anchor(node)); return _p(node)->m_key.anchor; }
 | |
|     csubstr    const& key_anchor(size_t node) const { RYML_ASSERT( ! is_key_ref(node) && has_key_anchor(node)); return _p(node)->m_key.anchor; }
 | |
|     NodeScalar const& keysc     (size_t node) const { RYML_ASSERT(has_key(node)); return _p(node)->m_key; }
 | |
| 
 | |
|     csubstr    const& val       (size_t node) const { RYML_ASSERT(has_val(node)); return _p(node)->m_val.scalar; }
 | |
|     csubstr    const& val_tag   (size_t node) const { RYML_ASSERT(has_val_tag(node)); return _p(node)->m_val.tag; }
 | |
|     csubstr    const& val_ref   (size_t node) const { RYML_ASSERT(is_val_ref(node) && ! has_val_anchor(node)); return _p(node)->m_val.anchor; }
 | |
|     csubstr    const& val_anchor(size_t node) const { RYML_ASSERT( ! is_val_ref(node) && has_val_anchor(node)); return _p(node)->m_val.anchor; }
 | |
|     NodeScalar const& valsc     (size_t node) const { RYML_ASSERT(has_val(node)); return _p(node)->m_val; }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name node predicates */
 | |
|     /** @{ */
 | |
| 
 | |
|     C4_ALWAYS_INLINE bool is_stream(size_t node) const { return _p(node)->m_type.is_stream(); }
 | |
|     C4_ALWAYS_INLINE bool is_doc(size_t node) const { return _p(node)->m_type.is_doc(); }
 | |
|     C4_ALWAYS_INLINE bool is_container(size_t node) const { return _p(node)->m_type.is_container(); }
 | |
|     C4_ALWAYS_INLINE bool is_map(size_t node) const { return _p(node)->m_type.is_map(); }
 | |
|     C4_ALWAYS_INLINE bool is_seq(size_t node) const { return _p(node)->m_type.is_seq(); }
 | |
|     C4_ALWAYS_INLINE bool has_key(size_t node) const { return _p(node)->m_type.has_key(); }
 | |
|     C4_ALWAYS_INLINE bool has_val(size_t node) const { return _p(node)->m_type.has_val(); }
 | |
|     C4_ALWAYS_INLINE bool is_val(size_t node) const { return _p(node)->m_type.is_val(); }
 | |
|     C4_ALWAYS_INLINE bool is_keyval(size_t node) const { return _p(node)->m_type.is_keyval(); }
 | |
|     C4_ALWAYS_INLINE bool has_key_tag(size_t node) const { return _p(node)->m_type.has_key_tag(); }
 | |
|     C4_ALWAYS_INLINE bool has_val_tag(size_t node) const { return _p(node)->m_type.has_val_tag(); }
 | |
|     C4_ALWAYS_INLINE bool has_key_anchor(size_t node) const { return _p(node)->m_type.has_key_anchor(); }
 | |
|     C4_ALWAYS_INLINE bool is_key_anchor(size_t node) const { return _p(node)->m_type.is_key_anchor(); }
 | |
|     C4_ALWAYS_INLINE bool has_val_anchor(size_t node) const { return _p(node)->m_type.has_val_anchor(); }
 | |
|     C4_ALWAYS_INLINE bool is_val_anchor(size_t node) const { return _p(node)->m_type.is_val_anchor(); }
 | |
|     C4_ALWAYS_INLINE bool has_anchor(size_t node) const { return _p(node)->m_type.has_anchor(); }
 | |
|     C4_ALWAYS_INLINE bool is_anchor(size_t node) const { return _p(node)->m_type.is_anchor(); }
 | |
|     C4_ALWAYS_INLINE bool is_key_ref(size_t node) const { return _p(node)->m_type.is_key_ref(); }
 | |
|     C4_ALWAYS_INLINE bool is_val_ref(size_t node) const { return _p(node)->m_type.is_val_ref(); }
 | |
|     C4_ALWAYS_INLINE bool is_ref(size_t node) const { return _p(node)->m_type.is_ref(); }
 | |
|     C4_ALWAYS_INLINE bool is_anchor_or_ref(size_t node) const { return _p(node)->m_type.is_anchor_or_ref(); }
 | |
|     C4_ALWAYS_INLINE bool is_key_quoted(size_t node) const { return _p(node)->m_type.is_key_quoted(); }
 | |
|     C4_ALWAYS_INLINE bool is_val_quoted(size_t node) const { return _p(node)->m_type.is_val_quoted(); }
 | |
|     C4_ALWAYS_INLINE bool is_quoted(size_t node) const { return _p(node)->m_type.is_quoted(); }
 | |
| 
 | |
|     C4_ALWAYS_INLINE bool parent_is_seq(size_t node) const { RYML_ASSERT(has_parent(node)); return is_seq(_p(node)->m_parent); }
 | |
|     C4_ALWAYS_INLINE bool parent_is_map(size_t node) const { RYML_ASSERT(has_parent(node)); return is_map(_p(node)->m_parent); }
 | |
| 
 | |
|     /** true when key and val are empty, and has no children */
 | |
|     C4_ALWAYS_INLINE bool empty(size_t node) const { return ! has_children(node) && _p(node)->m_key.empty() && (( ! (_p(node)->m_type & VAL)) || _p(node)->m_val.empty()); }
 | |
|     /** true when the node has an anchor named a */
 | |
|     C4_ALWAYS_INLINE bool has_anchor(size_t node, csubstr a) const { return _p(node)->m_key.anchor == a || _p(node)->m_val.anchor == a; }
 | |
| 
 | |
|     C4_ALWAYS_INLINE bool key_is_null(size_t node) const { RYML_ASSERT(has_key(node)); NodeData const* C4_RESTRICT n = _p(node); return !n->m_type.is_key_quoted() && _is_null(n->m_key.scalar); }
 | |
|     C4_ALWAYS_INLINE bool val_is_null(size_t node) const { RYML_ASSERT(has_val(node)); NodeData const* C4_RESTRICT n = _p(node); return !n->m_type.is_val_quoted() && _is_null(n->m_val.scalar); }
 | |
|     static bool _is_null(csubstr s) noexcept
 | |
|     {
 | |
|         return s.str == nullptr ||
 | |
|             s == "~" ||
 | |
|             s == "null" ||
 | |
|             s == "Null" ||
 | |
|             s == "NULL";
 | |
|     }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name hierarchy predicates */
 | |
|     /** @{ */
 | |
| 
 | |
|     bool is_root(size_t node) const { RYML_ASSERT(_p(node)->m_parent != NONE || node == 0); return _p(node)->m_parent == NONE; }
 | |
| 
 | |
|     bool has_parent(size_t node) const { return _p(node)->m_parent != NONE; }
 | |
| 
 | |
|     /** true if @p node has a child with id @p ch */
 | |
|     bool has_child(size_t node, size_t ch) const { return _p(ch)->m_parent == node; }
 | |
|     /** true if @p node has a child with key @p key */
 | |
|     bool has_child(size_t node, csubstr key) const { return find_child(node, key) != npos; }
 | |
|     /** true if @p node has any children key */
 | |
|     bool has_children(size_t node) const { return _p(node)->m_first_child != NONE; }
 | |
| 
 | |
|     /** true if @p node has a sibling with id @p sib */
 | |
|     bool has_sibling(size_t node, size_t sib) const { return _p(node)->m_parent == _p(sib)->m_parent; }
 | |
|     /** true if one of the node's siblings has the given key */
 | |
|     bool has_sibling(size_t node, csubstr key) const { return find_sibling(node, key) != npos; }
 | |
|     /** true if node is not a single child */
 | |
|     bool has_other_siblings(size_t node) const
 | |
|     {
 | |
|         NodeData const *n = _p(node);
 | |
|         if(C4_LIKELY(n->m_parent != NONE))
 | |
|         {
 | |
|             n = _p(n->m_parent);
 | |
|             return n->m_first_child != n->m_last_child;
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     RYML_DEPRECATED("use has_other_siblings()") bool has_siblings(size_t /*node*/) const { return true; }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name hierarchy getters */
 | |
|     /** @{ */
 | |
| 
 | |
|     size_t parent(size_t node) const { return _p(node)->m_parent; }
 | |
| 
 | |
|     size_t prev_sibling(size_t node) const { return _p(node)->m_prev_sibling; }
 | |
|     size_t next_sibling(size_t node) const { return _p(node)->m_next_sibling; }
 | |
| 
 | |
|     /** O(#num_children) */
 | |
|     size_t num_children(size_t node) const;
 | |
|     size_t child_pos(size_t node, size_t ch) const;
 | |
|     size_t first_child(size_t node) const { return _p(node)->m_first_child; }
 | |
|     size_t last_child(size_t node) const { return _p(node)->m_last_child; }
 | |
|     size_t child(size_t node, size_t pos) const;
 | |
|     size_t find_child(size_t node, csubstr const& key) const;
 | |
| 
 | |
|     /** O(#num_siblings) */
 | |
|     /** counts with this */
 | |
|     size_t num_siblings(size_t node) const { return is_root(node) ? 1 : num_children(_p(node)->m_parent); }
 | |
|     /** does not count with this */
 | |
|     size_t num_other_siblings(size_t node) const { size_t ns = num_siblings(node); RYML_ASSERT(ns > 0); return ns-1; }
 | |
|     size_t sibling_pos(size_t node, size_t sib) const { RYML_ASSERT( ! is_root(node) || node == root_id()); return child_pos(_p(node)->m_parent, sib); }
 | |
|     size_t first_sibling(size_t node) const { return is_root(node) ? node : _p(_p(node)->m_parent)->m_first_child; }
 | |
|     size_t last_sibling(size_t node) const { return is_root(node) ? node : _p(_p(node)->m_parent)->m_last_child; }
 | |
|     size_t sibling(size_t node, size_t pos) const { return child(_p(node)->m_parent, pos); }
 | |
|     size_t find_sibling(size_t node, csubstr const& key) const { return find_child(_p(node)->m_parent, key); }
 | |
| 
 | |
|     size_t doc(size_t i) const { size_t rid = root_id(); RYML_ASSERT(is_stream(rid)); return child(rid, i); } //!< gets the @p i document node index. requires that the root node is a stream.
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name node modifiers */
 | |
|     /** @{ */
 | |
| 
 | |
|     void to_keyval(size_t node, csubstr key, csubstr val, type_bits more_flags=0);
 | |
|     void to_map(size_t node, csubstr key, type_bits more_flags=0);
 | |
|     void to_seq(size_t node, csubstr key, type_bits more_flags=0);
 | |
|     void to_val(size_t node, csubstr val, type_bits more_flags=0);
 | |
|     void to_map(size_t node, type_bits more_flags=0);
 | |
|     void to_seq(size_t node, type_bits more_flags=0);
 | |
|     void to_doc(size_t node, type_bits more_flags=0);
 | |
|     void to_stream(size_t node, type_bits more_flags=0);
 | |
| 
 | |
|     void set_key(size_t node, csubstr key) { RYML_ASSERT(has_key(node)); _p(node)->m_key.scalar = key; }
 | |
|     void set_val(size_t node, csubstr val) { RYML_ASSERT(has_val(node)); _p(node)->m_val.scalar = val; }
 | |
| 
 | |
|     void set_key_tag(size_t node, csubstr tag) { RYML_ASSERT(has_key(node)); _p(node)->m_key.tag = tag; _add_flags(node, KEYTAG); }
 | |
|     void set_val_tag(size_t node, csubstr tag) { RYML_ASSERT(has_val(node) || is_container(node)); _p(node)->m_val.tag = tag; _add_flags(node, VALTAG); }
 | |
| 
 | |
|     void set_key_anchor(size_t node, csubstr anchor) { RYML_ASSERT( ! is_key_ref(node)); _p(node)->m_key.anchor = anchor.triml('&'); _add_flags(node, KEYANCH); }
 | |
|     void set_val_anchor(size_t node, csubstr anchor) { RYML_ASSERT( ! is_val_ref(node)); _p(node)->m_val.anchor = anchor.triml('&'); _add_flags(node, VALANCH); }
 | |
|     void set_key_ref   (size_t node, csubstr ref   ) { RYML_ASSERT( ! has_key_anchor(node)); NodeData* C4_RESTRICT n = _p(node); n->m_key.set_ref_maybe_replacing_scalar(ref, n->m_type.has_key()); _add_flags(node, KEY|KEYREF); }
 | |
|     void set_val_ref   (size_t node, csubstr ref   ) { RYML_ASSERT( ! has_val_anchor(node)); NodeData* C4_RESTRICT n = _p(node); n->m_val.set_ref_maybe_replacing_scalar(ref, n->m_type.has_val()); _add_flags(node, VAL|VALREF); }
 | |
| 
 | |
|     void rem_key_anchor(size_t node) { _p(node)->m_key.anchor.clear(); _rem_flags(node, KEYANCH); }
 | |
|     void rem_val_anchor(size_t node) { _p(node)->m_val.anchor.clear(); _rem_flags(node, VALANCH); }
 | |
|     void rem_key_ref   (size_t node) { _p(node)->m_key.anchor.clear(); _rem_flags(node, KEYREF); }
 | |
|     void rem_val_ref   (size_t node) { _p(node)->m_val.anchor.clear(); _rem_flags(node, VALREF); }
 | |
|     void rem_anchor_ref(size_t node) { _p(node)->m_key.anchor.clear(); _p(node)->m_val.anchor.clear(); _rem_flags(node, KEYANCH|VALANCH|KEYREF|VALREF); }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name tree modifiers */
 | |
|     /** @{ */
 | |
| 
 | |
|     /** reorder the tree in memory so that all the nodes are stored
 | |
|      * in a linear sequence when visited in depth-first order.
 | |
|      * This will invalidate existing ids, since the node id is its
 | |
|      * position in the node array. */
 | |
|     void reorder();
 | |
| 
 | |
|     /** Resolve references (aliases <- anchors) in the tree.
 | |
|      *
 | |
|      * Dereferencing is opt-in; after parsing, Tree::resolve()
 | |
|      * has to be called explicitly for obtaining resolved references in the
 | |
|      * tree. This method will resolve all references and substitute the
 | |
|      * anchored values in place of the reference.
 | |
|      *
 | |
|      * This method first does a full traversal of the tree to gather all
 | |
|      * anchors and references in a separate collection, then it goes through
 | |
|      * that collection to locate the names, which it does by obeying the YAML
 | |
|      * standard diktat that "an alias node refers to the most recent node in
 | |
|      * the serialization having the specified anchor"
 | |
|      *
 | |
|      * So, depending on the number of anchor/alias nodes, this is a
 | |
|      * potentially expensive operation, with a best-case linear complexity
 | |
|      * (from the initial traversal). This potential cost is the reason for
 | |
|      * requiring an explicit call.
 | |
|      */
 | |
|     void resolve();
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name tag directives */
 | |
|     /** @{ */
 | |
| 
 | |
|     void resolve_tags();
 | |
| 
 | |
|     size_t num_tag_directives() const;
 | |
|     size_t add_tag_directive(TagDirective const& td);
 | |
|     void clear_tag_directives();
 | |
| 
 | |
|     size_t resolve_tag(substr output, csubstr tag, size_t node_id) const;
 | |
|     csubstr resolve_tag_sub(substr output, csubstr tag, size_t node_id) const
 | |
|     {
 | |
|         size_t needed = resolve_tag(output, tag, node_id);
 | |
|         return needed <= output.len ? output.first(needed) : output;
 | |
|     }
 | |
| 
 | |
|     using tag_directive_const_iterator = TagDirective const*;
 | |
|     tag_directive_const_iterator begin_tag_directives() const { return m_tag_directives; }
 | |
|     tag_directive_const_iterator end_tag_directives() const { return m_tag_directives + num_tag_directives(); }
 | |
| 
 | |
|     struct TagDirectiveProxy
 | |
|     {
 | |
|         tag_directive_const_iterator b, e;
 | |
|         tag_directive_const_iterator begin() const { return b; }
 | |
|         tag_directive_const_iterator end() const { return e; }
 | |
|     };
 | |
| 
 | |
|     TagDirectiveProxy tag_directives() const { return TagDirectiveProxy{begin_tag_directives(), end_tag_directives()}; }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name modifying hierarchy */
 | |
|     /** @{ */
 | |
| 
 | |
|     /** create and insert a new child of @p parent. insert after the (to-be)
 | |
|      * sibling @p after, which must be a child of @p parent. To insert as the
 | |
|      * first child, set after to NONE */
 | |
|     C4_ALWAYS_INLINE size_t insert_child(size_t parent, size_t after)
 | |
|     {
 | |
|         RYML_ASSERT(parent != NONE);
 | |
|         RYML_ASSERT(is_container(parent) || is_root(parent));
 | |
|         RYML_ASSERT(after == NONE || (_p(after)->m_parent == parent));
 | |
|         size_t child = _claim();
 | |
|         _set_hierarchy(child, parent, after);
 | |
|         return child;
 | |
|     }
 | |
|     /** create and insert a node as the first child of @p parent */
 | |
|     C4_ALWAYS_INLINE size_t prepend_child(size_t parent) { return insert_child(parent, NONE); }
 | |
|     /** create and insert a node as the last child of @p parent */
 | |
|     C4_ALWAYS_INLINE size_t  append_child(size_t parent) { return insert_child(parent, _p(parent)->m_last_child); }
 | |
| 
 | |
| public:
 | |
| 
 | |
|     #if defined(__clang__)
 | |
|     #   pragma clang diagnostic push
 | |
|     #   pragma clang diagnostic ignored "-Wnull-dereference"
 | |
|     #elif defined(__GNUC__)
 | |
|     #   pragma GCC diagnostic push
 | |
|     #   if __GNUC__ >= 6
 | |
|     #       pragma GCC diagnostic ignored "-Wnull-dereference"
 | |
|     #   endif
 | |
|     #endif
 | |
| 
 | |
|     //! create and insert a new sibling of n. insert after "after"
 | |
|     C4_ALWAYS_INLINE size_t insert_sibling(size_t node, size_t after)
 | |
|     {
 | |
|         return insert_child(_p(node)->m_parent, after);
 | |
|     }
 | |
|     /** create and insert a node as the first node of @p parent */
 | |
|     C4_ALWAYS_INLINE size_t prepend_sibling(size_t node) { return prepend_child(_p(node)->m_parent); }
 | |
|     C4_ALWAYS_INLINE size_t  append_sibling(size_t node) { return append_child(_p(node)->m_parent); }
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** remove an entire branch at once: ie remove the children and the node itself */
 | |
|     inline void remove(size_t node)
 | |
|     {
 | |
|         remove_children(node);
 | |
|         _release(node);
 | |
|     }
 | |
| 
 | |
|     /** remove all the node's children, but keep the node itself */
 | |
|     void remove_children(size_t node);
 | |
| 
 | |
|     /** change the @p type of the node to one of MAP, SEQ or VAL.  @p
 | |
|      * type must have one and only one of MAP,SEQ,VAL; @p type may
 | |
|      * possibly have KEY, but if it does, then the @p node must also
 | |
|      * have KEY. Changing to the same type is a no-op. Otherwise,
 | |
|      * changing to a different type will initialize the node with an
 | |
|      * empty value of the desired type: changing to VAL will
 | |
|      * initialize with a null scalar (~), changing to MAP will
 | |
|      * initialize with an empty map ({}), and changing to SEQ will
 | |
|      * initialize with an empty seq ([]). */
 | |
|     bool change_type(size_t node, NodeType type);
 | |
| 
 | |
|     bool change_type(size_t node, type_bits type)
 | |
|     {
 | |
|         return change_type(node, (NodeType)type);
 | |
|     }
 | |
| 
 | |
|     #if defined(__clang__)
 | |
|     #   pragma clang diagnostic pop
 | |
|     #elif defined(__GNUC__)
 | |
|     #   pragma GCC diagnostic pop
 | |
|     #endif
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** change the node's position in the parent */
 | |
|     void move(size_t node, size_t after);
 | |
| 
 | |
|     /** change the node's parent and position */
 | |
|     void move(size_t node, size_t new_parent, size_t after);
 | |
| 
 | |
|     /** change the node's parent and position to a different tree
 | |
|      * @return the index of the new node in the destination tree */
 | |
|     size_t move(Tree * src, size_t node, size_t new_parent, size_t after);
 | |
| 
 | |
|     /** ensure the first node is a stream. Eg, change this tree
 | |
|      *
 | |
|      *  DOCMAP
 | |
|      *    MAP
 | |
|      *      KEYVAL
 | |
|      *      KEYVAL
 | |
|      *    SEQ
 | |
|      *      VAL
 | |
|      *
 | |
|      * to
 | |
|      *
 | |
|      *  STREAM
 | |
|      *    DOCMAP
 | |
|      *      MAP
 | |
|      *        KEYVAL
 | |
|      *        KEYVAL
 | |
|      *      SEQ
 | |
|      *        VAL
 | |
|      *
 | |
|      * If the root is already a stream, this is a no-op.
 | |
|      */
 | |
|     void set_root_as_stream();
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** recursively duplicate a node from this tree into a new parent,
 | |
|      * placing it after one of its children
 | |
|      * @return the index of the copy */
 | |
|     size_t duplicate(size_t node, size_t new_parent, size_t after);
 | |
|     /** recursively duplicate a node from a different tree into a new parent,
 | |
|      * placing it after one of its children
 | |
|      * @return the index of the copy */
 | |
|     size_t duplicate(Tree const* src, size_t node, size_t new_parent, size_t after);
 | |
| 
 | |
|     /** recursively duplicate the node's children (but not the node)
 | |
|      * @return the index of the last duplicated child */
 | |
|     size_t duplicate_children(size_t node, size_t parent, size_t after);
 | |
|     /** recursively duplicate the node's children (but not the node), where
 | |
|      * the node is from a different tree
 | |
|      * @return the index of the last duplicated child */
 | |
|     size_t duplicate_children(Tree const* src, size_t node, size_t parent, size_t after);
 | |
| 
 | |
|     void duplicate_contents(size_t node, size_t where);
 | |
|     void duplicate_contents(Tree const* src, size_t node, size_t where);
 | |
| 
 | |
|     /** duplicate the node's children (but not the node) in a new parent, but
 | |
|      * omit repetitions where a duplicated node has the same key (in maps) or
 | |
|      * value (in seqs). If one of the duplicated children has the same key
 | |
|      * (in maps) or value (in seqs) as one of the parent's children, the one
 | |
|      * that is placed closest to the end will prevail. */
 | |
|     size_t duplicate_children_no_rep(size_t node, size_t parent, size_t after);
 | |
|     size_t duplicate_children_no_rep(Tree const* src, size_t node, size_t parent, size_t after);
 | |
| 
 | |
| public:
 | |
| 
 | |
|     void merge_with(Tree const* src, size_t src_node=NONE, size_t dst_root=NONE);
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name internal string arena */
 | |
|     /** @{ */
 | |
| 
 | |
|     /** get the current size of the tree's internal arena */
 | |
|     RYML_DEPRECATED("use arena_size() instead") size_t arena_pos() const { return m_arena_pos; }
 | |
|     /** get the current size of the tree's internal arena */
 | |
|     inline size_t arena_size() const { return m_arena_pos; }
 | |
|     /** get the current capacity of the tree's internal arena */
 | |
|     inline size_t arena_capacity() const { return m_arena.len; }
 | |
|     /** get the current slack of the tree's internal arena */
 | |
|     inline size_t arena_slack() const { RYML_ASSERT(m_arena.len >= m_arena_pos); return m_arena.len - m_arena_pos; }
 | |
| 
 | |
|     /** get the current arena */
 | |
|     substr arena() const { return m_arena.first(m_arena_pos); }
 | |
| 
 | |
|     /** return true if the given substring is part of the tree's string arena */
 | |
|     bool in_arena(csubstr s) const
 | |
|     {
 | |
|         return m_arena.is_super(s);
 | |
|     }
 | |
| 
 | |
|     /** serialize the given floating-point variable to the tree's
 | |
|      * arena, growing it as needed to accomodate the serialization.
 | |
|      *
 | |
|      * @note Growing the arena may cause relocation of the entire
 | |
|      * existing arena, and thus change the contents of individual
 | |
|      * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this
 | |
|      * cost, ensure that the arena is reserved to an appropriate size
 | |
|      * using .reserve_arena()
 | |
|      *
 | |
|      * @see alloc_arena() */
 | |
|     template<class T>
 | |
|     typename std::enable_if<std::is_floating_point<T>::value, csubstr>::type
 | |
|     to_arena(T const& C4_RESTRICT a)
 | |
|     {
 | |
|         substr rem(m_arena.sub(m_arena_pos));
 | |
|         size_t num = to_chars_float(rem, a);
 | |
|         if(num > rem.len)
 | |
|         {
 | |
|             rem = _grow_arena(num);
 | |
|             num = to_chars_float(rem, a);
 | |
|             RYML_ASSERT(num <= rem.len);
 | |
|         }
 | |
|         rem = _request_span(num);
 | |
|         return rem;
 | |
|     }
 | |
| 
 | |
|     /** serialize the given non-floating-point variable to the tree's
 | |
|      * arena, growing it as needed to accomodate the serialization.
 | |
|      *
 | |
|      * @note Growing the arena may cause relocation of the entire
 | |
|      * existing arena, and thus change the contents of individual
 | |
|      * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this
 | |
|      * cost, ensure that the arena is reserved to an appropriate size
 | |
|      * using .reserve_arena()
 | |
|      *
 | |
|      * @see alloc_arena() */
 | |
|     template<class T>
 | |
|     typename std::enable_if<!std::is_floating_point<T>::value, csubstr>::type
 | |
|     to_arena(T const& C4_RESTRICT a)
 | |
|     {
 | |
|         substr rem(m_arena.sub(m_arena_pos));
 | |
|         size_t num = to_chars(rem, a);
 | |
|         if(num > rem.len)
 | |
|         {
 | |
|             rem = _grow_arena(num);
 | |
|             num = to_chars(rem, a);
 | |
|             RYML_ASSERT(num <= rem.len);
 | |
|         }
 | |
|         rem = _request_span(num);
 | |
|         return rem;
 | |
|     }
 | |
| 
 | |
|     /** serialize the given csubstr to the tree's arena, growing the
 | |
|      * arena as needed to accomodate the serialization.
 | |
|      *
 | |
|      * @note Growing the arena may cause relocation of the entire
 | |
|      * existing arena, and thus change the contents of individual
 | |
|      * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this
 | |
|      * cost, ensure that the arena is reserved to an appropriate size
 | |
|      * using .reserve_arena()
 | |
|      *
 | |
|      * @see alloc_arena() */
 | |
|     csubstr to_arena(csubstr a)
 | |
|     {
 | |
|         if(a.len > 0)
 | |
|         {
 | |
|             substr rem(m_arena.sub(m_arena_pos));
 | |
|             size_t num = to_chars(rem, a);
 | |
|             if(num > rem.len)
 | |
|             {
 | |
|                 rem = _grow_arena(num);
 | |
|                 num = to_chars(rem, a);
 | |
|                 RYML_ASSERT(num <= rem.len);
 | |
|             }
 | |
|             return _request_span(num);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if(a.str == nullptr)
 | |
|             {
 | |
|                 return csubstr{};
 | |
|             }
 | |
|             else if(m_arena.str == nullptr)
 | |
|             {
 | |
|                 // Arena is empty and we want to store a non-null
 | |
|                 // zero-length string.
 | |
|                 // Even though the string has zero length, we need
 | |
|                 // some "memory" to store a non-nullptr string
 | |
|                 _grow_arena(1);
 | |
|             }
 | |
|             return _request_span(0);
 | |
|         }
 | |
|     }
 | |
|     C4_ALWAYS_INLINE csubstr to_arena(const char *s)
 | |
|     {
 | |
|         return to_arena(to_csubstr(s));
 | |
|     }
 | |
|     C4_ALWAYS_INLINE csubstr to_arena(std::nullptr_t)
 | |
|     {
 | |
|         return csubstr{};
 | |
|     }
 | |
| 
 | |
|     /** copy the given substr to the tree's arena, growing it by the
 | |
|      * required size
 | |
|      *
 | |
|      * @note Growing the arena may cause relocation of the entire
 | |
|      * existing arena, and thus change the contents of individual
 | |
|      * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this
 | |
|      * cost, ensure that the arena is reserved to an appropriate size
 | |
|      * using .reserve_arena()
 | |
|      *
 | |
|      * @see alloc_arena() */
 | |
|     substr copy_to_arena(csubstr s)
 | |
|     {
 | |
|         substr cp = alloc_arena(s.len);
 | |
|         RYML_ASSERT(cp.len == s.len);
 | |
|         RYML_ASSERT(!s.overlaps(cp));
 | |
|         #if (!defined(__clang__)) && (defined(__GNUC__) && __GNUC__ >= 10)
 | |
|         C4_SUPPRESS_WARNING_GCC_PUSH
 | |
|         C4_SUPPRESS_WARNING_GCC("-Wstringop-overflow=") // no need for terminating \0
 | |
|         C4_SUPPRESS_WARNING_GCC( "-Wrestrict") // there's an assert to ensure no violation of restrict behavior
 | |
|         #endif
 | |
|         if(s.len)
 | |
|             memcpy(cp.str, s.str, s.len);
 | |
|         #if (!defined(__clang__)) && (defined(__GNUC__) && __GNUC__ >= 10)
 | |
|         C4_SUPPRESS_WARNING_GCC_POP
 | |
|         #endif
 | |
|         return cp;
 | |
|     }
 | |
| 
 | |
|     /** grow the tree's string arena by the given size and return a substr
 | |
|      * of the added portion
 | |
|      *
 | |
|      * @note Growing the arena may cause relocation of the entire
 | |
|      * existing arena, and thus change the contents of individual
 | |
|      * nodes, and thus cost O(numnodes)+O(arenasize). To avoid this
 | |
|      * cost, ensure that the arena is reserved to an appropriate size
 | |
|      * using .reserve_arena().
 | |
|      *
 | |
|      * @see reserve_arena() */
 | |
|     substr alloc_arena(size_t sz)
 | |
|     {
 | |
|         if(sz > arena_slack())
 | |
|             _grow_arena(sz - arena_slack());
 | |
|         substr s = _request_span(sz);
 | |
|         return s;
 | |
|     }
 | |
| 
 | |
|     /** ensure the tree's internal string arena is at least the given capacity
 | |
|      * @note This operation has a potential complexity of O(numNodes)+O(arenasize).
 | |
|      * Growing the arena may cause relocation of the entire
 | |
|      * existing arena, and thus change the contents of individual nodes. */
 | |
|     void reserve_arena(size_t arena_cap)
 | |
|     {
 | |
|         if(arena_cap > m_arena.len)
 | |
|         {
 | |
|             substr buf;
 | |
|             buf.str = (char*) m_callbacks.m_allocate(arena_cap, m_arena.str, m_callbacks.m_user_data);
 | |
|             buf.len = arena_cap;
 | |
|             if(m_arena.str)
 | |
|             {
 | |
|                 RYML_ASSERT(m_arena.len >= 0);
 | |
|                 _relocate(buf); // does a memcpy and changes nodes using the arena
 | |
|                 m_callbacks.m_free(m_arena.str, m_arena.len, m_callbacks.m_user_data);
 | |
|             }
 | |
|             m_arena = buf;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| private:
 | |
| 
 | |
|     substr _grow_arena(size_t more)
 | |
|     {
 | |
|         size_t cap = m_arena.len + more;
 | |
|         cap = cap < 2 * m_arena.len ? 2 * m_arena.len : cap;
 | |
|         cap = cap < 64 ? 64 : cap;
 | |
|         reserve_arena(cap);
 | |
|         return m_arena.sub(m_arena_pos);
 | |
|     }
 | |
| 
 | |
|     substr _request_span(size_t sz)
 | |
|     {
 | |
|         substr s;
 | |
|         s = m_arena.sub(m_arena_pos, sz);
 | |
|         m_arena_pos += sz;
 | |
|         return s;
 | |
|     }
 | |
| 
 | |
|     substr _relocated(csubstr s, substr next_arena) const
 | |
|     {
 | |
|         RYML_ASSERT(m_arena.is_super(s));
 | |
|         RYML_ASSERT(m_arena.sub(0, m_arena_pos).is_super(s));
 | |
|         auto pos = (s.str - m_arena.str);
 | |
|         substr r(next_arena.str + pos, s.len);
 | |
|         RYML_ASSERT(r.str - next_arena.str == pos);
 | |
|         RYML_ASSERT(next_arena.sub(0, m_arena_pos).is_super(r));
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
| public:
 | |
| 
 | |
|     /** @name lookup */
 | |
|     /** @{ */
 | |
| 
 | |
|     struct lookup_result
 | |
|     {
 | |
|         size_t  target;
 | |
|         size_t  closest;
 | |
|         size_t  path_pos;
 | |
|         csubstr path;
 | |
| 
 | |
|         inline operator bool() const { return target != NONE; }
 | |
| 
 | |
|         lookup_result() : target(NONE), closest(NONE), path_pos(0), path() {}
 | |
|         lookup_result(csubstr path_, size_t start) : target(NONE), closest(start), path_pos(0), path(path_) {}
 | |
| 
 | |
|         /** get the part ot the input path that was resolved */
 | |
|         csubstr resolved() const;
 | |
|         /** get the part ot the input path that was unresolved */
 | |
|         csubstr unresolved() const;
 | |
|     };
 | |
| 
 | |
|     /** for example foo.bar[0].baz */
 | |
|     lookup_result lookup_path(csubstr path, size_t start=NONE) const;
 | |
| 
 | |
|     /** defaulted lookup: lookup @p path; if the lookup fails, recursively modify
 | |
|      * the tree so that the corresponding lookup_path() would return the
 | |
|      * default value.
 | |
|      * @see lookup_path() */
 | |
|     size_t lookup_path_or_modify(csubstr default_value, csubstr path, size_t start=NONE);
 | |
| 
 | |
|     /** defaulted lookup: lookup @p path; if the lookup fails, recursively modify
 | |
|      * the tree so that the corresponding lookup_path() would return the
 | |
|      * branch @p src_node (from the tree @p src).
 | |
|      * @see lookup_path() */
 | |
|     size_t lookup_path_or_modify(Tree const *src, size_t src_node, csubstr path, size_t start=NONE);
 | |
| 
 | |
|     /** @} */
 | |
| 
 | |
| private:
 | |
| 
 | |
|     struct _lookup_path_token
 | |
|     {
 | |
|         csubstr value;
 | |
|         NodeType type;
 | |
|         _lookup_path_token() : value(), type() {}
 | |
|         _lookup_path_token(csubstr v, NodeType t) : value(v), type(t) {}
 | |
|         inline operator bool() const { return type != NOTYPE; }
 | |
|         bool is_index() const { return value.begins_with('[') && value.ends_with(']'); }
 | |
|     };
 | |
| 
 | |
|     size_t _lookup_path_or_create(csubstr path, size_t start);
 | |
| 
 | |
|     void   _lookup_path       (lookup_result *r) const;
 | |
|     void   _lookup_path_modify(lookup_result *r);
 | |
| 
 | |
|     size_t _next_node       (lookup_result *r, _lookup_path_token *parent) const;
 | |
|     size_t _next_node_modify(lookup_result *r, _lookup_path_token *parent);
 | |
| 
 | |
|     void   _advance(lookup_result *r, size_t more) const;
 | |
| 
 | |
|     _lookup_path_token _next_token(lookup_result *r, _lookup_path_token const& parent) const;
 | |
| 
 | |
| private:
 | |
| 
 | |
|     void _clear();
 | |
|     void _free();
 | |
|     void _copy(Tree const& that);
 | |
|     void _move(Tree      & that);
 | |
| 
 | |
|     void _relocate(substr next_arena);
 | |
| 
 | |
| public:
 | |
| 
 | |
|     #if ! RYML_USE_ASSERT
 | |
|     C4_ALWAYS_INLINE void _check_next_flags(size_t, type_bits) {}
 | |
|     #else
 | |
|     void _check_next_flags(size_t node, type_bits f)
 | |
|     {
 | |
|         auto n = _p(node);
 | |
|         type_bits o = n->m_type; // old
 | |
|         C4_UNUSED(o);
 | |
|         if(f & MAP)
 | |
|         {
 | |
|             RYML_ASSERT_MSG((f & SEQ) == 0, "cannot mark simultaneously as map and seq");
 | |
|             RYML_ASSERT_MSG((f & VAL) == 0, "cannot mark simultaneously as map and val");
 | |
|             RYML_ASSERT_MSG((o & SEQ) == 0, "cannot turn a seq into a map; clear first");
 | |
|             RYML_ASSERT_MSG((o & VAL) == 0, "cannot turn a val into a map; clear first");
 | |
|         }
 | |
|         else if(f & SEQ)
 | |
|         {
 | |
|             RYML_ASSERT_MSG((f & MAP) == 0, "cannot mark simultaneously as seq and map");
 | |
|             RYML_ASSERT_MSG((f & VAL) == 0, "cannot mark simultaneously as seq and val");
 | |
|             RYML_ASSERT_MSG((o & MAP) == 0, "cannot turn a map into a seq; clear first");
 | |
|             RYML_ASSERT_MSG((o & VAL) == 0, "cannot turn a val into a seq; clear first");
 | |
|         }
 | |
|         if(f & KEY)
 | |
|         {
 | |
|             RYML_ASSERT(!is_root(node));
 | |
|             auto pid = parent(node); C4_UNUSED(pid);
 | |
|             RYML_ASSERT(is_map(pid));
 | |
|         }
 | |
|         if((f & VAL) && !is_root(node))
 | |
|         {
 | |
|             auto pid = parent(node); C4_UNUSED(pid);
 | |
|             RYML_ASSERT(is_map(pid) || is_seq(pid));
 | |
|         }
 | |
|     }
 | |
|     #endif
 | |
| 
 | |
|     inline void _set_flags(size_t node, NodeType_e f) { _check_next_flags(node, f); _p(node)->m_type = f; }
 | |
|     inline void _set_flags(size_t node, type_bits  f) { _check_next_flags(node, f); _p(node)->m_type = f; }
 | |
| 
 | |
|     inline void _add_flags(size_t node, NodeType_e f) { NodeData *d = _p(node); type_bits fb = f |  d->m_type; _check_next_flags(node, fb); d->m_type = (NodeType_e) fb; }
 | |
|     inline void _add_flags(size_t node, type_bits  f) { NodeData *d = _p(node);                f |= d->m_type; _check_next_flags(node,  f); d->m_type = f; }
 | |
| 
 | |
|     inline void _rem_flags(size_t node, NodeType_e f) { NodeData *d = _p(node); type_bits fb = d->m_type & ~f; _check_next_flags(node, fb); d->m_type = (NodeType_e) fb; }
 | |
|     inline void _rem_flags(size_t node, type_bits  f) { NodeData *d = _p(node);            f = d->m_type & ~f; _check_next_flags(node,  f); d->m_type = f; }
 | |
| 
 | |
|     void _set_key(size_t node, csubstr key, type_bits more_flags=0)
 | |
|     {
 | |
|         _p(node)->m_key.scalar = key;
 | |
|         _add_flags(node, KEY|more_flags);
 | |
|     }
 | |
|     void _set_key(size_t node, NodeScalar const& key, type_bits more_flags=0)
 | |
|     {
 | |
|         _p(node)->m_key = key;
 | |
|         _add_flags(node, KEY|more_flags);
 | |
|     }
 | |
| 
 | |
|     void _set_val(size_t node, csubstr val, type_bits more_flags=0)
 | |
|     {
 | |
|         RYML_ASSERT(num_children(node) == 0);
 | |
|         RYML_ASSERT(!is_seq(node) && !is_map(node));
 | |
|         _p(node)->m_val.scalar = val;
 | |
|         _add_flags(node, VAL|more_flags);
 | |
|     }
 | |
|     void _set_val(size_t node, NodeScalar const& val, type_bits more_flags=0)
 | |
|     {
 | |
|         RYML_ASSERT(num_children(node) == 0);
 | |
|         RYML_ASSERT( ! is_container(node));
 | |
|         _p(node)->m_val = val;
 | |
|         _add_flags(node, VAL|more_flags);
 | |
|     }
 | |
| 
 | |
|     void _set(size_t node, NodeInit const& i)
 | |
|     {
 | |
|         RYML_ASSERT(i._check());
 | |
|         NodeData *n = _p(node);
 | |
|         RYML_ASSERT(n->m_key.scalar.empty() || i.key.scalar.empty() || i.key.scalar == n->m_key.scalar);
 | |
|         _add_flags(node, i.type);
 | |
|         if(n->m_key.scalar.empty())
 | |
|         {
 | |
|             if( ! i.key.scalar.empty())
 | |
|             {
 | |
|                 _set_key(node, i.key.scalar);
 | |
|             }
 | |
|         }
 | |
|         n->m_key.tag = i.key.tag;
 | |
|         n->m_val = i.val;
 | |
|     }
 | |
| 
 | |
|     void _set_parent_as_container_if_needed(size_t in)
 | |
|     {
 | |
|         NodeData const* n = _p(in);
 | |
|         size_t ip = parent(in);
 | |
|         if(ip != NONE)
 | |
|         {
 | |
|             if( ! (is_seq(ip) || is_map(ip)))
 | |
|             {
 | |
|                 if((in == first_child(ip)) && (in == last_child(ip)))
 | |
|                 {
 | |
|                     if( ! n->m_key.empty() || has_key(in))
 | |
|                     {
 | |
|                         _add_flags(ip, MAP);
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         _add_flags(ip, SEQ);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void _seq2map(size_t node)
 | |
|     {
 | |
|         RYML_ASSERT(is_seq(node));
 | |
|         for(size_t i = first_child(node); i != NONE; i = next_sibling(i))
 | |
|         {
 | |
|             NodeData *C4_RESTRICT ch = _p(i);
 | |
|             if(ch->m_type.is_keyval())
 | |
|                 continue;
 | |
|             ch->m_type.add(KEY);
 | |
|             ch->m_key = ch->m_val;
 | |
|         }
 | |
|         auto *C4_RESTRICT n = _p(node);
 | |
|         n->m_type.rem(SEQ);
 | |
|         n->m_type.add(MAP);
 | |
|     }
 | |
| 
 | |
|     size_t _do_reorder(size_t *node, size_t count);
 | |
| 
 | |
|     void _swap(size_t n_, size_t m_);
 | |
|     void _swap_props(size_t n_, size_t m_);
 | |
|     void _swap_hierarchy(size_t n_, size_t m_);
 | |
|     void _copy_hierarchy(size_t dst_, size_t src_);
 | |
| 
 | |
|     inline void _copy_props(size_t dst_, size_t src_)
 | |
|     {
 | |
|         _copy_props(dst_, this, src_);
 | |
|     }
 | |
| 
 | |
|     inline void _copy_props_wo_key(size_t dst_, size_t src_)
 | |
|     {
 | |
|         _copy_props_wo_key(dst_, this, src_);
 | |
|     }
 | |
| 
 | |
|     void _copy_props(size_t dst_, Tree const* that_tree, size_t src_)
 | |
|     {
 | |
|         auto      & C4_RESTRICT dst = *_p(dst_);
 | |
|         auto const& C4_RESTRICT src = *that_tree->_p(src_);
 | |
|         dst.m_type = src.m_type;
 | |
|         dst.m_key  = src.m_key;
 | |
|         dst.m_val  = src.m_val;
 | |
|     }
 | |
| 
 | |
|     void _copy_props_wo_key(size_t dst_, Tree const* that_tree, size_t src_)
 | |
|     {
 | |
|         auto      & C4_RESTRICT dst = *_p(dst_);
 | |
|         auto const& C4_RESTRICT src = *that_tree->_p(src_);
 | |
|         dst.m_type = (src.m_type & ~_KEYMASK) | (dst.m_type & _KEYMASK);
 | |
|         dst.m_val  = src.m_val;
 | |
|     }
 | |
| 
 | |
|     inline void _clear_type(size_t node)
 | |
|     {
 | |
|         _p(node)->m_type = NOTYPE;
 | |
|     }
 | |
| 
 | |
|     inline void _clear(size_t node)
 | |
|     {
 | |
|         auto *C4_RESTRICT n = _p(node);
 | |
|         n->m_type = NOTYPE;
 | |
|         n->m_key.clear();
 | |
|         n->m_val.clear();
 | |
|         n->m_parent = NONE;
 | |
|         n->m_first_child = NONE;
 | |
|         n->m_last_child = NONE;
 | |
|     }
 | |
| 
 | |
|     inline void _clear_key(size_t node)
 | |
|     {
 | |
|         _p(node)->m_key.clear();
 | |
|         _rem_flags(node, KEY);
 | |
|     }
 | |
| 
 | |
|     inline void _clear_val(size_t node)
 | |
|     {
 | |
|         _p(node)->m_val.clear();
 | |
|         _rem_flags(node, VAL);
 | |
|     }
 | |
| 
 | |
| private:
 | |
| 
 | |
|     void _clear_range(size_t first, size_t num);
 | |
| 
 | |
|     size_t _claim();
 | |
|     void   _claim_root();
 | |
|     void   _release(size_t node);
 | |
|     void   _free_list_add(size_t node);
 | |
|     void   _free_list_rem(size_t node);
 | |
| 
 | |
|     void _set_hierarchy(size_t node, size_t parent, size_t after_sibling);
 | |
|     void _rem_hierarchy(size_t node);
 | |
| 
 | |
| public:
 | |
| 
 | |
|     // members are exposed, but you should NOT access them directly
 | |
| 
 | |
|     NodeData * m_buf;
 | |
|     size_t m_cap;
 | |
| 
 | |
|     size_t m_size;
 | |
| 
 | |
|     size_t m_free_head;
 | |
|     size_t m_free_tail;
 | |
| 
 | |
|     substr m_arena;
 | |
|     size_t m_arena_pos;
 | |
| 
 | |
|     Callbacks m_callbacks;
 | |
| 
 | |
|     TagDirective m_tag_directives[RYML_MAX_TAG_DIRECTIVES];
 | |
| 
 | |
| };
 | |
| 
 | |
| } // namespace yml
 | |
| } // namespace c4
 | |
| 
 | |
| 
 | |
| C4_SUPPRESS_WARNING_MSVC_POP
 | |
| C4_SUPPRESS_WARNING_GCC_CLANG_POP
 | |
| 
 | |
| 
 | |
| #endif /* _C4_YML_TREE_HPP_ */
 | 
